Morphisms on affine varieties¶
A morphism of schemes determined by rational functions that define what the morphism does on points in the ambient affine space.
AUTHORS:
David Kohel, William Stein
Volker Braun (2011-08-08): Renamed classes, more documentation, misc cleanups.
Ben Hutz (2013-03) iteration functionality and new directory structure for affine/projective
-
class
sage.schemes.affine.affine_morphism.
SchemeMorphism_polynomial_affine_space
(parent, polys, check=True)¶ Bases:
sage.schemes.generic.morphism.SchemeMorphism_polynomial
A morphism of schemes determined by rational functions.
EXAMPLES:
sage: RA.<x,y> = QQ[] sage: A2 = AffineSpace(RA) sage: RP.<u,v,w> = QQ[] sage: P2 = ProjectiveSpace(RP) sage: H = A2.Hom(P2) sage: f = H([x, y, 1]) sage: f Scheme morphism: From: Affine Space of dimension 2 over Rational Field To: Projective Space of dimension 2 over Rational Field Defn: Defined on coordinates by sending (x, y) to (x : y : 1)
-
as_dynamical_system
()¶ Return this endomorphism as a
DynamicalSystem_affine
.OUTPUT:
EXAMPLES:
sage: A.<x,y,z> = AffineSpace(ZZ, 3) sage: H = End(A) sage: f = H([x^2, y^2, z^2]) sage: type(f.as_dynamical_system()) <class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine'>
sage: A.<x,y> = AffineSpace(ZZ, 2) sage: H = End(A) sage: f = H([x^2-y^2, y^2]) sage: type(f.as_dynamical_system()) <class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine'>
sage: A.<x> = AffineSpace(GF(5), 1) sage: H = End(A) sage: f = H([x^2]) sage: type(f.as_dynamical_system()) <class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine_finite_field'>
sage: P.<x,y> = AffineSpace(RR, 2) sage: f = DynamicalSystem([x^2 + y^2, y^2], P) sage: g = f.as_dynamical_system() sage: g is f True
-
global_height
(prec=None)¶ Returns the maximum of the heights of the coefficients in any of the coordinate functions of the affine morphism.
INPUT:
prec
– desired floating point precision (default: default RealField precision).
OUTPUT: A real number.
EXAMPLES:
sage: A.<x> = AffineSpace(QQ, 1) sage: H = Hom(A, A) sage: f = H([1/1331*x^2 + 4000]); sage: f.global_height() 8.29404964010203
sage: R.<x> = PolynomialRing(QQ) sage: k.<w> = NumberField(x^2 + 5) sage: A.<x,y> = AffineSpace(k, 2) sage: H = Hom(A, A) sage: f = H([13*w*x^2 + 4*y, 1/w*y^2]); sage: f.global_height(prec=100) 3.3696683136785869233538671082
sage: A.<x> = AffineSpace(ZZ, 1) sage: H = Hom(A, A) sage: f = H([7*x^2 + 1513]); sage: f.global_height() 7.32184971378836
-
homogenize
(n)¶ Return the homogenization of this map.
If it’s domain is a subscheme, the domain of the homogenized map is the projective embedding of the domain. The domain and codomain can be homogenized at different coordinates:
n[0]
for the domain andn[1]
for the codomain.INPUT:
n
– a tuple of nonnegative integers. Ifn
is an integer, then the two values of the tuple are assumed to be the same.
OUTPUT:
SchemeMorphism_polynomial_projective_space
.
EXAMPLES:
sage: A.<x,y> = AffineSpace(ZZ, 2) sage: H = Hom(A, A) sage: f = H([(x^2-2)/x^5, y^2]) sage: f.homogenize(2) Scheme endomorphism of Projective Space of dimension 2 over Integer Ring Defn: Defined on coordinates by sending (x0 : x1 : x2) to (x0^2*x2^5 - 2*x2^7 : x0^5*x1^2 : x0^5*x2^2)
sage: A.<x,y> = AffineSpace(CC, 2) sage: H = Hom(A, A) sage: f = H([(x^2-2)/(x*y), y^2-x]) sage: f.homogenize((2, 0)) Scheme endomorphism of Projective Space of dimension 2 over Complex Field with 53 bits of precision Defn: Defined on coordinates by sending (x0 : x1 : x2) to (x0*x1*x2^2 : x0^2*x2^2 + (-2.00000000000000)*x2^4 : x0*x1^3 - x0^2*x1*x2)
sage: A.<x,y> = AffineSpace(ZZ, 2) sage: X = A.subscheme([x-y^2]) sage: H = Hom(X, X) sage: f = H([9*y^2, 3*y]) sage: f.homogenize(2) Scheme endomorphism of Closed subscheme of Projective Space of dimension 2 over Integer Ring defined by: x1^2 - x0*x2 Defn: Defined on coordinates by sending (x0 : x1 : x2) to (9*x1^2 : 3*x1*x2 : x2^2)
sage: R.<t> = PolynomialRing(ZZ) sage: A.<x,y> = AffineSpace(R, 2) sage: H = Hom(A, A) sage: f = H([(x^2-2)/y, y^2-x]) sage: f.homogenize((2, 0)) Scheme endomorphism of Projective Space of dimension 2 over Univariate Polynomial Ring in t over Integer Ring Defn: Defined on coordinates by sending (x0 : x1 : x2) to (x1*x2^2 : x0^2*x2 + (-2)*x2^3 : x1^3 - x0*x1*x2)
sage: A.<x> = AffineSpace(QQ, 1) sage: H = End(A) sage: f = H([x^2-1]) sage: f.homogenize((1, 0)) Scheme endomorphism of Projective Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x0 : x1) to (x1^2 : x0^2 - x1^2)
sage: R.<a> = PolynomialRing(QQbar) sage: A.<x,y> = AffineSpace(R, 2) sage: H = End(A) sage: f = H([QQbar(sqrt(2))*x*y, a*x^2]) sage: f.homogenize(2) Scheme endomorphism of Projective Space of dimension 2 over Univariate Polynomial Ring in a over Algebraic Field Defn: Defined on coordinates by sending (x0 : x1 : x2) to (1.414213562373095?*x0*x1 : a*x0^2 : x2^2)
sage: P.<x,y,z> = AffineSpace(QQ, 3) sage: H = End(P) sage: f = H([x^2 - 2*x*y + z*x, z^2 -y^2 , 5*z*y]) sage: f.homogenize(2).dehomogenize(2) == f True
sage: K.<c> = FunctionField(QQ) sage: A.<x> = AffineSpace(K, 1) sage: f = Hom(A, A)([x^2 + c]) sage: f.homogenize(1) Scheme endomorphism of Projective Space of dimension 1 over Rational function field in c over Rational Field Defn: Defined on coordinates by sending (x0 : x1) to (x0^2 + c*x1^2 : x1^2)
sage: A.<z> = AffineSpace(QQbar, 1) sage: H = End(A) sage: f = H([2*z / (z^2+2*z+3)]) sage: f.homogenize(1) Scheme endomorphism of Projective Space of dimension 1 over Algebraic Field Defn: Defined on coordinates by sending (x0 : x1) to (x0*x1 : 1/2*x0^2 + x0*x1 + 3/2*x1^2)
sage: A.<z> = AffineSpace(QQbar, 1) sage: H = End(A) sage: f = H([2*z / (z^2 + 2*z + 3)]) sage: f.homogenize(1) Scheme endomorphism of Projective Space of dimension 1 over Algebraic Field Defn: Defined on coordinates by sending (x0 : x1) to (x0*x1 : 1/2*x0^2 + x0*x1 + 3/2*x1^2)
sage: R.<c,d> = QQbar[] sage: A.<x> = AffineSpace(R, 1) sage: H = Hom(A, A) sage: F = H([d*x^2 + c]) sage: F.homogenize(1) Scheme endomorphism of Projective Space of dimension 1 over Multivariate Polynomial Ring in c, d over Algebraic Field Defn: Defined on coordinates by sending (x0 : x1) to (d*x0^2 + c*x1^2 : x1^2)
-
jacobian
()¶ Return the Jacobian matrix of partial derivative of this map.
The \((i, j)\) entry of the Jacobian matrix is the partial derivative \(diff(functions[i], variables[j])\).
OUTPUT:
matrix with coordinates in the coordinate ring of the map.
EXAMPLES:
sage: A.<z> = AffineSpace(QQ, 1) sage: H = End(A) sage: f = H([z^2 - 3/4]) sage: f.jacobian() [2*z]
sage: A.<x,y> = AffineSpace(QQ, 2) sage: H = End(A) sage: f = H([x^3 - 25*x + 12*y, 5*y^2*x - 53*y + 24]) sage: f.jacobian() [ 3*x^2 - 25 12] [ 5*y^2 10*x*y - 53]
sage: A.<x,y> = AffineSpace(ZZ, 2) sage: H = End(A) sage: f = H([(x^2 - x*y)/(1+y), (5+y)/(2+x)]) sage: f.jacobian() [ (2*x - y)/(y + 1) (-x^2 - x)/(y^2 + 2*y + 1)] [ (-y - 5)/(x^2 + 4*x + 4) 1/(x + 2)]
-
-
class
sage.schemes.affine.affine_morphism.
SchemeMorphism_polynomial_affine_space_field
(parent, polys, check=True)¶ Bases:
sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space
-
reduce_base_field
()¶ Return this map defined over the field of definition of the coefficients.
The base field of the map could be strictly larger than the field where all of the coefficients are defined. This function reduces the base field to the minimal possible. This can be done when the base ring is a number field, QQbar, a finite field, or algebraic closure of a finite field.
OUTPUT: A scheme morphism.
EXAMPLES:
sage: K.<t> = GF(5^4) sage: A.<x> = AffineSpace(K, 1) sage: A2.<a,b> = AffineSpace(K, 2) sage: H = End(A) sage: H2 = Hom(A,A2) sage: H3 = Hom(A2,A) sage: f = H([x^2 + 2*(t^3 + t^2 + t + 3)]) sage: f.reduce_base_field() Scheme endomorphism of Affine Space of dimension 1 over Finite Field in t2 of size 5^2 Defn: Defined on coordinates by sending (x) to (x^2 + (2*t2)) sage: f2 = H2([x^2 + 4, 2*x]) sage: f2.reduce_base_field() Scheme morphism: From: Affine Space of dimension 1 over Finite Field of size 5 To: Affine Space of dimension 2 over Finite Field of size 5 Defn: Defined on coordinates by sending (x) to (x^2 - 1, 2*x) sage: f3 = H3([a^2 + t*b]) sage: f3.reduce_base_field() Scheme morphism: From: Affine Space of dimension 2 over Finite Field in t of size 5^4 To: Affine Space of dimension 1 over Finite Field in t of size 5^4 Defn: Defined on coordinates by sending (a, b) to (a^2 + (t)*b)
sage: K.<v> = CyclotomicField(4) sage: A.<x> = AffineSpace(K, 1) sage: H = End(A) sage: f = H([x^2 + v]) sage: g = f.reduce_base_field();g Scheme endomorphism of Affine Space of dimension 1 over Cyclotomic Field of order 4 and degree 2 Defn: Defined on coordinates by sending (x) to (x^2 + (v)) sage: g.base_ring() is K True
sage: A.<x> = AffineSpace(QQbar, 1) sage: H = End(A) sage: f = H([(QQbar(sqrt(2))*x^2 + 1/QQbar(sqrt(3))) / (5*x)]) sage: f.reduce_base_field() Scheme endomorphism of Affine Space of dimension 1 over Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a = 1.931851652578137? Defn: Defined on coordinates by sending (x) to (((a^3 - 3*a)*x^2 + (1/3*a^2 - 2/3))/(5*x))
sage: R.<x> = PolynomialRing(QQ) sage: A.<x> =AffineSpace(QQbar,1) sage: H = End(A) sage: f = H([QQbar(3^(1/3))*x^2 + QQbar(sqrt(-2))]) sage: f.reduce_base_field() Scheme endomorphism of Affine Space of dimension 1 over Number Field in a with defining polynomial y^6 + 6*y^4 - 6*y^3 + 12*y^2 + 36*y + 17 with a = 1.442249570307409? + 1.414213562373095?*I Defn: Defined on coordinates by sending (x) to ((-48/269*a^5 + 27/269*a^4 - 320/269*a^3 + 468/269*a^2 - 772/269*a - 1092/269)*x^2 + (48/269*a^5 - 27/269*a^4 + 320/269*a^3 - 468/269*a^2 + 1041/269*a + 1092/269))
sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^3-x+1, embedding=(x^3+x+1).roots(ring=CC)[0][0]) sage: A.<x> = AffineSpace(K,1) sage: A2.<u,v> = AffineSpace(K,2) sage: H = Hom(A, A2) sage: f = H([x^2 + a*x + 3, 5*x]) sage: f.reduce_base_field() Scheme morphism: From: Affine Space of dimension 1 over Number Field in a with defining polynomial x^3 - x + 1 with a = -1.324717957244746? To: Affine Space of dimension 2 over Number Field in a with defining polynomial x^3 - x + 1 with a = -1.324717957244746? Defn: Defined on coordinates by sending (x) to (x^2 + (a)*x + 3, 5*x)
sage: K.<v> = QuadraticField(2) sage: A.<x> =AffineSpace(K,1) sage: H = End(A) sage: f = H([3*x^2 + x + 1]) sage: f.reduce_base_field() Scheme endomorphism of Affine Space of dimension 1 over Rational Field Defn: Defined on coordinates by sending (x) to (3*x^2 + x + 1)
sage: K.<t> = GF(5^6) sage: A.<x> = AffineSpace(K, 1) sage: H = End(A) sage: f = H([x^2 + x*(t^3 + 2*t^2 + 4*t) + (t^5 + 3*t^4 + t^2 + 4*t)]) sage: f.reduce_base_field() Scheme endomorphism of Affine Space of dimension 1 over Finite Field in t of size 5^6 Defn: Defined on coordinates by sending (x) to (x^2 + (t^3 + 2*t^2 - t)*x + (t^5 - 2*t^4 + t^2 - t))
-
weil_restriction
()¶ Compute the Weil restriction of this morphism over some extension field.
If the field is a finite field, then this computes the Weil restriction to the prime subfield.
A Weil restriction of scalars - denoted \(Res_{L/k}\) - is a functor which, for any finite extension of fields \(L/k\) and any algebraic variety \(X\) over \(L\), produces another corresponding variety \(Res_{L/k}(X)\), defined over \(k\). It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields. Since it is a functor it also applied to morphisms. In particular, the functor applied to a morphism gives the equivalent morphism from the Weil restriction of the domain to the Weil restriction of the codomain.
- OUTPUT: Scheme morphism on the Weil restrictions of the domain
and codomain of the map.
EXAMPLES:
sage: K.<v> = QuadraticField(5) sage: A.<x,y> = AffineSpace(K, 2) sage: H = End(A) sage: f = H([x^2-y^2, y^2]) sage: f.weil_restriction() Scheme endomorphism of Affine Space of dimension 4 over Rational Field Defn: Defined on coordinates by sending (z0, z1, z2, z3) to (z0^2 + 5*z1^2 - z2^2 - 5*z3^2, 2*z0*z1 - 2*z2*z3, z2^2 + 5*z3^2, 2*z2*z3)
sage: K.<v> = QuadraticField(5) sage: PS.<x,y> = AffineSpace(K, 2) sage: H = Hom(PS, PS) sage: f = H([x, y]) sage: F = f.weil_restriction() sage: P = PS(2, 1) sage: Q = P.weil_restriction() sage: f(P).weil_restriction() == F(Q) True
-
-
class
sage.schemes.affine.affine_morphism.
SchemeMorphism_polynomial_affine_space_finite_field
(parent, polys, check=True)¶ Bases:
sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space_field