Bullet Collision Detection & Physics Library
btSolverBody.h
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef BT_SOLVER_BODY_H
17 #define BT_SOLVER_BODY_H
18 
19 class btRigidBody;
20 #include "LinearMath/btVector3.h"
21 #include "LinearMath/btMatrix3x3.h"
22 
25 
27 #ifdef BT_USE_SSE
28 #define USE_SIMD 1
29 #endif //
30 
31 #ifdef USE_SIMD
32 
33 struct btSimdScalar
34 {
36  {
37  }
38 
40  : m_vec128(_mm_set1_ps(fl))
41  {
42  }
43 
44  SIMD_FORCE_INLINE btSimdScalar(__m128 v128)
45  : m_vec128(v128)
46  {
47  }
48  union {
49  __m128 m_vec128;
50  float m_floats[4];
51  int m_ints[4];
52  btScalar m_unusedPadding;
53  };
54  SIMD_FORCE_INLINE __m128 get128()
55  {
56  return m_vec128;
57  }
58 
59  SIMD_FORCE_INLINE const __m128 get128() const
60  {
61  return m_vec128;
62  }
63 
64  SIMD_FORCE_INLINE void set128(__m128 v128)
65  {
66  m_vec128 = v128;
67  }
68 
69  SIMD_FORCE_INLINE operator __m128()
70  {
71  return m_vec128;
72  }
73  SIMD_FORCE_INLINE operator const __m128() const
74  {
75  return m_vec128;
76  }
77 
78  SIMD_FORCE_INLINE operator float() const
79  {
80  return m_floats[0];
81  }
82 };
83 
86 operator*(const btSimdScalar& v1, const btSimdScalar& v2)
87 {
88  return btSimdScalar(_mm_mul_ps(v1.get128(), v2.get128()));
89 }
90 
93 operator+(const btSimdScalar& v1, const btSimdScalar& v2)
94 {
95  return btSimdScalar(_mm_add_ps(v1.get128(), v2.get128()));
96 }
97 
98 #else
99 #define btSimdScalar btScalar
100 #endif
101 
105 {
119 
121  void setWorldTransform(const btTransform& worldTransform)
122  {
123  m_worldTransform = worldTransform;
124  }
125 
127  {
128  return m_worldTransform;
129  }
130 
132  {
133  if (m_originalBody)
134  velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity + m_externalTorqueImpulse).cross(rel_pos);
135  else
136  velocity.setValue(0, 0, 0);
137  }
138 
140  {
141  if (m_originalBody)
142  velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
143  else
144  velocity.setValue(0, 0, 0);
145  }
146 
148  {
149  if (m_originalBody)
150  angVel = m_angularVelocity + m_deltaAngularVelocity;
151  else
152  angVel.setValue(0, 0, 0);
153  }
154 
155  //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
156  SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent, const btScalar impulseMagnitude)
157  {
158  if (m_originalBody)
159  {
160  m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
161  m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
162  }
163  }
164 
165  SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent, btScalar impulseMagnitude)
166  {
167  if (m_originalBody)
168  {
169  m_pushVelocity += linearComponent * impulseMagnitude * m_linearFactor;
170  m_turnVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
171  }
172  }
173 
175  {
176  return m_deltaLinearVelocity;
177  }
178 
180  {
181  return m_deltaAngularVelocity;
182  }
183 
184  const btVector3& getPushVelocity() const
185  {
186  return m_pushVelocity;
187  }
188 
189  const btVector3& getTurnVelocity() const
190  {
191  return m_turnVelocity;
192  }
193 
196 
198  {
199  return m_deltaLinearVelocity;
200  }
201 
203  {
204  return m_deltaAngularVelocity;
205  }
206 
208  {
209  return m_angularFactor;
210  }
211 
213  {
214  return m_invMass;
215  }
216 
217  void internalSetInvMass(const btVector3& invMass)
218  {
219  m_invMass = invMass;
220  }
221 
223  {
224  return m_pushVelocity;
225  }
226 
228  {
229  return m_turnVelocity;
230  }
231 
233  {
234  velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
235  }
236 
238  {
239  angVel = m_angularVelocity + m_deltaAngularVelocity;
240  }
241 
242  //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
243  SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent, const btScalar impulseMagnitude)
244  {
245  if (m_originalBody)
246  {
247  m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
248  m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
249  }
250  }
251 
253  {
254  if (m_originalBody)
255  {
256  m_linearVelocity += m_deltaLinearVelocity;
257  m_angularVelocity += m_deltaAngularVelocity;
258 
259  //m_originalBody->setCompanionId(-1);
260  }
261  }
262 
263  void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
264  {
265  (void)timeStep;
266  if (m_originalBody)
267  {
268  m_linearVelocity += m_deltaLinearVelocity;
269  m_angularVelocity += m_deltaAngularVelocity;
270 
271  //correct the position/orientation based on push/turn recovery
272  btTransform newTransform;
273  if (m_pushVelocity[0] != 0.f || m_pushVelocity[1] != 0 || m_pushVelocity[2] != 0 || m_turnVelocity[0] != 0.f || m_turnVelocity[1] != 0 || m_turnVelocity[2] != 0)
274  {
275  // btQuaternion orn = m_worldTransform.getRotation();
276  btTransformUtil::integrateTransform(m_worldTransform, m_pushVelocity, m_turnVelocity * splitImpulseTurnErp, timeStep, newTransform);
277  m_worldTransform = newTransform;
278  }
279  //m_worldTransform.setRotation(orn);
280  //m_originalBody->setCompanionId(-1);
281  }
282  }
283 };
284 
285 #endif //BT_SOLVER_BODY_H
btSolverBody::getAngularVelocity
void getAngularVelocity(btVector3 &angVel) const
Definition: btSolverBody.h:147
btSolverBody
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
Definition: btSolverBody.h:103
btSolverBody::m_pushVelocity
btVector3 m_pushVelocity
Definition: btSolverBody.h:113
btSolverBody::m_originalBody
btRigidBody * m_originalBody
Definition: btSolverBody.h:120
btRigidBody
The btRigidBody is the main class for rigid body objects.
Definition: btRigidBody.h:59
btSolverBody::internalSetInvMass
void internalSetInvMass(const btVector3 &invMass)
Definition: btSolverBody.h:217
btSolverBody::m_linearVelocity
btVector3 m_linearVelocity
Definition: btSolverBody.h:115
btSolverBody::internalGetInvMass
const btVector3 & internalGetInvMass() const
Definition: btSolverBody.h:212
btVector3::setValue
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Definition: btVector3.h:640
btScalar
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
btSolverBody::getPushVelocity
const btVector3 & getPushVelocity() const
Definition: btSolverBody.h:184
btSolverBody::internalGetTurnVelocity
btVector3 & internalGetTurnVelocity()
Definition: btSolverBody.h:227
btSolverBody::internalGetAngularVelocity
void internalGetAngularVelocity(btVector3 &angVel) const
Definition: btSolverBody.h:237
btSolverBody::m_externalForceImpulse
btVector3 m_externalForceImpulse
Definition: btSolverBody.h:117
btSolverBody::m_linearFactor
btVector3 m_linearFactor
Definition: btSolverBody.h:111
btMatrix3x3.h
operator*
btMatrix3x3 operator*(const btMatrix3x3 &m, const btScalar &k)
Definition: btMatrix3x3.h:914
btSolverBody::internalApplyImpulse
void internalApplyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
Definition: btSolverBody.h:243
btTransformUtil.h
btSolverBody::getTurnVelocity
const btVector3 & getTurnVelocity() const
Definition: btSolverBody.h:189
btSolverBody::m_angularFactor
btVector3 m_angularFactor
Definition: btSolverBody.h:110
btSolverBody::m_angularVelocity
btVector3 m_angularVelocity
Definition: btSolverBody.h:116
btSolverBody::internalGetVelocityInLocalPointObsolete
void internalGetVelocityInLocalPointObsolete(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:232
btVector3.h
btSolverBody::m_invMass
btVector3 m_invMass
Definition: btSolverBody.h:112
btSimdScalar
#define btSimdScalar
Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later,...
Definition: btSolverBody.h:99
btSolverBody::applyImpulse
void applyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
Definition: btSolverBody.h:156
btSolverBody::internalApplyPushImpulse
void internalApplyPushImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, btScalar impulseMagnitude)
Definition: btSolverBody.h:165
btSolverBody::writebackVelocityAndTransform
void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
Definition: btSolverBody.h:263
btAlignedAllocator.h
operator+
btMatrix3x3 operator+(const btMatrix3x3 &m1, const btMatrix3x3 &m2)
Definition: btMatrix3x3.h:936
btSolverBody::internalGetDeltaAngularVelocity
btVector3 & internalGetDeltaAngularVelocity()
Definition: btSolverBody.h:202
btSolverBody::writebackVelocity
void writebackVelocity()
Definition: btSolverBody.h:252
btTransform
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:28
BT_DECLARE_ALIGNED_ALLOCATOR
#define BT_DECLARE_ALIGNED_ALLOCATOR()
Definition: btScalar.h:425
btSolverBody::getVelocityInLocalPointNoDelta
void getVelocityInLocalPointNoDelta(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:131
btSolverBody::internalGetPushVelocity
btVector3 & internalGetPushVelocity()
Definition: btSolverBody.h:222
btSolverBody::internalGetDeltaLinearVelocity
btVector3 & internalGetDeltaLinearVelocity()
some internal methods, don't use them
Definition: btSolverBody.h:197
btVector3
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:80
btSolverBody::m_deltaAngularVelocity
btVector3 m_deltaAngularVelocity
Definition: btSolverBody.h:109
ATTRIBUTE_ALIGNED16
#define ATTRIBUTE_ALIGNED16(a)
Definition: btScalar.h:99
btSolverBody::getVelocityInLocalPointObsolete
void getVelocityInLocalPointObsolete(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:139
btSolverBody::m_externalTorqueImpulse
btVector3 m_externalTorqueImpulse
Definition: btSolverBody.h:118
SIMD_FORCE_INLINE
#define SIMD_FORCE_INLINE
Definition: btScalar.h:98
btSolverBody::m_turnVelocity
btVector3 m_turnVelocity
Definition: btSolverBody.h:114
btSolverBody::m_deltaLinearVelocity
btVector3 m_deltaLinearVelocity
Definition: btSolverBody.h:108
btSolverBody::getWorldTransform
const btTransform & getWorldTransform() const
Definition: btSolverBody.h:126
btSolverBody::getDeltaLinearVelocity
const btVector3 & getDeltaLinearVelocity() const
Definition: btSolverBody.h:174
btSolverBody::setWorldTransform
void setWorldTransform(const btTransform &worldTransform)
Definition: btSolverBody.h:121
btSolverBody::m_worldTransform
btTransform m_worldTransform
Definition: btSolverBody.h:107
btSolverBody::internalGetAngularFactor
const btVector3 & internalGetAngularFactor() const
Definition: btSolverBody.h:207
btSolverBody::getDeltaAngularVelocity
const btVector3 & getDeltaAngularVelocity() const
Definition: btSolverBody.h:179
btTransformUtil::integrateTransform
static void integrateTransform(const btTransform &curTrans, const btVector3 &linvel, const btVector3 &angvel, btScalar timeStep, btTransform &predictedTransform)
Definition: btTransformUtil.h:32