Free associative unital algebras, implemented via Singular’s letterplace rings¶
AUTHOR:
- Simon King (2011-03-21): trac ticket #7797
With this implementation, Groebner bases out to a degree bound and normal forms can be computed for twosided weighted homogeneous ideals of free algebras. For now, all computations are restricted to weighted homogeneous elements, i.e., other elements can not be created by arithmetic operations.
EXAMPLES:
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: F
Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: I
Twosided Ideal (x*y + y*z, x*x + x*y - y*x - y*y) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
sage: x*(x*I.0-I.1*y+I.0*y)-I.1*y*z
x*y*x*y + x*y*y*y - x*y*y*z + x*y*z*y + y*x*y*z + y*y*y*z
sage: x^2*I.0-x*I.1*y+x*I.0*y-I.1*y*z in I
True
The preceding containment test is based on the computation of Groebner bases with degree bound:
sage: I.groebner_basis(degbound=4)
Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
When reducing an element by \(I\), the original generators are chosen:
sage: (y*z*y*y).reduce(I)
y*z*y*y
However, there is a method for computing the normal form of an element, which is the same as reduction by the Groebner basis out to the degree of that element:
sage: (y*z*y*y).normal_form(I)
y*z*y*z - y*z*z*y + y*z*z*z
sage: (y*z*y*y).reduce(I.groebner_basis(4))
y*z*y*z - y*z*z*y + y*z*z*z
The default term order derives from the degree reverse lexicographic order on the commutative version of the free algebra:
sage: F.commutative_ring().term_order()
Degree reverse lexicographic term order
A different term order can be chosen, and of course may yield a different normal form:
sage: L.<a,b,c> = FreeAlgebra(QQ, implementation='letterplace', order='lex')
sage: L.commutative_ring().term_order()
Lexicographic term order
sage: J = L*[a*b+b*c,a^2+a*b-b*c-c^2]*L
sage: J.groebner_basis(4)
Twosided Ideal (2*b*c*b - b*c*c + c*c*b, a*c*c - 2*b*c*a - 2*b*c*c - c*c*a, a*b + b*c, a*a - 2*b*c - c*c) of Free Associative Unital Algebra on 3 generators (a, b, c) over Rational Field
sage: (b*c*b*b).normal_form(J)
1/2*b*c*c*b - 1/2*c*c*b*b
Here is an example with degree weights:
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace', degrees=[1,2,3])
sage: (x*y+z).degree()
3
Todo
The computation of Groebner bases only works for global term orderings, and all elements must be weighted homogeneous with respect to positive integral degree weights. It is ongoing work in Singular to lift these restrictions.
We support coercion from the letterplace wrapper to the corresponding
generic implementation of a free algebra
(FreeAlgebra_generic
), but there
is no coercion in the opposite direction, since the generic
implementation also comprises non-homogeneous elements.
We also do not support coercion from a subalgebra, or between free algebras with different term orderings, yet.
-
class
sage.algebras.letterplace.free_algebra_letterplace.
FreeAlgebra_letterplace
¶ Bases:
sage.rings.ring.Algebra
Finitely generated free algebra, with arithmetic restricted to weighted homogeneous elements.
NOTE:
The restriction to weighted homogeneous elements should be lifted as soon as the restriction to homogeneous elements is lifted in Singular’s “Letterplace algebras”.
EXAMPLES:
sage: K.<z> = GF(25) sage: F.<a,b,c> = FreeAlgebra(K, implementation='letterplace') sage: F Free Associative Unital Algebra on 3 generators (a, b, c) over Finite Field in z of size 5^2 sage: P = F.commutative_ring() sage: P Multivariate Polynomial Ring in a, b, c over Finite Field in z of size 5^2
We can do arithmetic as usual, as long as we stay (weighted) homogeneous:
sage: (z*a+(z+1)*b+2*c)^2 (z + 3)*a*a + (2*z + 3)*a*b + (2*z)*a*c + (2*z + 3)*b*a + (3*z + 4)*b*b + (2*z + 2)*b*c + (2*z)*c*a + (2*z + 2)*c*b - c*c sage: a+1 Traceback (most recent call last): ... ArithmeticError: Can only add elements of the same weighted degree
-
commutative_ring
()¶ Return the commutative version of this free algebra.
NOTE:
This commutative ring is used as a unique key of the free algebra.
EXAMPLES:
sage: K.<z> = GF(25) sage: F.<a,b,c> = FreeAlgebra(K, implementation='letterplace') sage: F Free Associative Unital Algebra on 3 generators (a, b, c) over Finite Field in z of size 5^2 sage: F.commutative_ring() Multivariate Polynomial Ring in a, b, c over Finite Field in z of size 5^2 sage: FreeAlgebra(F.commutative_ring()) is F True
-
current_ring
()¶ Return the commutative ring that is used to emulate the non-commutative multiplication out to the current degree.
EXAMPLES:
sage: F.<a,b,c> = FreeAlgebra(QQ, implementation='letterplace') sage: F.current_ring() Multivariate Polynomial Ring in a, b, c over Rational Field sage: a*b a*b sage: F.current_ring() Multivariate Polynomial Ring in a, b, c, a_1, b_1, c_1 over Rational Field sage: F.set_degbound(3) sage: F.current_ring() Multivariate Polynomial Ring in a, b, c, a_1, b_1, c_1, a_2, b_2, c_2 over Rational Field
-
degbound
()¶ Return the degree bound that is currently used.
NOTE:
When multiplying two elements of this free algebra, the degree bound will be dynamically adapted. It can also be set by
set_degbound()
.EXAMPLES:
In order to avoid we get a free algebras from the cache that was created in another doctest and has a different degree bound, we choose a base ring that does not appear in other tests:
sage: F.<x,y,z> = FreeAlgebra(ZZ, implementation='letterplace') sage: F.degbound() 1 sage: x*y x*y sage: F.degbound() 2 sage: F.set_degbound(4) sage: F.degbound() 4
-
gen
(i)¶ Return the \(i\)-th generator.
INPUT:
\(i\) – an integer.
OUTPUT:
Generator number \(i\).
EXAMPLES:
sage: F.<a,b,c> = FreeAlgebra(QQ, implementation='letterplace') sage: F.1 is F.1 # indirect doctest True sage: F.gen(2) c
-
generator_degrees
()¶
-
ideal_monoid
()¶ Return the monoid of ideals of this free algebra.
EXAMPLES:
sage: F.<x,y> = FreeAlgebra(GF(2), implementation='letterplace') sage: F.ideal_monoid() Monoid of ideals of Free Associative Unital Algebra on 2 generators (x, y) over Finite Field of size 2 sage: F.ideal_monoid() is F.ideal_monoid() True
-
is_commutative
()¶ Tell whether this algebra is commutative, i.e., whether the generator number is one.
EXAMPLES:
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace') sage: F.is_commutative() False sage: FreeAlgebra(QQ, implementation='letterplace', names=['x']).is_commutative() True
-
is_field
()¶ Tell whether this free algebra is a field.
NOTE:
This would only be the case in the degenerate case of no generators. But such an example can not be constructed in this implementation.
-
ngens
()¶ Return the number of generators.
EXAMPLES:
sage: F.<a,b,c> = FreeAlgebra(QQ, implementation='letterplace') sage: F.ngens() 3
-
set_degbound
(d)¶ Increase the degree bound that is currently in place.
NOTE:
The degree bound can not be decreased.
EXAMPLES:
In order to avoid we get a free algebras from the cache that was created in another doctest and has a different degree bound, we choose a base ring that does not appear in other tests:
sage: F.<x,y,z> = FreeAlgebra(GF(251), implementation='letterplace') sage: F.degbound() 1 sage: x*y x*y sage: F.degbound() 2 sage: F.set_degbound(4) sage: F.degbound() 4 sage: F.set_degbound(2) sage: F.degbound() 4
-
term_order_of_block
()¶ Return the term order that is used for the commutative version of this free algebra.
EXAMPLES:
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace') sage: F.term_order_of_block() Degree reverse lexicographic term order sage: L.<a,b,c> = FreeAlgebra(QQ, implementation='letterplace',order='lex') sage: L.term_order_of_block() Lexicographic term order
-
-
sage.algebras.letterplace.free_algebra_letterplace.
poly_reduce
(ring=None, interruptible=True, attributes=None, *args)¶ This function is an automatically generated C wrapper around the Singular function ‘NF’.
This wrapper takes care of converting Sage datatypes to Singular datatypes and vice versa. In addition to whatever parameters the underlying Singular function accepts when called, this function also accepts the following keyword parameters:
INPUT:
args
– a list of argumentsring
– a multivariate polynomial ringinterruptible
– ifTrue
pressing Ctrl-C during the execution of this function will interrupt the computation (default:True
)attributes
– a dictionary of optional Singular attributes assigned to Singular objects (default:None
)
If
ring
is not specified, it is guessed from the given arguments. If this is not possible, then a dummy ring, univariate polynomial ring overQQ
, is used.EXAMPLES:
sage: groebner = sage.libs.singular.function_factory.ff.groebner sage: P.<x, y> = PolynomialRing(QQ) sage: I = P.ideal(x^2-y, y+x) sage: groebner(I) [x + y, y^2 - y] sage: triangL = sage.libs.singular.function_factory.ff.triang__lib.triangL sage: P.<x1, x2> = PolynomialRing(QQ, order='lex') sage: f1 = 1/2*((x1^2 + 2*x1 - 4)*x2^2 + 2*(x1^2 + x1)*x2 + x1^2) sage: f2 = 1/2*((x1^2 + 2*x1 + 1)*x2^2 + 2*(x1^2 + x1)*x2 - 4*x1^2) sage: I = Ideal(Ideal(f1,f2).groebner_basis()[::-1]) sage: triangL(I, attributes={I:{'isSB':1}}) [[x2^4 + 4*x2^3 - 6*x2^2 - 20*x2 + 5, 8*x1 - x2^3 + x2^2 + 13*x2 - 5], [x2, x1^2], [x2, x1^2], [x2, x1^2]]
The Singular documentation for ‘NF’ is given below.
5.1.127 reduce -------------- `*Syntax:*' `reduce (' poly_expression`,' ideal_expression `)' `reduce (' poly_expression`,' ideal_expression`,' int_expression `)' `reduce (' poly_expression`,' poly_expression`,' ideal_expression `)' `reduce (' vector_expression`,' ideal_expression `)' `reduce (' vector_expression`,' ideal_expression`,' int_expression `)' `reduce (' vector_expression`,' module_expression `)' `reduce (' vector_expression`,' module_expression`,' int_expression `)' `reduce (' vector_expression`,' poly_expression`,' module_expression `)' `reduce (' ideal_expression`,' ideal_expression `)' `reduce (' ideal_expression`,' ideal_expression`,' int_expression `)' `reduce (' ideal_expression`,' matrix_expression`,' ideal_expression `)' `reduce (' module_expression`,' ideal_expression `)' `reduce (' module_expression`,' ideal_expression`,' int_expression `)' `reduce (' module_expression`,' module_expression `)' `reduce (' module_expression`,' module_expression`,' int_expression `)' `reduce (' module_expression`,' matrix_expression`,' module_expression `)' `reduce (' poly/vector/ideal/module`,' ideal/module`,' int`,' intvec `)' `reduce (' ideal`,' matrix`,' ideal`,' int `)' `reduce (' poly`,' poly`,' ideal`,' int `)' `reduce (' poly`,' poly`,' ideal`,' int`,' intvec `)' `*Type:*' the type of the first argument `*Purpose:*' reduces a polynomial, vector, ideal or module to its normal form with respect to an ideal or module represented by a standard basis. Returns 0 if and only if the polynomial (resp. vector, ideal, module) is an element (resp. subideal, submodule) of the ideal (resp. module). The result may have no meaning if the second argument is not a standard basis. The third (optional) argument of type int modifies the behavior: * 0 default * 1 consider only the leading term and do no tail reduction. * 2 tail reduction:n the local/mixed ordering case: reduce also with bad ecart * 4 reduce without division, return possibly a non-zero constant multiple of the remainder If a second argument `u' of type poly or matrix is given, the first argument `p' is replaced by `p/u'. This works only for zero dimensional ideals (resp. modules) in the third argument and gives, even in a local ring, a reduced normal form which is the projection to the quotient by the ideal (resp. module). One may give a degree bound in the fourth argument with respect to a weight vector in the fifth argument in order have a finite computation. If some of the weights are zero, the procedure may not terminate! `*Note_*' The commands `reduce' and `NF' are synonymous. `*Example:*' ring r1 = 0,(z,y,x),ds; poly s1=2x5y+7x2y4+3x2yz3; poly s2=1x2y2z2+3z8; poly s3=4xy5+2x2y2z3+11x10; ideal i=s1,s2,s3; ideal j=std(i); reduce(3z3yx2+7y4x2+yx5+z12y2x2,j); ==> -yx5+2401/81y14x2+2744/81y11x5+392/27y8x8+224/81y5x11+16/81y2x14 reduce(3z3yx2+7y4x2+yx5+z12y2x2,j,1); ==> -yx5+z12y2x2 // 4 arguments: ring rs=0,x,ds; // normalform of 1/(1+x) w.r.t. (x3) up to degree 5 reduce(poly(1),1+x,ideal(x3),5); ==> // ** _ is no standard basis ==> 1-x+x2 * Menu: See * division:: * ideal:: * module:: * poly operations:: * std:: * vector::