Supercommutative Algebras¶
-
class
sage.categories.supercommutative_algebras.SupercommutativeAlgebras(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ringThe category of supercommutative algebras.
An \(R\)-supercommutative algebra is an \(R\)-super algebra \(A = A_0 \oplus A_1\) endowed with an \(R\)-super algebra structure satisfying:
\[x_0 x'_0 = x'_0 x_0, \qquad x_1 x'_1 = -x'_1 x_1, \qquad x_0 x_1 = x_1 x_0,\]for all \(x_0, x'_0 \in A_0\) and \(x_1, x'_1 \in A_1\).
EXAMPLES:
sage: Algebras(ZZ).Supercommutative() Category of supercommutative algebras over Integer Ring
-
class
SignedTensorProducts(category, *args)¶ Bases:
sage.categories.signed_tensor.SignedTensorProductsCategory-
extra_super_categories()¶ Return the extra super categories of
self.A signed tensor product of supercommutative algebras is a supercommutative algebra.
EXAMPLES:
sage: C = Algebras(ZZ).Supercommutative().SignedTensorProducts() sage: C.extra_super_categories() [Category of supercommutative algebras over Integer Ring]
-
-
class
WithBasis(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring-
class
ParentMethods¶
-
class
-
class