GHC User’s Guide Documentation
Release 8.6.5

GHC Team

Apr 24, 2019

The Glasgow Haskell Compiler License

Introduction to GHC

2.1 Obtaining GHC
2.2 Meta-information: Web sites, mailing lists, etc.
2.3 Reporting bugsinGHC
2.4 GHC version numbering policy

Release notes for version 8.6.1

3.1 Highlights
3.2 Fulldetails.,

3.2.1 Language i
Compiler.,
Plugins.
GHCi e e
Runtime system
Template Haskell
ghclibrary
baselibrary
ghc-primlibrary

3.2.10Buildsystem
3.3 Included libraries

LW W W W W WL
v v
QOO Uk WN

Release notes for version 8.6.2

4.1 Highlights
4.2 Knownissues v v i i,
4.3 Included libraries

Release notes for version 8.6.3

5.1 Highlights
52 Knownissues i
5.3 Included libraries

Release notes for version 8.6.4

6.1 Highlights,
6.2 Knownissues o v v v i,
6.3 Included libraries

Release notes for version 8.6.5

7.1 Highlights
7.2 Knownissues

CONTENTS

7.3 Included libraries e e e e e e e e 27

8 Using GHCi 31
8.1 Introductionto GHCi i e e e 31
8.2 Loading source files e e e e e e 32

8.2.1 Modulesvs. filenames e e 33
8.2.2 Making changes and recompilation 33

8.3 Loading compiledcode e e 33
8.4 Interactive evaluation atthe prompt 35
8.4.1 I/Oactionsattheprompt. 36
8.4.2 Using do notation atthe prompt 36
8.4.3 Multilineinput e 38
8.4.4 Type, class and other declarations 39
8.4.5 What’s really in scope at the prompt? 40
8.4.5.1 The effect of :load on whatisinscope 41

8.4.5.2 Controlling what is in scope with import 41

8.4.5.3 Controlling what is in scope with the :module command 42

8.4.5.4 Qualifiednames e e 42

8.4.5.5 tmoduleand :load 43

8.4.6 The :mainand :runcommands, 43
8.4.7 The itwvariable. e 44
8.4.8 Type defaultingin GHCi 44
8.4.8.1 Interactive classes e 46

8.4.8.2 Extended rules around default declarations 46

8.4.9 Using a custom interactive printing function 46
8.4.10 Stack Traces in GHCi i i 47

8.5 The GHCiDebugger e e e e e e e e e 48
8.5.1 Breakpoints and inspecting variables 48
8.5.1.1 Setting breakpoints 51

8.5.1.2 Listing and deleting breakpoints 51

8.5.2 Single-stepping. e e e 52
8.5.3 Nested breakpoints e 52
8.54 The resultwvariable 53
8.5.5 Tracing and history 53
8.5.6 Debugging exceptions e 55
8.5.7 Example: inspecting functions, 56
8.5.8 Limitations i i e e e e e e e e 57

8.6 Invoking GHCi e e e e e e e e e e e 57
8.6.1 Packages e e e e e 58
8.6.2 Extralibraries e 58

8.7 GHCicommands i i ittt e e e e e e e e e e e 59
8.8 The :setand :seticommands, 69
8.8.1 GHCioptions i e e e e e e e e e e 69
8.8.2 Setting GHC command-line optionsin GHCi 70
8.8.3 Setting options for interactive evaluationonly 70

8.9 The .ghciand .haskelinefiles 71
8.9.1 The .ghcifiles e e 71
8.9.2 The .haskelinefile e 73
8.10 Compiling to object code inside GHCi 73
8.11 Running the interpreter in a separate process 73
8.12 FAQ and Things To Watch Out For 74

9 Using runghc 75
9.1 UsSage . . . ¢ o it e e e e e e e e e e e e e e e e e e 75

9.2 runghcflags e e e e e e e e 75

9.3 GHC FLags o v v it e e e e e e e e e e e e e e e 75
10Using GHC 77
10.1 Using GHC e e e e e e e e e e e e e 77
10.1.1 Getting started: compiling programs 77
10.1.2 OptionS OVETVIEW v i i i et e e e e e e e e e e e e e e e e e e 78
10.1.2.1Command-line arguments 00, 78
10.1.2.2Command line options in sourcefiles 78
10.1.2.3Setting options in GHCi 79

10.1.3 Static, Dynamic, and Mode options 79
10.1.4 Meaningful file suffixes 79
10.1.5 Modes of operation e 80
10.1.5.1Using ghc --make e 81
10.1.5.2Expression evaluationmode 82
10.1.5.3Batch compilermode 82

10.1.6 Verbosity options e e e e e e 83
10.1.7 Platform-specific Flags i i i e 88
10.1.8 Miscellaneous flags o e e 88

10.2 Warnings and sanity-checking 88
10.3 Optimisation (code improvement), 103
10.3.1 -0*: convenient “packages” of optimisation flags. 104
10.3.2 - f*: platform-independentflags 104
10.4 Using Concurrent Haskell 115
10.5 Using SMP parallelism e 115
10.5.1 Compile-time options for SMP parallelism 115
10.5.2 RTS options for SMP parallelism 116
10.5.3 Hints for using SMP parallelism 117
10.6 Flagreference @ i i i i i it e e e e e e e e e e e 117
10.6.1 Verbosity options 117
10.6.2 Alternative modes of operation 120
10.6.3 Which phasestorun 121
10.6.4 Redirecting output e 121
10.6.5 Keeping intermediate files o ... 122
10.6.6 Temporary files e e e e e 122
10.6.7 Finding imports e e e e e e 123
10.6.8 Interface file options e 123
10.6.9 Recompilation checking, 123
10.6.10nteractive-mode options e 124
10.6.11PaCKagesS . . . o v i e 124
10.6.1Zanguage Options i i i e e e e e e e e e e e e e e 126
10.6.13NVAININGS & . ¢ v v v e 126
10.6.10ptimisation levels e 132
10.6.13ndividual optimisations 0. 133
10.6.1@Profiling options e e e e e e e e 137
10.6.1Program coverage OptionS v i v i i vt e e e e 138
10.6.18C pre-processor options e e e e e e 138
10.6.19Code generation options 0 138
10.6.2Qinking options e e e e e e e e e 139
10.6.2TPlugin options L e e e e e e e e e 141
10.6.22Replacing phases e e e e 142
10.6.2Forcing options to particularphases 142
10.6.2%Platform-specificoptions L o 143
10.6.28ompiler debuggingoptions L L oL 143

10.6.26Miscellaneous compileroptions L L. 147

10.7 Running a compiled program e e 148
10.7.1 Setting RTS options i ittt 148
10.7.1.1Setting RTS options on the command line 148
10.7.1.2Setting RTS options at compiletime 149
10.7.1.3Setting RTS options with the GHCRTS environment variable 149
10.7.1.4"Hooks” to change RTS behaviour 149
10.7.2 Miscellaneous RTS options, 150
10.7.3 RTS options to control the garbage collector. 151
10.7.4 RTS options to produce runtime statistics 157
10.7.5 RTS options for concurrency and parallelism 160
10.7.6 RTS options for profiling i 160
10.7.7 TraCing v v o i e 161
10.7.8 RTS options for hackers, debuggers, and over-interested souls 162
10.7.9 Getting information aboutthe RTS 163
10.8 Filenames and separate compilation, 164
10.8.1 Haskell source files i e 164
10.8.2 Output files e e e e e 165
10.8.3 Thesearchpath i .. 165
10.8.4 Redirecting the compilation output(s) 166
10.8.5 Keeping Intermediate Files 168
10.8.6 Redirecting temporary files 168
10.8.7 Other options related to interface files 169
10.8.8 The recompilation checker. 169
10.8.9 How to compile mutually recursive modules 170
10.8.1MModule signatures e e e e 172
10.8. 1TUsing make o o i e e e e e 177
10.8.1Dependency generation e e e e e 178
10.8.130rphan modules and instance declarations 180
10.9 Packages o v i it e e e e e e e e e e 181
10.9.1 Using Packages @ i i i i e e e e e e 182
10.9.2 The main package i i i i i i e e e e 185
10.9.3 Consequences of packages for the Haskell language 185
10.9.4 Thinning and renaming modules 185
10.9.5 Package Databases e 186
10.9.5.1The GHC PACKAGE_PATH environment variable 187
10.9.5.2Package environments 0L oo .. 188
10.9.6 Installed package IDs, dependencies, and broken packages 189
10.9.7 Package management (the ghc-pkg command) 190
10.9.8 Building a package from Haskell source 193
10.9.9 InstalledPackagelInfo: a package specification 194
10.10GHC Backends i i i it et e e e e e e e e e e e 198
10.10.INative Code Generator (-fasm) o o v v v v v i i i e 198
10.10.ZIVM Code Generator (-fllvm). o v v i it i i i 198
10.10.3C Code Generator (-fvia-C) @ o i i i i i i e 198
10.10.40nregisterised compilation 0., 199
10.110ptions related to a particularphase 199
10.11.1Replacing the program for one or more phases 199
10.11.Forcing options to a particularphase 200
10.11.30ptions affecting the C pre-processor v v v .. 201
10.11.3.$tandard CPP macros i i v i i 201
10.11.3.PP and string gapsS v v v v i v i e e e e e e e e 203
10.11.0ptions affecting a Haskell pre-processor 203

10.11.%ptions affecting code generation 204

10.11.®@ptions affecting linking 205

10.120sing shared libraries e 210
10.12.1Building programs that use shared libraries 211
10.12.5hared libraries for Haskell packages 211
10.12.3hared libraries that exporta CAPI 212
10.12.Finding shared libraries at runtime 212

10.12.4.UN0X & . v v o e e e e e e e e e e e e e e e e 213
10.12.4Mac OS X . . o o v e e e e e e e e e e e e 213

10.13ebugging the compiler e 214

10.13.Dumping out compiler intermediate structures 214
10.13.1.Front-end e e e e e 215
10.13.1.Zype-checkingand renaming, 215
10.13.1.Bore representation and simplification 216
10.13.1.8TG representation 217
10.13.1.6-representation e 217
10.13.1.BLVM code generator 218
10.13.1.Native code generator v i i ... 218
10.13.1.Bliscellaneous backend dumps 219

10.13. Formatting dumpso e e e e e e e e 219

10.13.Buppressing unwanted information 220

10.13.4&hecking for consistency L oo 220

10.13.8Checking for determinism e 221

11 Profiling 223

11.1 Cost centres and cost-centre stacks 223
11.1.1 Inserting cost centres by hand, 225
11.1.2 Rules for attributingcosts 227

11.2 Compiler options for profiling 227

11.3 Time and allocation profiling i 228
11.3.1 JSON profile format e 229

11.4 Profiling memory USAge v v v v v i e e e e e e e e e e e e e e e e e e 231
11.4.1 RTS options for heap profiling, 232
11.4.2 Retainer Profiling i e 234

11.4.2.1Hints for using retainer profiling 235

11.4.3 Biographical Profiling 235

11.4.4 Actual memory residency i i e e e e 236

11.5 hp2ps - Rendering heap profiles to PostScript 236
11.5.1 Manipulatingthe hpfile 237
11.5.2 Zooming in on regions of your profile, 238
11.5.3 Viewing the heap profile of a running program 238
11.5.4 Viewing a heap profileinrealtime 238

11.6 Profiling Parallel and Concurrent Programs 239

11.7 Observing Code COVErage v v v v v i it et e e e e e e e e e e e e 240
11.7.1 A small example: Reciprocation 240
11.7.2 Options for instrumenting code for coverage 241
11.7.3 The hpc toolkit e 242

11.7.3.1hpcreport e e e e e e 242
11.7.3.2hpcmarkup. e e e e e e e e e e 243
11.7.3.3hpCcsum e e e e e e e e e e e e e 243
11.7.3.4hpc combine e e 243
11.7.3.5hpCcmap v o o e e e e e e e e e e e e e 244
11.7.3.6hpc overlay and hpcdraft 244

11.7.4 Caveats and Shortcomings of Haskell Program Coverage 245

11.8 Using “ticky-ticky” profiling (for implementors) 245

12 Advice on: sooner, faster, smaller, thriftier 247

12.1 Sooner: producing a program more quickly 247
12.2 Faster: producing a program that runs quicker 248
12.3 Smaller: producing a program thatissmaller 251
12.4 Thriftier: producing a program that gobbles less heapspace 251
13GHC Language Features 253
13.1 Language Ooptions o o i e e e e e e e e e e e e e e e 253
13.2 Unboxed types and primitive operations 256
13.2.1 Unboxed types o i e e e e e e e e e e e e 257
13.2.2 Unboxed type kinds e e e 257
13.2.3 Unboxed tuples @ i i e e e e e e e 258
13.2.4 Unboxed SUMS i i it e e e e e e e e e 259

13.3 Syntactic extensions e e e e e e 260
13.3.1 Unicode syntax i i i i e e e e e e e e 260
13.3.2 Themagichash e i 261
13.3.3 Negative literals e e 262
13.3.4 Fractional looking integerliterals 262
13.3.5 Binary integerliterals. L . 262
13.3.6 Hexadecimal floating point literals 262
13.3.7 Numeric undersCores v v v v v e i e e e e e e e e e e e e e e 263
13.3.8 Pattern guards e e e e e e e 264
13.3.9View patterns e e e e e e e e e 264
13.3.1Gh+k patterns e e e e e e e e 266
13.3.1The recursive do-notation 267
13.3.11.Recursive binding groups 267
13.3.11.Zhe mdo notation 268
13.3.1Applicative do-notation o oo 269
13.3.12.%trict patterns 271
13.3.12.Zhings to watchoutfor,, . 272
13.3.13Farallel List Comprehensions 272
13.3.14Generalised (SQL-like) List Comprehensions 273
13.3.130Monad comprehensions i i i e 275
13.3.16New monadic failure desugaring mechanism 277
13.3.1Rebindable syntax and the implicit Prelude import 277
13.3.17.Things unaffected by RebindableSyntax 278
13.3.1&ostfix operators e e e e e e 279
13.3.19Tuple sections e e e e e e e 279
13.3.2@ambda-case e e e e e e e e e 280
13.3.2FEmpty case alternatives e 280
13.3.2Multi-way if-expressionso e 281
13.3.230ocal Fixity Declarations 282
13.3.24mport and export extensions o0 oL 283
13.3.24.Hiding things the imported module doesn’t export 283
13.3.24.Rackage-qualifiedimports, 283
13.3.24.8afeimports e e 283

13.3.24 .Bxplicit namespaces in import/export 284
13.3.2More liberal syntax for function arguments 284
13.3.25.Changes to the grammar 285
13.3.266Bummary of stolen syntax o ... 286

13.4 Extensions to data types and type synonyms 287
13.4.1 Data types with no constructors 287
13.4.2Datatypecontexts i e e e e e e e e e e 287
13.4.3 Infix type constructors, classes, and type variables 288

Vi

13. 4.4 Type operators v v i v i e e e e e e e e e e e e e e e e e 288

13.4.5 Liberalised type Synonyms i it i e e e e e 289
13.4.6 Existentially quantified data constructors. 290
13.4.6.1Why existential? 291
13.4.6.2Existentials and type classes 0. 291
13.4.6.3Record Constructors i ... 292
13.4.6.4Restrictions e e e e 293
13.4.7 Declaring data types with explicit constructor signatures 294
13.4.8 Generalised Algebraic Data Types (GADTS) 298
13.5 Extensions to the record system oo 300
13.5.1 Traditional record syntax 300
13.5.2 Record field disambiguation, 300
13.5.3 Duplicate record fields e 301
13.5.3.1Selector functions e 302
13.5.3.2Record updates 303
13.5.3.3Import and export of record fields 303
13.5.4 ReCcOrd PUNS o i i it e 304
13.5.5 Record wildcards e e 305
13.5.6 Record field selector polymorphism 306
13.5.6.1Solving HasField constraints 307
13.5.6.2Virtualrecord fields 308

13.6 Extensions to the “deriving” mechanism. 309
13.6.1 Deriving instances for empty datatypes 309
13.6.2 Inferred context for deriving clauses 310
13.6.3 Stand-alone deriving declarations 310
13.6.4 Deriving instances of extra classes (Data, etc.) 312
13.6.4.1Deriving Functorinstances 313
13.6.4.2Deriving Foldableinstances 316
13.6.4.3Deriving Traversableinstances 318
13.6.4.4Deriving Datainstances 319
13.6.4.5Deriving Typeableinstances 319
13.6.4.6Deriving Liftinstances 320
13.6.5 Generalised derived instances for newtypes 321
13.6.5.1Generalising the derivingclause 321
13.6.5.2A more precise specification, 323
13.6.5.3Associated type families 324
13.6.6 Deriving any otherclass 326
13.6.7 Deriving strategies i 0 i i i i e e e e e e e e e 329
13.6.7.1Default deriving strategy oo, 330
13.6.8 Deriving via o i e 330
13.7 Pattern synonyms e e e e e e e e e e e e e e e e e e e 332
13.7.1 Record Pattern Synonyms it 334
13.7.2 Syntax and scoping of pattern synonyms 335
13.7.3 Import and export of pattern synonyms 336
13.7.4 Typing of pattern synonyms e 336
13.7.5 Matching of pattern synonyms, 339
13.8 Class and instances declarations 339
13.8.1 Class declarations i i i i i e e e e 339
13.8.1.1Multi-parameter type classes, 339
13.8.1.2The superclasses of a class declaration 340
13.8.1.3Constrained class method types 340
13.8.1.4Default method signatures 341
13.8.1.5Nullary type classes e 343
13.8.2 Functional dependencies e 343

vii

13.8.2.1Rules for functional dependencies
13.8.2.2Background on functional dependencies
13.8.3 Instance declarations e e e
13.8.3.1Instance resolution e
13.8.3.2Relaxed rules for the instancehead
13.8.3.3Relaxed rules for instance contexts
13.8.3.4Instance terminationrules
13.8.3.5Undecidable instances
13.8.3.60verlapping instances e
13.8.3.7Instance signatures: type signatures in instance declarations . . .
13.8.4 Overloaded string literals,
13.8.5 Overloaded labels e
13.8.6 Overloaded lists e e e
13.8.6.1The IsListclass it
13.8.6.2Rebindable syntax.
13.8.6.3Defaulting e e
13.8.6.4Speculation about the future
13.8.7 Undecidable (or recursive) superclasses

13.9 Type families e e e e e e e e e e

13.9.1 Data families e e e
13.9.1.1Data family declarations
13.9.1.2Data instance declarations
13.9.1.30verlap of data instances,

13.9.2 Synonym families e
13.9.2.1Type family declarations
13.9.2.2Type instance declarations
13.9.2.3Closed type families,
13.9.2.4Type family examples i
13.9.2.5Compatibility and apartness of type family equations
13.9.2.6Decidability of type synonym instances

13.9.3 Wildcards on the LHS of data and type family instances

13.9.4 Associated data and type families
13.9.4.1Associated instances e
13.9.4.2Associated type synonym defaults
13.9.4.3Scoping of class parameters,
13.9.4.4Instance contexts and associated type and data instances

13.9.5 Import and export e e e e e e e
13.9.5.1Examples e e e e e e e e e
13.9.5.2Instances e e e e e e e e e e e e e

13.9.6 Type families and instance declarations

13.9.7 Injective type families e
13.9.7.1Syntax of injectivity annotation
13.9.7.2Verifying injectivity annotation against type family equations . . .

13.1Matatype promotion e e e e e e e e e e e e e

13.10.IMotivation. o o e e e e e e e e e e e e e e e
13.10.2DVEIVIEW . . . o i it e
13.10.Distinguishing between types and constructors
13.10.Promoted list and tuple types e
13.10.®Promoting existential data constructors.

13.11Kind polymorphism e e e

13.11.10verview of kind polymorphism
13.11.0verview of Type-in-Type i i i et e e e
13.11.@Principles of kind inference
13.11.4Complete user-supplied kind signatures and polymorphic recursion

viii

13.11.Xind inference in closed type families 384

13.11.&Kind inference in class instance declarations 384
13.11.Kind inference in type signatures. 385
13.11.&xplicit kind quantification, 385
13.11.Kind-indexed GADTS o 0 i ittt e e e e e e e e e e e e e 386
13.11.HMigher-rank kinds 386
13.11.1donstraints in kinds e e 387
13.11.The Kind Type o v it e e e e e e e e e e 387
13.11.Taferring dependency in datatype declarations 388
13.11.T4ferring dependency in user-written foralls 388
13.11.1Knd defaulting without PolyKinds 388
13.11.Wetty-printing in the presence of kind polymorphism 389
13.12Levity polymorphism e e e e e e 389
13.12.1No levity-polymorphic variables or arguments 390
13.12.Aevity-polymorphic bottoms L o oo 390
13.12.@Printing levity-polymorphic types 391
13.13lype-Level Literals e e e 391
13.13.1Runtime Values for Type-Level Literals 392
13.13.Lomputing With Type-Level Naturals 392
13.14Equality constraints, Coercible, and the kind Constraint 393
13.14.TFEquality constraints e 393
13.14.Heterogeneous equality e 393
13.14.3Jnlifted heterogeneous equality 394
13.14.4The Coercible constraint, 394
13.14.5The Constraint kind 394
13.1%Quantified constraints L e 395
13.15. IMotivation. o . i e e e e e e e e e e e e e e e 396
13.15.8yntax changes e e e e e e e e 396
13.15.3Typing changes i i i it e e e e e e e e e e e 397
13.15.45UperClasses v i i i e e e e e e e e e e e e e e e e e e e 397
13.15.80Verlap o o e e e e e e e e e e e e e e e e e 398
13.15.dnstance IooKup e e e e e e e e e 399
13.15. 7Termination o v i i e e e e e e e e e e e e e e e e e e 399
13.15.8C0herence e e e e e e e e e e e 399
13.1@Extensions to type signatures e 400
13.16.TExplicit universal quantification (forall) 400
13.16.ZT'he context of a type signature 400
13.16.3Ambiguous types and the ambiguitycheck 400
13.16.&Explicitly-kinded quantification 402
13.17Lexically scoped type variables o .. 403
13.17.10VEIVIEW . . . o o e 404
13.17.Declaration type signatures oo 405
13.17.Fxpression type signatures o o e e 406
13.17.4Pattern type signatures oo e e e e e 406
13.17.%lass and instance declarations. o 407
13.18Bindings and generalisation e e 407
13.18.1Switching off the dreaded Monomorphism Restriction 407
13.18.Aet-generalisation 408
13.18.Xind generalisation e e 409
13.1%isible type application e e 409
13.2dmplicit parameters e e e e e e e e e e e e 411
13.20.TImplicit-parameter type constraints 412
13.20.Zmplicit-parameter bindings L o e 412
13.20.3mplicit parameters and polymorphic recursion 413

ix

13.20.4mplicit parameters and monomorphism 413

13.21Arbitrary-rank polymorphism 414
13.21. I Examples o e e e e e e e e e e e e e e e 415
13.21.2ype inference o e e e e e 416
13.21.3mplicit quantification 417

13.22Zmpredicative polymorphism L e 418

13.23Typed Holes o o e e e e e e e e 419
13.23.WValid Hole Fits o e e e e e e 423

13.23.1.Refinement Hole Fits 424
13.23.1.30rting Valid Hole Fits 425

13.24Partial Type Signatures e e e e 426

13.24.1Syntax e e e e e e e e e e e e e e e 426
13.24.1.Type Wildcards i i it it e et 427
13.24. 1. Ramed Wildcards i i 427
13.24.1.Bxtra-Constraints Wildcard 429

13.24.2Where can they occur? e e 430

13.28Custom compile-time errors e e e 431

13.2@eferring type errors toruntime o e 432
13.26.1Enabling deferring of type errors0, 432
13.26.Deferred type errors in GHCi 433
13.26.dimitations of deferred type errors. L. 433

13.27Template Haskell e e e e e 434
13.27.1Syntax e e e e e e e e e e e e e 434
13.27.2Jsing Template Haskell 439
13.27.¥iewing Template Haskell generatedcode 439
13.27.24A Template Haskell Worked Example 440
13.27.90sing Template Haskell with Profiling 441
13.27.6Iemplate Haskell Quasi-quotation 441

13.28Arrow notation e e e e e e e 444
13.28.1do-notation for commands o e 446
13.28.Londitional commands e 447
13.28.Defining your own control structures, 447
13.28.LPrimitive constructs o e e e e e e e e 449
13.28.Differences with the paper L o 450
13.28.@ortability e e e e 450

13.2Bang patterns and Strict Haskell 450
13.29.Bang patterns e e e 451
13.29.5trict-by-default data types e 452
13.29.3Ftrict-by-default pattern bindings 452
13.29.Modularity e e e e e e e 454
13.29.Dynamic semantics of bang patterns. 0000, 455

13.3MASSETTIONS o e e e e e e e e e e e e e e e 457

13.31Static pointers e e e e e 458
13.31.1Using static pointers e 458
13.31.5tatic semantics of static pointers 0oL, 459

13.32PTagmas . . . o v o e 460
13.32.LANGUAGE pragma o v it e e e e e e e e e e e e e e e 461
13.32.DPTIONS GHC pragma v v v i i i e e e e e e e e e e e e e e e e 461
13.32.INCLUDE pragma v v v i v e 461
13.32.4WARNING and DEPRECATED pragmas v v v v v v vt e e v e e e e o 461
13.32.MINIMAL Pragma v v v e 462
13.32.GINLINE and NOINLINE pragmas« v v v v v v v v v oo e e e e 463

13.32.6.INLINE pragma o i i ittt et e e e 463

13.32.6.ENLINABLE pragma 464

13.32.6.BOINLINE pragma oo v i v ittt e et 465

13.32.6.@0NLIKE modifier i 465
13.32.6.Bhase control e 465
13.32LINE Pragma . . . v v v v e 466
13.32.&0LUMN pragma v v o e e e e e e e e e e e e e e e e e e 466
13.32.RULES pragma i i it e e e e e e e e e e e e e e e 466
13.32.19PECTIALIZE Pragmia « « « « v v v v v e e e e e e e e e e e e e e e e e e 467
13.32.1GRECIALIZE INLINE ittt e et e e e e 468
13.32.1GBRECIALIZE for imported functions 468
13.32.1@Mbsolete SPECIALIZE syntaxX v v v v v v v i v vt oo e e 469
13.32.1SPECIALIZE instance pragma« v« v v v v v v v o v e e e e e e e 469
13.32. 1UNPACK PTagIma v v o v e 470
13.32. INDUNPACK pragma v o i e 470
13.32.1SDURCE Pragma v v v v e o e 470
13.32. 1DMPLETE Pragmas . . . « v v v v v e 471
13.32.Bisambiguating between multiple COMPLETE pragmas 472
13.32.10VERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas 472
13.3Rewriterules e e e e e e e e 473
13.33.ISyntax . . . o . e e e e e e e e e 473
13.33.5emantiCs i i e e e e e e e e e e e e e e e e e 474
13.33.FHow rules interact with INLINE/NOINLINE pragmas. 475
13.33.4How rules interact with CONLIKE pragmas 476
13.33.How rules interact with class methods 476
13.33.dist fusion L e e e e e e e e e 477
13.33.Bpecialisation. e e e e e e e e e e 478
13.33.8ontrolling what’s going on in rewriterules 479
13.34Special built-in functions e 479
13.35Generic Classes i i e e e e e e e e e e e e e e e e 479
13.36Generic programming v v i i e e e e e e e e e e e e e e e e e e e 479
13.36.Deriving representations L o e e 480
13.36.2Vriting generic functions L L o 481
13.36.3Unlifted representationtypes L o 482
13.36.4Generic defaults e e 483
13.36.More information e e e 483
13.37R01ES . . . o e e e e e e e e e e e 483
13.37.INominal, Representational, and Phantom 484
13.37.Roleinference e e e 484
13.37.Ro0le annotations L. e e e e 485
13.38asCallStack e e e e 486
13.38.1Compared with other sources of stacktraces 488
13.3%Concurrent and Parallel Haskell 489
13.39.1Concurrent Haskell 489
13.39.5oftware Transactional Memory 489
13.39.Farallel Haskell e 489
13.39.4Annotating pure code for parallelism 490
13.40Bafe Haskell e e e e e 491
13.40.1Uses of Safe Haskell 491
13.40.1.%trict type-safety (good style) 491
13.40.1.Building secure systems (restricted IO Monads) 492
13.40.Bafe Language o vt it e e e e e e e e e e e e e 493
13.40.2.%afe Overlapping Instances 495
13.40.FBafe Imports e e e e e e e e e e 496
13.40.4rust and Safe Haskell Modes 496
13.40.4.Trust check (-fpackage-trustdisabled) 497

Xi

13.40.4.Zrust check (-fpackage-trustenabled) 497

13.404.Bxample e e e e e e e e 498

13.40.4. Zrustworthy Requirements 498
13.40.4.Backage Trust i i e e 498
13.40.%5afe Haskell Inference, 499
13.40.6afe Haskell Flag Summary i vttt 499
13.40.5afe Compilation. e e e 500

14 Foreign function interface (FFI) 503
14.1 GHC differences to the FFI Chapter 503
14.1.1 Guaranteed call safety e 503

14.2 GHC extensions to the FFI Chapter. 504
14.2.1 Unboxed types o o v i it e e e e e e e e e 504
14.2.2 Newtype wrapping of the IOmonad 504
14.2.3 Primitive imports e e e e e 504
14.2.4 Interruptible foreigncalls 505
14.2.5 The CAPI calling convention 505
14.2.6 hs_thread done() @ i i e e e 506
14.3 Using the FFIwith GHC i et 506
14.3.1 Using foreign export and foreign import ccall "wrapper" with GHC 506
14.3.1.1Using your own main() v it 507
14.3.1.2Making a Haskell library that can be called from foreign code . . . 509

14.3.2 Using headerfiles e 510
14.3.3 Memory Allocation e 510
14.3.4 Multi-threadingandthe FFI 511
14.3.4.1Foreign imports and multi-threading 511
14.3.4.2The relationship between Haskell threads and OS threads 511
14.3.4.3Foreign exports and multi-threading 511
14.3.4.40ntheuseof hs exit(), 512
14.3.4.5Waking up Haskell threads from C. 512

14.3.5 Floating pointand the FFI, 514

15 Extending and using GHC as a Library 515
15.1 Source annotations i e e e e e e e e e e e e e 515
15.1.1 Annotating values e e e e 515
15.1.2 Annotating typeso e e e e e e e 516
15.1.3 Annotatingmodules e 516

15.2 Using GHC asa Library i i i i it e e e e e e e e e e e e 516
15.3 Compiler Plugins e e e 517
15.3.1 Using compiler plugins e 517
15.3.2 Writing compiler plugins e 518
15.3.3 Core pluginsin more detail 519
15.3.3.1Manipulating bindings 0o, 520
15.3.3.2Using Annotations e 520

15.3.4 Typechecker plugins i 521
15.3.4.1Constraint solving with plugins 522

15.3.5 Source plugins e e e e e e e e e 523
15.3.5.1Parsed representation, 523
15.3.5.2Type checked representation 523
15.3.5.3Evaluated code 524
15.3.5.4Interface files 524
15.3.5.5Source pluginexample e 524

15.3.6 Controlling Recompilation 526
15.3.7 Frontend plugins i i i i e e e e e e e e e e e 527

xii

16What to do when something goes wrong 529

16.1 When the compiler “does the wrong thing” 529
16.2 When your program “does the wrong thing” 530
17 Debugging compiled programs 531
17.1 Tutorial o e e e e 531
17.2 Requesting a stack trace from Haskellcode 534
17.3 Requesting a stack trace with SIGQUIT 534
17.4 Implementor’s notes: DWARF annotations 534
17.4.1 Debugging information entities oo oo L. 535
17.4.1.1DW TAG ghc src note it i 535

17.5 Further Reading o i i e e e e e e e e e e e 536
18 Other Haskell utility programs 537
18.1 “Yacc for Haskell”: happy o o i i i e e e e e e e e e e 537
18.2 Writing Haskell interfaces to C code: hsc2hs 537
18.2.1 command line syntax e 537
18.2.2 Input syntax e e e e e e e e e 538
18.2.3 Custom constructs L 540
18.2.4 Cross-compilation e 540
19Running GHC on Win32 systems 541
19.1 Starting GHC on Windows platforms 541
19.2 Running GHCion Windows o v i it i i e e e e e e e e 541
19.3 Interacting with the terminal 542
19.4 Differences in library behaviour 542
19.5 File paths under Windows i 542
19.6 Using GHC (and other GHC-compiled executables) with Cygwin 543
19.6.1 Background L. e e e e e e e 543
19.6.2 The problem e e e e e 543
19.6.3 Thingstodo ittt et et e e 543

19.7 Building and using Win32 DLLs 0o i e e 544
19.7.1 Creatinga DLL 0 e e e e e e e e e e e e e 544
19.7.2 Making DLLs to be called from other languages. 545
19.7.2.1Using from VBA e e e e e 546
19.7.2.2Using from C++ e e e e e 546
20Known bugs and infelicities 549
20.1 Haskell standards vs. Glasgow Haskell: language non-compliance 549
20.1.1 Divergence from Haskell 98 and Haskell 2010 549
20.1.1.1Lexical syntax L e e e 549
20.1.1.2Context-freesyntax 549
20.1.1.3Expressions and patterns, 550
20.1.1.4Declarations and bindings 550
20.1.1.5Typechecking of recursive binding groups 550
20.1.1.6Module system and interface files 551
20.1.1.7Numbers, basic types, and built-inclasses 551

20.1.1.8In Prelude support i e e e 552
20.1.1.9The Foreign Function Interface 553
20.1.1.10peratorsections e 553

20.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and

Haskell 2010 o e e e e 554

20.2 Known bugs or infelicities e 554
20.2.1 Bugsin GHC 554
20.2.2 Bugs in GHCi (the interactive GHC) 556

21 Eventlog encodings
21.1 Heap profiler event log ou
21.1.1 Metadata event typ

thut e
S i e e e e e e e e e e e e e e e e e

21.1.1.1Beginning of sample stream
21.1.1.2Cost centre definitionso o oo,

21.1.2 Sample event types

21.1.2.1Cost-centre break-downo
21.1.2.2String break-down o

22Care and feeding of your GH
221 Basics.
22.1.1 Headings
22.1.2 Formatting code .
22.1.2.1Haskell . .

C User’s Guide

22.1.2.20therlanguages i e e e e e e e

22.1.3Links

22.1.3.1Within the User's Guide
22.1.3.2To GHC TraC reSOUICES . . v v v v v v e et e e e e e e e e e e e
22.1.3.3To external resources @ v i v i i i i e e

22.1.3.4To core libra
22.1.3.5Math
22.1.4 Index entries . . .
22.2 Citations
22.3 Admonitions

ry Haddock documentation

22.4 Documenting command-line options and GHCi commands
22.4.1 Command-line options

22.4.2 GHCi commands .
22.5 Style Conventions
22.6 ReST reference materials

23 Indices and tables

Bibliography

557
557
557
557
558
558
558
558

559
559
560
561
561
561
561
561
562
562
562
562
563
563
563
564
564
564
565
565

567
569

xiv

GHC User’s Guide Documentation, Release 8.6.5

Contents:

CONTENTS 1l

GHC User’s Guide Documentation, Release 8.6.5

2 CONTENTS

CHAPTER
ONE

THE GLASGOW HASKELL COMPILER LICENSE

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

GHC User’s Guide Documentation, Release 8.6.5

4 Chapter 1. The Glasgow Haskell Compiler License

CHAPTER
TWO

INTRODUCTION TO GHC

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch com-
pilation system for the Haskell 2010 language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCi),
described in Using GHCi (page 31), and a batch compiler, described throughout Using GHC
(page 77). In fact, GHC consists of a single program which is just run with different options
to provide either the interactive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an
interactive session and used in the same way as interpreted code, and in fact when using
GHCi most of the library code will be pre-compiled. This means you get the best of both
worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your
program being actively developed.

GHC supports numerous language extensions, including concurrency, a foreign function in-
terface, exceptions, type system extensions such as multi-parameter type classes, local uni-
versal and existential quantification, functional dependencies, scoped type variables and ex-
plicit unboxed types. These are all described in GHC Language Features (page 253).

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time
to spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as
fast as possible while not making too much effort to optimise the generated code (although
GHC probably isn’t what you’d describe as a fast compiler :-).

GHC'’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell
program in a call-graph like structure. See Profiling (page 223) for more details.

GHC comes with a number of libraries. These are described in separate documentation.

2.1 Obtaining GHC

Go to the GHC home page and follow the “download” link to download GHC for your platform.

Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to
find out how to get the sources, and build it on your system. Note that GHC itself is written
in Haskell, so you will still need to install GHC in order to build it.

2.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:
* GHC home page

http://www.haskell.org/
http://www.haskell.org/ghc/
https://ghc.haskell.org/trac/ghc/wiki/Building
http://www.haskell.org/ghc/

GHC User’s Guide Documentation, Release 8.6.5

* GHC Developers Home (developer documentation, wiki, and bug tracker)

We run the following mailing lists about GHC. We encourage you to join, as you feel is appro-
priate.

glasgow-haskell-users This list is for GHC users to chat among themselves. If you have a
specific question about GHC, please check the FAQ first.

Subscribers can post to the list by sending their message to glasgow-haskell-
users@haskell.org. Further information can be found on the Mailman page.

ghc-devs The GHC developers hang out here. If you are working with the GHC API or have
a question about GHC’s implementation, feel free to chime in.

Subscribers can post to the list by sending their message to ghc-devs@haskell.org. Fur-
ther information can be found on the Mailman page.

There are several other Haskell and GHC-related mailing lists served by www.haskell.org.
Go to http://www.haskell.org/mailman/listinfo/ for the full list.

2.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please
see this wiki page for information on how to report it.

2.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable branches are numbered x.y, where (y) is even. Releases on the stable branch
x.y are numbered x.y.z, where (z) (>= 1) is the patchlevel number. Patchlevels are
bug-fix releases only, and never change the programmer interface to any system-
supplied code. However, if you install a new patchlevel over an old one you will
need to recompile any code that was compiled against the old libraries.

The value of = GLASGOW HASKELL (see Options affecting the C pre-processor
(page 201)) for a major release x.y.z is the integer (xyy) (if (y) is a single digit,
then a leading zero is added, so for example in version 6.8.2 of GHC we would have
_ GLASGOW _HASKELL ==608).

We may make snapshot releases of the current stable branch available for download,
and the latest sources are available from the git repositories.

Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMMDD is the date
of the sources from which the snapshot was built, and x.y.z+1 is the next release
to be made on that branch. For example, 6.8.1.20040225 would be a snapshot of
the 6.8 branch during the development of 6.8.2.

We may make snapshot releases of the HEAD available for download, and the latest
sources are available from the git repositories.

Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMMDD is the date of
the sources from which the snapshot was built. For example, 6.7.20040225 would
be a snapshot of the HEAD before the creation of the 6.8 branch.

The value of GLASGOW HASKELL for a snapshot release is the integer (xyy). You
should never write any conditional code which tests for this value, however: since

6 Chapter 2. Introduction to GHC

http://ghc.haskell.org/trac/ghc/
http://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
mailto:glasgow-haskell-users@haskell.org
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:ghc-devs@haskell.org
http://www.haskell.org/mailman/listinfo/ghc-devs
http://www.haskell.org/mailman/listinfo/
https://ghc.haskell.org/trac/ghc/wiki/ReportABug
http://www.haskell.org/ghc/dist/stable/dist/
https://ghc.haskell.org/trac/ghc/wiki/Repositories
http://www.haskell.org/ghc/dist/current/dist/
https://ghc.haskell.org/trac/ghc/wiki/Repositories

GHC User’s Guide Documentation, Release 8.6.5

interfaces change on a day-to-day basis, and we don’t have finer granularity in the
values of GLASGOW HASKELL , you should only conditionally compile using pred-
icates which test whether = GLASGOW HASKELL is equal to, later than, or earlier
than a given major release.

The version number of your copy of GHC can be found by invoking ghc with the --version
flag (see Verbosity options (page 83)).

The compiler version can be tested within compiled code with the
MIN VERSION GLASGOW HASKELL CPP macro (defined only when -XCPP (page 201) is used).
See Standard CPP macros (page 201) for details.

2.4. GHC version numbering policy 7

GHC User’s Guide Documentation, Release 8.6.5

8 Chapter 2. Introduction to GHC

CHAPTER
THREE

RELEASE NOTES FOR VERSION 8.6.1

The significant changes to the various parts of the compiler are listed in the following sec-
tions. There have also been numerous bug fixes and performance improvements over the
8.4.1 release.

3.1 Highlights

The highlights, since the 8.4.1 release, are:

Support for QuantifiedConstraints (page 395).
A new flexible deriving scheme, DerivingVia (page 330).

A new plugin mechanism and support for plugins to modify their effect on GHC’s recom-
pilation checking logic.

Valid hole fits (page 423) in error messages.

A number of syntactic language extensions.

Programs are no longer constrained by the Windows MAX PATH file path length limit.
The file path limit is now approximately 32,767 characters. Note that GHC itself is still
somewhat limited due to GCC not supporting file namespaced paths. Paths that are
passed directly to the compiler, linker or other GNU tools are currently still constrained.
See File paths under Windows (page 542) for details.

Many, many bug fixes.

3.2 Full details

3.2.1 Language

Use of quantified type variables in constraints is now allowed via the
QuantifiedConstraints (page 395) language extension. This long-awaited fea-
ture enables users to encode significantly more precision in their types. For instance,
the common MonadTrans typeclass could now make the expectation that an applied
transformer is must be a Monad

class (forall m. Monad m => Monad (t m)) => MonadTrans t where {- ... -}

Additionally, quantification can enable terminating instance resolution where this previ-
ously was not possible. See Quantified constraints (page 395) for details.

GHC User’s Guide Documentation, Release 8.6.5

* AnewDerivingVia (page 330) language extension has been added which allows the use

of the via deriving strategy. For instance:

newtype T = MkT Int
deriving Monoid via (Sum Int)

See Deriving via (page 330) for more information.

* A new StarIsType (page 387) language extension has been added which controls

whether * is parsed as Data.Kind.Type or a regular type operator. StarIsType
(page 387) is enabled by default.

* GHC now permits the use of a wildcard type as the context of a standalone deriving

declaration with the use of the PartialTypeSignatures (page 426) language extension.
For instance, this declaration:

deriving instance _ => Eq (Foo a)

Denotes a derived Eq (Foo a) instance, where the context is inferred in much the same
way as ordinary deriving clauses do. See Partial Type Signatures (page 426).

* Data declarations with empty where clauses are no longer valid without the extension

GADTSyntax (page 294) enabled. For instance, consider the following,

data T where

The grammar is invalid in Haskell2010. Previously it could be compiled successfully
without GADTs. As of GHC 8.6.1, this is a parse error.

Incomplete patterns warning -Wincomplete-patterns (page 96) is extended to guards
in pattern bindings and if alternatives of MultilWayIf (page 281). For instance, consider
the following,

foo :: Bool -> Int
foob=1if | b -> 1

In GHC 8.6.1, it will raise the warning:

<interactive>:2:12: warning: [-Wincomplete-patterns]
Pattern match(es) are non-exhaustive
In a multi-way if alternative:
Guards do not cover entire pattern space

See Trac #14773.

Scoped type variables now work in default methods of class declarations and in pattern
synonyms in Template Haskell. See Trac #14885.

do expressions, lambda expressions, etc. to be directly used as a function argument, en-
abled with BlockArguments (page 284). See More liberal syntax for function arguments
(page 284) for the full details.

Underscores in numeric literals (e.g. 1 000 000), enabled with NumericUnderscores
(page 263). See Numeric underscores (page 263) for the full details.

CUSKs now require all kind variables to be explicitly quantified. This was already the
case with TypeInType (page 380), but now PolyKinds (page 380) also exhibits this be-
havior. This means that the following example is no longer considered to have a CUSK:

10

Chapter 3. Release notes for version 8.6.1

https://ghc.haskell.org/trac/ghc/ticket/14773
https://ghc.haskell.org/trac/ghc/ticket/14885

GHC User’s Guide Documentation, Release 8.6.5

data Tl :: k -> Type -- No CUSK: “k° is not explicitly quantified

Functionality of TypeInType (page 380) has been subsumed by PolyKinds (page 380),
and it is now merely a shorthand for PolyKinds (page 380), DataKinds (page 377), and
NoStarIsType (page 387). The users are advised to avoid TypeInType (page 380) due to
its misleading name: the Type :: Type axiom holds regardless of whether it is enabled.

GHC has become more diligent about catching illegal uses of kind polymorphism. For
instance, GHC 8.4 would accept the following without the use of PolyKinds (page 380):

f :: forall k (a :: k). Proxy a
f = Proxy

This is now an error unless PolyKinds (page 380) is enabled.

Type literals now could be used in type class instances without the extension
FlexibleInstances (page 348).

See Trac #13833.

MonadFailDesugaring (page 277) is now enabled by default. See MonadFail Proposal
(MFP) for more details.

3.2.2 Compiler

GHC now no longer adds the current file’s directory as a general include path calling
the C compiler. Instead we use -iquote to only add it as an include path for #include
“”. See Trac #14312.

GHC now supports British spelling of GeneralizedNewtypeDeriving (page 321).

GHC now does significantly more constant folding in its core-to-core optimiser. This will
result in significantly better code being generated for some programs. See Trac #9136.

GHC now offers significantly more information about typed holes such as valid hole fits
and refinement hole fits. See Valid Hole Fits (page 423) for more information.

The code-generation effects of -dynamic (page 206) can now be enabled independently
by the flag - fexternal-dynamic-refs (page 204). If you don’t know why you might need
this, you don’t need it.

-Wcompat (page 89) now includes -Wimplicit-kind-vars (page 95) to provide early de-
tection of breakage that will be caused by implementation of GHC proposal #24 in a
future release.

The -package-env (file)|(name) (page 188) flag and GHC ENVIRONMENT environment
variable now accept the - value, which instructs GHC to ignore any package environment
files.

3.2.3 Plugins

GHC'’s plugin mechanism now offers plugin authors control over their plugin’s effect on
recompilation checking. Specifically the Plugin record name has a new field

data Plugin = Plugin {
pluginRecompile :: [CommandLineOption] -> IO PluginRecompile

R SRS

(continues on next page)

3.2.

Full details 11

https://ghc.haskell.org/trac/ghc/ticket/13833
https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail
https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail
https://ghc.haskell.org/trac/ghc/ticket/14312
https://ghc.haskell.org/trac/ghc/ticket/9136
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0024-no-kind-vars.rst

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

}

data PluginRecompile = ForceRecompile | NoForceRecompile | MaybeRecompile,
—Fingerprint

Plugin based on defaultPlugin will have their previous recompilation behavior
(ForceRecompile) preserved. However, plugins that are “pure” are encouraged to over-
ride this to either NoForceRecompile or MaybeRecompile. See Controlling Recompilation
(page 526) for details.

GHC now provides a class of new plugins: source plugins. These plugins can inspect
and modify a variety of intermediate representations used by the compiler’s frontend.
These include:

- The ability to modify the parser output

The ability to inspect the renamer output
The ability to modify the typechecked AST
The ability to modify Template Haskell splices

The ability to modify interface files as they are loaded
See Source plugins (page 523) for details.

3.2.4 GHCi

Added an experimental : doc (page 62) command that displays the documentation for a
declaration.

3.2.5 Runtime system

The GHC runtime linker now prefers user shared libraries above system ones. When
extra search directories are specified these are searched before anything else. This
fixes iuuc on Windows given the proper search directories (e.g -L/mingw64/1ib).

The GHC runtime linker now uses LIBRARY PATH and the runtime loader now also
searches LD LIBRARY PATH.

The GHC runtime on Windows is no longer constrained by the MAX PATH file path length
limitation. See File paths under Windows (page 542).

The runtime now allows use of the -hT (page 160) profiling variety on programs built
with -prof (page 227).

The STM assertions mechanism (namely the always and alwaysSucceeds functions) has
been removed. This happened a bit earlier than proposed in the deprecation pragma
included in GHC 8.4, but due to community feedback we decided to move ahead with
the early removal.

12

Chapter 3. Release notes for version 8.6.1

GHC User’s Guide Documentation, Release 8.6.5

3.2.6 Template Haskell

3.2.7 ghc library

* The Plugin record now has a several new fields for the new source plugins and recom-
pilation checking mechanisms.

3.2.8 base library

* ($!) is now representation-polymorphic like ($).

e The module Data.Functor.Contravariant has been moved from the contravariant
package into base. All the other modules in contravariant (Data.Functor.
Contravariant.Divisible, etc.) have not been moved to base, and they still reside
in contravariant.

3.2.9 ghc-prim library

* Added new addWordC# operation for unsigned addition with carry.

3.2.10 Build system
3.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion

ghc 8.6.5 The compiler itself

Cabal 2.4.0.1 Dependency of ghc-pkg util-
ity

Win32 2.6.1.0 Dependency of ghc library

array 0.5.3.0 Dependency of ghc library

base 4.12.0.0 Core library

binary 0.8.6.0 Dependency of ghc library

bytestring 0.10.8.2 Deppendency of ghc library

containers 0.6.0.1 Dependency of ghc library

deepseq 1.4.4.0 Dependency of ghc library

Continued on next page

3.3. Included libraries 13

GHC User’s Guide Documentation, Release 8.6.5

Table 1 - continued from previous page

Package Version Reason for inclusion

directory 1.3.3.0 Dependency of ghc library

filepath 1.4.2.1 Dependency of ghc library

ghc-boot 8.6.5 Internal compiler library

ghc-compact 0.1.0.0 Core library

ghc-prim 0.5.3 Core library

ghci 8.6.5 The REPL interface

haskeline 0.7.4.3 Dependency of ghci exe-
cutable

hpc 0.6.0.3 Dependency of hpc exe-
cutable

integer-gmp 1.0.2.0 Core library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.13.0 Dependency of Cabal library

process 1.6.5.0 Dependency of ghc library

template-haskell 2.14.0.0 Core library

text 1.2.3.1 Dependency of Cabal library

time 1.8.0.2 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

14 Chapter 3. Release notes for version 8.6.1

CHAPTER
FOUR

RELEASE NOTES FOR VERSION 8.6.2

GHC 8.6.2 is a bug-fix release, fixing a few regressions found in 8.6.1.

4.1 Highlights

The highlights, since the 8.6.1 release, are:

* A long-standing bug exposed in GHC 8.6.1, Trac #15696, has been fixed. This issue
resulted in undefined runtime behavior with some uses of the dataToTag# primop. Note
that this issue, while less likely to manifest, has existed in some form in all GHC releases
prior to this release and may result in silent, incorrect evaluation. For this reason, users
are strongly encouraged to upgrade to 8.6.2.

* A long-standing bug in the LLVM code generator (Trac #14251), resulting in incorrect
floating point evaluation, has been fixed.

* Several compiler panics observed in GHC 8.6.1 have been fixed (Trac #15499, Trac
#15053, Trac #15692, Trac #15695)

GHC now runs without complaining when installed to a read-only location on Windows
(Trac #15667)

* An integer overflow, resulting in some encodeFloat uses returning incorrect results, has
been fixed (Trac #15271)

4.2 Known issues

Note that the LLVM code generator (- fllvm (page 204)) in GHC 8.6, as well as all earlier
releases, are affected by Trac #14251, which can result in miscompilation of some programs
calling functions with unboxed floating-point arguments. While originally scheduled to be
fixed for this release, the fix ended up being more difficult than anticipated and, given that
issue is not a strict regression from 8.4, we decided to proceed with the release.

4.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

15

https://ghc.haskell.org/trac/ghc/ticket/15696
https://ghc.haskell.org/trac/ghc/ticket/14251
https://ghc.haskell.org/trac/ghc/ticket/15499
https://ghc.haskell.org/trac/ghc/ticket/15053
https://ghc.haskell.org/trac/ghc/ticket/15053
https://ghc.haskell.org/trac/ghc/ticket/15692
https://ghc.haskell.org/trac/ghc/ticket/15695
https://ghc.haskell.org/trac/ghc/ticket/15667
https://ghc.haskell.org/trac/ghc/ticket/15271
https://ghc.haskell.org/trac/ghc/ticket/14251

GHC User’s Guide Documentation, Release 8.6.5

Package Version Reason for inclusion

ghc 8.6.5 The compiler itself

Cabal 2.4.0.1 Dependency of ghc-pkg util-
ity

Win3?2 2.6.1.0 Dependency of ghc library

array 0.5.3.0 Dependency of ghc library

base 4.12.0.0 Core library

binary 0.8.6.0 Dependency of ghc library

bytestring 0.10.8.2 Deppendency of ghc library

containers 0.6.0.1 Dependency of ghc library

deepseq 1.4.4.0 Dependency of ghc library

directory 1.3.3.0 Dependency of ghc library

filepath 1.4.2.1 Dependency of ghc library

ghc-boot 8.6.5 Internal compiler library

ghc-compact 0.1.0.0 Core library

ghc-prim 0.5.3 Core library

ghci 8.6.5 The REPL interface

haskeline 0.7.4.3 Dependency of ghci exe-
cutable

hpc 0.6.0.3 Dependency of hpc exe-
cutable

integer-gmp 1.0.2.0 Core library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.13.0 Dependency of Cabal library

process 1.6.5.0 Dependency of ghc library

template-haskell 2.14.0.0 Core library

text 1.2.3.1 Dependency of Cabal library

time 1.8.0.2 Dependency of ghc library

Continued on next page
16 Chapter 4. Release notes for version 8.6.2

GHC User’s Guide Documentation, Release 8.6.5

Table 1 - continued from previous page

Package Version Reason for inclusion

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

4.3. Included libraries

17

GHC User’s Guide Documentation, Release 8.6.5

18 Chapter 4. Release notes for version 8.6.2

CHAPTER
FIVE

RELEASE NOTES FOR VERSION 8.6.3

GHC 8.6.3 is a bug-fix release, fixing a few regressions found in 8.6.1 and 8.6.2. As some of
these issues are soundness issues users are strongly encouraged to upgrade.

5.1 Highlights

The highlights, since the 8.6.2 release, are:
* A bug resulting in segmentation faults in some programs has been fixed (Trac #15892)

* Darwin binary distributions are now correctly built against an in-tree libgmp (Trac
#15404)

» Three bugs leading to linker failures on Windows has been fixed (Trac #15105, Trac
#15894, Trac #15934)

* A bug leading to programs with deep stacks crashing when run with retainer profiling
enabled has been fixed (Trac #14758)

* A bugresulting in potential heap corruption during stable name allocation has been fixed
(Trac #15906)

* Plugins are now loaded during GHCi sessions (Trac #15633)

5.2 Known issues

Note that the LLVM code generator (-fLlvm (page 204)) in GHC 8.6, as well as all earlier
releases, are affected by Trac #14251, which can result in miscompilation of some programs
calling functions with unboxed floating-point arguments. While originally scheduled to be
fixed for this release, the fix ended up being more difficult than anticipated and, given that
issue is not a strict regression from 8.4, we decided to proceed with the release.

5.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

19

https://ghc.haskell.org/trac/ghc/ticket/15892
https://ghc.haskell.org/trac/ghc/ticket/15404
https://ghc.haskell.org/trac/ghc/ticket/15404
https://ghc.haskell.org/trac/ghc/ticket/15105
https://ghc.haskell.org/trac/ghc/ticket/15894
https://ghc.haskell.org/trac/ghc/ticket/15894
https://ghc.haskell.org/trac/ghc/ticket/15934
https://ghc.haskell.org/trac/ghc/ticket/14758
https://ghc.haskell.org/trac/ghc/ticket/15906
https://ghc.haskell.org/trac/ghc/ticket/15633
https://ghc.haskell.org/trac/ghc/ticket/14251

GHC User’s Guide Documentation, Release 8.6.5

Package Version Reason for inclusion

ghc 8.6.5 The compiler itself

Cabal 2.4.0.1 Dependency of ghc-pkg util-
ity

Win3?2 2.6.1.0 Dependency of ghc library

array 0.5.3.0 Dependency of ghc library

base 4.12.0.0 Core library

binary 0.8.6.0 Dependency of ghc library

bytestring 0.10.8.2 Deppendency of ghc library

containers 0.6.0.1 Dependency of ghc library

deepseq 1.4.4.0 Dependency of ghc library

directory 1.3.3.0 Dependency of ghc library

filepath 1.4.2.1 Dependency of ghc library

ghc-boot 8.6.5 Internal compiler library

ghc-compact 0.1.0.0 Core library

ghc-prim 0.5.3 Core library

ghci 8.6.5 The REPL interface

haskeline 0.7.4.3 Dependency of ghci exe-
cutable

hpc 0.6.0.3 Dependency of hpc exe-
cutable

integer-gmp 1.0.2.0 Core library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.13.0 Dependency of Cabal library

process 1.6.5.0 Dependency of ghc library

template-haskell 2.14.0.0 Core library

text 1.2.3.1 Dependency of Cabal library

time 1.8.0.2 Dependency of ghc library

Continued on next page
20 Chapter 5. Release notes for version 8.6.3

GHC User’s Guide Documentation, Release 8.6.5

Table 1 - continued from previous page

Package Version Reason for inclusion

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

5.3. Included libraries

21

GHC User’s Guide Documentation, Release 8.6.5

22 Chapter 5. Release notes for version 8.6.3

CHAPTER
SIX

RELEASE NOTES FOR VERSION 8.6.4

GHC 8.6.4 is a bug-fix release, fixing a few regressions found in 8.6.3.

6.1 Highlights

The highlights, since the 8.6.3 release, are:

Inconsistencies between the versions of transformers and process shipped with the
compiler and those present on Hackage have been resolved (Trac #16199).

A patch fixing a set of linker failures on Windows has been reverted as it unfortunately
caused (Trac #15105, Trac #15894, Trac #15934)

A bug wherein changes in default method definitions would fail to trigger recompilation
has been fixed (Trac #15970).

A bug wherein plugins would fail to lookup names not in scope in the module being
compiled has been fixed (Trac #16104)

A bug resulting in hangs during RTS shutdown on Darwin has been resolved (Trac
#16150)

A bug where some programs involving StaticData would be rejected with either a type-
checking error or internal compiler error has been fixed (Trac #16141)

A bug where compilation on Windows can fail with linker errors referring to chkstk ms
has been fixed (Trac #16166)

6.2 Known issues

Note that the LLVM code generator (- fllvm (page 204)) in GHC 8.6, as well as all earlier
releases, are affected by Trac #14251, which can result in miscompilation of some programs
calling functions with unboxed floating-point arguments. While originally scheduled to be
fixed for this release, the fix ended up being more difficult than anticipated and, given that
issue is not a strict regression from 8.4, we decided to proceed with the release.

6.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

23

https://ghc.haskell.org/trac/ghc/ticket/16199
https://ghc.haskell.org/trac/ghc/ticket/15105
https://ghc.haskell.org/trac/ghc/ticket/15894
https://ghc.haskell.org/trac/ghc/ticket/15934
https://ghc.haskell.org/trac/ghc/ticket/15970
https://ghc.haskell.org/trac/ghc/ticket/16104
https://ghc.haskell.org/trac/ghc/ticket/16150
https://ghc.haskell.org/trac/ghc/ticket/16150
https://ghc.haskell.org/trac/ghc/ticket/16141
https://ghc.haskell.org/trac/ghc/ticket/16166
https://ghc.haskell.org/trac/ghc/ticket/14251

GHC User’s Guide Documentation, Release 8.6.5

information.

Package Version Reason for inclusion

ghc 8.6.5 The compiler itself

Cabal 2.4.0.1 Dependency of ghc-pkg util-
ity

Win32 2.6.1.0 Dependency of ghc library

array 0.5.3.0 Dependency of ghc library

base 4.12.0.0 Core library

binary 0.8.6.0 Dependency of ghc library

bytestring 0.10.8.2 Deppendency of ghc library

containers 0.6.0.1 Dependency of ghc library

deepseq 1.44.0 Dependency of ghc library

directory 1.3.3.0 Dependency of ghc library

filepath 1.4.2.1 Dependency of ghc library

ghc-boot 8.6.5 Internal compiler library

ghc-compact 0.1.0.0 Core library

ghc-prim 0.5.3 Core library

ghci 8.6.5 The REPL interface

haskeline 0.7.4.3 Dependency of ghci exe-
cutable

hpc 0.6.0.3 Dependency of hpc exe-
cutable

integer-gmp 1.0.2.0 Core library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.13.0 Dependency of Cabal library

process 1.6.5.0 Dependency of ghc library

template-haskell 2.14.0.0 Core library

text 1.2.3.1 Dependency of Cabal library

Continued on next page
24 Chapter 6. Release notes for version 8.6.4

GHC User’s Guide Documentation, Release 8.6.5

Table 1 - continued from previous page

Package Version Reason for inclusion

time 1.8.0.2 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

6.3. Included libraries

25

GHC User’s Guide Documentation, Release 8.6.5

26 Chapter 6. Release notes for version 8.6.4

CHAPTER
SEVEN

RELEASE NOTES FOR VERSION 8.6.5

GHC 8.6.5 is a bug-fix release, fixing a few regressions found in 8.6.4.

7.1 Highlights

The highlights, since the 8.6.4 release, are:

* Binary distributions once again ship with Haddock documentation including syntax high-
lighted source of core libraries (Trac #16445)

* A build system issue where use of GCC with -flto broke configure was fixed (Trac
#16440)

* An bug affecting Windows platforms wherein XMM register values could be mangled
when entering STG has been fixed (Trac #16514)

» Several packaging issues with the Windows binary distributions have been resolved.
(Trac #16408, Trac #16398, Trac #16516).

7.2 Known issues

Note that the LLVM code generator (- fllvm (page 204)) in GHC 8.6, as well as all earlier
releases, are affected by Trac #14251, which can result in miscompilation of some programs
calling functions with unboxed floating-point arguments. While originally scheduled to be
fixed for this release, the fix ended up being more difficult than anticipated and, given that
issue is not a strict regression from 8.4, we decided to proceed with the release.

7.3 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 8.6.5 The compiler itself

Continued on next page

27

https://ghc.haskell.org/trac/ghc/ticket/16445
https://ghc.haskell.org/trac/ghc/ticket/16440
https://ghc.haskell.org/trac/ghc/ticket/16440
https://ghc.haskell.org/trac/ghc/ticket/16514
https://ghc.haskell.org/trac/ghc/ticket/16408
https://ghc.haskell.org/trac/ghc/ticket/16398
https://ghc.haskell.org/trac/ghc/ticket/16516
https://ghc.haskell.org/trac/ghc/ticket/14251

GHC User’s Guide Documentation, Release 8.6.5

Table 1 - continued from previous page

Package Version Reason for inclusion

Cabal 2.4.0.1 Dependency of ghc-pkg util-
ity

Win32 2.6.1.0 Dependency of ghc library

array 0.5.3.0 Dependency of ghc library

base 4.12.0.0 Core library

binary 0.8.6.0 Dependency of ghc library

bytestring 0.10.8.2 Deppendency of ghc library

containers 0.6.0.1 Dependency of ghc library

deepseq 1.4.4.0 Dependency of ghc library

directory 1.3.3.0 Dependency of ghc library

filepath 1.4.2.1 Dependency of ghc library

ghc-boot-th 8.6.5 Internal compiler library

ghc-boot 8.6.5 Internal compiler library

ghc-compact 0.1.0.0 Core library

ghc-heap 8.6.5 GHC heap-walking library

ghc-prim 0.5.3 Core library

ghci 8.6.5 The REPL interface

haskeline 0.7.4.3 Dependency of ghci exe-
cutable

hpc 0.6.0.3 Dependency of hpc exe-
cutable

integer-gmp 1.0.2.0 Core library

libiserv 8.6.3 Internal compiler library

mtl 2.2.2 Dependency of Cabal library

parsec 3.1.13.0 Dependency of Cabal library

process 1.6.5.0 Dependency of ghc library

Continued on next page

28 Chapter 7. Release notes for version 8.6.5

GHC User’s Guide Documentation, Release 8.6.5

Table 1 - continued from previous page

Package Version Reason for inclusion

stm 2.5.0.0 Dependency of haskeline li-
brary

template-haskell 2.14.0.0 Core library

terminfo 0.4.1.2 Dependency of haskeline li-
brary

text 1.2.3.1 Dependency of Cabal library

time 1.8.0.2 Dependency of ghc library

transformers 0.5.6.2 Dependency of ghc library

unix 2.7.2.2 Dependency of ghc library

xhtml 3000.2.2.1 Dependency of haddock exe-
cutable

7.3. Included libraries

29

GHC User’s Guide Documentation, Release 8.6.5

30 Chapter 7. Release notes for version 8.6.5

CHAPTER
EIGHT

USING GHCI

GHCi' is GHC’s interactive environment, in which Haskell expressions can be interactively
evaluated and programs can be interpreted. If you're familiar with Hugs, then you’ll be right
at home with GHCi. However, GHCi also has support for interactively loading compiled code,
as well as supporting all’ the language extensions that GHC provides. GHCi also includes an
interactive debugger (see The GHCi Debugger (page 48)).

8.1 Introduction to GHCi

Let’s start with an example GHCIi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 8.y.z: http://www.haskell.org/ghc/ :? for help
Prelude>

There may be a short pause while GHCi loads the prelude and standard libraries, after which
the promptis shown. As the banner says, you can type : 7 (page 63) to see the list of commands
available, and a halfline description of each of them. We’ll explain most of these commands as
we go along, and there is complete documentation for all the commands in GHCi commands
(page 59).

Haskell expressions can be typed at the prompt:

Prelude> 1+2

3

Prelude> let x = 42 in x / 9
4.666666666666667

Prelude>

GHC i interprets the whole line as an expression to evaluate. The expression may not span
several lines - as soon as you press enter, GHCi will attempt to evaluate it.

In Haskell, a let expression is followed by in. However, in GHCIi, since the expression can
also be interpreted in the I0 monad, a let binding with no accompanying in statement can
be signalled by an empty line, as in the above example.

Since GHC 8.0.1, you can bind values and functions to names without let statement:

1 The “i” stands for “Interactive”
2 except foreign export, at the moment

31

http://www.haskell.org/hugs/

GHC User’s Guide Documentation, Release 8.6.5

Prelude> x = 42
Prelude> x

42

Prelude>

8.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:

main = print (fac 20)

fac 0
fac n

1
n * fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current
directory® then we will need to change to the right directory in GHCi:

Prelude> :cd dir

where (dir) is the directory (or folder) in which you saved Main.hs.

To load a Haskell source file into GHCI, use the : load (page 64) command:

Prelude> :load Main

Compiling Main (Main.hs, interpreted)
Ok, modules loaded: Main.

*Main>

GHCi has loaded the Main module, and the prompt has changed to *Main> to indicate that the
current context for expressions typed at the prompt is the Main module we just loaded (we’ll
explain what the * means later in What’s really in scope at the prompt? (page 40)). So we
can now type expressions involving the functions from Main.hs:

*Main> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “top-
most” module to the : load (page 64) command (hint: : load (page 64) can be abbreviated to
:1). The topmost module will normally be Main, but it doesn’t have to be. GHCi will discover
which modules are required, directly or indirectly, by the topmost module, and load them all
in dependency order.

-fshow-1loaded-modules
Default off
Since 8.2.2

Typically GHCi will show only the number of modules that it loaded after a :load
(page 64) command. With this flag, GHC will also list the loaded modules’ names. This
was the default behavior prior to GHC 8.2.1 and can be useful for some tooling users.

3 If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory
of the shell from which it was started. If you started GHCi from the “Start” menu in Windows, then the current
directory is probably something like C:\Documents and Settings\user name.

32 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

8.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module (M)? Answer: it looks for
the file M. hs, or M. lhs. This means that for most modules, the module name must match the
filename. If it doesn’t, GHCi won't be able to find it.

There is one exception to this general rule: when you load a program with : load (page 64),
or specify it when you invoke ghci, you can give a filename rather than a module name. This
filename is loaded if it exists, and it may contain any module you like. This is particularly
convenient if you have several Main modules in the same directory and you can’t call them all
Main.hs.

The search path for finding source files is specified with the - i (page 166) option on the GHCi
command line, like so:

or it can be set using the :set (page 65) command from within GHCi (see Setting GHC
command-line options in GHCi (page 70))*

One consequence of the way that GHCi follows dependencies to find modules to load is that
every module must have a source file. The only exception to the rule is modules that come
from a package, including the Prelude and standard libraries such as I0 and Complex. If you
attempt to load a module for which GHCi can’t find a source file, even if there are object and
interface files for the module, you’ll get an error message.

8.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give
the :reload (page 65) command. The program will be recompiled as necessary, with GHCi
doing its best to avoid actually recompiling modules if their external dependencies haven’t
changed. This is the same mechanism we use to avoid re-compiling modules in the batch
compilation setting (see The recompilation checker (page 169)).

8.3 Loading compiled code

When you load a Haskell source module into GHCi], it is normally converted to byte-code and
run using the interpreter. However, interpreted code can also run alongside compiled code in
GHCi; indeed, normally when GHCIi starts, it loads up a compiled copy of the base package,
which contains the Prelude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than
interpreted code, but takes about 2x longer to produce (perhaps longer if optimisation is on).
So it pays to compile the parts of a program that aren’t changing very often, and use the
interpreter for the code being actively developed.

When loading up source modules with : load (page 64), GHCi normally looks for any corre-
sponding compiled object files, and will use one in preference to interpreting the source if
possible. For example, suppose we have a 4-module program consisting of modules A, B, C,
and D. Modules B and C both import D only, and A imports both B and C:

4 Note that in GHCi, and - -make (page 80) mode, the -i (page 166) option is used to specify the search path for

source files, whereas in standard batch-compilation mode the -1 (page 166) option is used to specify the search path
for interface files, see The search path (page 165).

8.3. Loading compiled code 33

GHC User’s Guide Documentation, Release 8.6.5

A
/ N\
B C
\/

D

We can compile D, then load the whole program, like this:

Prelude> :! ghc -c -dynamic D.hs
Prelude> :load A
Compiling B

(interpreted)
Compiling C (
(

S,
s, interpreted)
s, interpreted)
D.o).

Compiling A
0Ok, modules loaded: A, B, C
*Main>

B.h
C.h
A.h
D (

In the messages from the compiler, we see that there is no line for D. This is because it isn’t
necessary to compile D, because the source and everything it depends on is unchanged since
the last compilation.

Note the -dynamic (page 206) flag to GHC: GHCi uses dynamically-linked object code (if you
are on a platform that supports it), and so in order to use compiled code with GHCi it must
be compiled for dynamic linking.

At any time you can use the command : show modules (page 67) to get a list of the modules
currently loaded into GHCi:

*Main> :show modules

D (D.hs, D.o)

C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)

*Main>

If we now modify the source of D (or pretend to: using the Unix command touch on the source
file is handy for this), the compiler will no longer be able to use the object file, because it might
be out of date:

*Main> :! touch D.hs

*Main> :reload

Compiling D (D.hs, interpreted)
0Ok, modules loaded: A, B, C, D.

*Main>

Note that module D was compiled, but in this instance because its source hadn’t really
changed, its interface remained the same, and the recompilation checker determined that
A, B and C didn’t need to be recompiled.

So let’s try compiling one of the other modules:

*Main> :! ghc -c C.hs

*Main> :load A

Compiling D (D.hs, interpreted)
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
0Ok, modules loaded: A, B, C, D.

34 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module
may only depend on other compiled modules, and in this case C depends on D, which doesn’t
have an object file, so GHCi also rejected C’s object file. Ok, so let’s also compile D:

*Main> :! ghc -c D.hs
*Main> :reload
0Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by
:reload (page 65), only : load (page 64):

*Main> :load A

Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
0Ok, modules loaded: A, B, C (C.o), D (D.o).

The automatic loading of object files can sometimes lead to confusion, because non-exported
top-level definitions of a module are only available for use in expressions at the prompt when
the module is interpreted (see What’s really in scope at the prompt? (page 40)). For this
reason, you might sometimes want to force GHCIi to load a module using the interpreter. This
can be done by prefixing a * to the module name or filename when using : load (page 64), for
example

Prelude> :load *A
Compiling A (A.hs, interpreted)
*A>

When the * is used, GHCi ignores any pre-compiled object code and interprets the module.
If you have already loaded a number of modules as object code and decide that you wanted
to interpret one of them, instead of re-loading the whole set you can use :add *M to specify
that you want M to be interpreted (note that this might cause other modules to be interpreted
too, because compiled modules cannot depend on interpreted ones).

To always compile everything to object code and never use the interpreter, use the
-fobject-code (page 204) option (see Compiling to object code inside GHCi (page 73)).

Hint: Since GHCi will only use a compiled object file if it can be sure that the compiled
version is up-to-date, a good technique when working on a large program is to occasionally
run ghc --make to compile the whole project (say before you go for lunch :-), then continue
working in the interpreter. As you modify code, the changed modules will be interpreted, but
the rest of the project will remain compiled.

8.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCiimmediately evaluates and prints the result:

Prelude> reverse "hello"
"olleh"

Prelude> 545

10

8.4. Interactive evaluation at the prompt 35

GHC User’s Guide Documentation, Release 8.6.5

8.4.1 1/0 actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you enter an expression
of type I0 a for some a, then GHCi executes it as an I0-computation.

Prelude> "hello"

"hello"

Prelude> putStrLn "hello"
hello

This works even if the type of the expression is more general, provided it can be instantiated
to I0 a. For example

Prelude> return True
True

Furthermore, GHCi will print the result of the I/O action if (and only if):
* The result type is an instance of Show.

* The result type is not ().

For example, remembering that putStrLn :: String -> I0 ():
Prelude> putStrLn "hello"

hello

Prelude> do { putStrLn "hello"; return "yes" }

hello

Ilyesll

8.4.2 Using do notation at the prompt

GHCi actually accepts statements rather than just expressions at the prompt. This means you
can bind values and functions to names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax
of a statement in a Haskell do expression. However, there’s no monad overloading here:
statements typed at the prompt must be in the I0 monad.

Prelude> x <- return 42
Prelude> print x

42

Prelude>

The statement x <- return 42 means “execute return 42 in the I0 monad, and bind the
result to x”. We can then use x in future statements, for example to print it as we did above.

-fprint-bind-result
If -fprint-bind-result (page 36) is set then GHCi will print the result of a statement
if and only if:

* The statement is not a binding, or it is a monadic binding (p <- e) that binds exactly
one variable.

* The variable’s type is not polymorphic, is not (), and is an instance of Show.

Of course, you can also bind normal non-IO expressions using the let-statement:

36 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

Prelude> let x = 42
Prelude> x

42

Prelude>

Another important difference between the two types of binding is that the monadic bind (p
<- e) is strict (it evaluates e), whereas with the let form, the expression isn’t evaluated
immediately:

Prelude> let x = error "help!"
Prelude> print x

*** Exception: help!

Prelude>

Note that let bindings do not automatically print the value bound, unlike monadic bindings.

You can also define functions at the prompt:

Prelude> add a b =a + b
Prelude> add 1 2

3

Prelude>

However, this quickly gets tedious when defining functions with multiple clauses, or groups
of mutually recursive functions, because the complete definition has to be given on a single
line, using explicit semicolons instead of layout:

Prelude> f op n [] =n; fopn (h:t) =h op> fopnt
Prelude> f (+) 0 [1..3]

6

Prelude>

:{
'}
Begin or end a multi-line GHCi command block.

To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in
:{ and :} (each on a single line of its own):

Prelude> :{

Prelude| g op n [] =n

Prelude| g op n (h:t) = h "op" gopnt
Prelude| :}

Prelude> g (*) 1 [1..3]

6

Such multiline commands can be used with any GHCi command, and note that the layout rule
is in effect. The main purpose of multiline commands is not to replace module loading but
to make definitions in .ghci-files (see The .ghci and .haskeline files (page 71)) more readable
and maintainable.

Any exceptions raised during the evaluation or execution of the statement are caught and
printed by the GHCi command line interface (for more information on exceptions, see the
module Control.Exception in the libraries documentation.

Every new binding shadows any existing bindings of the same name, including entities that
are in scope in the current module context.

8.4. Interactive evaluation at the prompt 37

../libraries/base-4.12.0.0/Control-Exception.html

GHC User’s Guide Documentation, Release 8.6.5

Warning: Temporary bindings introduced at the prompt only last until the next : load
(page 64) or : reload (page 65) command, at which time they will be simply lost. However,
they do survive a change of context with :module (page 65): the temporary bindings just
move to the new location.

Hint: To get a list of the bindings currently in scope, use the :show bindings (page 67)
command:

Prelude> :show bindings
x :: Int
Prelude>

Hint: If you turn on the +t option, GHCi will show the type of each variable bound by a
statement. For example:

Prelude> :set +t

Prelude> let (x:xs) = [1..]
X :: Integer

xs :: [Integer]

8.4.3 Multiline input

Apart from the : { ... :} syntax for multi-line input mentioned above, GHCi also has a mul-
tiline mode, enabled by :set +m, :set +m in which GHCi detects automatically when the
current statement is unfinished and allows further lines to be added. A multi-line input is
terminated with an empty line. For example:

Prelude> :set +m
Prelude> let x = 42
Prelude|

Further bindings can be added to this let statement, so GHCi indicates that the next line
continues the previous one by changing the prompt. Note that layout is in effect, so to add
more bindings to this let we have to line them up:

Prelude> :set +m
Prelude> let x =
Prelude| y =
Prelude|
Prelude>

42
3

Explicit braces and semicolons can be used instead of layout:

Prelude> do {

Prelude| putStrLn "hello"
Prelude| ;putStrLn "world"
Prelude| }

hello

world

Prelude>

38 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

Note that after the closing brace, GHCi knows that the current statement is finished, so no
empty line is required.

Multiline mode is useful when entering monadic do statements:

Control.Monad.State> flip evalStateT 0 $ do
Control.Monad.State| i <- get
Control.Monad.State| lift $ do
Control.Monad.State| putStrLn "Hello World!"
Control.Monad.State| print i
Control.Monad.State|

"Hello World!"

0

Control.Monad.State>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

Prelude> do

Prelude| putStrLn "Hello, World!"
Prelude| ~C

Prelude>

8.4.4 Type, class and other declarations

At the GHCi prompt you can also enter any top-level Haskell declaration, including data,
type, newtype, class, instance, deriving, and foreign declarations. For example:

Prelude> data T = A | B | C deriving (Eq, Ord, Show, Enum)
Prelude> [A ..]

[A,B,C]

Prelude> :i T

data T=A | B | C -- Defined at <interactive>:2:6
instance Enum T -- Defined at <interactive>:2:45
instance Eq T -- Defined at <interactive>:2:30

instance Ord T -- Defined at <interactive>:2:34
instance Show T -- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter
a declaration to fix a problem with it or extend it. But there’s a gotcha: when a new type
declaration shadows an older one, there might be other declarations that refer to the old
type. The thing to remember is that the old type still exists, and these other declarations still
refer to the old type. However, while the old and the new type have the same name, GHCi
will treat them as distinct. For example:

Prelude> data T = A | B

Prelude> let f A = True; f B = False
Prelude> data T=A | B | C
Prelude> f A

<interactive>:2:3:
Couldn't match expected type "main::Interactive.T'
with actual type "T'
In the first argument of “f', namely "A'
In the expression: f A
In an equation for “it': it =f A
Prelude>

8.4. Interactive evaluation at the prompt 39

GHC User’s Guide Documentation, Release 8.6.5

The old, shadowed, version of T is displayed as main: :Interactive.T by GHCi in an attempt
to distinguish it from the new T, which is displayed as simply T.

Class and type-family instance declarations are simply added to the list of available instances,
with one exception. Since you might want to re-define one, a class instance replaces any
earlier instance with an identical head. You aren’t allowed to re-define a type family instance,
since it might not be type safe to do so. Instead, re-define the whole type-family. (See Type
families (page 362).) For example:

Prelude> type family T a b
Prelude> type instance T a b = a
Prelude> let uc :: a -> T a b; uc = id

Prelude> type instance Ta b =1b

<interactive>:3:15: error:
Conflicting family instance declarations:
Tab a -- Defined at <interactive>:3:15
Tab b -- Defined at <interactive>:5:15

-- Darn! We have to re-declare T.

Prelude> type family T a b

-- This is a brand-new T, unrelated to the old one
Prelude> type instance Ta b =0b

Prelude> uc 'a' :: Int

<interactive>:8:1: error:
* Couldn't match type ‘Char’ with ‘Int’
Expected type: Int
Actual type: Ghcil.T Char b0
* In the expression: uc 'a' :: Int
In an equation for ‘it’: it = uc 'a' :: Int

8.4.5 What’'s really in scope at the prompt?
When you type an expression at the prompt, what identifiers and types are in scope? GHCi
provides a flexible way to control exactly how the context for an expression is constructed:

* The :load (page 64), :add (page 59), and : reload (page 65) commands (The effect of
:load on what is in scope (page 41)).

* The import declaration (Controlling what is in scope with import (page 41)).

* The :module (page 65) command (Controlling what is in scope with the :module com-
mand (page 42)).

The command :show imports (page 67) will show a summary of which modules contribute
to the top-level scope.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and
type J<tab> then GHCi will expand it to Just.

40 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

8.4.5.1 The effect of :load on what is in scope

The : load (page 64), :add (page 59), and : reload (page 65) commands (Loading source files
(page 32) and Loading compiled code (page 33)) affect the top-level scope. Let’s start with
the simple cases; when you start GHCi the prompt looks like this:

Prelude>

which indicates that everything from the module Prelude is currently in scope; the visible
identifiers are exactly those that would be visible in a Haskell source file with no import
declarations.

If we now load a file into GHCi, the prompt will change:

Prelude> :load Main.hs
Compiling Main (Main.hs, interpreted)
*Main>

The new prompt is *Main, which indicates that we are typing expressions in the context of
the top-level of the Main module. Everything that is in scope at the top-level in the module
Main we just loaded is also in scope at the prompt (probably including Prelude, as long as
Main doesn’t explicitly hide it).

The syntax in the prompt *module indicates that it is the full top-level scope of (module) that is
contributing to the scope for expressions typed at the prompt. Without the *, just the exports
of the module are visible.

Note: For technical reasons, GHCi can only support the *-form for modules that are in-
terpreted. Compiled modules and package modules can only contribute their exports to the
current scope. To ensure that GHCi loads the interpreted version of a module, add the * when
loading the module, e.g. : load *M.

In general, after a : load (page 64) command, an automatic import is added to the scope for
the most recently loaded “target” module, in a *-form if possible. For example, if you say
:load foo.hs bar.hs and bar.hs contains module Bar, then the scope will be set to *Bar if
Bar is interpreted, orif Bar is compiled it will be set to Prelude Bar (GHCiautomatically adds
Prelude if it isn’t present and there aren’t any *-form modules). These automatically-added
imports can be seen with :show imports (page 67):

Prelude> :load hello.hs

[1 of 1] Compiling Main (hello.hs, interpreted)
0k, modules loaded: Main.

*Main> :show imports

:module +*Main -- added automatically

*Main>

and the automatically-added import is replaced the next time you use : load (page 64), :add
(page 59), or : reload (page 65). It can also be removed by :module (page 65) as with normal
imports.

8.4.5.2 Controlling what is in scope with import

We are not limited to a single module: GHCi can combine scopes from multiple modules, in
any mixture of * and non-* forms. GHCi combines the scopes from all of these modules to
form the scope that is in effect at the prompt.

8.4. Interactive evaluation at the prompt 41

GHC User’s Guide Documentation, Release 8.6.5

To add modules to the scope, use ordinary Haskell import syntax:

Prelude> import System.IO

Prelude System.IO> hPutStrLn stdout "hello\n"
hello

Prelude System.IO>

The full Haskell import syntax is supported, including hiding and as clauses. The prompt
shows the modules that are currently imported, but it omits details about hiding, as, and so
on. To see the full story, use :show imports (page 67):

Prelude> import System.IO

Prelude System.IO> import Data.Map as Map
Prelude System.IO Map> :show imports
import Prelude -- implicit

import System.IO

import Data.Map as Map

Prelude System.IO0 Map>

Note that the Prelude import is marked as implicit. It can be overridden with an explicit
Prelude import, just like in a Haskell module.

With multiple modules in scope, especially multiple *-form modules, it is likely that name
clashes will occur. Haskell specifies that name clashes are only reported when an ambiguous
identifier is used, and GHCi behaves in the same way for expressions typed at the prompt.

8.4.5.3 Controlling what is in scope with the :module command

Another way to manipulate the scope is to use the :module (page 65) command, whose syntax
is this:

:module +|- *modl ... *modn

Using the + form of the module commands adds modules to the current scope, and - removes
them. Without either + or -, the current scope is replaced by the set of modules specified.
Note that if you use this form and leave out Prelude, an implicit Prelude import will be added
automatically.

The :module (page 65) command provides a way to do two things that cannot be done with
ordinary import declarations:

* :module (page 65) supports the * modifier on modules, which opens the full top-level
scope of a module, rather than just its exports.

* Imports can be removed from the context, using the syntax :module -M. The import
syntax is cumulative (as in a Haskell module), so this is the only way to subtract from
the scope.

8.4.5.4 Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import
qualified declaration for every module in every package, and every module currently loaded
into GHCi. This behaviour can be disabled with the -fno-implicit-import-qualified flag.

42 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

8.4.5.5 :module and :load

It might seem that :module (page 65)/import and : load (page 64)/:add (page 59)/: reload
(page 65) do similar things: you can use both to bring a module into scope. However, there
is a very important difference. GHCIi is concerned with two sets of modules:

* The set of modules that are currently loaded. This set is modified by : load (page 64),
radd (page 59) and : reload (page 65), and can be shown with : show modules (page 67).

* The set of modules that are currently in scope at the prompt. This set is modified
by import and :module (page 65), and it is also modified automatically after :load
(page 64), :add (page 59), and : reload (page 65), as described above. The set of mod-
ules in scope can be shown with :show imports (page 67).

You can add a module to the scope (via :module (page 65) or import) only if either (a) it is
loaded, or (b) it is a module from a package that GHCi knows about. Using :module (page 65)
or import to try bring into scope a non-loaded module may result in the message module M
is not loaded.

8.4.6 The :main and :run commands

When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main func-
tion while we are testing in ghci, as the main function doesn’t take its directly.

Instead, we can use the :main (page 64) command. This runs whatever main is in scope, with
any arguments being treated the same as command-line arguments, e.g.:

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
[Ilfoolllllbarll]

We can also quote arguments which contains characters like spaces, and they are treated like
Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]

Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run (page 65)
command:

Prelude> foo putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo","bar baz"]

Prelude> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

8.4. Interactive evaluation at the prompt 43

GHC User’s Guide Documentation, Release 8.6.5

8.4.7 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt,
GHCi implicitly binds its value to the variable it. For example:

Prelude> 1+2

3

Prelude> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an I0
type, then it transforms it as follows: an expression e turns into

let it = e;
print it

which is then run as an IO-action.

Hence, the original expression must have a type which is an instance of the Show class, or
GHCi will complain:

Prelude> id

<interactive>:1:0:
No instance for (Show (a -> a))
arising from use of “print' at <interactive>:1:0-1
Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

The error message contains some clues as to the transformation happening internally.

If the expression was instead of type I0 a for some a, then it will be bound to the result of
the I0 computation, which is of type a. eqg.:

Prelude> Data.Time.getZonedTime
2017-04-10 12:34:56.93213581 UTC
Prelude> print it

2017-04-10 12:34:56.93213581 UTC

The corresponding translation for an IO-typed e is

it <- e

Note that it is shadowed by the new value each time you evaluate a new expression, and the
old value of it is lost.

In order to stop the value it being bound on each command, the flag - fno-it (page 44) can
be set. The it variable can be the source of space leaks due to how shadowed declarations
are handled by GHCi (see Type, class and other declarations (page 39)).
-fno-it
When this flag is set, the variable it will no longer be set to the result of the previously
evaluated expression.

8.4.8 Type defaulting in GHCi

ExtendedDefaultRules

44 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

Since 6.8.1
Allow defaulting to take place for more than just numeric classes.

Consider this GHCi session:

ghci> reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse [])
(which is what GHCi computes here) has type Show a => String and how that displays de-
pends on the type a. For example:

ghci> reverse ([] :: String)

ghci> reverse ([] :: [Int])
[1

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s
type-defaulting rules (Section 4.3.4 of the Haskell 2010 Report) as follows. The standard
rules take each group of constraints (C1 a, C2 a, ..., Cn a) for each type variable a, and
defaults the type variable if

1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the ExtendedDefaultRules (page 44) flag is given, the
types are instead resolved with the following method:

Find all the unsolved constraints. Then:

* Find those that are of form (C a) where a is a type variable, and partition those con-
straints into groups that share a common type variable a.

* Keep only the groups in which at least one of the classes is an interactive class (defined
below).

* Now, for each remaining group G, try each type ty from the default-type list in turn; if
setting a = ty would allow the constraints in G to be completely solved. If so, default a
to ty.

* The unit type () and the list type [] are added to the start of the standard list of types
which are tried when doing type defaulting.

Note that any multi-parameter constraints (D a b) or (D [a] Int) do not participate in the
process (either to help or to hinder); but they must of course be soluble once the defaulting
process is complete.

The last point means that, for example, this program:

main :: I0 ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.

8.4. Interactive evaluation at the prompt 45

GHC User’s Guide Documentation, Release 8.6.5

The motivation for the change is that it means I0 a actions default to I0 (), which in turn
means that ghci won’t try to print a result when running them. This is particularly impor-
tant for printf, which has an instance that returns I0 a. However, it is only able to return
undefined (the reason for the instance having this type is so that printf doesn’t require ex-
tensions to the class system), so if the type defaults to Integer then ghci gives an error when
running a printf.

See also I/O actions at the prompt (page 36) for how the monad of a computational expression
defaults to I0 if possible.

8.4.8.1 Interactive classes

The interactive classes (only relevant when ExtendedDefaultRules (page 44) is in effect) are:
any numeric class, Show, Eq, 0rd, Foldable or Traversable.

As long as a type variable is constrained by one of these classes, defaulting will occur, as
outlined above.

8.4.8.2 Extended rules around default declarations

Since the rules for defaulting are relaxed under ExtendedDefaultRules (page 44), the rules
for default declarations are also relaxed. According to Section 4.3.4 of the Haskell 2010
Report, a default declaration looks like default (tl, ..., tn) where, for each ti, Num ti
must hold. This is relaxed to say that for each ti, there must exist an interactive class C such
that C ti holds. This means that type constructors can be allowed in these lists. For example,
the following works if you wish your Foldable constraints to default to Maybe but your Num
constraints to still default to Integer or Double:

default (Maybe, Integer, Double)

8.4.9 Using a custom interactive printing function

Since GHC 7.6.1, GHCIi prints the result of expressions typed at the prompt using the function
System.IO.print. Its type signature is Show a => a -> I0 (), and it works by converting
the value to String using show.

This is not ideal in certain cases, like when the output is long, or contains strings with non-
ascii characters.

The -interactive-print (expr) (page 46) flag allows to specify any function of type C a =>
a -> I0 (), for some constraint C, as the function for printing evaluated expressions. The
function can reside in any loaded module or any registered package, but only when it resides
in a registered package will it survive a :cd (page 60), :add (page 59), : load (page 64),
:reload (page 65) or, :set (page 65).

-interactive-print (expr)
Set the function used by GHCi to print evaluation results. Expression must be of type C
a=>a ->10 ().

As an example, suppose we have following special printing module:

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"

46 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

The sprint function adds an exclamation mark at the end of any printed value. Running GHCi
with the command:

ghci -interactive-print=SpecPrinter.sprint SpecPrinter

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!
*SpecPrinter> 42

42!

A custom pretty printing function can be used, for example, to format tree-like and nested
structures in a more readable way.

The -interactive-print (expr) (page 46) flag can also be used when running GHC in -e
mode:

8.4.10 Stack Traces in GHCi
[This is an experimental feature enabled by the new - fexternal-interpreter flag that was
introduced in GHC 8.0.1. It is currently not supported on Windows.]

GHCIi can use the profiling system to collect stack trace information when running interpreted
code. To gain access to stack traces, start GHCIi like this:

ghci -fexternal-interpreter -prof

This runs the interpreted code in a separate process (see Running the interpreter in a sepa-
rate process (page 73)) and runs it in profiling mode to collect call stack information. Note
that because we’re running the interpreted code in profiling mode, all packages that you
use must be compiled for profiling. The -prof flag to GHCi only works in conjunction with
-fexternal-interpreter.

There are three ways to get access to the current call stack.

* error and undefined automatically attach the current stack to the error message. This
often complements the HasCallStack stack (see HasCallStack (page 486)), so both call
stacks are shown.

* Debug.Trace.traceStackis aversion of Debug.Trace.trace that also prints the current
call stack.

* Functions in the module GHC.Stack can be used to get the current stack and render it.

You don’t need to use -fprof-auto for interpreted modules, annotations are automatically
added at a granularity fine enough to distinguish individual call sites. However, you won’t
see any call stack information for compiled code unless it was compiled with -fprof-auto or
has explicit SCC annotations (see Inserting cost centres by hand (page 225)).

8.4. Interactive evaluation at the prompt a7

GHC User’s Guide Documentation, Release 8.6.5

8.5 The GHCi Debugger

GHCIi contains a simple imperative-style debugger in which you can stop a running computa-
tion in order to examine the values of variables. The debugger is integrated into GHCi, and
is turned on by default: no flags are required to enable the debugging facilities. There is one
major restriction: breakpoints and single-stepping are only available in interpreted modules;
compiled code is invisible to the debugger®.

The debugger provides the following:

* The ability to set a breakpoint on a function definition or expression in the program.
When the function is called, or the expression evaluated, GHCi suspends execution and
returns to the prompt, where you can inspect the values of local variables before contin-
uing with the execution.

* Execution can be single-stepped: the evaluator will suspend execution approximately
after every reduction, allowing local variables to be inspected. This is equivalent to
setting a breakpoint at every point in the program.

* Execution can take place in tracing mode, in which the evaluator remembers each eval-
uation step as it happens, but doesn’t suspend execution until an actual breakpoint is
reached. When this happens, the history of evaluation steps can be inspected.

» Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to
help locate the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features
provide a useful second-best, which will often be enough to establish the context of an error.
For instance, it is possible to break automatically when an exception is thrown, even if it is
thrown from within compiled code (see Debugging exceptions (page 55)).

8.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:

gsort [1 =[]
gsort (a:as) = gsort left ++ [a] ++ gsort right
where (left,right) = (filter (<=a) as, filter (=a) as)

main = print (qgsort [8, 4, 0, 3, 1, 23, 11, 18])

First, load the module into GHCi:

Prelude> :1 gsort.hs

[1 of 1] Compiling Main (gsort.hs, interpreted)
Ok, modules loaded: Main.
*Main>

Now, let’s set a breakpoint on the right-hand-side of the second equation of gsort:

*Main> :break 2
Breakpoint 0 activated at qsort.hs:2:15-46
*Main>

5 Note that packages only contain compiled code, so debugging a package requires finding its source and loading
that directly.

48 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in
this case gsort.hs. Specifically, it picks the leftmost complete subexpression on that line
on which to set the breakpoint, which in this case is the expression (qsort left ++ [a] ++
gsort right).

Now, we run the program:

*Main> main
Stopped at gsort.hs:2:15-46

_result :: [a]
a:: a

left :: [a]
right :: [al

[gsort.hs:2:15-46] *Main>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are
currently stopped at a breakpoint, and the location: [gsort.hs:2:15-46]. To further clarify
the location, we can use the : list (page 63) command:

[gsort.hs:2:15-46] *Main> :list

1 gsort [] = []

2 qsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)

The : list (page 63) command lists the source code around the current breakpoint. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

GHCi has provided bindings for the free variables® of the expression on which the break-
point was placed (a, left, right), and additionally a binding for the result of the expression
(_result). These variables are just like other variables that you might define in GHCi; you
can use them in expressions that you type at the prompt, you can ask for their types with
:type (page 68), and so on. There is one important difference though: these variables may
only have partial types. For example, if we try to display the value of left:

[gsort.hs:2:15-46] *Main> left

<interactive>:1:0:
Ambiguous type variable “a' in the constraint:
“Show a' arising from a use of “print' at <interactive>:1:0-3
Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

This is because qsort is a polymorphic function, and because GHCi does not carry type infor-
mation at runtime, it cannot determine the runtime types of free variables that involve type
variables. Hence, when you ask to display left at the prompt, GHCi can’t figure out which
instance of Show to use, so it emits the type error above.

Fortunately, the debugger includes a generic printing command, : print (page 65), which can
inspect the actual runtime value of a variable and attempt to reconstruct its type. If we try it
on left:

[qsort.hs:2:15-46] *Main> :set -fprint-evld-with-show
[gsort.hs:2:15-46] *Main> :print left
left = (_tl::[a])

6 We originally provided bindings for all variables in scope, rather than just the free variables of the expression,
but found that this affected performance considerably, hence the current restriction to just the free variables.

8.5. The GHCi Debugger 49

GHC User’s Guide Documentation, Release 8.6.5

This isn’t particularly enlightening. What happened is that left is bound to an unevaluated
computation (a suspension, or thunk), and :print (page 65) does not force any evaluation.
The idea is that :print (page 65) can be used to inspect values at a breakpoint without
any unfortunate side effects. It won’t force any evaluation, which could cause the program
to give a different answer than it would normally, and hence it won’t cause any exceptions
to be raised, infinite loops, or further breakpoints to be triggered (see Nested breakpoints
(page 52)). Rather than forcing thunks, :print (page 65) binds each thunk to a fresh variable
beginning with an underscore, in this case t1.

The flag -fprint-evld-with-show instructs :print (page 65) to reuse available Show in-
stances when possible. This happens only when the contents of the variable being inspected
are completely evaluated.

If we aren’t concerned about preserving the evaluatedness of a variable, we can use : force
(page 62) instead of :print (page 65). The : force (page 62) command behaves exactly like
:print (page 65), except that it forces the evaluation of any thunks it encounters:

[gsort.hs:2:15-46] *Main> :force left
left = [4,0,3,1]

Now, since : force (page 62) has inspected the runtime value of left, it has reconstructed
its type. We can see the results of this type reconstruction:

[qsort.hs:2:15-46] *Main> :show bindings
_result :: [Integer]

a :: Integer

left :: [Integer]

right :: [Integer]

_t1 :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been
resolved. So we can ask for the value of a, for example:

[qsort.hs:2:15-46] *Main> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than
evaluating the whole expression with : force (page 62). For example:

[gsort.hs:2:15-46] *Main> :print right
right = (_tl::[Integer])
[gsort.hs:2:15-46] *Main> seq t1 ()
()

[gsort.hs:2:15-46] *Main> :print right
right = 23 : (_t2::[Integer])

We evaluated only the t1 thunk, revealing the head of the list, and the tail is another thunk
now bound to t2. The seq function is a little inconvenient to use here, so you might want to
use :def (page 61) to make a nicer interface (left as an exercise for the reader!).

Finally, we can continue the current execution:

[qsort.hs:2:15-46] *Main> :continue
Stopped at gsort.hs:2:15-46
_result :: [a]

a:: a

left :: [a]

(continues on next page)

50 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

right :: [a]
[gsort.hs:2:15-46] *Main>

The execution continued at the point it previously stopped, and has now stopped at the break-
point for a second time.

8.5.1.1 Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to
name a top-level function:

:break identifier

Where (identifier) names any top-level function in an interpreted module currently loaded into
GHCIi (qualified names may be used). The breakpoint will be set on the body of the function,
when it is fully applied but before any pattern matching has taken place.

Breakpoints can also be set by line (and optionally column) number:

:break line

:break line column

:break module line

:break module line column

When a breakpoint is set on a particular line, GHCIi sets the breakpoint on the leftmost subex-
pression that begins and ends on that line. If two complete subexpressions start at the same
column, the longest one is picked. If there is no complete subexpression on the line, then the
leftmost expression starting on the line is picked, and failing that the rightmost expression
that partially or completely covers the line.

When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpres-
sion that encloses that location on which to set the breakpoint. Note: GHC considers the TAB
character to have a width of 1, wherever it occurs; in other words it counts characters, rather
than columns. This matches what some editors do, and doesn’t match others. The best advice
is to avoid tab characters in your source code altogether (see -Wtabs (page 100) in Warnings
and sanity-checking (page 88)).

If the module is omitted, then the most recently-loaded module is used.

Not all subexpressions are potential breakpoint locations. Single variables are typically not
considered to be breakpoint locations (unless the variable is the right-hand-side of a function
definition, lambda, or case alternative). The rule of thumb is that all redexes are break-
point locations, together with the bodies of functions, lambdas, case alternatives and binding
statements. There is normally no breakpoint on a let expression, but there will always be
a breakpoint on its body, because we are usually interested in inspecting the values of the
variables bound by the let.

8.5.1.2 Listing and deleting breakpoints

The list of breakpoints currently enabled can be displayed using : show breaks (page 67):

*Main> :show breaks
[0] Main gsort.hs:1:11-12
[1] Main gsort.hs:2:15-46

8.5. The GHCi Debugger 51

GHC User’s Guide Documentation, Release 8.6.5

To delete a breakpoint, use the :delete (page 62) command with the number given in the
output from :show breaks (page 67):

*Main> :delete 0
*Main> :show breaks
[1] Main qgsort.hs:2:15-46

To delete all breakpoints at once, use :delete *.

8.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a
useful tool for identifying the source of a bug. GHCi offers two variants of stepping. Use
:step (page 68) to enable all the breakpoints in the program, and execute until the next
breakpoint is reached. Use :steplocal (page 68) to limit the set of enabled breakpoints to
those in the current top level function. Similarly, use :stepmodule (page 68) to single step
only on breakpoints contained in the current module. For example:

*Main> :step main
Stopped at qsort.hs:5:7-47
_result :: I0 ()

The command :step expr (page 68) begins the evaluation of {expr) in single-stepping mode.
If (expr) is omitted, then it single-steps from the current breakpoint. :steplocal (page 68)
and :stepmodule (page 68) commands work similarly.

The : list (page 63) command is particularly useful when single-stepping, to see where you
currently are:

[gsort.hs:5:7-47] *Main> :list

4

5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6

[qsort.hs:5:7-47] *Main>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it
automatically do : list (page 63):

[qsort.hs:5:7-47] *Main> :set stop :list
[gsort.hs:5:7-47] *Main> :step

Stopped at qsort.hs:5:14-46

result :: [Integer]

4
5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[

gsort.hs:5:14-46] *Main>

8.5.3 Nested breakpoints

When GHCIi is stopped at a breakpoint, and an expression entered at the prompt triggers a
second breakpoint, the new breakpoint becomes the “current” one, and the old one is saved
on a stack. An arbitrary number of breakpoint contexts can be built up in this way. For
example:

52 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

[gsort.hs:2:15-46] *Main> :st qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)
_result :: [a]

[gsort.hs:(1,0)-(3,55)] *Main>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with
:step gsort [1,3]. This new evaluation stopped after one step (at the definition of gsort).
The prompt has changed, now prefixed with .. ., to indicate that there are saved breakpoints
beyond the current one. To see the stack of contexts, use :show context (page 67):

[gsort.hs:(1,0)-(3,55)] *Main> :show context

--> main
Stopped at gsort.hs:2:15-46
--> qsort [1,3]

Stopped at gsort.hs:(1,0)-(3,55)
[gsort.hs:(1,0)-(3,55)] *Main>

To abandon the current evaluation, use :abandon (page 59):

[gsort.hs:(1,0)-(3,55)] *Main> :abandon
[gsort.hs:2:15-46] *Main> :abandon
*Main>

8.5.4 The _result variable

When stopped at a breakpoint or single-step, GHCi binds the variable result to the value of
the currently active expression. The value of result is presumably not available yet, because
we stopped its evaluation, but it can be forced: if the type is known and showable, then just
entering result at the prompt will show it. However, there’s one caveat to doing this:
evaluating result will be likely to trigger further breakpoints, starting with the breakpoint
we are currently stopped at (if we stopped at a real breakpoint, rather than due to :step
(page 68)). So it will probably be necessary to issue a : continue (page 61) immediately when
evaluating result. Alternatively, you can use : force (page 62) which ignores breakpoints.

8.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”.
Traditional imperative debuggers usually provide some kind of stack-tracing feature that lets
you see the stack of active function calls (sometimes called the “lexical call stack”), describ-
ing a path through the code to the current location. Unfortunately this is hard to provide
in Haskell, because execution proceeds on a demand-driven basis, rather than a depth-first
basis as in strict languages. The “stack” in GHC’s execution engine bears little resemblance
to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack in addition
to the dynamic call stack, and in fact this is exactly what our profiling system does (Profiling
(page 223)), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn’t maintain a lexical call stack (there are some technical challenges to be overcome).
Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: es-
sentially this is like single-stepping backwards, and should in many cases provide enough
information to answer the “how did I get here?” question.

To use tracing, evaluate an expression with the : trace (page 68) command. For example, if
we set a breakpoint on the base case of gsort:

8.5. The GHCi Debugger 53

GHC User’s Guide Documentation, Release 8.6.5

*Main> :list gsort

1 gsort [] = []

2 qsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)
4

*Main> :b 1

Breakpoint 1 activated at gsort.hs:1:11-12

*Main>

and then run a small gsort with tracing:

*Main> :trace gsort [3,2,1]
Stopped at gsort.hs:1:11-12
_result :: [a]
[gsort.hs:1:11-12] *Main>

We can now inspect the history of evaluation steps:

[gsort.hs:1:11-12] *Main> :hist
- : gsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)
-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:3:24-38

-7 : gsort.hs:3:23-55

-8 : gsort.hs:(1,0)-(3,55)
-9 : gsort.hs:2:15-24

-10 : gsort.hs:2:15-46

-11 : gsort.hs:3:24-38

-12 : gsort.hs:3:23-55

-13 : gsort.hs:(1,0)-(3,55)
-14 : gsort.hs:2:15-24

-15 : gsort.hs:2:15-46

-16 : gsort.hs:(1,0)-(3,55)
<end of history>

To examine one of the steps in the history, use :back (page 59):

[gsort.hs:1:11-12] *Main> :back
Logged breakpoint at gsort.hs:3:24-38
_result :: [a]

as :: [a]

a :: a

[-1: gsort.hs:3:24-38] *Main>

Note that the local variables at each step in the history have been preserved, and can be
examined as usual. Also note that the prompt has changed to indicate that we’re currently
examining the first step in the history: -1. The command : forward (page 62) can be used to
traverse forward in the history.

The :trace (page 68) command can be used with or without an expression. When used
without an expression, tracing begins from the current breakpoint, just like : step (page 68).

The history is only available when using : trace (page 68); the reason for this is we found that
logging each breakpoint in the history cuts performance by a factor of 2 or more.

-fghci-hist-size=(n)

54 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

Default 50
Modify the depth of the evaluation history tracked by GHCi.

8.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come
from?”. Exceptions such as those raised by error or head [] have no context information
attached to them. Finding which particular call to head in your program resulted in the
error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see -xc (page 162)).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and
without modifying or recompiling the source code. One way would be to set a break-
point on the location in the source code that throws the exception, and then use :trace
(page 68) and :history (page 63) to establish the context. However, head is in a library
and we can’t set a breakpoint on it directly. For this reason, GHCi provides the flags
-fbreak-on-exception (page 55) which causes the evaluator to stop when an exception is
thrown, and - fbreak-on-error (page 55), which works similarly but stops only on uncaught
exceptions. When stopping at an exception, GHCi will act just as it does when a breakpoint
is hit, with the deviation that it will not show you any source code location. Due to this, these
commands are only really useful in conjunction with :trace (page 68), in order to log the
steps leading up to the exception. For example:

*Main> :set -fbreak-on-exception

*Main> :trace gsort ("abc" ++ undefined)
“Stopped at <exception thrown>
_exception :: e

[<exception thrown>] *Main> :hist

- : qsort.hs:3:24-38

-2 : gsort.hs:3:23-55

-3 : gsort.hs:(1,0)-(3,55)

-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:(1,0)-(3,55)

<end of history>

[<exception thrown>] *Main> :back
Logged breakpoint at qgsort.hs:3:24-38
_result :: [a]

as :: [al

a:: a

[-1: gsort.hs:3:24-38] *Main> :force as
*** Exception: Prelude.undefined

[-1: gsort.hs:3:24-38] *Main> :print as
as = 'b' : 'c¢' : (_tl::[Char])

The exception itself is bound to a new variable, exception.

Breaking on exceptions is particularly useful for finding out what your program was doing
when it was in an infinite loop. Just hit Control-C, and examine the history to find out what
was going on.

-fbreak-on-exception
Causes GHCIi to halt evaluation and return to the interactive prompt in the event of an
exception. - fbreak-on-exception (page 55) breaks on all exceptions.

-fbreak-on-error
Causes GHCIi to halt evaluation and return to the interactive prompt in the event of an

8.5. The GHCi Debugger 55

GHC User’s Guide Documentation, Release 8.6.5

exception. -fbreak-on-error (page 55) breaks on only those exceptions which would
otherwise be uncaught.

8.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint
and a function is in scope, the debugger cannot show you the source code for it; however, it is
possible to get some information by applying it to some arguments and observing the result.

The process is slightly complicated when the binding is polymorphic. We show the process
by means of an example. To keep things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map f [1 = []
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*Main> :break 5

Breakpoint 0 activated at map.hs:5:15-28
*Main> map Just [1..5]

Stopped at map.hs:(4,0)-(5,12)

_result :: [b]

X i1 a
f:ra->b
xs :: [a]

GHCi tells us that, among other bindings, f is in scope. However, its type is not fully known

yet, and thus it is not possible to apply it to any arguments. Nevertheless, observe that the

type of its first argument is the same as the type of x, and its result type is shared with
result.

As we demonstrated earlier (Breakpoints and inspecting variables (page 48)), the debugger
has some intelligence built-in to update the type of f whenever the types of x or result are
discovered. So what we do in this scenario is force x a bit, in order to recover both its type
and the argument part of f.

*Main> seq x ()
*Main> :print x
x =1

We can check now that as expected, the type of x has been reconstructed, and with it the type
of f has been too:

*Main> :t x

x :: Integer
*Main> :t f

f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*Main> let b = f 10
*Main> :t b
b :: b

(continues on next page)

56 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

*Main> b
<interactive>:1:0:

Ambiguous type variable "b' in the constraint:

“Show b' arising from a use of “print' at <interactive>:1:0

*Main> :p b
b= (t2::a)
*Main> seq b ()
()
*Main> :t b

b :: a
*Main> :p b
b = Just 10

*Main> :t b

b :: Maybe Integer

*Main> :t f

f :: Integer -> Maybe Integer

*Main> f 20

Just 20

*Main> map f [1..5]

[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover
the result type of f. But after that, we are free to use f normally.

8.5.8 Limitations

* When stopped at a breakpoint, if you try to evaluate a variable that is already under
evaluation, the second evaluation will hang. The reason is that GHC knows the variable is
under evaluation, so the new evaluation just waits for the result before continuing, but of
course this isn’t going to happen because the first evaluation is stopped at a breakpoint.
Control-C can interrupt the hung evaluation and return to the prompt.

The most common way this can happen is when you’re evaluating a CAF (e.g. main),
stop at a breakpoint, and ask for the value of the CAF at the prompt again.

» Implicit parameters (see Implicit parameters (page 411)) are only available at the scope
of a breakpoint if there is an explicit type signature.

8.6 Invoking GHCi

GHC i is invoked with the command ghci or ghc --interactive. One or more modules or
filenames can also be specified on the command line; this instructs GHCi to load the specified
modules or filenames (and all the modules they depend on), just as if you had said :1load
modules at the GHCi prompt (see GHCi commands (page 59)). For example, to start GHCi
and load the program whose topmost module is in the file Main.hs, we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (see Using GHC (page 77)) also make
sense in interactive mode. The ones that don’t make sense are mostly obvious.

-flocal-ghci-history
By default, GHCi keeps global history in ~/.ghc/ghci history or %$APPDATAS/<app>/
ghci history, but you can use current directory, e.g.:

8.6. Invoking GHCi 57

GHC User’s Guide Documentation, Release 8.6.5

$ ghci -flocal-ghci-history

It will create .ghci-history in current folder where GHCIi is launched.

-fghci-leak-check
(Debugging only) When loading new modules with :load, check that any previously
loaded modules have been correctly garbage collected. Emits messages if a leak is de-
tected.

8.6.1 Packages

Most packages (see Using Packages (page 182)) are available without needing to specify any
extra flags at all: they will be automatically loaded the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the
-package (pkg) (page 183) flag:

$ ghci -package readline
GHCi, version 8.y.z: http://www.haskell.org/ghc/ :? for help

Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
Prelude>

The following command works to load new packages into a running GHCi:

Prelude> :set -package name

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be
dumped back into the Prelude.

8.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal -11lib option. (The
term library here refers to libraries of foreign object code; for using libraries of Haskell source
code, see Modules vs. filenames (page 33).) For example, to load the “m” library:

$ ghci -1m

On systems with . so-style shared libraries, the actual library loaded will the 1iblib.so. GHCi
searches the following places for libraries, in this order:

» Paths specified using the -L (dir) (page 206) command-line option,

» The standard library search path for your system loader, which on some systems may be
overridden by setting the LD_LIBRARY_ PATH environment variable.

* The linker standard library search can also be overriden on some systems using the
LIBRARY PATH environment variable. Because of some implementation detail on Win-
dows, setting LIBRARY_ PATH will also extend the system loader path for any library it
finds. So often setting LIBRARY PATH is enough.

On systems with .d1l1l-style shared libraries, the actual library loaded will be 1ib.d1l1,
liblib.dll. GHCi also has full support for import libraries, either Microsoft style .1lib,
or GNU GCC style .a and .dll.a libraries. If you have an import library it is advis-
able to always specify the import libary instead of the .dll. e.g. use -lgcc’ instead of
"*-1libgcc s seh-1. Again, GHCi will signal an error if it can’t find the library.

58 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

GHCi can also load plain object files (.0 or .obj depending on your platform) or static archives
(.a) from the command-line. Just add the name the object file or library to the command line.
On Windows GHCi also supports the big-obj format.

Ordering of -1 options matters: a library should be mentioned before the libraries it depends
on (see Options affecting linking (page 205)).

8.7 GHCi commands

GHCi commands all begin with “:” and consist of a single command name followed by zero or
more parameters. The command name may be abbreviated, with ambiguities being resolved
in favour of the more commonly used commands.

:abandon
Abandons the current evaluation (only available when stopped at a breakpoint).

tadd[*] (module)
Add {(module)(s) to the current target set, and perform a reload. Normally pre-compiled
code for the module will be loaded if available, or otherwise the module will be compiled
to byte-code. Using the * prefix forces the module to be loaded as byte-code.

(module) may be a file path. A “~” symbol at the beginning of (module) will be replaced
by the contents of the environment variable HOME.

:all-types
List all types collected for expressions and (local) bindings currently loaded (while :set
+C (page 69) was active) with their respective source-code span, e.g.

GhciTypes> :all-types

GhciTypes.hs:(38,13)-(38,24): Maybe Id

GhciTypes.hs:(45,10)-(45,29): Outputable SpanInfo
GhciTypes.hs:(45,10)-(45,29): (Rational -> SpanInfo -> SDoc) -> Outputable,
—SpanInfo

tback (n)
Travel back (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 53) for more about GHCi’s debugging facilities. See also: :trace (page 68),
:history (page 63), : forward (page 62).

tbreak [(identifier) | [{(module)] (line) [{column)]]
Set a breakpoint on the specified function or line and column. See Setting breakpoints
(page 51).

tbrowse[!] [[*] (module)]
Displays the identifiers exported by the module {module), which must be either loaded
into GHCi or be a member of a package. If {(module) is omitted, the most recently-loaded
module is used.

Like all other GHCi commands, the output is always displayed in the current GHCi scope
(What’s really in scope at the prompt? (page 40)).

There are two variants of the browse command:

» If the * symbol is placed before the module name, then all the identifiers in scope in
(module) (rather that just its exports) are shown.

The *-form is only available for modules which are interpreted; for compiled mod-
ules (including modules from packages) only the non-* form of : browse (page 59) is

8.7. GHCi commands 59

GHC User’s Guide Documentation, Release 8.6.5

available.

* Data constructors and class methods are usually displayed in the context of their
data type or class declaration. However, if the ! symbol is appended to the command,
thus :browse!, they are listed individually. The !-form also annotates the listing with
comments giving possible imports for each group of entries. Here is an example:

Prelude> :browse! Data.Maybe

-- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeToList :: Maybe a -> [a]
-- imported via Prelude

Just :: a -> Maybe a

data Maybe a = Nothing | Just a

Nothing :: Maybe a

maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session (ie in the scope of
Prelude), the first group of items from Data.Maybe are not in scope (althought they
are available in fully qualified form in the GHCIi session - see What’s really in scope
at the prompt? (page 40)), whereas the second group of items are in scope (via
Prelude) and are therefore available either unqualified, or with a Prelude. qualifier.

rcd (dir)

Changes the current working directory to (dir). A “~” symbol at the beginning of (dir)
will be replaced by the contents of the environment variable HOME. See also the :show
paths (page 67) command for showing the current working directory.

Note: changing directories causes all currently loaded modules to be unloaded. This is
because the search path is usually expressed using relative directories, and changing
the search path in the middle of a session is not supported.

:emd (expr)

Executes (expr) as a computation of type I0 String, and then executes the resulting
string as a list of GHCi commands. Multiple commands are separated by newlines. The
:cmd (page 60) command is useful with :def (page 61) and :set stop (page 66).

:complete (type) [(n)-1[{(m)] (string-literal)

This command allows to request command completions from GHCi even when inter-
acting over a pipe instead of a proper terminal and is designed for integrating GHCi’s
completion with text editors and IDEs.

When called, :complete (page 60) prints the (n) to (m)™ completion candidates for
the partial input (string-literal) for the completion domain denoted by (type). Currently,
only the repl domain is supported which denotes the kind of completion that would be
provided interactively by GHCi at the input prompt.

If omitted, (n) and {m) default to the first or last available completion candidate respec-
tively. If there are less candidates than requested via the range argument, (n) and {(m)
are implicitly capped to the number of available completion candidates.

The output of :complete (page 60) begins with a header line containing three space-
delimited fields:

60

Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

* An integer denoting the number 1 of printed completions,
* an integer denoting the total number of completions available, and finally

* a string literal denoting a common prefix to be added to the returned completion
candidates.

The header line is followed by (1) lines each containing one completion candidate encoded
as (quoted) string literal. Here are some example invocations showing the various cases:

Prelude> :complete repl 0 ""

0 470 ""

Prelude> :complete repl 5 "import For"
5 21 "import "

"Foreign"

"Foreign.C"

"Foreign.C.Error"

"Foreign.C.String"

"Foreign.C.Types"

Prelude> :complete repl 5-10 "import For"
6 21 "import "

"Foreign.C.Types"

"Foreign.Concurrent"
"Foreign.ForeignPtr"
"Foreign.ForeignPtr.Safe"
"Foreign.ForeignPtr.Unsafe"
"Foreign.Marshal"

Prelude> :complete repl 20- "import For"
2 21 "import "

"Foreign.StablePtr"

"Foreign.Storable"

Prelude> :complete repl "map"

33"

"map"

"mapM"

"mapM_"

Prelude> :complete repl 5-10 "map"
03"

:continue
Continue the current evaluation, when stopped at a breakpoint.

:ctags [(filename)]
Generates a “tags” file for Vi-style editors (:ctags (page 61)) or Emacs-style editors
(:etags (page 62)). If no filename is specified, the default tags or TAGS is used, respec-
tively. Tags for all the functions, constructors and types in the currently loaded modules
are created. All modules must be interpreted for these commands to work.

tdef[!] (name) (expr)
:def (page 61) is used to define new commands, or macros, in GHCi. The command :def
(name) (expr) defines a new GHCi command :name, implemented by the Haskell ex-
pression (expr), which must have type String -> I0 String. When :name args istyped
at the prompt, GHCi will run the expression (name args), take the resulting String, and
feed it back into GHCi as a new sequence of commands. Separate commands in the result
must be separated by “\n”.

That’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi
command which doesn’t take any arguments or produce any results, it just outputs the
current date and time:

8.7. GHCi commands 61

GHC User’s Guide Documentation, Release 8.6.5

Prelude> let date = Data.Time.getZonedTime >>= print >> return ""
Prelude> :def date date

Prelude> :date

2017-04-10 12:34:56.93213581 UTC

Here’s an example of a command that takes an argument. It’s a re-implementation of
:cd (page 60):

Prelude> let mycd d = System.Directory.setCurrentDirectory d >> return ""
Prelude> :def mycd mycd
Prelude> :mycd ..

Or I could define a simple way to invoke “ghc --make Main” in the current directory:

Prelude> :def make (_-> return ":! ghc --make Main")

We can define a command that reads GHCi input from a file. This might be useful for
creating a set of bindings that we want to repeatedly load into the GHCi session:

Prelude> :def . readFile
Prelude> :. cmds.ghci

Notice that we named the command : ., by analogy with the “.” Unix shell command
that does the same thing.

Typing :def on its own lists the currently-defined macros. Attempting to redefine an
existing command name results in an error unless the :def! form is used, in which case
the old command with that name is silently overwritten.

:delete * | (num)
Delete one or more breakpoints by number (use : show breaks (page 67) to see the num-
ber of each breakpoint). The * form deletes all the breakpoints.

:doc (name)
(Experimental: This command will likely change significantly in GHC 8.8.)

Displays the documentation for the given name. Currently the command is restricted to
displaying the documentation directly on the declaration in question, ignoring documen-
tation for arguments, constructors etc.

tedit (file)
Opens an editor to edit the file (file), or the most recently loaded module if (file) is omit-
ted. If there were errors during the last loading, the cursor will be positioned at the line
of the first error. The editor to invoke is taken from the EDITOR environment variable,
or a default editor on your system if EDITOR is not set. You can change the editor using
:set editor (page 66).

:etags
See :ctags (page 61).

:force (identifier)
Prints the value of (identifier) in the same way as :print (page 65). Unlike :print
(page 65), : force (page 62) evaluates each thunk that it encounters while traversing
the value. This may cause exceptions or infinite loops, or further breakpoints (which are
ignored, but displayed).

:forward (n)
Move forward (n) steps in the history. (n) is one if omitted. See Tracing and history

62 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

(page 53) for more about GHCi’s debugging facilities. See also: :trace (page 68),
:history (page 63), :back (page 59).

thelp
Hrd

Displays a list of the available commands.

Repeat the previous command.

thistory [num]
Display the history of evaluation steps. With a number, displays that many steps (default:
20). For use with : trace (page 68); see Tracing and history (page 53). To set the number
of history entries stored by GHCI, use the - fghci-hist-size=(n) (page 54) flag.

:info[!] (name)
Displays information about the given name(s). For example, if (name) is a class, then
the class methods and their types will be printed; if (name) is a type constructor, then
its definition will be printed; if (name) is a function, then its type will be printed. If
(name) has been loaded from a source file, then GHCi will also display the location of its
definition in the source.

For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (a) its head mentions (name)},
and (b) all the other things mentioned in the instance are in scope (either qualified or
otherwise) as a result of a : load (page 64) or :module (page 65) commands.

The command :info! works in a similar fashion but it removes restriction (b), showing
all instances that are in scope and mention (name) in their head.

:issafe [(module)]
Displays Safe Haskell information about the given module (or the current module if omit-
ted). This includes the trust type of the module and its containing package.

tkind[!] (type)
Infers and prints the kind of (type). The latter can be an arbitrary type expression, in-
cluding a partial application of a type constructor, such as Either Int. In fact, :kind
(page 63) even allows you to write a partial application of a type synonym (usually dis-
allowed), so that this works:

ghci> type T a b = (a,b,a)
ghci> :k T Int Bool

T Int Bool :: *

ghci> :k T

T:: % ->* > %

ghci> :k T Int

T Int :: * -> *

If you specify the optional “!”, GHC will in addition normalise the type by expanding out
type synonyms and evaluating type-function applications, and display the normalised
result.

:list (identifier)
Lists the source code around the definition of (identifier) or the current breakpoint if
not given. This requires that the identifier be defined in an interpreted module. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

:list [(module)] (line)
Lists the source code around the given line number of (module). This requires that the

8.7. GHCi commands 63

GHC User’s Guide Documentation, Release 8.6.5

module be interpreted. If your output device supports it, then GHCi will highlight the
active subexpression in bold.

:load[!'] [*]{module)

Recursively loads the specified {module)s, and all the modules they depend on. Here,
each (module) must be a module name or filename, but may not be the name of a module
in a package.

All previously loaded modules, except package modules, are forgotten. The new set of
modules is known as the target set. Note that : load (page 64) can be used without any
arguments to unload all the currently loaded modules and bindings.

Normally pre-compiled code for a module will be loaded if available, or otherwise the
module will be compiled to byte-code. Using the * prefix forces a module to be loaded
as byte-code.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 432) for further motivation and details.

After a : load (page 64) command, the current context is set to:
* (module), if it was loaded successfully, or

* the most recently successfully loaded module, if any other modules were loaded as
a result of the current : load (page 64), or

¢ Prelude otherwise.

:loc-at (module) (line) (col) (end-line) (end-col) [{(name)]

Tries to find the definition site of the name at the given source-code span, e.g.:

X> :loc-at X.hs 6 14 6 16 mu
X.hs:(8,7)-(8,9)

This command is useful when integrating GHCi with text editors and IDEs for providing
a goto-definition facility.

The :loc-at command requires :set +c (page 69) to be set.

:main (argl) ... (argn)

When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main
function while we are testing in ghci, as the main function doesn’t take its arguments
directly.

Instead, we can use the :main (page 64) command. This runs whatever main is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main foo bar
[IIfOOII,IIbarII]

We can also quote arguments which contains characters like spaces, and they are treated
like Haskell strings, or we can just use Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]

(continues on next page)

64

Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the : run (page 65)
command:

Prelude> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo

Prelude> :main foo "bar baz"

foo

["foo","bar baz"]

Prelude> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

:module +|- [*](modl)

import (mod)
Sets or modifies the current context for statements typed at the prompt. The form import
mod is equivalent to :module +mod. See What’s really in scope at the prompt? (page 40)
for more details.

:print (names)

Prints a value without forcing its evaluation. :print (page 65) may be used on values
whose types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value, :print
(page 65) attempts to reconstruct the type of the value, and will elaborate the type in
GHCi’s environment if possible. If any unevaluated components (thunks) are encoun-
tered, then :print (page 65) binds a fresh variable with a name beginning with t to
each thunk. See Breakpoints and inspecting variables (page 48) for more information.
See also the :sprint (page 67) command, which works like :print (page 65) but does
not bind new variables.

rquit
Quits GHCIi. You can also quit by typing Control-D at the prompt.
treload[!]
Attempts to reload the current target set (see : load (page 64)) if any of the modules in

the set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 432) for further motivation and details.

irun
See :main (page 64).

iscript [(n)] (filename)
Executes the lines of a file as a series of GHCi commands. This command is compatible
with multiline statements as set by :set +m (page 70)

:set [(option) ...]
Sets various options. See The :set and :seti commands (page 69) for a list of available
options and Interactive-mode options (page 124) for a list of GHCi-specific flags. The

8.7. GHCi commands 65

GHC User’s Guide Documentation, Release 8.6.5

:set (page 65) command by itself shows which options are currently set. It also lists the
current dynamic flag settings, with GHCi-specific flags listed separately.

:set args (arg)
Sets the list of arguments which are returned when the program calls System.getArgs.

:set editor (cmd)
Sets the command used by :edit (page 62) to {cmd).

:set prog (prog)
Sets the string to be returned when the program calls System.getProgName.

:set prompt (prompt)
Sets the string to be used as the prompt in GHCi. Inside {(prompt), the next sequences
are replaced:

* %S by the names of the modules currently in scope.

* %1 by the line number (as referenced in compiler messages) of the current prompt.
* %d by the date in “Weekday Month Date” format (e.g., “Tue May 26”) .
* %t by the current time in 24-hour HH:MM:SS format.

* %T by the current time in 12-hour HH:MM:SS format.

* %@ by the current time in 12-hour am/pm format.

* %A by the current time in 24-hour HH:MM format.

* %u by the username of the current user.

* %w by the current working directory.

* %0 by the operating system.

* %a by the machine architecture.

* %N by the compiler name.

* %V by the compiler version.

* %scall(cmd [args]) by the result of calling cmd args.

* %% by %.

If (prompt) starts with " then it is parsed as a Haskell String; otherwise it is treated as
a literal string.

:set prompt-cont (prompt)
Sets the string to be used as the continuation prompt (used when using the : { (page 37)
command) in GHCi.

:set prompt-function (prompt-function)
Sets the function to be used for the prompt displaying in GHCi. The function should
be of the type [String] -> Int -> IO String. This function is called each time the
prompt is being made. The first argument stands for the names of the modules currently
in scope(the name of the “topmost” module will begin with a *; see What’s really in
scope at the prompt? (page 40) for more information). The second arguments is the line
number (as referenced in compiler messages) of the current prompt.

:set prompt-cont-function (prompt-function)
Sets the function to be used for the continuation prompt (used when using the :{
(page 37) command) displaying in GHCi.

66 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

:set stop (num) (cmd)
Set a command to be executed when a breakpoint is hit, or a new item in the history is
selected. The most common use of :set stop (page 66) is to display the source code at
the current location, e.g. :set stop :list.

If a number is given before the command, then the commands are run when the specified
breakpoint (only) is hit. This can be quite useful: for example, :set stop 1 :continue
effectively disables breakpoint 1, by running :continue (page 61) whenever it is hit
(although GHCi will still emit a message to say the breakpoint was hit). What’s more,
with cunning use of : def (page 61) and : cmd (page 60) you can use :set stop (page 66)
to implement conditional breakpoints:

*Main> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \"\" else,
—return \":continue\"")
*Main> :set stop 0 :cond (x < 3)

Ignoring breakpoints for a specified number of iterations is also possible using similar
techniques.

:seti [(option) ...]
Like :set (page 65), but options set with :seti (page 67) affect only expressions and
commands typed at the prompt, and not modules loaded with : load (page 64) (in con-
trast, options set with :set (page 65) apply everywhere). See Setting options for inter-
active evaluation only (page 70).

Without any arguments, displays the current set of options that are applied to expres-
sions and commands typed at the prompt.

:show bindings
Show the bindings made at the prompt and their types.

:show breaks
List the active breakpoints.

:show context
List the active evaluations that are stopped at breakpoints.

:show imports
Show the imports that are currently in force, as created by import and :module (page 65)
commands.

:show modules
Show the list of modules currently loaded.

:show packages
Show the currently active package flags, as well as the list of packages currently loaded.

:show paths
Show the current working directory (as set via : cd (page 60) command), as well as the
list of directories searched for source files (as set by the -i option).

:show language
Show the currently active language flags for source files.

:showi language
Show the currently active language flags for expressions typed at the prompt (see also
:seti (page 67)).

:show [args|prog|prompt|editor|stop]
Displays the specified setting (see :set (page 65)).

8.7. GHCi commands 67

GHC User’s Guide Documentation, Release 8.6.5

:sprint (expr)
Prints a value without forcing its evaluation. :sprint (page 67) is similar to :print
(page 65), with the difference that unevaluated subterms are not bound to new variables,
they are simply denoted by .

:step [(expr)]
Enable all breakpoints and begin evaluating an expression in single-stepping mode. In
this mode evaluation will be stopped after every reduction, allowing local variables to
be inspected. If {expr) is not given, evaluation will resume at the last breakpoint. See
Single-stepping (page 52).

:steplocal
Enable only breakpoints in the current top-level binding and resume evaluation at the
last breakpoint.

:stepmodule
Enable only breakpoints in the current module and resume evaluation at the last break-
point.

:trace (expr)
Evaluates the given expression (or from the last breakpoint if no expression is given),
and additionally logs the evaluation steps for later inspection using :history (page 63).
See Tracing and history (page 53).

:type (expression)
Infers and prints the type of (expression), including explicit forall quantifiers for polymor-
phic types. The type reported is the type that would be inferred for a variable assigned
to the expression, but without the monomorphism restriction applied.

*X> :type length
length :: Foldable t => t a -> Int

:type +v (expression)
Infers and prints the type of {(expression), but without fiddling with type variables or class
constraints. This is useful when you are using TypeApplications (page 409) and care
about the distinction between specified type variables (available for type application) and
inferred type variables (not available). This mode sometimes prints constraints (such as
Show Int) that could readily be solved, but solving these constraints may affect the type
variables, so GHC refrains.

*X> :set -fprint-explicit-foralls
*X> :type +v length
length :: forall (t :: * -> *). Foldable t => forall a. t a -> Int

:type +d (expression)
Infers and prints the type of {(expression), defaulting type variables if possible. In this
mode, if the inferred type is constrained by any interactive class (Num, Show, Eq, Ord,
Foldable, or Traversable), the constrained type variable(s) are defaulted according to
the rules described under ExtendedDefaultRules (page 44). This mode is quite useful
when the inferred type is quite general (such as for foldr) and it may be helpful to see
a more concrete instantiation.

*X> :type +d length
length :: [a] -> Int

:type-at (module) (line) (col) (end-line) (end-col) [{(name)]
Reports the inferred type at the given span/position in the module, e.g.:

68 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

*X> :type-at X.hs 6 6 6 7 f
Int -> Int

This command is useful when integrating GHCi with text editors and IDEs for providing
a show-type-under-point facility.

The last string parameter is useful for when the span is out of date, i.e. the file changed
and the code has moved. In which case : type-at (page 68) falls back to a general : type
(page 68) like lookup.

The :type-at (page 68) command requires :set +c (page 69) to be set.

:undef (name)
Undefines the user-defined command (name) (see :def (page 61) above).

:unset (option)
Unsets certain options. See The :set and :seti commands (page 69) for a list of available
options.

:uses (module) (line) (col) (end-line) (end-col) [{(name)]
Reports all module-local uses of the thing at the given position in the module, e.g.:

:uses GhciFind.hs 53 66 53 70 name
GhciFind.hs: (46,25)-(46,29)
GhciFind.hs:(47,37)-(47,41)
GhciFind.hs: (53,66)-(53,70)
GhciFind.hs: (57,62)-(57,66)

This command is useful for highlighting and navigating all uses of an identifier in editors
and IDEs.

The :uses (page 69) command requires :set +c (page 69) to be set.

:! {(command)
Executes the shell command (command).

8.8 The :set and :seti commands

The :set (page 65) command sets two types of options: GHCi options, which begin with “+”,
and “command-line” options, which begin with “-“.

Note: At the moment, the :set (page 65) command doesn’t support any kind of quoting in
its arguments: quotes will not be removed and cannot be used to group words together. For
example, :set -DF00='BAR BAZ' will not do what you expect.

8.8.1 GHCi options

GHCi options may be set using :set (page 65) and unset using :unset (page 69).
The available GHCi options are:

iset +c
Collect type and location information after loading modules. The commands :all-types
(page 59), : loc-at (page 64), :type-at (page 68), and :uses (page 69) require +c to be
active.

8.8. The :set and :seti commands 69

GHC User’s Guide Documentation, Release 8.6.5

:set +m
Enable parsing of multiline commands. A multiline command is prompted for when the
current input line contains open layout contexts (see Multiline input (page 38)).

:set +r
Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant
Applicative Forms) in loaded modules is retained between evaluations. Turning on +r
causes all evaluation of top-level expressions to be discarded after each evaluation (they
are still retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large amounts
of space, or if you need repeatable performance measurements.

iset +s
Display some stats after evaluating each expression, including the elapsed time and num-
ber of bytes allocated. NOTE: the allocation figure is only accurate to the size of the stor-
age manager’s allocation area, because it is calculated at every GC. Hence, you might
see values of zero if no GC has occurred.

iset +t
Display the type of each variable bound after a statement is entered at the prompt. If the
statement is a single expression, then the only variable binding will be for the variable
it.

8.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using :set (page 65). For example, to
turn on -Wmissing-signatures (page 97), you would say:

Prelude> :set -Wmissing-signatures

Any GHC command-line option that is designated as dynamic (see the table in Flag reference
(page 117)), may be set using :set (page 65). To unset an option, you can set the reverse
option:

Prelude> :set -Wno-incomplete-patterns -XNoMultiParamTypeClasses

Flag reference (page 117) lists the reverse for each option where applicable.

Certain static options (-package (pkg) (page 183), -I(dir) (page 201), -i(dir)[:(dir)]*
(page 166), and -1 (lib) (page 205) in particular) will also work, but some may not take
effect until the next reload.

8.8.3 Setting options for interactive evaluation only

GHCIi actually maintains two sets of options:
* The loading options apply when loading modules

» The interactive options apply when evaluating expressions and commands typed at the
GHCi prompt.

The :set (page 65) command modifies both, but there is also a :seti (page 67) command
(for “set interactive”) that affects only the interactive options set.

It is often useful to change the interactive options, without having that option apply to loaded
modules too. For example

70 Chapter 8. Using GHCi

GHC User’s Guide Documentation, Release 8.6.5

:seti -XMonolLocalBinds

It would be undesirable if MonoLocalBinds (page 408) were to apply to loaded modules too:
that might cause a compilation error, but more commonly it will cause extra recompilation,
because GHC will think that it needs to recompile the module because the flags have changed.

If you are setting language options in your . ghci file, it is good practice to use : seti (page 67)
rather than :set (page 65), unless you really do want them to apply to all modules you load
in GHCi.

The two sets of options can be inspected using the :set (page 65) and :seti (page 67) com-
mands respectively, with no arguments. For example, in a clean GHCi session we might see
something like this:

Prelude> :seti

base language is: Haskell2010

with the following modifiers:
-XNoMonomorphismRestriction
-XNoDatatypeContexts
-XNondecreasingIndentation
-XExtendedDefaultRules

GHCi-specific dynamic flag settings:

other dynamic, non-language, flag settings:
-fimplicit-import-qualified

warning settings:

The two sets of options are initialised as follows. First, both sets of options are initialised
as described in The .ghci and .haskeline files (page 71). Then the interactive options are
modified as follows:

* The option -XExtendedDefaultRules is enabled, in order to apply special defaulting
rules to expressions typed at the prompt (see Type defaulting in GHCi (page 44)).

* The Monomorphism Restriction is disabled (see Switching off the dreaded Monomor-
phism Restriction (page 407)).

8.9 The .ghci and .haskeline files

8.9.1 The .ghci files
When it starts, unless the - ignore-dot-ghci (page 72) flag is given, GHCi reads and executes
commands from the following files, in this order, if they exist:

1. ./.ghci

2. appdata/ghc/ghci.conf, where {(appdata) depends on your system, but is usually some-
thing like C: /Documents and Settings/user/Application Data

3. On Unix: $HOME/.ghc/ghci.conf
4. $HOME/ .ghci

The ghci. conf file is most useful for turning on favourite options (e.g. :set +s), and defining
useful macros.

8.9. The .ghci and .haskeline files 71

GHC User’s Guide Documentation, Release 8.6.5

Note: When setting language options in this file it is usually desirable to use : seti (page 67)
rather than :set (page 65) (see Setting options for interactive evaluation only (page 70)).

Placing a .ghci file in a directory with a Haskell project is a useful way to set certain project-
wide options so you don’t have to type them every time you start GHCi: eg. if your project
uses multi-parameter type classes, scoped type variables, and CPP, and has source files in
three subdirectories A, B and C, you might put the following lines in .ghci:

:set -XMultiParamTypeClasses -XScopedTypeVariables -cpp
:set -iA:B:C

(Note that strictly speaking the -1 (page 166) flag is a static one, but in fact it works to set it
using :set (page 65) like this. The changes won’t take effect until the next : load (page 64),
though.)

Once you have a library of GHCi macros, you may want to source them from separate files,
or you may want to source your .ghci file into your running GHCi session while debugging it

:def source readFile

With this macro defined in your . ghci file, you can use :source filetoread GHCi commands
from file. You can find (and contribute!-) other suggestions for .ghci files on this Haskell
wiki page: GHC/GHCi

Additionally, any files specified with -ghci-script (page 72) flags will be read after the stan-
dard files, allowing the use of custom .ghci files.

Two command-line options control whether the startup files files are read:

-ignore-dot-ghci
Don’t read either ./.ghci or the other startup files when starting up.

-ghci-script
Read a specific file after the usual startup files. Maybe be specified repeatedly for mul-
tiple inputs.

When defining GHCi macros, there is some important behavior you should be aware of when
names may conflict with built-in commands, especially regarding tab completion.

For example, consider if you had a macro named :time and in the shell, typed :t 3 — what
should happen? The current algorithm we use for completing commands is:

1. First, look up an exact match on the name from the defined macros.
2. Look for the exact match on the name in the built-in command list.

3. Do a prefix lookup on the list of built-in commands - if a built-in command matches, but
a macro is defined with the same name as the built-in defined, pick the macro.

4. Do a prefix lookup on the list of built-in commands.
5. Do a prefix lookup on the list of defined macros.
Here are some examples:
1. You have a macro :time and enter :t 3
You get :type 3
2. You have a macro :type and enter :t 3

You get :type 3 with your defined macro, not the builtin.

72 Chapter 8. Using GHCi

http://haskell.org/haskellwiki/GHC/GHCi

GHC User’s Guide Documentation, Release 8.6.5

3. You have a macro :time and a macro :type, and enter :t 3

You get :type 3 with your defined macro.

8.9.2 The .haskeline file

GHCi uses Haskeline under the hood. You can configure it to, among other things, prune
duplicates from GHCIi history. See: Haskeline user preferences.

8.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the run-
time system. GHCIi can also compile Haskell code to object code: to turn on this feature, use
the -fobject-code (page 204) flag either on the command line or with :set (page 65) (the
option - fbyte-code (page 204) restores byte-code compilation again). Compiling to object
code takes longer, but typically the code will execute 10-20 times faster than byte-code.

Compiling to object code inside GHCi is particularly useful if you are developing a compiled
application, because the : reload (page 65) command typically runs much faster than restart-
ing GHC with - -make (page 80) from the command-line, because all the interface files are
already cached in memory.

There are disadvantages to compiling to object-code: you can’t set breakpoints in object-code
modules, for example. Only the exports of an object-code module will be visible in GHCi,
rather than all top-level bindings as in interpreted modules.

8.11 Running the interpreter in a separate process

Normally GHCi runs the interpreted code in the same process as GHC itself, on top of the same
RTS and sharing the same heap. However, if the flag - fexternal-interpreter (page 73) is
given, then GHC will spawn a separate process for running interpreted code, and communi-
cate with it using messages over a pipe.

-fexternal-interpreter
Since 8.0.1

Run interpreted code (for GHCi, Template Haskell, Quasi-quoting, or Annotations) in a
separate process. The interpreter will run in profiling mode if -prof (page 227) is in
effect, and in dynamically-linked mode if -dynamic (page 206) is in effect.

There are a couple of caveats that will hopefully be removed in the future: this option
is currently not implemented on Windows (it is a no-op), and the external interpreter
does not support the GHCi debugger, so breakpoints and single-stepping don’t work
with - fexternal-interpreter (page 73).

See also the -pgmi (cmd) (page 200) (Replacing the program for one or more phases
(page 199)) and -opti (option) (page 200) (Forcing options to a particular phase
(page 200)) flags.

Why might we want to do this? The main reason is that the RTS running the interpreted code
can be a different flavour (profiling or dynamically-linked) from GHC itself. So for example:

* We can use the profiler to collect stack traces when using GHCi (see Stack Traces in
GHCi (page 47)).

8.10. Compiling to object code inside GHCi 73

https://hackage.haskell.org/package/haskeline
https://github.com/judah/haskeline/wiki/UserPreferences

GHC User’s Guide Documentation, Release 8.6.5

* When compiling Template Haskell code with -prof (page 227) we don’t need to compile
the modules without -prof (page 227) first (see Using Template Haskell with Profiling
(page 441)) because we can run the profiled object code in the interpreter.

This feature is experimental in GHC 8.0.x, but it may become the default in future releases.

8.12 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations! Unfortunately
not. We haven’t implemented it yet. Please compile any offending modules by hand
before loading them into GHCi.

-0 (page 104) doesn’t work with GHCi!

For technical reasons, the bytecode compiler doesn’t interact well with one of the
optimisation passes, so we have disabled optimisation when using the interpreter.
This isn’t a great loss: you’ll get a much bigger win by compiling the bits of your
code that need to go fast, rather than interpreting them with optimisation turned
on.

Unboxed tuples don’t work with GHCi That’s right. You can always compile a module that
uses unboxed tuples and load it into GHCi, however. (Incidentally the previous point,
namely that -0 (page 104) is incompatible with GHCIi, is because the bytecode compiler
can’t deal with unboxed tuples).

Concurrent threads don’t carry on running when GHCIi is waiting for input. This
should work, as long as your GHCi was built with the -threaded (page 207) switch,
which is the default. Consult whoever supplied your GHCi installation.

After using getContents, I can’t use stdin, until I do :load or :reload This is the de-
fined behaviour of getContents: it puts the stdin Handle in a state known as semi-closed,
wherein any further I/O operations on it are forbidden. Because I/O state is retained be-
tween computations, the semi-closed state persists until the next :load (page 64) or
:reload (page 65) command.

You can make stdin reset itself after every evaluation by giving GHCi the command : set
+r. This works because stdin is just a top-level expression that can be reverted to its
unevaluated state in the same way as any other top-level expression (CAF).

I can’t use Control-C to interrupt computations in GHCi on Windows. See Running
GHCi on Windows (page 541).

The default buffering mode is different in GHCi to GHC. In GHC, the stdout handle is
line-buffered by default. However, in GHCi we turn off the buffering on stdout, because
this is normally what you want in an interpreter: output appears as it is generated.

If you want line-buffered behaviour, as in GHC, you can start your program thus:

main = do { hSetBuffering stdout LineBuffering; ... }

74 Chapter 8. Using GHCi

CHAPTER
NINE

USING RUNGHC

runghc allows you to run Haskell programs without first having to compile them.

9.1 Usage

The runghc command-line looks like:

’runghc [runghc flags] [GHC flags] module [program args]

Any flags not recognized by runghc are automatically passed to GHC. If a flag is recognized
by both runghc and GHC but you want to pass it to GHC then you can place it after a --
separator. Flags after the separator are treated as GHC only flags. Alternatively you can use
the runghc option - -ghc-arg=<arg> to pass any flag or argument directly to GHC.

module could be a Haskell source filename with or without the extension. If for some reason
the filename starts with a - you can use a second - - to indicate the end of flags. Anything
following a second - - will be considered a program file or module name followed by its argu-
ments. For example:

* runghc -- -- -hello.hs

9.2 runghc flags

runghc accepts the following flags:

 -f /path/to/ghc: tell runghc the path of GHC executable to use to run the program.
By default runghc will search for GHC in the directories in the system search path.

* --ghc-arg=<arg>: Pass an option or argument to GHC
* --help: print usage information.

e --version: print version information.

9.3 GHC Flags

As discussed earlier, use -- or --ghc-arg=<arg> to disambiguate GHC flags when needed.
For example, -f is recognized by runghc, therefore to pass -fliberate-case to GHC use any
of the following:

* runghc -- -fliberate-case

75

GHC User’s Guide Documentation, Release 8.6.5

* runghc --ghc-arg=-fliberate-case

Note that any non-flag arguments are never passed to GHC. An unused non-flag argument
will be considered as the name of the program to run. If a GHC flag takes an argument use

--ghc-arg=<arg> to pass the argument to GHC. For example, if you want to pass -package
foo to GHC use any of the following:

* runghc -package --ghc-arg=foo Main.hs

* runghc --ghc-arg=-package --ghc-arg=foo Main.hs

76 Chapter 9. Using runghc

CHAPTER
TEN

USING GHC

10.1 Using GHC

10.1.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including
all 400+ flags. It’s a large and complex system, and there are lots of details, so it can be quite
hard to figure out how to get started. With that in mind, this introductory section provides
a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.

Let’s create a Hello World program, and compile and run it. First, create a file hello.hs
containing the Haskell code:

’main = putStrLn "Hello, World!"

To compile the program, use GHC like this:

’$ ghc hello.hs

(where $ represents the prompt: don’t type it). GHC will compile the source file hello.
hs, producing an object file hello.o and an interface file hello.hi, and then it will link the
object file to the libraries that come with GHC to produce an executable called hello on
Unix/Linux/Mac, or hello.exe on Windows.

By default GHC will be very quiet about what it is doing, only printing error messages. If
you want to see in more detail what’s going on behind the scenes, add -v (page 83) to the
command line.

Then we can run the program like this:

$./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the
source file containing the Main module, and GHC will examine the import declarations to
find the other modules that make up the program and find their source files. This means that,
with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module
Data.Person would be in the file Data/Person.hs on Unix/Linux/Mac, or Data\Person.hs on
Windows.

77

GHC User’s Guide Documentation, Release 8.6.5

10.1.2 Options overview

GHC'’s behaviour is controlled by options, which for historical reasons are also sometimes
referred to as command-line flags or arguments. Options can be specified in three ways:

10.1.2.1 Command-line arguments

An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.

Command-line options begin with -. They may not be grouped: -vO0 is different from -v -0.
Options need not precede filenames: e.g., ghc *.0 -o foo. All options are processed and
then applied to all files; you cannot, for example, invoke ghc -c¢ -01 Foo.hs -02 Bar.hs to
apply different optimisation levels to the files Foo.hs and Bar.hs.

Note: Note that command-line options are order-dependent, with arguments being evalu-
ated from left-to-right. This can have seemingly strange effects in the presence of flag im-
plication. For instance, consider - fno-specialise (page 112) and -01 (page 104) (which
implies - fspecialise (page 112)). These two command lines mean very different things:

-fno-specialise -01
-fspecialise will be enabled as the -fno-specialise is overriden by the -01.
-01 -fno-specialise

-fspecialise will not be enabled, since the -fno-specialise overrides the
-fspecialise implied by -01.

10.1.2.2 Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line
options it requires quite tight. For instance, if a Haskell source file deliberately uses name
shadowing, it should be compiled with the -Wno-name-shadowing option. Rather than main-
taining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS GHC pragma (page 461)

{-# OPTIONS GHC -Wno-name-shadowing #-}
module X where

OPTIONS GHC is a file-header pragma (see OPTIONS GHC pragma (page 461)).

Only dynamic flags can be used in an OPTIONS GHC pragma (see Static, Dynamic, and Mode
options (page 79)).

Note that your command shell does not get to the source file options, they are just included
literally in the array of command-line arguments the compiler maintains internally, so you’ll
be desperately disappointed if you try to glob etc. inside OPTIONS GHC.

78 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Note: The contents of OPTIONS GHC are appended to the command-line options, so options
given in the source file override those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but in
some circumstances, the OPTIONS GHC pragma is the Right Thing. (If you use -keep-hc-file
(page 168) and have OPTION flags in your module, the OPTIONS GHC will get put into the
generated . hc file).

10.1.2.3 Setting options in GHCi

Options may also be modified from within GHCIi, using the :set (page 65) command.

10.1.3 Static, Dynamic, and Mode options

Each of GHC’s command line options is classified as static, dynamic or mode:

For example, - -make (page 80) or -E (page 80). There may only be a single mode
flag on the command line. The available modes are listed in Modes of operation
(page 80).

Most non-mode flags fall into this category. A dynamic flag may be used on the
command line, in a OPTIONS GHC pragma in a source file, or set using : set (page 65)
in GHCi.

A few flags are “static”, which means they can only be used on the command-line,
and remain in force over the entire GHC/GHCIi run.

The flag reference tables (Flag reference (page 117)) lists the status of each flag.

There are a few flags that are static except that they can also be used with GHCi’s :set
(page 65) command; these are listed as “static/:set” in the table.

10.1.4 Meaningful file suffixes

File names with “meaningful” suffixes (e.g., . lhs or .0) cause the “right thing” to happen to
those files.

.hs A Haskell module.

.Lhs A “literate Haskell” module.

.hspp A file created by the preprocessor.

.hi A Haskell interface file, probably compiler-generated.

.hc Intermediate C file produced by the Haskell compiler.

.¢ A C file not produced by the Haskell compiler.

.11 An llvm-intermediate-language source file, usually produced by the compiler.
.bc An llvm-intermediate-language bitcode file, usually produced by the compiler.
.S An assembly-language source file, usually produced by the compiler.

.0 An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

10.1. Using GHC 79

GHC User’s Guide Documentation, Release 8.6.5

10.1.5 Modes of operation

GHC'’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given,
but it does not necessarily need to be the first option on the command-line. For instance,

$ ghc Main.hs --make -o my-application

If no mode flag is present, then GHC will enter --make (page 80) mode (Using ghc -make
(page 81)) if there are any Haskell source files given on the command line, or else it will link
the objects named on the command line to produce an executable.

The available mode flags are:

--interactive
Interactive mode, which is also available as ghci. Interactive mode is described in more
detail in Using GHCi (page 31).

- -make
In this mode, GHC will build a multi-module Haskell program automatically, figuring out
dependencies for itself. If you have a straightforward Haskell program, this is likely to
be much easier, and faster, than using make. Make mode is described in Using ghc -make
(page 81).

This mode is the default if there are any Haskell source files mentioned on the command
line, and in this case the - -make (page 80) option can be omitted.

-e (expr)
Expression-evaluation mode. This is very similar to interactive mode, except that there
is a single expression to evaluate ({expr)) which is given on the command line. See
Expression evaluation mode (page 82) for more details.

-E
Stop after preprocessing (.hspp file)
-C
Stop after generating C (.hc file)
-S
Stop after generating assembly (. s file)
-C
Stop after generating object (.0) file
This is the traditional batch-compiler mode, in which GHC can compile source files one at
a time, or link objects together into an executable. See Batch compiler mode (page 82).
-M

Dependency-generation mode. In this mode, GHC can be used to generate dependency
information suitable for use in a Makefile. See Dependency generation (page 178).

--frontend (module)
Run GHC using the given frontend plugin. See Frontend plugins (page 527) for details.

--mk-d1l
DLL-creation mode (Windows only). See Creating a DLL (page 544).

--help
-?

Cause GHC to spew a long usage message to standard output and then exit.

80 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

--show-iface (file)
Read the interface in (file) and dump it as text to stdout. For example ghc --show-iface
M.hi.

- -supported-extensions
--supported-languages
Print the supported language extensions.

--show-options
Print the supported command line options. This flag can be used for autocompletion in
a shell.

--info
Print information about the compiler.

--version
-V
Print a one-line string including GHC’s version number.

--numeric-version
Print GHC’s numeric version number only.

--print-libdir
Print the path to GHC'’s library directory. This is the top of the directory tree containing
GHC'’s libraries, interfaces, and include files (usually something like /usr/local/lib/
ghc-5.04 on Unix). This is the value of $libdir in the package configuration file (see
Packages (page 181)).

10.1.5.1 Using ghc --make

In this mode, GHC will build a multi-module Haskell program by following dependencies from
one or more root modules (usually just Main). For example, if your Main module is in a file
called Main.hs, you could compile and link the program like this:

’ghc --make Main.hs ‘

In fact, GHC enters make mode automatically if there are any Haskell source files on the
command line and no other mode is specified, so in this case we could just type

’ghc Main.hs ‘

Any number of source file names or module names may be specified; GHC will figure out all
the modules in the program by following the imports from these initial modules. It will then
attempt to compile each module which is out of date, and finally, if there is a Main module,
the program will also be linked into an executable.

The main advantages to using ghc --make over traditional Makefiles are:

* GHC doesn’t have to be restarted for each compilation, which means it can cache infor-
mation between compilations. Compiling a multi-module program with ghc --make can
be up to twice as fast as running ghc individually on each source file.

* You don’t have to write a Makefile.

* GHC re-calculates the dependencies each time it is invoked, so the dependencies never
get out of sync with the source.

» Using the -j[(n)] (page 82) flag, you can compile modules in parallel. Specify -j (n) to
compile (n) jobs in parallel. If (n) is omitted, then it defaults to the number of processors.

10.1. Using GHC 81

GHC User’s Guide Documentation, Release 8.6.5

Any of the command-line options described in the rest of this chapter can be used with - -make,
but note that any options you give on the command line will apply to all the source files
compiled, so if you want any options to apply to a single source file only, you’ll need to use an
OPTIONS GHC pragma (see Command line options in source files (page 78)).

If the program needs to be linked with additional objects (say, some auxiliary C code), then
the object files can be given on the command line and GHC will include them when linking
the executable.

For backward compatibility with existing make scripts, when used in combination with -c
(page 80), the linking phase is omitted (same as - -make -no-1link).

Note that GHC can only follow dependencies if it has the source file available, so if your
program includes a module for which there is no source file, even if you have an object and
an interface file for the module, then GHC will complain. The exception to this rule is for
package modules, which may or may not have source files.

The source files for the program don’t all need to be in the same directory; the -1 (page 166)
option can be used to add directories to the search path (see The search path (page 165)).

-il(n)]
Perform compilation in parallel when possible. GHC will use up to (N) threads during
compilation. If N is omitted, then it defaults to the number of processors. Note that
compilation of a module may not begin until its dependencies have been built.

10.1.5.2 Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to
evaluate which is specified on the command line as an argument to the -e option:

ghc -e expr

Haskell source files may be named on the command line, and they will be loaded exactly as
in interactive mode. The expression is evaluated in the context of the loaded modules.

For example, to load and run a Haskell program containing a module Main, we might say:

ghc -e Main.main Main.hs

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

10.1.5.3 Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined
by a flag. If no relevant flag is present, then go all the way through to linking. This table
summarises:

82 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Phase of the compilation | Suffix saying “start | Flag saying “stop | (suffix of) output
system here” after” file

literate pre-processor .lhs .hs

C pre-processor (opt.) .hs (with -cpp) -E .hspp

Haskell compiler .hs -C, -S .hc, .s

C compiler (opt.) .hcor .c -S .S

assembler .S -C .0

linker (other) a.out

Thus, a common invocation would be:

ghc -c Foo.hs

to compile the Haskell source file Foo.hs to an object file Foo.o.

Note: What the Haskell compiler proper produces depends on what backend code generator
is used. See GHC Backends (page 198) for more details.

Note: Pre-processing is optional, the -cpp (page 201) flag turns it on. See Options affecting
the C pre-processor (page 201) for more details.

Note: The option -E (page 80) runs just the pre-processing passes of the compiler, dumping
the result in a file.

Note: The option -C (page 80) is only available when GHC is built in unregisterised mode.
See Unregisterised compilation (page 199) for more details.

Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This
behaviour can be overridden using the -x (suffix) (page 83) option:

-x (suffix)
Causes all files following this option on the command line to be processed as if they had
the suffix (suffix). For example, to compile a Haskell module in the file M.my-hs, use ghc
-C -X hs M.my-hs.

10.1.6 Verbosity options

See also the --help, --version, --numeric-version, and --print-1libdir modes in Modes
of operation (page 80).

-V
The -v (page 83) option makes GHC verbose: it reports its version number and shows
(on stderr) exactly how it invokes each phase of the compilation system. Moreover, it

10.1. Using GHC 83

GHC User’s Guide Documentation, Release 8.6.5

passes the -v flag to most phases; each reports its version number (and possibly some
other information).

Please, oh please, use the -v option when reporting bugs! Knowing that you ran the
right bits in the right order is always the first thing we want to verify.

-v{n)
To provide more control over the compiler’s verbosity, the -v flag takes an optional nu-
meric argument. Specifying -v on its own is equivalent to -v3, and the other levels have
the following meanings:

-v0 Disable all non-essential messages (this is the default).

-vl Minimal verbosity: print one line per compilation (this is the default when - -make
(page 80) or --interactive (page 80) is on).

-v2 Print the name of each compilation phase as it is executed. (equivalent to
-dshow-passes (page 214)).

-v3 The same as -v2, except that in addition the full command line (if appropriate) for
each compilation phase is also printed.

-v4 The same as -v3 except that the intermediate program representation after each
compilation phase is also printed (excluding preprocessed and C/assembly files).

-fprint-potential-instances
When GHC can’t find an instance for a class, it displays a short list of some in the in-
stances it knows about. With this flag it prints all the instances it knows about.

-fhide-source-paths
Starting with minimal verbosity (-v1, see -v (page 83)), GHC displays the name, the
source path and the target path of each compiled module. This flag can be used to
reduce GHC’s output by hiding source paths and target paths.

The following flags control the way in which GHC displays types in error messages and in
GHCi:
-fprint-unicode-syntax

When enabled GHC prints type signatures using the unicode symbols from the
-XUnicodeSyntax (page 260) extension. For instance,

ghci> :set -fprint-unicode-syntax
ghci> :t +v (>>)
(>>) ' Monad m=Vab. ma—->mb-—->mb

-fprint-explicit-foralls
Using - fprint-explicit-foralls (page 84) makes GHC print explicit forall quantifi-
cation at the top level of a type; normally this is suppressed. For example, in GHCi:

ghci> let f x = x

ghci> :t f

f::ra->a

ghci> :set -fprint-explicit-foralls
ghci> :t f

f :: forall a. a -> a

However, regardless of the flag setting, the quantifiers are printed under these circum-
stances:

* For nested foralls, e.g.

84 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

ghci> :t GHC.ST.runST
GHC.ST.runST :: (forall s. GHC.ST.ST s a) -> a

If any of the quantified type variables has a kind that mentions a kind variable, e.g.

ghci> :i Data.Type.Equality.sym
Data.Type.Equality.sym ::
forall (k :: BOX) (a :: k) (b :: k).
(a Data.Type.Equality.:~: b) -> b Data.Type.Equality.:~: a
-- Defined in Data.Type.Equality

-fprint-explicit-kinds
Using - fprint-explicit-kinds (page 85) makes GHC print kind arguments in types,
which are normally suppressed. This can be important when you are using kind poly-
morphism. For example:

ghci> :set -XPolyKinds

ghci> data T a = MKT

ghci> :t MKT

MKT :: forall (k :: BOX) (a :: k). T a
ghci> :set -fprint-explicit-foralls
ghci> :t MKT

MKT :: forall (k :: BOX) (a :: k). T k a

-fprint-explicit-runtime-reps
When -fprint-explicit-runtime-reps (page 85) is enabled, GHC prints RuntimeRep
type variables for levity-polymorphic types. Otherwise GHC will default these to
LiftedRep. For example,

ghci> :t (%)
($) :: (@ ->b) ->a ->b
ghci> :set -fprint-explicit-runtime-reps
ghci> :t (%)
($)
:: forall (r :: GHC.Types.RuntimeRep) a (b :: TYPE r).
(a ->b) ->a ->b

-fprint-explicit-coercions
Using -fprint-explicit-coercions (page 85) makes GHC print coercions in types.
When trying to prove the equality between types of different kinds, GHC uses type-level
coercions. Users will rarely need to see these, as they are meant to be internal.

-fprint-equality-relations

Using -fprint-equality-relations (page 85) tells GHC to distinguish between its
equality relations when printing. For example, ~ is homogeneous lifted equality (the
kinds of its arguments are the same) while ~~ is heterogeneous lifted equality (the
kinds of its arguments might be different) and ~# is heterogeneous unlifted equal-
ity, the internal equality relation used in GHC’s solver. Generally, users should not
need to worry about the subtleties here; ~ is probably what you want. Without
-fprint-equality-relations (page 85), GHC prints all of these as ~. See also Equality
constraints (page 393).

-fprint-expanded-synonyms
When enabled, GHC also prints type-synonym-expanded types in type errors. For exam-
ple, with this type synonyms:

10.1. Using GHC 85

GHC User’s Guide Documentation, Release 8.6.5

type Foo Int
type Bar = Bool
type MyBarST s = ST s Bar

This error message:

Couldn't match type 'Int' with 'Bool'
Expected type: ST s Foo
Actual type: MyBarST s

Becomes this:

Couldn't match type 'Int' with 'Bool’
Expected type: ST s Foo
Actual type: MyBarST s
Type synonyms expanded:
Expected type: ST s Int
Actual type: ST s Bool

-fprint-typechecker-elaboration
When enabled, GHC also prints extra information from the typechecker in warnings. For
example:

main :: I0 ()

main = do
return $ let a = "hello" in a
return ()

This warning message:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying

‘ <- (%) return let a = "hello" in a’
or by using the flag -fno-warn-unused-do-bind

Becomes this:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying
o< (%)
return
let
AbsBinds [] T[]
{Exports: [a <= a
<>]
Exported types: a :: [Char]
[LclId, Str=DmdType]
Binds: a = "hello"}
in a’
or by using the flag -fno-warn-unused-do-bind

-fdiagnostics-color={always|auto|never)
Causes GHC to display error messages with colors. To do this, the terminal must have
support for ANSI color codes, or else garbled text will appear. The default value is auto,
which means GHC will make an attempt to detect whether terminal supports colors and
choose accordingly.

86 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

The precise color scheme is controlled by the environment variable GHC COLORS (or
GHC_COLOURS). This can be set to colon-separated list of key=value pairs. These are
the default settings:

header=:message=1:warning=1;35:error=1;31:fatal=1;31:margin=1;34

Each value is expected to be a Select Graphic Rendition (SGR) substring. The formatting
of each element can inherit from parent elements. For example, if header is left empty,
it will inherit the formatting of message. Alternatively if header is set to 1 (bold), it will
be bolded but still inherits the color of message.

Currently, in the primary message, the following inheritance tree is in place:
* message
- header
* warning
* error
* fatal

In the caret diagnostics, there is currently no inheritance at all between margin, warning,
error, and fatal.

The environment variable can also be set to the magical values never or always, which
is equivalent to setting the corresponding -fdiagnostics-color flag but with lower
precedence.

-fdiagnostics-show-caret

Controls whether GHC displays a line of the original source code where the error was
detected. This also affects the associated caret symbol that points at the region of code
at fault. The flag is on by default.

-ferror-spans

Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic entity
only.

For example:

’test.hs:3:6: parse error on input “where'

becomes:

’test296.hs:3:6-10: parse error on input “where'

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for “a'
Bound at: test.hs:5:4
test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This
choice was made to follow existing convention (i.e. this is how Emacs does it).

-H (size)

Set the minimum size of the heap to (size). This option is equivalent to +RTS -Hsize, see
RTS options to control the garbage collector (page 151).

10.1. Using GHC 87

https://en.wikipedia.org/wiki/ANSI_escape_code#graphics

GHC User’s Guide Documentation, Release 8.6.5

-Rghc-timing
Prints a one-line summary of timing statistics for the GHC run. This option is equivalent
to +RTS -tstderr, see RTS options to control the garbage collector (page 151).

10.1.7 Platform-specific Flags

Some flags only make sense for particular target platforms.

-msse2
(x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement
floating point operations when using the native code generator (page 198). This gives
a substantial performance improvement for floating point, but the resulting compiled
code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD
Athlon 64 and later). The LLVM backend (page 198) will also use SSE?2 if your processor
supports it but detects this automatically so no flag is required.

SSE?2 is unconditionally used on x86-64 platforms.

-msse4.2
(x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating
point and bit operations when using the native code generator (page 198). The resulting
compiled code will only run on processors that support SSE4.2 (Intel Core i7 and later).
The LLVM backend (page 198) will also use SSE4.2 if your processor supports it but
detects this automatically so no flag is required.

10.1.8 Miscellaneous flags

Some flags only make sense for a particular use case.

-ghcversion-file (path to ghcversion.h)

When GHC is used to compile C files, GHC adds package include paths and includes
ghcversion.h directly. The compiler will lookup the path for the ghcversion.h file
from the rts package in the package database. In some cases, the compiler’s pack-
age database does not contain the rts package, or one wants to specify a specific
ghcversions.h to be included. This option can be used to specify the path to the
ghcversions. h file to be included. This is primarily intended to be used by GHC’s build
system.

10.2 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, otherwise
known as warnings, can be generated during compilation. By default, you get a standard set
of warnings which are generally likely to indicate bugs in your program. These are:

* -Woverlapping-patterns (page 98)
* -Wwarnings-deprecations (page 92)
* -Wdeprecations (page 92)

* -Wdeprecated-flags (page 93)

* -Wunrecognised-pragmas (page 91)
* -Wduplicate-constraints (page 94)
* -Wduplicate-exports (page 95)

* -Woverflowed-literals (page 94)

* -Wempty-enumerations (page 94)

88 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

* -Wmissing-fields (page 97)

* -Wmissing-methods (page 97)

* -Wwrong-do-bind (page 102)

* -Wunsupported-calling-conventions (page 93)
* -Wdodgy-foreign-imports (page 93)

* -Winline-rule-shadowing (page 103)

* -Wunsupported-1lvm-version (page 100)
* -Wtabs (page 100)

* -Wunrecognised-warning-flags (page 90)
* -Winaccessible-code (page 98)

* -Wstar-is-type (page 99)

* -Wstar-binder (page 99)

The following flags are simple ways to select standard “packages” of warnings:

-W
Provides the standard warnings plus

* -Wunused-binds (page 100)

* -Wunused-matches (page 101)

* -Wunused-foralls (page 102)

* -Wunused-imports (page 101)

e -Wincomplete-patterns (page 96)

* -Wdodgy-exports (page 94)

* -Wdodgy-imports (page 94)

* -Wunbanged-strict-patterns (page 103)

-Wall
Turns on all warning options that indicate potentially suspicious code. The warnings
that are not enabled by -Wall (page 89) are

-Wincomplete-uni-patterns (page 96)
-Wincomplete-record-updates (page 96)
-Wmonomorphism-restriction (page 100)
-Wimplicit-prelude (page 95)
-Wmissing-local-signatures (page 98)
-Wmissing-exported-signatures (page 98)
-Wmissing-export-lists (page 97)
-Wmissing-import-lists (page 97)
-Wmissing-home-modules (page 103)
-Widentities (page 95)
-Wredundant-constraints (page 94)
-Wpartial-fields (page 103)
-Wmissed-specialisations (page 91)
-Wall-missed-specialisations (page 92)

-Weverything
Turns on every single warning supported by the compiler.

-Wcompat
Turns on warnings that will be enabled by default in the future, but remain off in normal
compilations for the time being. This allows library authors eager to make their code
future compatible to adapt to new features before they even generate warnings.

This currently enables

e -Wmissing-monadfail-instances (page 93)
* -Wsemigroup (page 93)

10.2. Warnings and sanity-checking 89

GHC User’s Guide Documentation, Release 8.6.5

e -Wnoncanonical-monoid-instances (page 93)
e -Wimplicit-kind-vars (page 95)
-Wno-compat
Disables all warnings enabled by -Wcompat (page 89).
-w
Turns off all warnings, including the standard ones and those that -Wall (page 89)
doesn’t enable.
These options control which warnings are considered fatal and cause compilation to abort.

-Werror
Makes any warning into a fatal error. Useful so that you don’t miss warnings when doing
batch compilation.

-Werror=(wflag)
Implies -W<wflag>

Makes a specific warning into a fatal error. The warning will be enabled if it hasn’t been
enabled yet.

-Werror=compat has the same effect as -Werror=... for each warning flag in the
-Wcompat (page 89) option group.

-Wwarn
Warnings are treated only as warnings, not as errors. This is the default, but can be
useful to negate a -Werror (page 90) flag.

-Wwarn=(wflag)
Causes a specific warning to be treated as normal warning, not fatal error.

Note that it doesn’t fully negate the effects of -Werror=<wflag> - the warning will still
be enabled.

-Wwarn=compat has the same effect as -Wwarn=. .. for each warning flag in the -Wcompat
(page 89) option group.
When a warning is emitted, the specific warning flag which controls it is shown.
-fshow-warning-groups

When showing which flag controls a warning, also show the respective warning group
flag(s) that warning is contained in.

This option is off by default.

The full set of warning options is described below. To turn off any warning, simply give the
corresponding -Wno- ... option on the command line. For backwards compatibility with GHC
versions prior to 8.0, all these warnings can still be controlled with -f(no-)warn-* instead
of -W(no-)*.

-Wunrecognised-warning-flags
Enables warnings when the compiler encounters a -W. .. flag that is not recognised.
This warning is on by default.

-Wtyped-holes
Determines whether the compiler reports typed holes warnings. Has no effect unless
typed holes errors are deferred until runtime. See Typed Holes (page 419) and Deferring
type errors to runtime (page 432)

This warning is on by default.

90 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

-Wdeferred-type-errors
Causes a warning to be reported when a type error is deferred until runtime. See De-
ferring type errors to runtime (page 432)

This warning is on by default.
-fdefer-type-errors

Implies -fdefer-typed-holes (page 91), - fdefer-out-of-scope-variables
(page 91)

Defer as many type errors as possible until runtime. At compile time you get a warning
(instead of an error). At runtime, if you use a value that depends on a type error, you
get a runtime error; but you can run any type-correct parts of your code just fine. See
Deferring type errors to runtime (page 432)

-fdefer-typed-holes
Defer typed holes errors (errors about names with a leading underscore (e.g., “ ”, “ foo”,
“ bar”)) until runtime. This will turn the errors produced by typed holes (page 419) into
warnings. Using a value that depends on a typed hole produces a runtime error, the
same as - fdefer-type-errors (page 91) (which implies this option). See Typed Holes

(page 419) and Deferring type errors to runtime (page 432).
Implied by - fdefer-type-errors (page 91). See also -Wtyped-holes (page 90).

-fdefer-out-of-scope-variables
Defer variable out-of-scope errors (errors about names without a leading underscore) un-
til runtime. This will turn variable-out-of-scope errors into warnings. Using a value that
depends on a typed hole produces a runtime error, the same as - fdefer-type-errors
(page 91) (which implies this option). See Typed Holes (page 419) and Deferring type
errors to runtime (page 432).

Implied by -fdefer-type-errors (page 91). See also
-Wdeferred-out-of-scope-variables (page 91).

-Wdeferred-out-of-scope-variables
Warn when a deferred out-of-scope variable is encountered.

-Wpartial-type-signatures
Determines whether the compiler reports holes in partial type signatures as warnings.
Has no effect unless -XPartialTypeSignatures (page 426) is enabled, which controls
whether errors should be generated for holes in types or not. See Partial Type Signatures
(page 426).

This warning is on by default.

-fhelpful-errors
When a name or package is not found in scope, make suggestions for the name or pack-
age you might have meant instead.

This option is on by default.

-Wunrecognised-pragmas
Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used. As
well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used
by other tools, e.g. OPTIONS HUGS and DERIVE.

This option is on by default.

-Wmissed-specialisations
Emits a warning if GHC cannot specialise an overloaded function, usually because the

10.2. Warnings and sanity-checking 91

GHC User’s Guide Documentation, Release 8.6.5

function needs an INLINABLE pragma. Reports when the situation arises during special-
isation of an imported function.

This form is intended to catch cases where an imported function that is marked as
INLINABLE (presumably to enable specialisation) cannot be specialised as it calls other
functions that are themselves not specialised.

Note that this warning will not throw errors if used with -Werror (page 90).
This option is off by default.

-Wall-missed-specialisations
Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports all such situations.

Note that this warning will not throw errors if used with -Werror (page 90).
This option is off by default.

-Wwarnings-deprecations
Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 461) for
more details on the pragmas.

This option is on by default.

-Wdeprecations
Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 461) for
more details on the pragmas. An alias for -Wwarnings-deprecations (page 92).

This option is on by default.

-Wamp
This option is deprecated.

Caused a warning to be emitted when a definition was in conflict with the AMP
(Applicative-Monad proosal).

-Wnoncanonical-monad-instances
Warn if noncanonical Applicative or Monad instances declarations are detected.

When this warning is enabled, the following conditions are verified:

In Monad instances declarations warn if any of the following conditions does not hold:
e If return is defined it must be canonical (i.e. return = pure).
» If (>>) is defined it must be canonical (i.e. (>>) = (*>)).

Moreover, in Applicative instance declarations:

e Warn if pure is defined backwards (i.e. pure
e Warn if (*>) is defined backwards (i.e. (*>)

This option is off by default.

return).
(>>)).

-Wnoncanonical-monadfail-instances
Warn if noncanonical Monad or MonadFail instances declarations are detected.

When this warning is enabled, the following conditions are verified:
In Monad instances declarations warn if any of the following conditions does not hold:

e If fail is defined it must be canonical (i.e. fail = Control.Monad.Fail. fail).

92 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Moreover, in MonadFail instance declarations:

* Warn if fail is defined backwards (i.e. fail = Control.Monad.fail).
See also -Wmissing-monadfail-instances (page 93).
This option is off by default.

-Wnoncanonical-monoid-instances
Warn if noncanonical Semigroup or Monoid instances declarations are detected.

When this warning is enabled, the following conditions are verified:
In Monoid instances declarations warn if any of the following conditions does not hold:
e If mappend is defined it must be canonical (i.e. mappend = (Data.Semigroup.<>)).
Moreover, in Semigroup instance declarations:
* Warn if (<>) is defined backwards (i.e. (<>) = mappend).
This warning is off by default. However, it is part of the -Wcompat (page 89) option group.

-Wmissing-monadfail-instances
Warn when a failable pattern is used in a do-block that does not have a MonadFail in-
stance.

See also -Wnoncanonical-monadfail-instances (page 92).

Being part of the -Wcompat (page 89) option group, this warning is off by default, but
will be switched on in a future GHC release, as part of the MonadFail Proposal (MFP).

-Wsemigroup
Warn when definitions are in conflict with the future inclusion of Semigroup into the
standard typeclasses.

1. Instances of Monoid should also be instances of Semigroup

2. The Semigroup operator (<>) will be in Prelude, which clashes with custom local
definitions of such an operator

Being part of the -Wcompat (page 89) option group, this warning is off by default, but
will be switched on in a future GHC release.

-Wdeprecated-flags
Causes a warning to be emitted when a deprecated command-line flag is used.

This option is on by default.

-Wunsupported-calling-conventions
Causes a warning to be emitted for foreign declarations that use unsupported calling
conventions. In particular, if the stdcall calling convention is used on an architecture
other than i386 then it will be treated as ccall.

-Wdodgy-foreign-imports
Causes a warning to be emitted for foreign imports of the following form:

’foreign import "f" f :: FunPtr t

on the grounds that it probably should be

’foreign import "&f" f :: FunPtr t

10.2. Warnings and sanity-checking 93

https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail

GHC User’s Guide Documentation, Release 8.6.5

The first form declares that f is a (pure) C function that takes no arguments and returns
a pointer to a C function with type t, whereas the second form declares that f itself is a
C function with type t. The first declaration is usually a mistake, and one that is hard to
debug because it results in a crash, hence this warning.

-Wdodgy-exports

Causes a warning to be emitted when a datatype T is exported with all constructors, i.e.
T(..), butis it just a type synonym.

Also causes a warning to be emitted when a module is re-exported, but that module
exports nothing.

-Wdodgy-imports

Causes a warning to be emitted in the following cases:

* When a datatype T is imported with all constructors, i.e. T(..), but has been ex-
ported abstractly, i.e. T.

* When an import statement hides an entity that is not exported.

-Woverflowed-literals

Causes a warning to be emitted if a literal will overflow, e.g. 300 :: Word8.

-Wempty-enumerations

Causes a warning to be emitted if an enumeration is empty, e.g. [5 .. 3].

-Wduplicate-constraints

Have the compiler warn about duplicate constraints in a type signature. For example

f :: (Eq a, Show a, Eq a) => a -> a

The warning will indicate the duplicated Eq a constraint.

This option is now deprecated in favour of -Wredundant-constraints (page 94).

-Wredundant-constraints

Since 8.0
Have the compiler warn about redundant constraints in a type signature. In particular:

* A redundant constraint within the type signature itself:

f:: (Eq a, Ord a) =>a -> a

The warning will indicate the redundant Eq a constraint: it is subsumed by the 0rd
a constraint.

* A constraint in the type signature is not used in the code it covers:

f :: Ega=>a->a ->Bool
f xy = True

The warning will indicate the redundant Eq a constraint: : it is not used by the
definition of f.)

Similar warnings are given for a redundant constraint in an instance declaration.

When turning on, you can suppress it on a per-module basis with
-Wno-redundant-constraints (page 94). Occasionally you may specifically want
a function to have a more constrained signature than necessary, perhaps to leave
yourself wiggle-room for changing the implementation without changing the API. In

924

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

that case, you can suppress the warning on a per-function basis, using a call in a dead
binding. For example:

f :: EQ a =>a ->a -> Bool
f xy = True
where
_ = X == X ~-- Suppress the redundant-constraint warning for (Eq a)

Here the call to (==) makes GHC think that the (Eq a) constraint is needed, so no
warning is issued.

-Wduplicate-exports
Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition
after you’ve deleted (one) mention of it in the export list.

This option is on by default.

-Whi-shadowing
Causes the compiler to emit a warning when a module or interface file in the current
directory is shadowing one with the same module name in a library or other directory.

-Widentities
Causes the compiler to emit a warning when a Prelude numeric conversion converts
a type T to the same type T; such calls are probably no-ops and can be omitted. The
functions checked for are: toInteger, toRational, fromIntegral, and realToFrac.

-Wimplicit-prelude
Have the compiler warn if the Prelude is implicitly imported. This happens unless either
the Prelude module is explicitly imported with an import ... Prelude ... line, or this
implicit import is disabled (either by -XNoImplicitPrelude (page 277) or a LANGUAGE
NoImplicitPrelude pragma).

Note that no warning is given for syntax that implicitly refers to the Prelude, even if
-XNoImplicitPrelude (page 277) would change whether it refers to the Prelude. For
example, no warning is given when 368 means Prelude. fromInteger (368::Prelude.
Integer) (where Prelude refers to the actual Prelude module, regardless of the imports
of the module being compiled).

This warning is off by default.
-Wimplicit-kind-vars
Since 8.6

GHC proposal #24 prescribes to treat kind variables and type variables identically in
forall, removing the legacy distinction between them.

Consider the following examples:

f :: Proxy a -> Proxy b -> ()
g :: forall a b. Proxy a -> Proxy b -> ()

f does not use an explicit forall, so type variables a and b are brought into scope
implicitly. g quantifies both a and b explicitly. Both f and g work today and will continue
to work in the future because they adhere to the “forall-or-nothing” rule: either all type
variables in a function definition are introduced explicitly or implicitly, there is no middle
ground.

A violation of the “forall-or-nothing” rule looks like this:

10.2. Warnings and sanity-checking 95

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0024-no-kind-vars.rst

GHC User’s Guide Documentation, Release 8.6.5

’m :: forall a. Proxy a -> Proxy b -> () ‘

m does not introduce one of the variables, b, and thus is rejected.

However, consider the following example:

’n :: forall a. Proxy (a :: k) -> () ‘

While n uses k without introducing it and thus violates the rule, it is currently accepted.
This is because k in n is considered a kind variable, as it occurs in a kind signature.
In reality, the line between type variables and kind variables is blurry, as the following
example demonstrates:

kindOf :: forall a. Proxy (a :: k) -> Proxy k

In kindOf, the k variable is used both in a kind position and a type position. Currently,
kindOf happens to be accepted as well.

In a future release of GHC, both n and kindOf will be rejected per the “forall-or-nothing”
rule. This warning, being part of the -Wcompat (page 89) option group, allows to detect
this before the actual breaking change takes place.

-Wincomplete-patterns
The option -Wincomplete-patterns (page 96) warns about places where a pattern-
match might fail at runtime. The function g below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when -Wincomplete-patterns
(page 96) is enabled.

gll=2

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always
indicate a bug in the program. However, it’s generally considered good practice to cover
all the cases in your functions, and it is switched on by - (page 89).

-Wincomplete-uni-patterns
The flag -Wincomplete-uni-patterns (page 96) is similar to -Wincomplete-patterns
(page 96), except that it applies only to lambda-expressions and pattern bindings, con-
structs that only allow a single pattern:

h =\[] -> 2
Just k = fy

-fmax-pmcheck-iterations=(n)
Default 2000000

Sets how many iterations of the pattern-match checker will perform before giving up.
This limit is to catch cases where pattern-match checking might be excessively costly
(due to the exponential complexity of coverage checking in the general case). It typi-
cally shouldn’t be necessary to set this unless GHC informs you that it has exceeded the
pattern match checker’s iteration limit (in which case you may want to consider refac-
toring your pattern match, for the sake of future readers of your code.

-Wincomplete-record-updates
The function f below will fail when applied to Bar, so the compiler will emit a warning
about this when -Wincomplete-record-updates (page 96) is enabled.

96 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x =6}

This option isn’t enabled by default because it can be very noisy, and it often doesn’t
indicate a bug in the program.

-Wmissing-fields
This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initialisers for one or more fields. While not an error

(the missing fields are initialised with bottoms), it is often an indication of a programmer
error.

-Wmissing-export-lists
Since 8.4.1

This flag warns if you declare a module without declaring an explicit export list. For
example

module M where

p X =X

The -Wmissing-export-1lists (page 97) flag will warn that M does not declare an export
list. Declaring an explicit export list for M enables GHC dead code analysis, prevents
accidental export of names and can ease optimizations like inlining.

-Wmissing-import-lists
This flag warns if you use an unqualified import declaration that does not explicitly list
the entities brought into scope. For example

module M where
import X(f)
import Y
import qualified Z
px=°fxx

The -Wmissing-import-lists (page 97) flag will warn about the import of Y but not X
If module Y is later changed to export (say) f, then the reference to f in M will become
ambiguous. No warning is produced for the import of Z because extending Z’s exports
would be unlikely to produce ambiguity in M.

-Wmissing-methods
This option is on by default, and warns you whenever an instance declaration is missing
one or more methods, and the corresponding class declaration has no default declaration
for them.

The MINIMAL pragma can be used to change which combination of methods will be re-
quired for instances of a particular class. See MINIMAL pragma (page 462).

-Wmissing-signatures
If you would like GHC to check that every top-level function/value has a type signature,
use the -Wmissing-signatures (page 97) option. As part of the warning GHC also re-
ports the inferred type. The option is off by default.

10.2. Warnings and sanity-checking 97

GHC User’s Guide Documentation, Release 8.6.5

-Wmissing-exported-sigs
This option is now deprecated in favour of -Wmissing-exported-signatures (page 98).

-Wmissing-exported-signatures
If you would like GHC to check that every exported top-level function/value has a type
signature, but not check unexported values, use the -Wmissing-exported-signatures
(page 98) option. This option takes precedence over -Wmissing-signatures (page 97).
As part of the warning GHC also reports the inferred type. The option is off by default.

-Wmissing-local-sigs
This option is now deprecated in favour of -Wmissing-local-signatures (page 98).

-Wmissing-local-signatures
If you use the -Wmissing-local-signatures (page 98) flag GHC will warn you about
any polymorphic local bindings. As part of the warning GHC also reports the inferred
type. The option is off by default.

-Wmissing-pattern-synonym-signatures
If you would like GHC to check that every pattern synonym has a type signature, use
the -Wmissing-pattern-synonym-signatures (page 98) option. If this option is used
in conjunction with -Wmissing-exported-signatures (page 98) then only exported pat-
tern synonyms must have a type signature. GHC also reports the inferred type. This
option is off by default.

-Wname-shadowing
This option causes a warning to be emitted whenever an inner-scope value has the same
name as an outer-scope value, i.e. the inner value shadows the outer one. This can catch
typographical errors that turn into hard-to-find bugs, e.g., in the inadvertent capture of
what would be a recursive callin f = ... let f = id in ... f

The warning is suppressed for names beginning with an underscore. For example

f x = do { ignore <- this; _ignore <- that; return (the other) }

-Worphans
These flags cause a warning to be emitted whenever the module contains an “orphan”
instance declaration or rewrite rule. An instance declaration is an orphan if it appears
in a module in which neither the class nor the type being instanced are declared in the
same module. A rule is an orphan if it is a rule for a function declared in another module.
A module containing any orphans is called an orphan module.

The trouble with orphans is that GHC must pro-actively read the interface files for all
orphan modules, just in case their instances or rules play a role, whether or not the
module’s interface would otherwise be of any use. See Orphan modules and instance
declarations (page 180) for details.

The flag -Worphans (page 98) warns about user-written orphan rules or instances.

-Woverlapping-patterns
By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

:: String -> Int
[] =
(:xs)

f
f 0
f (_ 1
f ||2|| 2

where the last pattern match in f won’t ever be reached, as the second pattern overlaps
it. More often than not, redundant patterns is a programmer mistake/error, so this option
is enabled by default.

98 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

-Winaccessible-code
By default, the compiler will warn you if types make a branch inaccessible. This generally
requires GADTs or similar extensions.

Take, for example, the following program

{-# LANGUAGE GADTs #-}

data Foo a where
Fool :: Foo Char
Foo2 :: Foo Int

data TyEquality a b where
Refl :: TyEquality a a

checkTEQ :: Foo t -> Foo u -> Maybe (TyEquality t u)
checkTEQ x y = error "unimportant"

step2 :: Bool

step2 = case checkTEQ Fool Foo2 of
Just Refl -> True -- Inaccessible code
Nothing -> False

The Just Refl case in step?2 is inaccessible, because in order for checkTEQ to be able to
produce a Just, t ~ umust hold, but since we’re passing Fool and Foo2 here, it follows
that t ~ Char, and u ~ Int, and thus t ~ u cannot hold.

-Wstar-is-type
Since 8.6

The use of * to denote the kind of inhabited types relies on the StarIsType (page 387)
extension, which in a future release will be turned off by default and then possibly re-
moved. The reasons for this and the deprecation schedule are described in GHC proposal
#30.

This warning allows to detect such uses of * before the actual breaking change takes
place. The recommended fix is to replace * with Type imported from Data.Kind.

-Wstar-binder
Under -XStarIsType (page 387), a * in types is not an operator nor even a name, it
is special syntax that stands for Data.Kind.Type. This means that an expression like
Either * Char is parsed as Either (*) Char and not (*) Either Char.

In binding positions, we have similar parsing rules. Consider the following example

{-# LANGUAGE TypeOperators, TypeFamilies, StarIsType #-}

type family a + b
type family a * b

While a + bis parsed as (+) a b and becomes a binding position for the (+) type oper-
ator, a * bis parsed asa (*) b and is rejected.

As a workaround, we allow to bind (*) in prefix form:

type family (*) a b

This is a rather fragile arrangement, as generally a programmer expects (*) a b to be
equivalenttoa * b. With -Wstar-binder (page 99) we warn when this special treatment

10.2. Warnings and sanity-checking 99

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0030-remove-star-kind.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0030-remove-star-kind.rst

GHC User’s Guide Documentation, Release 8.6.5

of (*) takes place.
-Wsimplifiable-class-constraints
Since 8.2

Warn about class constraints in a type signature that can be simplified using a top-level
instance declaration. For example:

f :: Eq [a] => a -> a

Here the Eq [a] in the signature overlaps with the top-level instance for Eq [a]. GHC
goes to some efforts to use the former, but if it should use the latter, it would then have
an insoluble Eq a constraint. Best avoided by instead writing:

f:: EQa=>a->a

This option is on by default. As usual you can suppress it on a per-module basis with
-Wno-simplifiable-class-constraints (page 100).

-Wtabs
Have the compiler warn if there are tabs in your source file.

-Wtype-defaults
Have the compiler warn/inform you where in your source the Haskell defaulting mech-
anism for numeric types kicks in. This is useful information when converting code from
a context that assumed one default into one with another, e.g., the ‘default default’ for
Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type Int, whereas
Haskell 98 and later defaults it to Integer. This may lead to differences in performance
and behaviour, hence the usefulness of being non-silent about this.

This warning is off by default.

-Wmonomorphism-restriction
Have the compiler warn/inform you where in your source the Haskell Monomorphism
Restriction is applied. If applied silently the MR can give rise to unexpected behaviour,
so it can be helpful to have an explicit warning that it is being applied.

This warning is off by default.

-Wunsupported-1lvm-version
Warn when using - fl lvm (page 204) with an unsupported version of LLVM.

-Wunticked-promoted-constructors
Warn if a promoted data constructor is used without a tick preceding its name.

For example:

data Nat = Succ Nat | Zero

data Vec n s where
Nil :: Vec Zero a
Cons :: a -> Vec n a -> Vec (Succ n) a

Will raise two warnings because Zero and Succ are not written as 'Zero and 'Succ.
This warning is enabled by default in -Wall (page 89) mode.

-Wunused-binds
Report any function definitions (and local bindings) which are unused. An alias for

* -Wunused-top-binds (page 101)

100 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

* -Wunused-local-binds (page 101)
* -Wunused-pattern-binds (page 101)

-Wunused-top-binds
Report any function definitions which are unused.

More precisely, warn if a binding brings into scope a variable that is not used, except if
the variable’s name starts with an underscore. The “starts-with-underscore” condition
provides a way to selectively disable the warning.

A variable is regarded as “used” if
e It is exported, or

» It appears in the right hand side of a binding that binds at least one used variable
that is used

For example:

module A (f) where
f = let (p,q) = rhsl in t p -- No warning: q is unused, but is locally bound
t = rhs3 -- No warning: f is used, and hence so is t
g =nhx -- Warning: g unused
h = rhs2 -- Warning: h is only used in the
-- right-hand side of another unused binding
W = True -- No warning: w starts with an underscore

-Wunused-local-binds
Report any local definitions which are unused. For example:

module A (f) where

f = 1let (p,q) = rhsl in t p -- Warning: q is unused

g =nhx -- No warning: g 1s unused, but is a top-level,
—~binding

-Wunused-pattern-binds
Warn if a pattern binding binds no variables at all, unless it is a lone wild-card pattern,
or a banged pattern. For example:

Just _ = rhs3 -- Warning: unused pattern binding

(_,) =rhs4 -- Warning: unused pattern binding

_ = rhs3 -- No warning: lone wild-card pattern

1'() = rhs4 -- No warning: banged pattern; behaves like seq

In general a lazy pattern binding p = e is a no-op if p does not bind any variables. The
motivation for allowing lone wild-card patterns is they are not very different from v =
rhs3, which elicits no warning; and they can be useful to add a type constraint, e.g. _
= X::Int. A banged pattern (see Bang patterns and Strict Haskell (page 450)) is not a
no-op, because it forces evaluation, and is useful as an alternative to seq.

-Wunused-imports
Report any modules that are explicitly imported but never used. However, the form
import M() is never reported as an unused import, because it is a useful idiom for im-
porting instance declarations, which are anonymous in Haskell.

-Wunused-matches
Report all unused variables which arise from term-level pattern matches, including pat-
terns consisting of a single variable. For instance f x y = [] would report x and y as

10.2. Warnings and sanity-checking 101

GHC User’s Guide Documentation, Release 8.6.5

unused. The warning is suppressed if the variable name begins with an underscore,
thus:

f _x = True

Note that -Wunused-matches (page 101) does not warn about variables which arise from
type-level patterns, as found in type family and data family instances. This must be
enabled separately through the -Wunused-type-patterns (page 102) flag.

-Wunused-do-bind
Report expressions occurring in do and mdo blocks that appear to silently throw infor-
mation away. For instance do { mapM popInt xs ; return 10 } would report the first
statement in the do block as suspicious, as it has the type StackM [Int] and not StackM
(), but that [Int] value is not bound to anything. The warning is suppressed by explicitly
mentioning in the source code that your program is throwing something away:

’do { _ <- mapM popInt xs ; return 10 } ‘

Of course, in this particular situation you can do even better:

’do { mapM_ popInt xs ; return 10 } ‘

-Wunused-type-patterns
Report all unused type variables which arise from patterns in type family and data family
instances. For instance:

’type instance F x y = [] ‘

would report x and y as unused. The warning is suppressed if the type variable name
begins with an underscore, like so:

’type instance F _x y = [] ‘

Unlike -Wunused-matches (page 101), -Wunused-type-patterns (page 102) is not im-
plied by -Wall (page 89). The rationale for this decision is that unlike term-level pattern
names, type names are often chosen expressly for documentation purposes, so using
underscores in type names can make the documentation harder to read.

-Wunused-foralls
Report all unused type variables which arise from explicit, user-written forall state-
ments. For instance:

g :: forall a b c. (b -> b)

would report a and ¢ as unused.

-Wwrong-do-bind
Report expressions occurring in do and mdo blocks that appear to lack a binding. For
instance do { return (popInt 10) ; return 10 } would report the first statement in
the do block as suspicious, as it has the type StackM (StackM Int) (which consists of two
nested applications of the same monad constructor), but which is not then “unpacked”
by binding the result. The warning is suppressed by explicitly mentioning in the source
code that your program is throwing something away:

do { _ <- return (popInt 10) ; return 10 }

For almost all sensible programs this will indicate a bug, and you probably intended to
write:

102 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

do { popInt 10 ; return 10 }

-Winline-rule-shadowing
Warn if a rewrite RULE might fail to fire because the function might be inlined before
the rule has a chance to fire. See How rules interact with INLINE/NOINLINE pragmas
(page 475).

-Wepp-undef
Since 8.2

This flag passes -Wundef to the C pre-processor (if its being used) which causes the
pre-processor to warn on uses of the #if directive on undefined identifiers.

-Wunbanged-strict-patterns
This flag warns whenever you write a pattern that binds a variable whose type is un-
lifted, and yet the pattern is not a bang pattern nor a bare variable. See Unboxed types
(page 257) for information about unlifted types.

-Wmissing-home-modules
Since 8.2

When a module provided by the package currently being compiled (i.e. the “home”
package) is imported, but not explicitly listed in command line as a target. Useful for
Cabal to ensure GHC won'’t pick up modules, not listed neither in exposed-modules, nor
in other-modules.

-Wpartial-fields
Since 8.4

The option -Wpartial-fields (page 103) warns about record fields that could fail when
accessed via a lacking constructor. The function f below will fail when applied to Bar,
so the compiler will emit a warning at its definition when -Wpartial-fields (page 103)
is enabled.

The warning is suppressed if the field name begins with an underscore.

data Foo = Foo { f :: Int } | Bar

If you're feeling really paranoid, the -dcore-lint (page 220) option is a good choice. It turns
on heavyweight intra-pass sanity-checking within GHC. (It checks GHC's sanity, not yours.)

10.3 Optimisation (code improvement)

The -0* options specify convenient “packages” of optimisation flags; the -f* options de-
scribed later on specify individual optimisations to be turned on/off; the -m* options specify
machine-specific optimisations to be turned on/off.

Most of these options are boolean and have options to turn them both “on” and “off”
(beginning with the prefix no-). For instance, while -fspecialise enables specialisa-
tion, -fno-specialise disables it. When multiple flags for the same option appear in
the command-line they are evaluated from left to right. For instance, -fno-specialise
-fspecialise will enable specialisation.

It is important to note that the -0* flags are roughly equivalent to combinations of - f* flags.
For this reason, the effect of the -0* and - f* flags is dependent upon the order in which they
occur on the command line.

10.3. Optimisation (code improvement) 103

GHC User’s Guide Documentation, Release 8.6.5

For instance, take the example of -fno-specialise -01. Despite the -fno-specialise ap-
pearing in the command line, specialisation will still be enabled. This is the case as -01
implies - fspecialise, overriding the previous flag. By contrast, -01 -fno-specialise will
compile without specialisation, as one would expect.

10.3.1 -0*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only
have a general goal, something like “Compile quickly” or “Make my program run like greased
lightning.” The following “packages” of optimisations (or lack thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed,
which can have an impact on how much of your program needs to be recompiled when you
change something. This is one reason to stick to no-optimisation when developing code.

No ““-O*‘-type option specified: This is taken to mean “Please compile quickly; I'm not
over-bothered about compiled-code quality.” So, for example, ghc -c Foo.hs

-00
Means “turn off all optimisation”, reverting to the same settings as if no -0 options had
been specified. Saying -00 can be useful if e.g. make has inserted a -0 on the command
line already.

-0

-01
Means: “Generate good-quality code without taking too long about it.” Thus, for exam-
ple: ghc -c -0 Main.lhs

-02
Means: “Apply every non-dangerous optimisation, even if it means significantly longer
compile times.”

The avoided “dangerous” optimisations are those that can make runtime or space worse
if you’re unlucky. They are normally turned on or off individually.

We don’t use a -0* flag for day-to-day work. We use -0 to get respectable speed; e.g., when
we want to measure something. When we want to go for broke, we tend to use -02 (and we
go for lots of coffee breaks).

The easiest way to see what -0 (etc.) “really mean” is to run with -v (page 83), then stand
back in amazement.

10.3.2 -f*: platform-independent flags

These flags turn on and off individual optimisations. Flags marked as on by default are enabled
by -0, and as such you shouldn’t need to set any of them explicitly. A flag - fwombat can be
negated by saying - fno-wombat.

-fcase-merge
Default on

Merge immediately-nested case expressions that scrutinise the same variable. For ex-
ample,

104 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

case x of
Red -> el
-> case x of

Blue -> e2
Green -> e3

Is transformed to,

case x of
Red -> el
Blue -> e2

Green -> e2

-fcase-folding
Default on

Allow constant folding in case expressions that scrutinise some primops: For example,

case X ~minusWord#™ 10## of
10## -> el
20## -> e2
Y -> e3

Is transformed to,

case x of
20## -> el
30## -> e2
-> let v = x “minusWord#® 10## in e3

-fcall-arity
Default on
Enable call-arity analysis.
-fexitification
Default on
Enables the floating of exit paths out of recursive functions.
-fcmm-elim-common-blocks
Default on

Enables the common block elimination optimisation in the code generator. This optimi-
sation attempts to find identical Cmm blocks and eliminate the duplicates.

-fcmm-sink
Default on

Enables the sinking pass in the code generator. This optimisation attempts to find iden-
tical Cmm blocks and eliminate the duplicates attempts to move variable bindings closer
to their usage sites. It also inlines simple expressions like literals or registers.

-fasm-shortcutting
Default off

10.3. Optimisation (code improvement) 105

GHC User’s Guide Documentation, Release 8.6.5

This enables shortcutting at the assembly stage of the code generator. In simpler terms
shortcutting means if a block of instructions A only consists of a unconditionally jump,
we replace all jumps to A by jumps to the successor of A.

This is mostly done during Cmm passes. However this can miss corner cases. So at -O2
we run the pass again at the asm stage to catch these.

-fcpr-anal
Default on
Turn on CPR analysis in the demand analyser.
-fcse
Default on

Enables the common-sub-expression elimination optimisation. Switching this off can be
useful if you have some unsafePerformIO expressions that you don’t want commoned-

up.
-fstg-cse
Default on

Enables the common-sub-expression elimination optimisation on the STG intermediate
language, where it is able to common up some subexpressions that differ in their types,
but not their represetation.

-fdicts-cheap
Default off

A very experimental flag that makes dictionary-valued expressions seem cheap to the
optimiser.

-fdicts-strict
Default off
Make dictionaries strict.
-fdmd-tx-dict-sel
Default on
Use a special demand transformer for dictionary selectors.
-fdo-eta-reduction
Default on
Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.
-fdo-lambda-eta-expansion
Default on
Eta-expand let-bindings to increase their arity.
-feager-blackholing
Default off

Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so
as soon as the thunk is entered. See Haskell on a shared-memory multiprocessor.

See Compile-time options for SMP parallelism (page 115) for a dicussion on its use.

106 Chapter 10. Using GHC

http://community.haskell.org/~simonmar/papers/multiproc.pdf

GHC User’s Guide Documentation, Release 8.6.5

-fexcess-precision
Default off

When this option is given, intermediate floating point values can have a greater preci-
sion/range than the final type. Generally this is a good thing, but some programs may
rely on the exact precision/range of Float/Double values and should not use this option
for their compilation.

Note that the 32-bit x86 native code generator only supports excess-precision mode,
so neither -fexcess-precision nor -fno-excess-precision has any effect. This is a
known bug, see Bugs in GHC (page 554).

-fexpose-all-unfoldings
Default off

An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger
functions.

-ffloat-in
Default on

Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings
to give faster programs (ICFP‘96).

This optimisation moves let bindings closer to their use site. The benefit here is that
this may avoid unnecessary allocation if the branch the let is now on is never executed.
It also enables other optimisation passes to work more effectively as they have more
information locally.

This optimisation isn’t always beneficial though (so GHC applies some heuristics to de-
cide when to apply it). The details get complicated but a simple example is that it is often
beneficial to move let bindings outwards so that multiple let bindings can be grouped into
a larger single let binding, effectively batching their allocation and helping the garbage
collector and allocator.

-ffull-laziness
Default on

Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See
Let-floating: moving bindings to give faster programs (ICFP‘96). Full laziness increases
sharing, which can lead to increased memory residency.

Note: GHC doesn’t implement complete full-laziness. When optimisation in on, and
-fno-full-laziness is not given, some transformations that increase sharing are per-
formed, such as extracting repeated computations from a loop. These are the same
transformations that a fully lazy implementation would do, the difference is that GHC
doesn’t consistently apply full-laziness, so don’t rely on it.

-ffun-to-thunk
Default off

Worker-wrapper removes unused arguments, but usually we do not remove them all,
lest it turn a function closure into a thunk, thereby perhaps creating a space leak and/or
disrupting inlining. This flag allows worker/wrapper to remove all value lambdas.

10.3. Optimisation (code improvement) 107

http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz

GHC User’s Guide Documentation, Release 8.6.5

-fignore-asserts
Default on

Causes GHC to ignore uses of the function Exception.assert in source code (in other
words, rewriting Exception.assert p e to e (see Assertions (page 457)).

-fignore-interface-pragmas
Default off

Tells GHC to ignore all inessential information when reading interface files. That is, even
if M. hi contains unfolding or strictness information for a function, GHC will ignore that
information.

-flate-dmd-anal
Default off

Run demand analysis again, at the end of the simplification pipeline. We found some
opportunities for discovering strictness that were not visible earlier; and optimisations
like - fspec-constr (page 110) can create functions with unused arguments which are
eliminated by late demand analysis. Improvements are modest, but so is the cost. See
notes on the Trac wiki page.

-fliberate-case
Default off but enabled with -02 (page 104).

Turn on the liberate-case transformation. This unrolls recursive function once in its own
RHS, to avoid repeated case analysis of free variables. It’s a bit like the call-pattern
specialiser (- fspec-constr (page 110)) but for free variables rather than arguments.

-fliberate-case-threshold=(n)
Default 2000
Set the size threshold for the liberate-case transformation.
-floopification
Default on

When this optimisation is enabled the code generator will turn all self-recursive saturated
tail calls into local jumps rather than function calls.

-fllvm-pass-vectors-in-regs
Default on

Instructs GHC to use the platform’s native vector registers to pass vector arguments
during function calls. As with all vector support, this requires - f1lvm (page 204).

-fmax-inline-alloc-size=(n)
Default 128

Set the maximum size of inline array allocations to n bytes. GHC will allocate non-pinned
arrays of statically known size in the current nursery block if they’re no bigger than n
bytes, ignoring GC overheap. This value should be quite a bit smaller than the block size
(typically: 4096).

-fmax-inline-memcpy-insns=(n)
Default 32

Inline memcpy calls if they would generate no more than (n) pseudo-instructions.

108 Chapter 10. Using GHC

https://ghc.haskell.org/trac/ghc/wiki/LateDmd

GHC User’s Guide Documentation, Release 8.6.5

-fmax-inline-memset-insns=(n)
Default 32
Inline memset calls if they would generate no more than n pseudo instructions.
-fmax-relevant-binds=(n)
Default 6

The type checker sometimes displays a fragment of the type environment in er-
ror messages, but only up to some maximum number, set by this flag. Turn-
ing it off with -fno-max-relevant-bindings gives an unlimited number. Syntacti-
cally top-level bindings are also usually excluded (since they may be numerous), but
-fno-max-relevant-bindings includes them too.

-fmax-uncovered-patterns=(n)
Default 4

Maximum number of unmatched patterns to be shown in warnings generated by
-Wincomplete-patterns (page 96) and -Wincomplete-uni-patterns (page 96).

-fmax-simplifier-iterations=(n)
Default 4
Sets the maximal number of iterations for the simplifier.
-fmax-worker-args=(n)
Default 10
If a worker has that many arguments, none will be unpacked anymore.
-fno-opt-coercion
Default coercion optimisation enabled.
Turn off the coercion optimiser.
-fno-pre-inlining
Default pre-inlining enabled
Turn off pre-inlining.
-fno-state-hack
Default state hack is enabled

Turn off the “state hack” whereby any lambda with a State# token as argument is con-
sidered to be single-entry, hence it is considered okay to inline things inside it. This can
improve performance of IO and ST monad code, but it runs the risk of reducing sharing.

-fomit-interface-pragmas
Default Implied by -00 (page 104), otherwise off.

Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only
the types of the functions that M exports, but not their unfoldings, strictness info, etc.
Hence, for example, no function exported by M will be inlined into an importing module.
The benefit is that modules that import M will need to be recompiled less often (only
when M’s exports change their type, not when they change their implementation).

-fomit-yields

10.3. Optimisation (code improvement) 109

GHC User’s Guide Documentation, Release 8.6.5

Default yield points enabled

Tells GHC to omit heap checks when no allocation is being performed. While this im-
proves binary sizes by about 5%, it also means that threads run in tight non-allocating
loops will not get preempted in a timely fashion. If it is important to always be able to
interrupt such threads, you should turn this optimization off. Consider also recompiling
all libraries with this optimization turned off, if you need to guarantee interruptibility.

-fpedantic-bottoms
Default off

Make GHC be more precise about its treatment of bottom (but see also - fno-state-hack
(page 109)). In particular, stop GHC eta-expanding through a case expression, which is
good for performance, but bad if you are using seq on partial applications.

-fregs-graph
Default off due to a performance regression bug (Trac #7679)

Only applies in combination with the native code generator. Use the graph colouring reg-
ister allocator for register allocation in the native code generator. By default, GHC uses
a simpler, faster linear register allocator. The downside being that the linear register
allocator usually generates worse code.

Note that the graph colouring allocator is a bit experimental and may fail when faced
with code with high register pressure Trac #8657.

-fregs-iterative
Default off

Only applies in combination with the native code generator. Use the iterative coalescing
graph colouring register allocator for register allocation in the native code generator.
This is the same register allocator as the - fregs-graph (page 110) one but also enables
iterative coalescing during register allocation.

-fsimplifier-phases=(n)
Default 2
Set the number of phases for the simplifier. Ignored with -00.
-fsimpl-tick-factor=(n)
Default 100

GHC'’s optimiser can diverge if you write rewrite rules (Rewrite rules (page 473)) that
don’t terminate, or (less satisfactorily) if you code up recursion through data types (Bugs
in GHC (page 554)). To avoid making the compiler fall into an infinite loop, the optimiser
carries a “tick count” and stops inlining and applying rewrite rules when this count is
exceeded. The limit is set as a multiple of the program size, so bigger programs get more
ticks. The -fsimpl-tick-factor flag lets you change the multiplier. The default is 100;
numbers larger than 100 give more ticks, and numbers smaller than 100 give fewer.

If the tick-count expires, GHC summarises what simplifier steps it has done; you can use
-fddump-simpl-stats to generate a much more detailed list. Usually that identifies the
loop quite accurately, because some numbers are very large.

-fspec-constr
Default off but enabled by -02 (page 104).

110 Chapter 10. Using GHC

https://ghc.haskell.org/trac/ghc/ticket/7679
https://ghc.haskell.org/trac/ghc/ticket/8657

GHC User’s Guide Documentation, Release 8.6.5

Turn on call-pattern specialisation; see Call-pattern specialisation for Haskell programs.

This optimisation specializes recursive functions according to their argument “shapes”.
This is best explained by example so consider:

last :: [a] -> a
last [1 = error "last"
last (x : [1) X

last (x : xs) last xs

In this code, once we pass the initial check for an empty list we know that in the recursive
case this pattern match is redundant. As such -fspec-constr will transform the above

code to:
last :: [a] -> a
last [1] = error "last"
last (x : xs) = last' x xs
where
last' x [1 = X
last' x (y : ys) = last' y ys

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation.
This applies when a argument is strict in the recursive call to itself but not on the initial
entry. As strict recursive branch of the function is created similar to the above example.

It is also possible for library writers to instruct GHC to perform call-pattern specialisation
extremely aggressively. This is necessary for some highly optimized libraries, where we
may want to specialize regardless of the number of specialisations, or the size of the
code. As an example, consider a simplified use-case from the vector library:

import GHC.Types (SPEC(..))

foldl :: (a -> b ->a) -> a -> Stream b -> a

{-# INLINE foldl #-}

foldl f z (Stream step s _) = foldl loop SPEC z s

where
foldl loop !sPEC z s = case step s of

Yield x s' -> foldl loop sPEC (f z x) s'
Skip -> foldl loop sPEC z s'
Done -> 7

Here, after GHC inlines the body of foldl to a call site, it will perform call-pattern
specialisation very aggressively on foldl loop due to the use of SPEC in the argument
of the loop body. SPEC from GHC.Types is specifically recognised by the compiler.

(NB: it is extremely important you use seq or a bang pattern on the SPEC argument!)

In particular, after inlining this will expose f to the loop body directly, allowing heavy
specialisation over the recursive cases.

-fspec-constr-keen
Default off

If this flag is on, call-pattern specialisation will specialise a call (f (Just x)) with an
explicit constructor argument, even if the argument is not scrutinised in the body of the
function. This is sometimes beneficial; e.g. the argument might be given to some other
function that can itself be specialised.

-fspec-constr-count=(n)

10.3. Optimisation (code improvement) 111

https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions-2/

GHC User’s Guide Documentation, Release 8.6.5

Default 3

Set the maximum number of specialisations that will be created for any one function by
the SpecConstr transformation.

-fspec-constr-threshold=(n)

Default 2000

Set the size threshold for the SpecConstr transformation.

-fspecialise

Default on

Specialise each type-class-overloaded function defined in this module for the types at
which it is called in this module. If - fcross-module-specialise (page 112) is set im-
ported functions that have an INLINABLE pragma (INLINABLE pragma (page 464)) will
be specialised as well.

-fspecialise-aggressively

Default off

By default only type class methods and methods marked INLINABLE or INLINE are spe-
cialised. This flag will specialise any overloaded function regardless of size if its un-
folding is available. This flag is not included in any optimisation level as it can mas-
sively increase code size. It can be used in conjunction with - fexpose-all-unfoldings
(page 107) if you want to ensure all calls are specialised.

-fcross-module-specialise

Default on

Specialise INLINABLE (INLINABLE pragma (page 464)) type-class-overloaded functions
imported from other modules for the types at which they are called in this module. Note
that specialisation must be enabled (by - fspecialise) for this to have any effect.

-flate-specialise

Default off

Runs another specialisation pass towards the end of the optimisation pipeline. This can
catch specialisation opportunities which arose from the previous specialisation pass or
other inlining.

You might want to use this if you are you have a type class method which returns a
constrained type. For example, a type class where one of the methods implements a
traversal.

-fsolve-constant-dicts

Default on
When solving constraints, try to eagerly solve super classes using available dictionaries.

For example:

class M a b wherem :: a -=> b
type C a b = (Num a, M a b)

f:: CIntb=>Db->1Int->1Int
f_x=x+1

112

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

The body of f requires a Num Int instance. We could solve this constraint from the
context because we have C Int b and that provides us a solution for Num Int. However,
we can often produce much better code by directly solving for an available Num Int
dictionary we might have at hand. This removes potentially many layers of indirection
and crucially allows other optimisations to fire as the dictionary will be statically known
and selector functions can be inlined.

The optimisation also works for GADTs which bind dictionaries. If we statically know
which class dictionary we need then we will solve it directly rather than indirectly using
the one passed in at run time.

-fstatic-argument-transformation
Default off

Turn on the static argument transformation, which turns a recursive function into a non-
recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis

-fstrictness
Default on

Switch on the strictness analyser. The implementation is described in the paper ‘The-
ory and Practice of Demand Analysis in Haskell‘<https://www.microsoft.com/en-
us/research/wp-content/uploads/2017/03/demand-jfp-draft.pdf>‘_.

The strictness analyser figures out when arguments and variables in a function can be
treated ‘strictly’ (that is they are always evaluated in the function at some point). This
allow GHC to apply certain optimisations such as unboxing that otherwise don’t apply
as they change the semantics of the program when applied to lazy arguments.

-fstrictness-before=(n)
Run an additional strictness analysis before simplifier phase (n).

-funbox-small-strict-fields
Default on

This option causes all constructor fields which are marked strict (i.e. “!”) and which
representation is smaller or equal to the size of a pointer to be unpacked, if possible.
It is equivalent to adding an UNPACK pragma (see UNPACK pragma (page 470)) to every
strict constructor field that fulfils the size restriction.

For example, the constructor fields in the following data types

data A = A !Int
data B B 'A
newtype C = C B
data D = D !C

would all be represented by a single Int# (see Unboxed types and primitive operations
(page 256)) value with -funbox-small-strict-fields enabled.

This option is less of a sledgehammer than -funbox-strict-fields: it should rarely
make things worse. If you use -funbox-small-strict-fields to turn on unboxing by
default you can disable it for certain constructor fields using the NOUNPACK pragma (see
NOUNPACK pragma (page 470)).

Note that for consistency Double, Word64, and Int64 constructor fields are unpacked
on 32-bit platforms, even though they are technically larger than a pointer on those
platforms.

10.3. Optimisation (code improvement) 113

http://research.microsoft.com/en-us/um/people/simonpj/papers/santos-thesis.ps.gz

GHC User’s Guide Documentation, Release 8.6.5

-funbox-strict-fields
Default off

This option causes all constructor fields which are marked strict (i.e. !) to be unpacked
if possible. It is equivalent to adding an UNPACK pragma to every strict constructor field
(see UNPACK pragma (page 470)).

This option is a bit of a sledgehammer: it might sometimes make things worse. Selec-
tively unboxing fields by using UNPACK pragmas might be better. An alternative is to
use -funbox-strict-fields to turn on unboxing by default but disable it for certain
constructor fields using the NOUNPACK pragma (see NOUNPACK pragma (page 470)).

Alternatively you can use - funbox-small-strict-fields (page 113) to only unbox strict
fields which are “small”.

-funfolding-creation-threshold=(n)
Default 750

Governs the maximum size that GHC will allow a function unfolding to be. (An unfolding
has a “size” that reflects the cost in terms of “code bloat” of expanding (aka inlining)
that unfolding at a call site. A bigger function would be assigned a bigger cost.)

Consequences:
a. nothing larger than this will be inlined (unless it has an INLINE pragma)
b. nothing larger than this will be spewed into an interface file.

Increasing this figure is more likely to result in longer compile times than faster code.
The - funfolding-use-threshold=(n) (page 114) is more useful.

-funfolding-dict-discount=(n)
Default 30
How eager should the compiler be to inline dictionaries?
-funfolding-fun-discount=(n)
Default 60
How eager should the compiler be to inline functions?
-funfolding-keeness-factor=(n)
Default 1.5
How eager should the compiler be to inline functions?
-funfolding-use-threshold=(n)
Default 60

This is the magic cut-off figure for unfolding (aka inlining): below this size, a function
definition will be unfolded at the call-site, any bigger and it won’t. The size computed for
a function depends on two things: the actual size of the expression minus any discounts
that apply depending on the context into which the expression is to be inlined.

The difference between this and - funfolding-creation-threshold=(n) (page 114) is
that this one determines if a function definition will be inlined at a call site. The other
option determines if a function definition will be kept around at all for potential inlining.

114 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

10.4 Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries
compiled in a certain way. To get access to the support libraries for Concurrent Haskell,
just import Control.Concurrent. More information on Concurrent Haskell is provided in the
documentation for that module.

Optionally, the program may be linked with the -threaded (page 207) option (see Options
affecting linking (page 205). This provides two benefits:

* It enables the -N (x) (page 116) to be used, which allows threads to run in parallelism
on a multi-processor or multi-core machine. See Using SMP parallelism (page 115).

» If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell
threads in the program will continue to run while the foreign call is in progress. Addi-
tionally, foreign exported Haskell functions may be called from multiple OS threads
simultaneously. See Multi-threading and the FFI (page 511).

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:
-C (s)
Default 20 milliseconds

Sets the context switch interval to (s) seconds. A context switch will occur at the next
heap block allocation after the timer expires (a heap block allocation occurs every 4k
of allocation). With -C0 or -C, context switches will occur as often as possible (at every
heap block allocation).

10.5 Using SMP parallelism

GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

There’s a fine distinction between concurrency and parallelism: parallelism is all about mak-
ing your program run faster by making use of multiple processors simultaneously. Concur-
rency, on the other hand, is a means of abstraction: it is a convenient way to structure a
program that must respond to multiple asynchronous events.

However, the two terms are certainly related. By making use of multiple CPUs it is possible
to run concurrent threads in parallel, and this is exactly what GHC’s SMP parallelism sup-
port does. But it is also possible to obtain performance improvements with parallelism on
programs that do not use concurrency. This section describes how to use GHC to compile
and run parallel programs, in Concurrent and Parallel Haskell (page 489) we describe the
language features that affect parallelism.

10.5.1 Compile-time options for SMP parallelism

In order to make use of multiple CPUs, your program must be linked with the -threaded
(page 207) option (see Options affecting linking (page 205)). Additionally, the following com-
piler options affect parallelism:

-feager-blackholing
Blackholing is the act of marking a thunk (lazy computation) as being under evaluation.
It is useful for three reasons: firstly it lets us detect certain kinds of infinite loop (the
NonTermination exception), secondly it avoids certain kinds of space leak, and thirdly

10.4. Using Concurrent Haskell 115

../libraries/base-4.12.0.0/Control-Concurrent.html

GHC User’s Guide Documentation, Release 8.6.5

it avoids repeating a computation in a parallel program, because we can tell when a
computation is already in progress.

The option - feager-blackholing (page 106) causes each thunk to be blackholed as soon
as evaluation begins. The default is “lazy blackholing”, whereby thunks are only marked
as being under evaluation when a thread is paused for some reason. Lazy blackholing is
typically more efficient (by 1-2% or so), because most thunks don’t need to be blackholed.
However, eager blackholing can avoid more repeated computation in a parallel program,
and this often turns out to be important for parallelism.

We recommend compiling any code that is intended to be run in parallel with the
-feager-blackholing (page 106) flag.

10.5.2 RTS options for SMP parallelism

There are two ways to run a program on multiple processors: call Con-
trol.Concurrent.setNumCapabilities from your program, or use the RTS -N (x) (page 116)
options.

-N (x)
-maxN (x)
Use (x) simultaneous threads when running the program.

The runtime manages a set of virtual processors, which we call capabilities, the number
of which is determined by the -N option. Each capability can run one Haskell thread at a
time, so the number of capabilities is equal to the number of Haskell threads that can run
physically in parallel. A capability is animated by one or more OS threads; the runtime
manages a pool of OS threads for each capability, so that if a Haskell thread makes a
foreign call (see Multi-threading and the FFI (page 511)) another OS thread can take
over that capability.

Normally (x) should be chosen to match the number of CPU cores on the machine’. For
example, on a dual-core machine we would probably use +RTS -N2 -RTS.

Omitting (x), i.e. +RTS -N -RTS, lets the runtime choose the value of (x) itself based on
how many processors are in your machine.

With -maxN{x), i.e. +RTS -maxN3 -RTS, the runtime will choose at most (x), also limited
by the number of processors on the system. Omitting (x) is an error, if you need a default
use option -N.

Be careful when using all the processors in your machine: if some of your processors are
in use by other programs, this can actually harm performance rather than improve it.
Asking GHC to create more capabilities than you have physical threads is almost always
a bad idea.

Setting -N also has the effect of enabling the parallel garbage collector (see RTS options
to control the garbage collector (page 151)).

The current value of the -N option is available to the Haskell program via Control.
Concurrent.getNumCapabilities, and it may be changed while the program is running
by calling Control.Concurrent.setNumCapabilities.

The following options affect the way the runtime schedules threads on CPUs:

-qa
Use the OS’s affinity facilities to try to pin OS threads to CPU cores.

1 Whether hyperthreading cores should be counted or not is an open question; please feel free to experiment and
let us know what results you find.

116 Chapter 10. Using GHC

../libraries/base-4.12.0.0/Control-Concurrent.html#v:setNumCapabilities
../libraries/base-4.12.0.0/Control-Concurrent.html#v:setNumCapabilities

GHC User’s Guide Documentation, Release 8.6.5

When this option is enabled, the OS threads for a capability ¢ are bound to the CPU core
1 using the API provided by the OS for setting thread affinity. e.g. on Linux GHC uses
sched setaffinity().

Depending on your workload and the other activity on the machine, this may or may not
result in a performance improvement. We recommend trying it out and measuring the
difference.

-qm
Disable automatic migration for load balancing. Normally the runtime will automatically
try to schedule threads across the available CPUs to make use of idle CPUs; this option
disables that behaviour. Note that migration only applies to threads; sparks created by
par are load-balanced separately by work-stealing.

This option is probably only of use for concurrent programs that explicitly schedule
threads onto CPUs with Control.Concurrent.forkOn.

10.5.3 Hints for using SMP parallelism

Add the -s [(file)] (page 157) RTS option when running the program to see timing stats,
which will help to tell you whether your program got faster by using more CPUs or not. If the
user time is greater than the elapsed time, then the program used more than one CPU. You
should also run the program without -N (x) (page 116) for comparison.

The output of +RTS -s tells you how many “sparks” were created and executed during the
run of the program (see RTS options to control the garbage collector (page 151)), which will
give you an idea how well your par annotations are working.

GHC'’s parallelism support has improved in 6.12.1 as a result of much experimentation and
tuning in the runtime system. We’d still be interested to hear how well it works for you, and
we’re also interested in collecting parallel programs to add to our benchmarking suite.

10.6 Flag reference

This section is a quick-reference for GHC’s command-line flags. For each flag, we also list
its static/dynamic status (see Static, Dynamic, and Mode options (page 79)), and the flag’s
opposite (if available).

10.6.1 Verbosity options

More details in Verbosity options (page 83)

Flag Description Type Reverse
-fabstract-refinement-holedéfaidt: off. Toggles | dynamic| -fno-abstract-refinement-hole-
(page 425) whether refinements

where one or more or

more of the holes are

abstract are reported.
-fdiagnostics-color=(alwgyWseutolorsvar Jerror mes- | dynamic
(page 86) sages
-fdiagnostics-show-caret | Whether to show snippets | dynamic| -fno-diagnostics-shpw-caret
(page 87) of original source code

Continued on next page

10.6. Flag reference 117

../libraries/base-4.12.0.0/Control-Concurrent.html#v:forkOn

GHC User’s Guide Documentation, Release 8.6.5

Table 1 - continued from previous page

Flag Description Type Reverse
-ferror-spans (page 87) Output full span in error | dynamic

messages
-fhide-source-paths hide module source and | dynamic
(page 84) object paths
-fmax-refinement-hole-fitisdéfault: 6. Set the max- | dynamic| -fno-max-refinementthole-fits
(page 425) imum number of refine-

ment hole fits for typed

holes to display in type er-

ror messages.
-fmax-relevant-binds=(n) | default: 6. Set the max- | dynamic| -fno-max-relevant-bindings
(page 109) imum number of bindings

to display in type error

messages.
-fmax-valid-hole-fits=(n) default: 6. Set the maxi- | dynamic| -fno-max-valid-holerfits
(page 423) mum number of valid hole

fits for typed holes to dis-

play in type error mes-

sages.
-fno-show-valid-hole-fitg Disables showing a list of | dynamic
(page 423) valid hole fits for typed

holes in type error mes-

sages.
-fno-sort-valid-hole-fitg Disables the sorting of the | dynamic
(page 425) list of valid hole fits for

typed holes in type error

messages.
-fprint-equality-relationsDistinguish between | dynamic| -fno-print-equalitytrelations
(page 85) equality relations when

printing
-fprint-expanded-synonymsg In type errors, also print | dynamic| -fno-print-expandedtsynonyms
(page 85) type-synonym-expanded

types.
-fprint-explicit-coercionsPrint coercions in types dynamic| -fno-print-explicitfcoercions
(page 85)
-fprint-explicit-foralls | Printexplicit forall quan- | dynamic| -fno-print-explicittforalls
(page 84) tification in types. See

also -XExplicitForAll

(page 400)
-fprint-explicit-kinds Print explicit kind | dynamic| -fno-print-explicitrkinds
(page 85) foralls and kind argu-

ments in types. See

also -XKindSignatures

(page 402)
-fprint-explicit-runtime-rBrint RuntimeRep vari- | dynamic| -fno-print-explicit|runtime-re|
(page 85) ables in types which are

runtime-representation

polymorphic.

Continued on next page
118 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Table 1 - continued from previous page

Frruntime-re|

L-instances

ker-elabora

syntax

el-hole-fit

hes-of-hole

e-of-hole-f.

pf-hole-fit

vars-of-hol

its

Flag Description Type Reverse
-fprint-explicit-runtime-rBrint RuntimeRep vari- | dynamic| -fno-print-explicit
(page 85) ables in types which are

runtime-representation

polymorphic.
-fprint-potential-instandedisplay all available in- | dynamic| -fno-print-potentia
(page 84) stances in type error mes-

sages
-fprint-typechecker-elabgrBrindn extra information | dynamic| -fno-print-typechec
(page 86) from typechecker.
-fprint-unicode-syntax Use unicode syntax when | dynamic| -fno-print-unicode-
(page 84) printing expressions,

types and kinds. See

also -XUnicodeSyntax

(page 260)
-frefinement-level-hole- fiidefadt: off. Sets the level | dynamic| -fno-refinement-1lev
(page 425) of refinement of the refine-

ment hole fits, where level

n means that hole fits of up

to n holes will be consid-

ered.
-fshow-hole-constraints | Show constraints whenre- | dynamic
(page 422) porting typed holes.
-fshow-hole-matches-of-hqglBodggles whether to show | dynamic| -fno-show-hole-matc
(page 425) the type of the additional

holes in refinement hole

fits.
-fshow-provenance-of-holg-Taggles whether to show | dynamic| -fno-show-provenanc
(page 423) the provenance of the

valid hole fits in the

output.
-fshow-type-app-of-hole-fiTeggles whether to show | dynamic| -fno-show-type-app-
(page 423) the type application of the

valid hole fits in the out-

put.
-fshow-type-app-vars-of-holegdless whether to show | dynamic| -fno-show-type-app-
(page 423) what type each quantified

variable takes in a valid

hole fit.
-fshow-type-of-hole-fits | Toggles whether to show | dynamic| -fno-type-of-hole-f
(page 423) the type of the valid hole

fits in the output.
-funclutter-valid-hole-fitWnclutter the list of valid | dynamic
(page 423) hole fits by not showing

provenance nor type appli-

cations of suggestions.
-Rghc-timing (page 88) Summarise timing stats | dynamic

for GHC (same as +RTS

-tstderr).
-v (page 83) verbose mode (equivalent | dynamic

to -v3)

Continued on next page

10.6. Flag reference

119

GHC User’s Guide Documentation, Release 8.6.5

Table 1 - continued from previous page

Flag Description Type Reverse
-v(n) (page 84) set verbosity level dynamic

10.6.2 Alternative modes of operation

More details in Modes of operation (page 80)

Flag Description Type Reverse

--frontend (module) run GHC with the given | mode

(page 80) frontend plugin; see Fron-
tend plugins (page 527)
for details.

--help (page 80), -7 | Display help mode

(page 80)

--1info (page 81) display information about | mode
the compiler

--interactive (page 80) | Interactive mode - nor- | mode
mally used by just run-
ning ghci; see Using GHCi
(page 31) for details.

- -make (page 80) Build a multi-module | mode
Haskell program, auto-
matically figuring out
dependencies. Likely
to be much easier, and
faster, than using make;
see Using ghc -make
(page 81) for details.

--mk-dll (page 80) DLL-creation mode (Win- | mode
dows only)

--numeric-version display GHC version (nu- | mode

(page 81) meric only)

--print-libdir display GHC library direc- | mode

(page 81) tory

--show-1iface (file) display the contents of an | mode

(page 80) interface file.

--show-options display the supported | mode

(page 81) command line options

--supported-extensions| display the supported lan- | mode

(page 81), | guage extensions

--supported-languages

(page 81)

--version (page 81), -V | display GHC version mode

(page 81)

-e (expr) (page 80) Evaluate expr; see Ex- | mode
pression evaluation mode
(page 82) for details.

Continued on next page

120

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Table 2 - continued from previous page

Flag Description Type Reverse
-M (page 80) generate dependency | mode
information suitable for
use in a Makefile; see
Dependency generation
(page 178) for details.
10.6.3 Which phases to run
More details in Batch compiler mode (page 82)
Flag Description Type Reverse
-C (page 80) Stop after generating C (. | mode
hc file)
- ¢ (page 80) Stop after generating ob- | mode
ject (.o0) file
-E (page 80) Stop after preprocessing | mode
(. hspp file)
-F (page 203) Enable the use of a pre- | dynamic
processor (page 203)
(set with -pgmF (cmd)
(page 200))
-S (page 80) Stop after generating as- | mode
sembly (.s file)
-x (suffix) (page 83) Override default be- | dynamic
haviour for source files
10.6.4 Redirecting output
More details in Redirecting the compilation output(s) (page 166)
Flag Description Type Reverse
--exclude-module=(file) Regard (file) as ”sta- | dynamic
(page 180) ble”; i.e., exclude it from
having dependencies on it.
-ddump-mod-cycles Dump module cycles dynamic
(page 179)
-dep-makefile (file) Use (file) as the makefile dynamic
(page 179)
-dep-suffix (suffix) Make dependencies that | dynamic
(page 180) declare that files with suf-
fix .(suf)(osuf) depend
on interface files with suf-
fix . (suf)hi
-dumpdir (dir) redirect dump files dynamic
(page 167)
-hcsuf (suffix) set the suffix to use for in- | dynamic
(page 168) termediate C files

Continued on next page

10.6. Flag reference

121

GHC User’s Guide Documentation, Release 8.6.5

Table 4 - continued from previous page

Flag Description Type Reverse
-hidir (dir) (page 167) | set directory for interface | dynamic
files
-hisuf (suffix) set the suffix to use for in- | dynamic
(page 167) terface files
-include-pkg-deps Regard modules imported | dynamic
(page 180) from packages as unstable
-0 (file) (page 166) set output filename dynamic
-odir (dir) (page 167) | set directory for object | dynamic
files
-ohi (file) (page 167) set the filename in which | dynamic
to put the interface
-osuf (suffix) set the output file suffix dynamic
(page 167)
-outputdir (dir) set output directory dynamic
(page 167)
-stubdir (dir) redirect FFI stub files dynamic
(page 167)
10.6.5 Keeping intermediate files
More details in Keeping Intermediate Files (page 168)
Flag Description Type Reverse
-keep-hc-file Retain intermediate .hc | dynamic
(page 168), | files.
-keep-hc-files
(page 168)
-keep-hi-files Retain intermediate .hi | dynamic| -no-keep-hi-files
(page 168) files (the default).
-keep-llvm-file Retain intermediate LLVM | dynamic
(page 168), | .11 files. Implies -fllvm
-keep-1llvm-files (page 204).
(page 168)
-keep-o-files Retain intermediate .o | dynamic| -no-keep-o-files
(page 168) files (the default).
-keep-s-file Retain intermediate .s | dynamic
(page 168), | files.
-keep-s-files
(page 168)
-keep-tmp-files Retain all intermediate | dynamic
(page 168) temporary files.

10.6.6 Temporary files

More details in Redirecting temporary files (page 168)

122

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Flag Description Type Reverse
-tmpdir (dir) set the directory for tem- | dynamic
(page 168) porary files
10.6.7 Finding imports
More details in The search path (page 165)
Flag Description Type Reverse
-1 (page 166) Empty the import direc- | dynamic
tory list :set
-i(dir)[:(dir)]* add (dir), (dir2), etc. toim- | dynamic
(page 166) port path :set
10.6.8 Interface file options
More details in Other options related to interface files (page 169)
Flag Description Type Reverse
--show-iface (file) See Modes of operation | mode
(page 80) (page 80).
-ddump-hi (page 169) Dump the new interface to | dynamic
stdout
-ddump-hi-diffs Show the differences vs. | dynamic
(page 169) the old interface
-ddump-minimal-imports| Dump a minimal set of im- | dynamic
(page 169) ports
10.6.9 Recompilation checking
More details in The recompilation checker (page 169)
Flag Description Type Reverse
-fforce-recomp Turn off recompilation | dynamic| -fno-force-recomp
(page 169) checking. This is implied
by any -ddump-X option
when compiling a single
file (i.e. when using -c
(page 80)).
-fignore-hpc-changes Do not recompile modules | dynamic| -fno-ignore-hpc-change

(page 169)

just to match changes to
HPC flags. This is espe-
cially useful for avoiding
recompilation when using
GHCi, and is enabled by
default for GHCi.

Continued on next page

10.6. Flag reference

123

GHC User’s Guide Documentation, Release 8.6.5

Table 9 - continued from previous page

Flag Description Type Reverse
-fignore-optim-changes| Do not recompile modules | dynamic| -fno-ignore-optim-chan
(page 169) just to match changes to
optimisation flags. This is
especially useful for avoid-
ing recompilation when
using GHCi, and is en-
abled by default for GHCi.
10.6.10 Interactive-mode options
More details in The .ghci and .haskeline files (page 71)
Flag Description Type Reverse
-fbreak-on-error Break on uncaught excep- | dynamic| -fno-break-on-error
(page 55) tions and errors (page 55)
-fbreak-on-exception Break on any exception | dynamic| -fno-break-on-exceptig
(page 55) thrown (page 55)
-fghci-hist-size=(n) Set the number of entries | dynamic
(page 54) GHCi keeps for :history.
See The GHCi Debugger
(page 48).
-fghci-leak-check (Debugging only) check | dynamic| -fno-ghci-leak-check
(page 58) for space leaks when load-
ing new modules in GHCi.
-flocal-ghci-history Use current directory for | dynamic| -fno-local-ghci-histor
(page 57) the GHCi command his-
tory file .ghci-history.
-fno-1it (page 44) No longer set the special | dynamic| -fno-no-it
variable it.
-fprint-bind-result Turn on printing of | dynamic| -fno-print-bind-result
(page 36) binding results in GHCi
(page 36)
-fshow-loaded-modules | Show the names of mod- | dynamic
(page 32) ules that GHCi loaded af-
ter a : load (page 64) com-
mand.
-ghci-script (page 72) | Read additional .ghci | dynamic
files
-ignore-dot-ghci Disable reading of .ghci | dynamic
(page 72) files
-interactive-print Select the function to | dynamic

(expr) (page 46)

use for printing evalu-
ated expressions in GHCi
(page 46)

10.6.11 Packages

More details in Packages (page 181)

124

Chapter 10. Using GHC

ges

n

y

GHC User’s Guide Documentation, Release 8.6.5

Flag Description Type Reverse
-clear-package-db Clear the package db | dynamic
(page 187) stack.
-distrust (pkg) Expose package (pkg) and | dynamic
(page 499) set it to be distrusted. See | :set
Safe Haskell (page 491).
-distrust-all-packages| Distrust all packages by | dynamic
(page 499) default. See Safe Haskell | :set
(page 491).
- fpackage-trust Enable Safe Haskell | dynamic
(page 500) (page 491) trusted pack-
age requirement for
trustworthy modules.
-global-package-db Add the global package db | dynamic
(page 187) to the stack.
-hide-all-packages Hide all packages by de- | dynamic
(page 184) fault
-hide-package (pkg) Hide package (pkg) dynamic
(page 184) :set
-ignore-package (pkg) | Ignore package {(pkg) dynamic
(page 184) :set
-no-auto-link-packages| Don’t automatically link in | dynamic
(page 184) the base and rts packages.
-no-global-package-db | Remove the global pack- | dynamic
(page 187) age db from the stack.
-no-user-package-db Remove the user’s pack- | dynamic
(page 187) age db from the stack.
-package (pkg) Expose package (pkg) dynamic
(page 183) :set
-package-db (file) Add (file) to the package | dynamic
(page 187) db stack.
-package-env Use the specified package | dynamic
(file) | (name) environment.
(page 188)
-package-1id (unit-id) | Expose package by id | dynamic
(page 184) (unit-id) 1set
-this-unit-id Compile to be part of unit | dynamic
(unit-1id) (page 184) (i.e. package) (unit-id)
-trust (pkg) (page 498) | Expose package (pkg) and | dynamic
set it to be trusted. See | :set
Safe Haskell (page 491).
-user-package-db Add the user’s package db | dynamic

(page 187)

to the stack.

10.6. Flag reference

125

GHC User’s Guide Docum

entation, Release 8.6.5

10.6.12 Language options

Language options can be enabled either by a command-line option -Xblah, or by a {-#
LANGUAGE blah #-} pragma in the file itself. See Language options (page 253).

10.6.13 Warnings

More details in Warnings and sanity-checking (page 88)

Flag Description Type Reverse
-fdefer-out-of-scope-vardemiert variable out of | dynamic| -fno-defer-out-of-scof
(page 91) scope variables errors

into warnings. Implied

by -fdefer-type-errors
(page 91). See also
-Wdeferred-out-of-scope
(page 91).

Fvariabld

-fdefer-type-errors Turn type errors into | dynamic| -fno-defer-type-errors
(page 91) warnings, deferring
the error until runtime
(page 432). Implies
-fdefer-typed-holes
(page 91) and
-fdefer-out-of-scope-variables
(page 91). See also
-Wdeferred-type-errors
(page 90)
-fdefer-typed-holes Convert typed hole | dynamic| -fno-defer-typed-holeg
(page 91) (page 419) errors into
warnings, deferring
the error until runtime
(page 432). Implied by
-fdefer-type-errors
(page 91). See also
-Wtyped-holes (page 90).
-fhelpful-errors Make suggestions for mis- | dynamic| -fno-helpful-errors
(page 91) spelled names.
-fmax-pmcheck-iterationdhéniteration limit for the | dynamic
(page 96) pattern match checker
-fshow-warning-groups | show which group an emit- | dynamic| -fno-show-warning-grod
(page 90) ted warning belongs to.
-W (page 89) enable normal warnings dynamic| -w (page 90)
-w (page 90) disable all warnings dynamic
-Wall (page 89) enable almost all warnings | dynamic| -w (page 90)
(details in Warnings and
sanity-checking (page 88))
-Wall-missed-specialisatwamns when specialisation | dynamic| -Wno-all-missed-specid

(page 92)

of any overloaded function
fails.

Continued on next page

126

Chapter 10. Using GHC

e-variables

ps

lisations

GHC User’s Guide Documentation, Release 8.6.5

Table 12 - continued from previous page

Flag

Description

Type

Reverse

-Wamp (page 92)

(deprecated) warn on def-
initions conflicting with
the Applicative-Monad
Proposal (AMP)

dynamic

-Wno-amp

-Wcompat (page 89)

enable future compati-
bility warnings (details
in Warnings and sanity-
checking (page 88))

dynamic

-Wno-compat (page 90)

-Wcpp-undef (page 103)

warn on uses of the #if di-
rective on undefined iden-
tifiers

dynamic

-Wdeferred-out-of-scopé
(page 91)

> Reporetb lagarnings when
variable out-of-scope er-
rors are deferred until
runtime (page 432). See
-fdefer-out-of-scope-va
(page 91).

dynamic

riables

-Wno-deferred-out-of-g

-Wdeferred-type-errors| Report warnings when | dynamic| -Wno-deferred-type-err
(page 90) deferred type errors

(page 432) are en-

abled. This option is

enabled by default. See

-fdefer-type-errors

(page 91).
-Wdeprecated- flags warn about uses of com- | dynamic| -Wno-deprecated-flags
(page 93) mandline flags that are

deprecated
-Wdeprecations warn about wuses of | dynamic| -Wno-deprecations
(page 92) functions & types that

have warnings or depre-

cated pragmas. Alias for

-Wwarnings-deprecations

(page 92)
-Wdodgy-exports warn about dodgy exports | dynamic| -Wno-dodgy-exports
(page 94)
-Wdodgy-foreign-import$ warn about dodgy foreign | dynamic| -Wno-dodgy-foreign-img
(page 93) imports
-Wdodgy-imports warn about dodgy imports | dynamic| -Wno-dodgy-imports
(page 94)
-Wduplicate-constraint$ warn when a constraint | dynamic| -Wno-duplicate-constra
(page 94) appears duplicated in a

type signature
-Wduplicate-exports warn when an entity is ex- | dynamic| -Wno-duplicate-exports
(page 95) ported multiple times
-Wempty-enumerations warn about enumerations | dynamic| -Wno-empty-enumeration
(page 94) that are empty
-Werror (page 90) make warnings fatal dynamic| -Wwarn (page 90)
-Weverything (page 89) | enable all warnings sup- | dynamic

ported by GHC

Continued on next page

10.6. Flag reference

127

cope-variat

ors

ort

ints

GHC User’s Guide Documentation, Release 8.6.5

Table 12 - continued from previous page

Flag Description Type Reverse
-Whi-shadowing warn when a . hi file in the | dynamic| -Wno-hi-shadowing
(page 95) current directory shadows

a library
-Widentities (page 95) | warn about uses of Pre- | dynamic| -Wno-identities

lude numeric conversions

that are probably the iden-

tity (and hence could be

omitted)
-Wimplicit-kind-vars warn when kind variables | dynamic| -Wno-implicit-kind-vars
(page 95) are brought into scope im-

plicitly despite the "forall-

or-nothing” rule
-Wimplicit-prelude warn when the Prelude is | dynamic| -Wno-implicit-prelude
(page 95) implicitly imported
-Winaccessible-code warn about inaccessible | dynamic| -Wno-inaccessible-code
(page 98) code
-Wincomplete-patterns | warn when a pattern | dynamic| -Wno-incomplete-patterns
(page 96) match could fail
-Wincomplete-record-upflaxeasn when a record up- | dynamic| -Wno-incomplete-record-updates
(page 96) date could fail
-Wincomplete-uni-pattefngarn when a pattern | dynamic| -Wno-incomplete-uni-patterns
(page 96) match in a lambda expres-

sion or pattern binding

could fail
-Winline-rule-shadowing Warn if a rewrite RULE | dynamic| -Wno-inline-rule-shadawing
(page 103) might fail to fire because

the function might be in-

lined before the rule has

a chance to fire. See

How rules interact with

INLINE/NOINLINE prag-

mas (page 475).
-Wmissed-specialisatiopsvarn when specialisation | dynamic| -Wno-missed-specialisations
(page 91) of an imported, over-

loaded function fails.
-Wmissing-export-lists| warn when a module dec- | dynamic| -fnowarn-missing-export-lists
(page 97) laration does not explicitly

list all exports
-Wmissing-exported-signatareabout top-level func- | dynamic| -Wno-missing-exported{signatures
(page 98) tions without signatures,

only if they are exported.

takes precedence over -

Wmissing-signatures
-Wmissing-exported-sig$ (deprecated) warn about | dynamic| -Wno-missing-exported4sigs

(page 97) top-level functions with-
out signatures, only
if they are exported.
takes precedence over
-Wmissing-signatures
Continued on next page
128 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Table 12 - continued from previous page

Flag Description Type Reverse
-Wmissing-fields warn when fields of a | dynamic| -Wno-missing-fields
(page 97) record are uninitialised
-Wmissing-home-modules| warn when encountering | dynamic| -Wno-missing-home-modules
(page 103) a home module imported,

but not listed on the

command line. Useful

for cabal to ensure GHC
won’'t pick up modules,
not listed neither in
exposed-modules, nor in
other-modules.

-Wmissing-import-lists| warn when an import dec- | dynamic| -fnowarn-missing-import-lists

(page 97) laration does not explicitly
list all the names brought
into scope
-Wmissing-local-signatiyrearn about polymorphic | dynamic| -Wno-missing-local-signatures
(page 98) local bindings without sig-
natures
-Wmissing-local-sigs (deprecated) warn about | dynamic| -Wno-missing-local-sigs
(page 98) polymorphic local bind-
ings without signatures
-Wmissing-methods warn when class methods | dynamic| -Wno-missing-methods
(page 97) are undefined
-Wmissing-monadfail-insMareswhen a failable pat- | dynamic| -Wno-missing-monadfail-instances
(page 93) tern is used in a do-

block that does not have a
MonadFail instance.

-Wmissing-pattern-synonysmasngwdienrepattern syn- | dynamic| -Wno-missing-pattern-gynonym-sigr

(page 98) onyms do not have type
signatures
-Wmissing-signatures warn about top-level func- | dynamic| -Wno-missing-signatures
(page 97) tions without signatures
-Wmonomorphism-restrictmarn when the Monomor- | dynamic| -Wno-monomorphism-restriction
(page 100) phism Restriction is ap-
plied
-Wname - shadowing warn when names are | dynamic| -Wno-name-shadowing
(page 98) shadowed

-Wno-compat (page 90) Disables all warnings | dynamic| -Wcompat (page 89)
enabled by -Wcompat

(page 89).
-Wnoncanonical-monad-instarmewhen Applicative | dynamic| -Wno-noncanonical-monad-instances
(page 92) or Monad instances have

noncanonical definitions
of return, pure, (>>), or
(*>). See flag description
in Warnings and sanity-
checking (page 88) for
more details.

Continued on next page

10.6. Flag reference 129

GHC User’s Guide Documentation, Release 8.6.5

Table 12 - continued from previous page

Flag Description Type Reverse
-Wnoncanonical-monadfal iwamstawten Monad or | dynamic| -Wno-noncanonical-monadfail-inste
(page 92) MonadFail instances have

noncanonical definitions
of fail. See flag de-
scription in Warnings and
sanity-checking (page 88)
for more details.

-Wnoncanonical-monoid-ingsdemcoshen Semigroup or | dynamic| -Wno-noncanonical-mongid-instance
(page 93) Monoid instances have
noncanonical definitions
of (<>) or mappend. See
flag description in Warn-
ings and sanity-checking
(page 88) for more details.
-Worphans (page 98) warn when the module | dynamic| -Wno-orphans
contains orphan instance
declarations or rewrite
rules (page 180)

-Woverflowed-literals | warn about literals that | dynamic| -Wno-overflowed-literals

(page 94) will overflow their type

-Woverlapping-patterns| warn about overlapping | dynamic| -Wno-overlapping-patterns
(page 98) patterns

-Wpartial-fields warn when defining a par- | dynamic| -Wno-partial-fields

(page 103) tial record field.

-Wpartial-type-signatutresarn about holes in par- | dynamic| -Wno-partial-type-signatures
(page 91) tial type signatures when

-XPartialTypeSignatures
(page 426) is enabled.
Not applicable when
-XPartialTypesignatures
is not enabled, in which
case errors are gener-
ated for such holes. See
Partial Type Signatures

(page 426).
-Wredundant-constraint$ Have the compiler warn | dynamic| -Wno-redundant-constraints
(page 94) about redundant con-
straints in type signa-
tures.
-Wsafe (page 500) warn if the module being | dynamic| -Wno-safe
compiled is regarded to be
safe.
-Wsemigroup (page 93) warn when a Monoid is not | dynamic| -Wno-semigroup

Semigroup, and on non-
Semigroup definitions of

(<>)7?
-Wsimplifiable-class-corameimbout class con- | dynamic| -Wno-overlapping-patterns
(page 100) straints in a type signa-

ture that can be simplified
using a top-level instance
declaration.

Continued on next page

130 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Table 12 - continued from previous page

Flag Description Type Reverse
-Wstar-binder (page 99) | warn about binding the | dynamic| -Wno-star-binder
(*) type operator despite
-XStarIsType (page 387)
-Wstar-is-type warn when * is used to | dynamic| -Wno-star-is-type
(page 99) mean Data.Kind.Type
-Wtabs (page 100) warn if there are tabs in | dynamic| -Wno-tabs
the source file
-Wtrustworthy-safe warn if the module being | dynamic| -Wno-safe
(page 500) compiled is marked as
Trustworthy (page 500)
but it could instead
be marked as Safe
(page 499), a more in-
formative bound.
-Wtype-defaults warn when defaulting hap- | dynamic| -Wno-type-defaults
(page 100) pens
-Wtyped-holes (page 90) | Report warnings when | dynamic| -Wno-typed-holes
typed hole (page 419)
errors are deferred until
runtime (page 432). See
-fdefer-typed-holes
(page 91).
-Wunbanged-strict-pattérmmarn on pattern bind of | dynamic| -Wno-unbanged-strict-patterns
(page 103) unlifted variable that is
neither bare nor banged
-Wunrecognised-pragmas| warn about uses of prag- | dynamic| -Wno-unrecognised-pragmas
(page 91) mas that GHC doesn’t
recognise
-Wunrecognised-warningi tha#gw a warning when an | dynamic| -Wno-unrecognised-warning-flags
(page 90) unreconised -W... flag is
encountered on the com-
mand line.
-Wunsafe (page 500) warn if the module being | dynamic| -Wno-unsafe
compiled is regarded to be
unsafe. See Safe Haskell
(page 491)
-Wunsupported-calling- ¢omaem @lwowst use of an un- | dynamic| -Wno-unsupported-calling-convent]
(page 93) supported calling conven-
tion
-Wunsupported-1lvm-ver$ Warn when using -fllvm | dynamic| -Wno-monomorphism-restriction
(page 100) (page 204) with an unsup-
ported version of LLVM.
-Wunticked-promoted-constammtaf's promoted con- | dynamic| -Wno-unticked-promoted-constructc

(page 100)

structors are not ticked

Continued on next page

10.6. Flag reference

131

GHC User’s Guide Documentation, Release 8.6.5

Table 12 - continued from previous page

Flag Description Type Reverse
-Wunused-binds warn about bindings that | dynamic| -Wno-unused-binds
(page 100) are unused. Alias for

-Wunused-top-binds

(page 101),

-Wunused-local-binds

(page 101) and

-Wunused-pattern-binds

(page 101)
-Wunused-do-bind warn about do bindings | dynamic| -Wno-unused-do-bind
(page 102) that appear to throw away

values of types other than

()
-Wunused-foralls warn about type variables | dynamic| -Wno-unused-foralls
(page 102) in user-written forall\s

that are unused
-Wunused-imports warn about unnecessary | dynamic| -Wno-unused-imports
(page 101) imports

-Wunused-local-binds warn about local bindings | dynamic| -Wno-unused-local-binds
(page 101) that are unused

-Wunused-matches warn about variables in | dynamic| -Wno-unused-matches

(page 101) patterns that aren’t used

-Wunused-pattern-binds| warn about pattern match | dynamic| -Wno-unused-pattern-binds
(page 101) bindings that are unused

-Wunused-top-binds warn about top-level bind- | dynamic| -Wno-unused-top-binds
(page 101) ings that are unused

-Wunused-type-patterns| warn about unused type | dynamic| -Wno-unused-type-patterns
(page 102) variables which arise from

patterns in type family and
data family instances
-Wwarn (page 90) make warnings non-fatal dynamic| -Werror (page 90)

-Wwarnings-deprecation$ warn about uses of func- | dynamic| -Wno-warnings-deprecations

(page 92) tions & types that have

warnings or deprecated

pragmas
-Wwrong-do-bind warn about do bindings | dynamic| -Wno-wrong-do-bind
(page 102) that appear to throw away

monadic values that you
should have bound instead

10.6.14 Optimisation levels

These options are described in more detail in Optimisation (code improvement) (page 103).

See Individual optimisations (page 133) for a list of optimisations enabled on level 1 and level
2.

132 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Flag Description Type Reverse
-0 (page 104), -01 | Enable level 1 optimisa- | dynamic| -00 (page 104)
(page 104) tions

-00 (page 104) Disable optimisations (de- | dynamic
fault)

-02 (page 104) Enable level 2 optimisa- | dynamic| -00 (page 104)
tions

10.6.15 Individual optimisations

These options are described in more detail in -f*: platform-independent flags (page 104). If
a flag is implied by -0 then it is also implied by -02 (unless flag description explicitly says
otherwise). If a flag is implied by -00 only then the flag is not implied by -0 and -02.

Flag Description Type Reverse
-fasm-shortcutting Enable shortcutting on as- | dynamic| -fno-asm-shortcutting
(page 105) sembly. Implied by -02

(page 104).

-fcall-arity (page 105) | Enable call-arity optimi- | dynamic| -fno-call-arity
sation. Implied by -0

(page 104).
-fcase-folding Enable constant folding in | dynamic| -fno-case-folding
(page 105) case expressions. Implied

by -0 (page 104).
-fcase-merge (page 104) | Enable case-merging. Im- | dynamic| -fno-case-merge
plied by -0 (page 104).
-fcmm-elim-common-blockEnable Cmm common | dynamic| -fno-cmm-elim-common-blocks

(page 105) block elimination. Implied
by -0 (page 104).
-fcmm-sink (page 105) Enable Cmm sinking. Im- | dynamic| -fno-cmm-sink

plied by -0 (page 104).
-fcpr-anal (page 106) Turn on CPR analysis in | dynamic| -fno-cpr-anal
the demand analyser. Im-
plied by -0 (page 104).

-fcross-module-specialiskurn on specialisation of | dynamic| -fno-cross-module-specialise

(page 112) overloaded functions im-
ported from other mod-
ules.
-fcse (page 106) Enable common sub- | dynamic| -fno-cse

expression elimination.
Implied by -0 (page 104).

-fdicts-cheap Make dictionary-valued | dynamic| -fno-dicts-cheap
(page 106) expressions seem cheap

to the optimiser.
-fdicts-strict Make dictionaries strict dynamic| -fno-dicts-strict
(page 106)
-fdmd-tx-dict-sel Use a special demand | dynamic| -fno-dmd-tx-dict-sel
(page 106) transformer for dictionary

selectors. Always enabled

by default.

Continued on next page

10.6. Flag reference 133

GHC User’s Guide Documentation, Release 8.6.5

Table 14 - continued from previous page

Flag Description Type Reverse
-fdo-eta-reduction Enable eta-reduction. Im- | dynamic| -fno-do-eta-reduction
(page 106) plied by -0 (page 104).
-fdo- lambda-eta-expansidmnable lambda eta- | dynamic| -fno-do-lambda-eta-expansion
(page 106) expansion. Always en-
abled by default.
- feager-blackholing Turn on eager blackholing | dynamic
(page 106) (page 115)
-fenable-rewrite-rules| Switch on all rewrite rules | dynamic| -fno-enable-rewrite-rules
(page 473) (including rules generated

by automatic specialisa-
tion of overloaded func-
tions). Implied by -0

(page 104).
-fexcess-precision Enable excess intermedi- | dynamic| -fno-excess-precision
(page 106) ate precision
-fexitification Enables exitification opti- | dynamic| -fno-exitification
(page 105) misation. Implied by -0

(page 104).
-fexpose-all-unfolding$ Expose all unfoldings, | dynamic| -fno-expose-all-unfoldings
(page 107) even for very large or

recursive functions.
-ffloat-1in (page 107) Turn on the float-in trans- | dynamic| -fno-float-in
formation. Implied by -0

(page 104).
-ffull-laziness Turn on full laziness (float- | dynamic| -fno-full-laziness
(page 107) ing bindings outwards).

Implied by -0 (page 104).
-ffun-to-thunk Allow worker-wrapper to | dynamic| -fno-fun-to-thunk
(page 107) convert a function closure

into a thunk if the function
does not use any of its ar-
guments. Off by default.

-fignore-asserts Ignore assertions in the | dynamic| -fno-ignore-asserts
(page 107) source. Implied by -0

(page 104).
-fignore-interface-pragmghore pragmas in inter- | dynamic| -fno-ignore-interface{pragmas
(page 108) face files. Implied by -00

(page 104) only.
-flate-dmd-anal Run demand analysis | dynamic| -fno-late-dmd-anal
(page 108) again, at the end of the

simplification pipeline
-flate-specialise Run a late specialisation | dynamic| -fno-late-specialise
(page 112) pass
-fliberate-case Turn on the liberate-case | dynamic| -fno-liberate-case
(page 108) transformation. Implied

by -02 (page 104).
-fliberate-case-threshodéfanjt: 2000. Set the size | dynamic| -fno-liberate-case-threshold
(page 108) threshold for the liberate-
case transformation to (n)

Continued on next page

134 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Table 14 - continued from previous page

Flag Description Type Reverse

-fllvm-pass-vectors-1int Maps vector value in vector | dynamic| -fno-1lvm-pass-vectors-in-regs
(page 108) registers for function calls

-floopification Turn saturated self- | dynamic| -fno-loopification

(page 108) recursive tail-calls into

local jumps in the gener-
ated assembly. Implied by
-0 (page 104).
-fmax-inline-alloc-sizé=default: 128. Set the | dynamic
(page 108) maximum size of inline ar-
ray allocations to {n) bytes
(default: 128).
-fmax-1inline-memcpy-insrdefault: 32. Inline memcpy | dynamic
(page 108) calls if they would gen-
erate no more than (n)
pseudo instructions.
-fmax-inline-memset-insrdefault: 32. Inline memset | dynamic
(page 108) calls if they would gen-
erate no more than (n)
pseudo instructions
-fmax-simplifier-iteratdefaulti)4. Set the max it- | dynamic

(page 109) erations for the simplifier.
-fmax-uncovered-patterndefault: 4. Set the | dynamic
(page 109) maximum number of pat-

terns to display in warn-
ings about non-exhaustive

ones.
-fmax-worker-args=(n) | default: 10. If a worker | dynamic
(page 109) has that many arguments,

none will be unpacked

anymore.
-fno-opt-coercion Turn off the coercion opti- | dynamic
(page 109) miser
-fno-pre-inlining Turn off pre-inlining dynamic
(page 109)
-fno-state-hack Turn off the state hack- | dynamic
(page 109) whereby any lambda with

a real-world state token as
argument is considered to
be single-entry. Hence OK
to inline things inside it.

-fomit-interface-pragmadon’t generate interface | dynamic| -fno-omit-interface-pragmas

(page 109) pragmas. Implied by -00
(page 104) only.
-fomit-yields Omit heap checks when | dynamic| -fno-omit-yields
(page 109) no allocation is being per-
formed.
-foptimal-applicative-ddIse a slower but better al- | dynamic| -fno-optimal-applicative-do
(page 271) gorithm for ApplicativeDo

Continued on next page

10.6. Flag reference 135

GHC User’s Guide Documentation, Release 8.6.5

Table 14 - continued from previous page

Flag Description Type Reverse
-fpedantic-bottoms Make GHC be more | dynamic| -fno-pedantic-bottoms
(page 110) precise about its treat-

ment of bottom (but see

also -fno-state-hack

(page 109)). In particular,

GHC will not eta-expand

through a case expression.
-fregs-graph (page 110) | Use the graph colouring | dynamic| -fno-regs-graph

register allocator for reg-

ister allocation in the na-

tive code generator. Im-

plied by -02 (page 104).
-fregs-iterative Use the iterative coalesc- | dynamic| -fno-regs-iterative
(page 110) ing graph colouring regis-

ter allocator in the native

code generator.
-fsimpl-tick-factor=(n) default: 100. Set the per- | dynamic
(page 110) centage factor for simpli-

fier ticks.
-fsimplifier-phases=(n) default: 2. Set the num- | dynamic
(page 110) ber of phases for the sim-

plifier. Ignored with -00

(page 104).
-fsolve-constant-dicts| When solving constraints, | dynamic| -fno-solve-constant-di
(page 112) try to eagerly solve su-

per classes using available

dictionaries.
-fspec-constr Turn on the SpecConstr | dynamic| -fno-spec-constr
(page 110) transformation. Implied

by -02 (page 104).
-fspec-constr-count=(n) default: 3.* Set to (n) | dynamic| -fno-spec-constr-count
(page 111) the maximum number of

specialisations that will be

created for any one func-

tion by the SpecConstr

transformation.
-fspec-constr-keen Specialize a call with an | dynamic| -fno-spec-constr-keen
(page 111) explicit constructor argu-

ment, even if the argu-

ment is not scrutinised in

the body of the function
-fspec-constr-threshold=default: 2000. Set the size | dynamic| -fno-spec-constr-thres
(page 112) threshold for the Spec-

Constr transformation to

(n).
-fspecialise (page 112) | Turn on specialisation of | dynamic| -fno-specialise

overloaded functions. Im-
plied by -0 (page 104).

Continued on next page

136

Chapter 10. Using GHC

cts

hold

GHC User’s Guide Documentation, Release 8.6.5

Table 14 - continued from previous page

Flag Description Type Reverse
-fspecialise-aggressivéliurn on specialisation of | dynamic| -fno-specialise-aggres
(page 112) overloaded functions re-
gardless of size, if unfold-
ing is available
-fstatic-argument-trans Mumetamwthe static argu- | dynamic| -fno-static-argument-1
(page 113) ment transformation.
-fstg-cse (page 106) Enable common sub- | dynamic| -fno-stg-cse
expression elimination
on the STG intermediate
language
-fstrictness (page 113) | Turn on strictness anal- | dynamic| -fno-strictness
ysis. Implied by -0
(page 104). Implies
-fworker-wrapper
-fstrictness-before=(n) Run an additional strict- | dynamic
(page 113) ness analysis before sim-
plifier phase (n)
-funbox-small-strict-fjdldsten strict constructor | dynamic| -fno-unbox-small-strig
(page 113) fields with a pointer-sized
representation. Implied
by -0 (page 104).
-funbox-strict-fields | Flatten strict constructor | dynamic| -fno-unbox-strict-fiel
(page 113) fields
-funfolding-creation-thidefaaltd=(750. Tweak un- | dynamic
(page 114) folding settings.
-funfolding-dict-discoyrdefaujt: 30. Tweak unfold- | dynamic
(page 114) ing settings.
-funfolding- fun-discounidefault: 60. Tweak unfold- | dynamic
(page 114) ing settings.
-funfolding-keeness-fatdafatut: 1.5. Tweak un- | dynamic
(page 114) folding settings.
-funfolding-use-threshodefaujt: 60. Tweak unfold- | dynamic
(page 114) ing settings.
10.6.16 Profiling options
More details in Profiling (page 223)
Flag Description Type Reverse
-fno-prof-auto Disables any previous | dynamic| -fprof-auto (page 227)
(page 228) -fprof-auto (page 227),
-fprof-auto-top
(page 227), or
-fprof-auto-exported
(page 227) options.
-fno-prof-cafs Disables any previous | dynamic| - fprof-cafs (page 228)

(page 228)

-fprof-cafs (page 228)
option.

Continued on next page

10.6. Flag reference

137

sively

ransformati

t-fields

ds

GHC User’s Guide Docum

entation, Release 8.6.5

Table 15 - continued from previous page

Flag Description Type Reverse
-fno-prof-count-entries$ Do not collect entry counts | dynamic| -fprof-count-entries
(page 228)
-fprof-auto (page 227) | Auto-add SCC\ s to all bind- | dynamic| - fno-prof-auto
ings not marked INLINE (page 228)
-fprof-auto-calls Auto-add SCC\ s to all call | dynamic| -fno-prof-auto-calls
(page 227) sites
-fprof-auto-exported Auto-add SCC\ s to all | dynamic| -fno-prof-auto
(page 227) exported bindings not (page 228)
marked INLINE
-fprof-auto-top Auto-add SCC\ s to all top- | dynamic| -fno-prof-auto
(page 227) level bindings not marked (page 228)
INLINE
-fprof-cafs (page 228) | Auto-add SCC\sto all CAFs | dynamic| - fno-prof-cafs
(page 228)
-prof (page 227) Turn on profiling dynamic
-ticky (page 245) Turn on ticky-ticky profil- | dynamic
ing (page 245)
10.6.17 Program coverage options
More details in Observing Code Coverage (page 240)
Flag Description Type Reverse
-thpc (page 241) Turn on Haskell program | dynamic
coverage instrumentation
10.6.18 C pre-processor options
More details in Options affecting the C pre-processor (page 201)
Flag Description Type Reverse
-cpp (page 201) Run the C pre-processor | dynamic
on Haskell source files
-D(symbol)[=(value)] Define a symbol in the C | dynamic| -U(symbol) (page 201)
(page 201) pre-processor
-I(dir) (page 201) Add (dir) to the directory | dynamic
search list for #include
files
-U(symbol) (page 201) Undefine a symbol in the C | dynamic

pre-processor

10.6.19 Code genera

tion options

More details in Options affecting code generation (page 204)

138

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Flag Description Type Reverse
-dynamic-too (page 205) | Build dynamic object files | dynamic
as well as static object files
during compilation
-fasm (page 204) Use the native code gener- | dynamic| - fllvm (page 204)
ator (page 198)
-fbyte-code (page 204) | Generate byte-code dynamic
-fexternal-dynamic-ref$ Generate code for linking | dynamic
(page 204) against dynamic libraries
-fllvm (page 204) Compile using the LLVM | dynamic| - fasm (page 204)
code generator (page 198)
-fno-code (page 204) Omit code generation dynamic
-fobject-code Generate object code dynamic
(page 204)
-fPIC (page 204) Generate position- | dynamic
independent code (where
available)
-fPIE (page 204) Generate code for a | dynamic
position-independent exe-
cutable (where available)
-fwrite-interface Always write interface | dynamic
(page 204) files

10.6.20 Linking options

More details in Options affecting linking (page 205)

Flag Description Type Reverse
- ¢ (page 80) Stop after generating object (.0) file mode
-debug (page 207) Use the debugging runtime dynamic
-dylib-install-name Set the install name (via | dynamic
(path) (page 209) -install name passed to Apple’s
linker), specifying the full install path
of the library file. Any libraries or
executables that link with it later will
pick up that path as their runtime
search location for it. (Darwin/OS X
only)
-dynamic (page 206) Build dynamically-linked object files | dynamic
and executables
-dynload (page 206) Selects one of a number of modes for | dynamic
finding shared libraries at runtime.
-eventlog (page 208) Enable runtime event tracing dynamic
-fno-embed-manifest Do not embed the manifest in the exe- | dynamic
(page 209) cutable (Windows only)

Continued on next page

10.6. Flag reference 139

GHC User’s Guide Documentation, Release 8.6.5

Table 19 - continued from previous page

Flag Description Type Reverse
-fno-gen-manifest Do not generate a manifest file (Win- | dynamic
(page 209) dows only)
-fno-shared-implib Don’t generate an import library for a | dynamic
(page 209) DLL (Windows only)
-framework (name) On Darwin/OS X/iOS only, link in the | dynamic
(page 205) framework (name). This option corre-
sponds to the -framework option for
Apple’s Linker.
-framework-path (dir) On Darwin/OS X/iOS only, add (dir) | dynamic
(page 206) to the list of directories searched for
frameworks. This option corresponds
to the -F option for Apple’s Linker.
-fwhole-archive-hs-1ibs When linking a binary exe- | dynamic
(page 210) cutable, this inserts the flag -W1l,
--whole-archive Dbefore any -1
flags for Haskell libraries, and -W1l,
--no-whole-archive afterwards
-L (dir) (page 206) Add (dir) to the list of directories | dynamic
searched for libraries
-l (lib) (page 205) Link in library (lib) dynamic
-main-1is (thing) (page 207) | Set main module and function dynamic
-no-hs-main (page 207) Don’t assume this program contains | dynamic
main
-no-rtsopts-suggestions Don’t print RTS sugges- | dynamic
(page 209) tions about linking with
-rtsopts[=(none|some|all|ignore|ignoreAll)|]
(page 208).
-package (name) (page 205) | Expose package (pkg) dynamic
:set
-pie (page 210) Instruct the linker to produce a | dynamic
position-independent executable.
-rdynamic (page 210) This instructs the linker to add all | dynamic

symbols, not only used ones, to
the dynamic symbol table. Cur-
rently Linux and Windows/MinGW32
only. This is equivalent to using
-optl -rdynamic on Linux, and -optl
-export-all-symbols on Windows.

Continued on next page

140

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Table 19 - continued from previous page
Flag Description Type Reverse
-rtsopts[=(none|some|all|igtomtioywhethéry /the RTS behaviour | dynamic
(page 208) can be tweaked via command-line flags
and the GHCRTS environment variable.
Using none means no RTS flags can
be given; some means only a mini-
mum of safe options can be given (the
default); all (or no argument at all)
means that all RTS flags are permit-
ted; ignore means RTS flags can be
given, but are treated as regular argu-
ments and passed to the Haskell pro-
gram as arguments; ignoreAll is the
same as ignore, but GHCRTS is also
ignored. -rtsopts does not affect
-with-rtsopts behavior; flags passed
via -with-rtsopts are used regard-
less of -rtsopts.
-shared (page 206) Generate a shared library (as opposed | dynamic
to an executable)
-split-objs (page 206) Split objects (for libraries) dynamic
-split-sections (page 206) | Split sections for link-time dead-code | dynamic
stripping
-static (page 206) Use static Haskell libraries dynamic
-staticlib (page 205) Generate a standalone static library | dynamic
(as opposed to an executable). This is
useful when cross compiling. The li-
brary together with all its dependen-
cies ends up in in a single static library
that can be linked against.
-threaded (page 207) Use the threaded runtime dynamic
-with-rtsopts=(opts) Set the default RTS options to {(opts). | dynamic
(page 208)
10.6.21 Plugin options
More details in Compiler Plugins (page 517)
Flag Description Type Reverse
-fplugin-opt=(module): {d3iye) arguments to a | dynamic
(page 517) plugin module; mod-
ule must be specified
with -fplugin=(module)
(page 517)
-fplugin=(module) Load a plugin exported by | dynamic
(page 517) a given module

Continued on next page

10.6. Flag reference

141

GHC User’s Guide Docum

entation, Release 8.6.5

Table 20 - continued from previous page

Flag Description Type Reverse
-hide-all-plugin-packagdiide all packages for plu- | dynamic

(page 518) gins by default

-plugin-package (pkg) | Expose (pkg) for plugins dynamic

(page 518)

-plugin-package-id Expose (pkg-id) for plug- | dynamic

(pkg-id) (page 518) ins

10.6.22 Replacing phases

More details in Replacing the program for one or more phases (page 199)

Flag Description Type Reverse

-pgma (cmd) (page 199) | Use {cmd) as the assem- | dynamic
bler

-pgmc (cmd) (page 199) | Use {cmd) as the C com- | dynamic
piler

-pgmdll (cmd) Use (cmd) as the DLL gen- | dynamic

(page 199) erator

-pgmF (cmd) (page 200) | Use {(cmd) as the pre- | dynamic
processor (with -F only)

-pgmi (cmd) (page 200) | Use (cmd) as the external | dynamic
interpreter command.

-pgmL (cmd) (page 199) | Use {cmd) as the literate | dynamic
pre-processor

-pgml (cmd) (page 199) | Use (cmd) as the linker dynamic

-pgmlc (cmd) (page 199) | Use (cmd) as the LILVM | dynamic
compiler

-pgmlibtool (cmd) Use {(cmd) as the com- | dynamic

(page 200) mand for libtool (with
-staticlib only).

-pgmlo (cmd) (page 199) | Use {(cmd) as the LLVM op- | dynamic
timiser

-pgmP (cmd) (page 199) | Use (cmd) as the C pre- | dynamic
processor (with -cpp only)

-pgms (cmd) (page 199) | Use (cmd) as the splitter dynamic

-pgmwindres (cmd) Use {(cmd) as the program | dynamic

(page 200) for embedding manifests
on Windows.

10.6.23 Forcing options to particular phases

More details in Forcing options to a particular phase (page 200)

142 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Flag Description Type Reverse
-opta (option) pass {(option) to the assem- | dynamic
(page 200) bler
-optc (option) pass (option) to the C com- | dynamic
(page 200) piler
-optdll (option) pass (option) to the DLL | dynamic
(page 200) generator
-optF (option) pass (option) to the cus- | dynamic
(page 200) tom pre-processor
-opti (option) pass (option) to the inter- | dynamic
(page 200) preter sub-process.
-optL (option) pass (option) to the liter- | dynamic
(page 200) ate pre-processor
-optl (option) pass (option) to the linker | dynamic
(page 200)
-optlc (option) pass (option) to the LLVM | dynamic
(page 200) compiler
-optlo (option) pass {(option) to the LLVM | dynamic
(page 200) optimiser
-optP (option) pass (option) to cpp (with | dynamic
(page 200) -cpp only)
-optwindres (option) pass (option) to windres. dynamic
(page 200)
10.6.24 Platform-specific options
More details in Platform-specific Flags (page 88)
Flag Description Type Reverse
-msse2 (page 88) (x86 only) Use SSE2 for | dynamic
floating-point operations
-msse4.2 (page 88) (x86 only) Use SSE4.2 for | dynamic
floating-point operations
10.6.25 Compiler debugging options
More details in Debugging the compiler (page 214)
Flag Description Type Reverse
-dcmm-1int (page 221) C-\- pass sanity checking dynamic
-dcore-1lint (page 220) Turn on internal sanity checking dynamic
-ddump-asm (page 219) Dump final assembly dynamic
-ddump-asm-expanded Dump the result of the synthetic in- | dynamic
(page 219) struction expansion pass.
-ddump-asm- liveness Dump assembly augmented with regis- | dynamic

(page 219)

ter liveness

Continued on next page

10.6. Flag reference

143

GHC User’s Guide Documentation, Release 8.6.5

Table 24 - continued from previous page

Flag Description Type Reverse

-ddump-asm-native Dump initial assembly dynamic

(page 218)

-ddump-asm-regalloc Dump the result of register allocation | dynamic

(page 219)

-ddump-asm-regalloc-stages| Dump the build/spill stages of the | dynamic

(page 219) -fregs-graph (page 110) register al-
locator.

-ddump-asm-stats (page 219) | Dump statistics from the register allo- | dynamic
cator.

-ddump-bcos (page 219) Dump interpreter byte code dynamic

-ddump-cmm (page 218) Dump the final C-\- output dynamic

-ddump-cmm-caf (page 218) Dump the results of the C-\- CAF anal- | dynamic
ysis pass.

-ddump-cmm-cbe (page 218) Dump the results of common block | dynamic
elimination

-ddump-cmm-cfg (page 218) Dump the results of the C-\- control | dynamic
flow optimisation pass.

-ddump-cmm-cps (page 218) Dump the results of the CPS pass dynamic

-ddump-cmm-from-stg Dump STG-to-C-\- output dynamic

(page 218)

-ddump-cmm-1info (page 218) | Dump the results of the C-\- info table | dynamic
augmentation pass.

-ddump-cmm-proc (page 218) | Dump the results of proc-point analysis | dynamic

-ddump-cmm-procmap Dump the results of the C-\- proc-point | dynamic

(page 218) map pass.

-ddump-cmm- raw (page 218) Dump raw C-\- dynamic

-ddump-cmm-sink (page 218) | Dump the results of the C-\- sinking | dynamic
pass.

-ddump-cmm-sp (page 218) Dump the results of the C-\- stack lay- | dynamic
out pass.

-ddump-cmm-split (page 218) | Dump the results of the C-\- proc-point | dynamic
splitting pass.

-ddump-cmm-switch Dump the results of switch lowering | dynamic

(page 218) passes

-ddump-cmm-verbose Show output from each C-\- pipeline | dynamic

(page 217) pass

-ddump-core-stats Print a one-line summary of the size of | dynamic

(page 216) the Core program at the end of the op-
timisation pipeline

-ddump-cse (page 217) Dump CSE output dynamic

-ddump-deriv (page 216) Dump deriving output dynamic

-ddump-ds Dump desugarer output. dynamic

-ddump-ds-preopt (page 216)

Continued on next page

144

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Table 24 - continued from previous page

Flag Description Type Reverse

-ddump-ec-trace (page 215) | Trace exhaustiveness checker dynamic

-ddump-foreign (page 219) Dump foreign export stubs dynamic

-ddump-if-trace (page 215) | Trace interface files dynamic

-ddump-inlinings (page 217) | Dump inlining info dynamic

-ddump-json (page 214) Dump error messages as JSON docu- | dynamic
ments

-ddump-1lvm (page 218) Dump LLVM intermediate code. dynamic

-ddump-occur-anal Dump occurrence analysis output dynamic

(page 217)

-ddump-opt-cmm (page 218) Dump the results of C-\- to C-\- optimis- | dynamic
ing passes

-ddump-parsed (page 215) Dump parse tree dynamic

-ddump-parsed-ast Dump parser output as a syntax tree dynamic

(page 215)

-ddump-prep (page 217) Dump prepared core dynamic

-ddump-rn (page 215) Dump renamer output dynamic

-ddump-rn-ast (page 215) Dump renamer output as a syntax tree | dynamic

-ddump-rn-stats (page 215) | Renamer stats dynamic

-ddump-rn-trace (page 215) | Trace renamer dynamic

-ddump-rule-firings Dump rule firing info dynamic

(page 216)

-ddump-rule-rewrites Dump detailed rule firing info dynamic

(page 216)

-ddump-rules (page 216) Dump rewrite rules dynamic

-ddump-simpl (page 217) Dump final simplifier output dynamic

-ddump-simpl-iterations Dump output from each simplifier iter- | dynamic

(page 216) ation

-ddump-simpl-stats Dump simplifier stats dynamic

(page 216)

-ddump-spec (page 216) Dump specialiser output dynamic

-ddump-splices (page 215) Dump TH spliced expressions, and | dynamic
what they evaluate to

-ddump-stg (page 217) Dump final STG dynamic

-ddump-str-signatures Dump strictness signatures dynamic

(page 217)

Continued on next page

10.6. Flag reference

145

GHC User’s Guide Documentation, Release 8.6.5

Table 24 - continued from previous page

Flag Description Type Reverse

-ddump-stranal (page 217) Dump strictness analyser output dynamic

-ddump-tc (page 215) Dump typechecker output dynamic

-ddump-tc-ast (page 215) Dump typechecker output as a syntax | dynamic
tree

-ddump-tc-trace (page 215) | Trace typechecker dynamic

-ddump-timings (page 215) Dump per-pass timing and allocation | dynamic
statistics

-ddump-to-file (page 214) Dump to files instead of stdout dynamic

-ddump-types (page 216) Dump type signatures dynamic

-ddump-worker-wrapper Dump worker-wrapper output dynamic

(page 217)

-dfaststring-stats Show statistics for fast string usage | dynamic

(page 214) when finished

-dhex-word-literals Print values of type Word# in hexadec- | dynamic

(page 219) imal.

-dinitial-unique=(s) Start UniqSupply allocation from (s). dynamic

(page 221)

-dinline-check=(str) Dump information about inlining deci- | dynamic

(page 217) sions

-dno-debug-output Suppress unsolicited debugging out- | dynamic| -ddebug

(page 219) put

-dppr-case-as-let Print single alternative case expres- | dynamic

(page 219) sions as strict lets.

-dppr-cols=(n) (page 219) Set the width of debugging output. For | dynamic
example -dppr-cols200

-dppr-debug (page 214) Turn on debug printing (more verbose) | dynamic

-dppr-user-length Set the depth for printing expressions | dynamic

(page 219) in error msgs

-drule-check=(str) Dump information about potential rule | dynamic

(page 216) application

-dshow-passes (page 214) Print out each pass name as it happens | dynamic

-dstg-lint (page 220) STG pass sanity checking dynamic

-dsuppress-all (page 220) In dumps, suppress everything (except | dynamic
for uniques) that is suppressible.

-dsuppress-coercions Suppress the printing of coercions in | dynamic

(page 220) Core dumps to make them shorter

-dsuppress-idinfo Suppress extended information about | dynamic

(page 220) identifiers where they are bound

-dsuppress-module-prefixes| Suppress the printing of module quali- | dynamic

(page 220) fication prefixes

-dsuppress-stg-free-vars Suppress the printing of closure free | dynamic

(page 220)

variable lists in STG output

Continued on next page

146

Chapter 10. Using GHC

-output

GHC User’s Guide Documentation, Release 8.6.5

Table 24 - continued from previous page
Flag Description Type Reverse
-dsuppress-ticks (page 220) | Suppress “ticks” in the pretty-printer | dynamic
output.
-dsuppress-timestamps Suppress timestamps in dumps dynamic
(page 220)
-dsuppress-type-applicatiop$Suppress type applications dynamic
(page 220)
-dsuppress-type-signatures| Suppress type signatures dynamic
(page 220)
-dsuppress-unfoldings Suppress the printing of the stable un- | dynamic
(page 220) folding of a variable at its binding site
-dsuppress-uniques Suppress the printing of uniques in de- | dynamic
(page 220) bug output (easier to use diff)
-dsuppress-var-kinds Suppress the printing of variable kinds | dynamic
(page 220)
-dth-dec-file (page 215) Dump evaluated TH declarations into | dynamic
*.th.hs files
-dunique-increment=(1) Set the increment for the generated | dynamic
(page 221) Unique’s to (i).
-dverbose-core2core Show output from each core-to-core | dynamic
(page 216) pass
-dverbose-stg2stg Show output from each STG-to-STG | dynamic
(page 217) pass
-falignment-sanitisation Compile with alignment checks for all | dynamic
(page 221) info table dereferences.
-fcatch-bottoms (page 221) | Insert error expressions after bottom- | dynamic
ing expressions; useful when debug-
ging the compiler.
-fllvm-fill-undef-with-garbdntruct LLVM to fill dead STG registers | dynamic
(page 221) with garbage
-fproc-alignment (page 221) | Align functions at given boundary. dynamic
-g (page 531), -g(n) | Produce DWARF debug information in | dynamic
(page 531) compiled object files. (n) can be 0, 1,
or 2, with higher numbers producing
richer output. If (n) is omitted, level 2
is assumed.
10.6.26 Miscellaneous compiler options
Flag Description Type Reverse
-fexternal-interpreter Run interpreted code in a separate | dynamic
(page 73) process
-fglasgow-exts (page 256) Deprecated. Enable most language | dynamic| -fno-gl
extensions; see Language options
(page 253) for exactly which ones.
-ghcversion-file (path to | (GHC as a C compiler only) Use this | dynamic

ghcversion.h) (page 88)

ghcversion.h file

Continued on next page

10.6. Flag reference

147

asgow-exts

GHC User’s Guide Documentation, Release 8.6.5

Table 25 - continued from previous page

Flag Description Type Reverse
-H (size) (page 87) Set the minimum size of the heap to | dynamic

(size)
-jl(n)] (page 82) When compiling with --make | dynamic

(page 80), compile (n) modules in

parallel.

10.7 Running a compiled program

To make an executable program, the GHC system compiles your code and then links it with
a non-trivial runtime system (RTS), which handles storage management, thread scheduling,
profiling, and so on.

The RTS has a lot of options to control its behaviour. For example, you can change the context-
switch interval, the default size of the heap, and enable heap profiling. These options can be
passed to the runtime system in a variety of different ways; the next section (Setting RTS
options (page 148)) describes the various methods, and the following sections describe the
RTS options themselves.

10.7.1 Setting RTS options

There are four ways to set RTS options:

* on the command line between +RTS ... -RTS, when running the program (Setting RTS
options on the command line (page 148))

* at compile-time, using -with-rtsopts=(opts) (page 208) (Setting RTS options at com-
pile time (page 149))

» with the environment variable GHCRTS (page 149) (Setting RTS options with the GHCRTS
environment variable (page 149))

* by overriding “hooks” in the runtime system (“Hooks” to change RTS behaviour
(page 149))

10.7.1.1 Setting RTS options on the command line

If you set the -rtsopts[=(none|some|all)] flag appropriately when linking (see Options
affecting linking (page 205)), you can give RTS options on the command line when running
your program.

When your Haskell program starts up, the RTS extracts command-line arguments bracketed
between +RTS and -RTS as its own. For example:

$ ghc prog.hs -rtsopts

[1 of 1] Compiling Main (prog.hs, prog.o)
Linking prog ...

$./prog -f +RTS -H32m -S -RTS -h foo bar

The RTS will snaffle -H32m -S for itself, and the remaining arguments -f -h foo bar will be
available to your program if/when it calls System.Environment.getArgs.

No -RTS option is required if the runtime-system options extend to the end of the command
line, as in this example:

148 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

% hls -1tr /usr/etc +RTS -A5m

If you absolutely positively want all the rest of the options in a command line to go to the
program (and not the RTS), use a - -RTS.

As always, for RTS options that take (size)s: If the last character of (size) is a K or k, multiply
by 1000; if an M or m, by 1,000,000; if a G or G, by 1,000,000,000. (And any wraparound in
the counters is your fault!)

Giving a +RTS -7? RTS option option will print out the RTS options actually available in your
program (which vary, depending on how you compiled).

Note: Since GHC is itself compiled by GHC, you can change RTS options in the compiler
using the normal +RTS ... -RTS combination. For instance, to set the maximum heap size
for a compilation to 128M, you would add +RTS -M128m -RTS to the command line.

10.7.1.2 Setting RTS options at compile time

GHC lets you change the default RTS options for a program at compile time, using the
-with-rtsopts flag (Options affecting linking (page 205)). A common use for this is to give
your program a default heap and/or stack size that is greater than the default. For example,
to set -H128m -K64m, link with -with-rtsopts="-H128m -K64m".

10.7.1.3 Setting RTS options with the GHCRTS environment variable

GHCRTS
If the - rtsopts flag is set to something other than none or ignoreAll when linking, RTS
options are also taken from the environment variable GHCRTS (page 149). For example,
to set the maximum heap size to 2G for all GHC-compiled programs (using an sh-like
shell):

GHCRTS="-M2G'
export GHCRTS

RTS options taken from the GHCRTS (page 149) environment variable can be overridden
by options given on the command line.

Tip: Setting something like GHCRTS=-M2G in your environment is a handy way to avoid Haskell
programs growing beyond the real memory in your machine, which is easy to do by accident
and can cause the machine to slow to a crawl until the OS decides to kill the process (and you
hope it kills the right one).

10.7.1.4 “Hooks” to change RTS behaviour

GHC lets you exercise rudimentary control over certain RTS settings for any given program,
by compiling in a “hook” that is called by the run-time system. The RTS contains stub defi-
nitions for these hooks, but by writing your own version and linking it on the GHC command
line, you can override the defaults.

10.7. Running a compiled program 149

GHC User’s Guide Documentation, Release 8.6.5

Owing to the vagaries of DLL linking, these hooks don’t work under Windows when the pro-
gram is built dynamically.

Runtime events

You can change the messages printed when the runtime system “blows up,” e.g., on stack
overflow. The hooks for these are as follows:

void OutOfHeapHook (unsigned long, unsigned long)
The heap-overflow message.

void StackOverflowHook (long int)
The stack-overflow message.

void MallocFailHook (long int)
The message printed if malloc fails.

Event log output

Furthermore GHC lets you specify the way event log data (see -1 (page 233)) is written
through a custom EventLogWriter (page 150):

EventLogWriter
A sink of event-log data.

void initEventLogWriter (void)
Initializes your EventLogWriter (page 150). This is optional.

bool writeEventLog(void *eventlog, size t eventlog size)
Hands buffered event log data to your event log writer. Required for a custom
EventLogWriter (page 150).

void flushEventLog(void)
Flush buffers (if any) of your custom EventLogWriter (page 150). This can be NULL.

void stopEventLogWriter (void)
Called when event logging is about to stop. This can be NULL.

10.7.2 Miscellaneous RTS options

--install-signal-handlers=(yes|no)
If yes (the default), the RTS installs signal handlers to catch things like Ctrl-C. This
option is primarily useful for when you are using the Haskell code as a DLL, and want to
set your own signal handlers.

Note that even with --install-signal-handlers=no, the RTS interval timer signal is
still enabled. The timer signal is either SIGVTALRM or SIGALRM, depending on the RTS
configuration and OS capabilities. To disable the timer signal, use the -V0 RTS option
(see -V (secs) (page 228)).

--install-seh-handlers=(yes|no)
If yes (the default), the RTS on Windows installs exception handlers to catch unhandled
exceptions using the Windows exception handling mechanism. This option is primarily
useful for when you are using the Haskell code as a DLL, and don’t want the RTS to
ungracefully terminate your application on erros such as segfaults.

150 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

--generate-crash-dumps

If yes (the default), the RTS on Windows will generate a core dump on any crash. These
dumps can be inspected using debuggers such as WinDBG. The dumps record all code,
registers and threading information at the time of the crash. Note that this implies -
install-seh-handlers=yes.

--generate-stack-traces=<yes|no>

=Xm

-Xq

If yes (the default), the RTS on Windows will generate a stack trace on crashes if excep-
tion handling are enabled. In order to get more information in compiled executables, C
code or DLLs symbols need to be available.

(address)

Warning: This option is for working around memory allocation problems only. Do not
use unless GHCi fails with a message like “failed to mmap() memory below 2Gb”.
If you need to use this option to get GHCi working on your machine, please file a bug.

On 64-bit machines, the RTS needs to allocate memory in the low 2Gb of the address
space. Support for this across different operating systems is patchy, and sometimes
fails. This option is there to give the RTS a hint about where it should be able to allocate
memory in the low 2Gb of the address space. For example, +RTS -xm20000000 -RTS
would hint that the RTS should allocate starting at the 0.5Gb mark. The default is to
use the OS’s built-in support for allocating memory in the low 2Gb if available (e.g. mmap
with MAP_32BIT on Linux), or otherwise -xm40000000.

(size)
Default 100k

This option relates to allocation limits; for more about this see
GHC.Conc.enableAllocationLimit. When a thread hits its allocation limit, the RTS
throws an exception to the thread, and the thread gets an additional quota of allocation
before the exception is raised again, the idea being so that the thread can execute its
exception handlers. The -xq controls the size of this additional quota.

10.7.3 RTS options to control the garbage collector

There are several options to give you precise control over garbage collection. Hopefully, you
won’t need any of these in normal operation, but there are several things that can be tweaked
for maximum performance.

-A (size)

Default 1MB

Set the allocation area size used by the garbage collector. The allocation area (actually
generation O step 0) is fixed and is never resized (unlessyouuse -H [(size)] (page 154),
below).

Increasing the allocation area size may or may not give better performance (a bigger
allocation area means worse cache behaviour but fewer garbage collections and less
promotion).

With only 1 generation (e.g. -G1, see -G (generations) (page 153)) the -A option spec-
ifies the minimum allocation area, since the actual size of the allocation area will be

10.7. Running a compiled program 151

../libraries/base-4.12.0.0/GHC-Conc.html#v:enableAllocationLimit

GHC User’s Guide Documentation, Release 8.6.5

-AL

resized according to the amount of data in the heap (see -F (factor) (page 153), be-
low).

(size)
Default -A (page 151) value
Since 8.2.1

Sets the limit on the total size of “large objects” (objects larger than about 3KB) that
can be allocated before a GC is triggered. By default this limit is the same as the -A
(page 151) value.

Large objects are not allocated from the normal allocation area set by the -A flag, which
is why there is a separate limit for these. Large objects tend to be much rarer than small
objects, so most programs hit the -A limit before the -AL limit. However, the -A limit
is per-capability, whereas the -AL limit is global, so as -N gets larger it becomes more
likely that we hit the -AL limit first. To counteract this, it might be necessary to use a
larger -AL limit when using a large -N.

To see whether you’'re making good use of all the memory reseverd for the allocation area
(-A times -N), look at the output of +RTS -S and check whether the amount of memory
allocated between GCs is equal to -A times -N. If not, there are two possible remedies:
use -n to set a nursery chunk size, or use -AL to increase the limit for large objects.

-0 (size)

Default 1m

Set the minimum size of the old generation. The old generation is collected whenever it
grows to this size or the value of the -F (factor) (page 153) option multiplied by the
size of the live data at the previous major collection, whichever is larger.

-n (size)

Default 4m with -Al16m (page 151) or larger, otherwise 0.

[Example: -n4m] When set to a non-zero value, this option divides the allocation area (-A
value) into chunks of the specified size. During execution, when a processor exhausts
its current chunk, it is given another chunk from the pool until the pool is exhausted, at
which point a collection is triggered.

This option is only useful when running in parallel (-N2 or greater). It allows the pro-
cessor cores to make better use of the available allocation area, even when cores are
allocating at different rates. Without -n, each core gets a fixed-size allocation area spec-
ified by the -A, and the first core to exhaust its allocation area triggers a GC across all
the cores. This can result in a collection happening when the allocation areas of some
cores are only partially full, so the purpose of the -n is to allow cores that are allocating
faster to get more of the allocation area. This means less frequent GC, leading a lower
GC overhead for the same heap size.

This is particularly useful in conjunction with larger -A values, for example -A64m -n4m
is a useful combination on larger core counts (8+).

Use a compacting algorithm for collecting the oldest generation. By default, the oldest
generation is collected using a copying algorithm; this option causes it to be compacted
in-place instead. The compaction algorithm is slower than the copying algorithm, but
the savings in memory use can be considerable.

For a given heap size (using the -H (size) (page 87) option), compaction can in fact
reduce the GC cost by allowing fewer GCs to be performed. This is more likely when the

152

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

ratio of live data to heap size is high, say greater than 30%.

Note: Compaction doesn’t currently work when a single generation is requested using
the -G1 option.

-c (n)

Default 30

Automatically enable compacting collection when the live data exceeds (n)% of the max-
imum heap size (see the -M (size) (page 156) option). Note that the maximum heap
size is unlimited by default, so this option has no effect unless the maximum heap size is
set with -M (size) (page 156).

-F (factor)

Default 2

This option controls the amount of memory reserved for the older generations (and in
the case of a two space collector the size of the allocation area) as a factor of the amount
of live data. For example, if there was 2M of live data in the oldest generation when we
last collected it, then by default we’ll wait until it grows to 4M before collecting it again.

The default seems to work well here. If you have plenty of memory, it is usually better to
use -H (size) (see -H [(size)] (page 154)) than to increase -F (factor) (page 153).

The -F (factor) (page 153) setting will be automatically reduced by the garbage col-
lector when the maximum heap size (the -M (size) (page 156) setting) is approaching.

-G (generations)

-q9

Default 2

Set the number of generations used by the garbage collector. The default of 2 seems
to be good, but the garbage collector can support any number of generations. Anything
larger than about 4 is probably not a good idea unless your program runs for a long time,
because the oldest generation will hardly ever get collected.

Specifying 1 generation with +RTS -G1 gives you a simple 2-space collector, as you would
expect. In a 2-space collector, the -A (size) (page 151) option specifies the minimum
allocation area size, since the allocation area will grow with the amount of live data in
the heap. In a multi-generational collector the allocation area is a fixed size (unless you
use the -H [(size)] (page 154) option).

(gen)
Default 0
Since 6.12.1

Use parallel GC in generation {gen) and higher. Omitting {(gen) turns off the parallel GC
completely, reverting to sequential GC.

The default parallel GC settings are usually suitable for parallel programs (i.e. those
using GHC.Conc.par, Strategies, or with multiple threads). However, it is sometimes
beneficial to enable the parallel GC for a single-threaded sequential program too, espe-
cially if the program has a large amount of heap data and GC is a significant fraction of
runtime. To use the parallel GC in a sequential program, enable the parallel runtime with
a suitable -N (x) (page 116) option, and additionally it might be beneficial to restrict
parallel GC to the old generation with -qgl.

10.7. Running a compiled program 153

../libraries/base-4.12.0.0/GHC-Conc.html#v:par

GHC User’s Guide Documentation, Release 8.6.5

-qb

-qn

(gen)
Default 1 for -A (page 151) < 32M, 0 otherwise
Since 6.12.1

Use load-balancing in the parallel GC in generation (gen) and higher. Omitting (gen)
disables load-balancing entirely.

Load-balancing shares out the work of GC between the available cores. This is a good
idea when the heap is large and we need to parallelise the GC work, however it is also
pessimal for the short young-generation collections in a parallel program, because it
can harm locality by moving data from the cache of the CPU where is it being used to
the cache of another CPU. Hence the default is to do load-balancing only in the old-
generation. In fact, for a parallel program it is sometimes beneficial to disable load-
balancing entirely with -qgb.

(x)

Default the value of -N (page 116) or the number of CPU cores, whichever is
smaller.

Since 8.2.1

By default, all of the capabilities participate in parallel garbage collection. If we want to
use a very large -N value, however, this can reduce the performance of the GC. For this
reason, the -gn flag can be used to specify a lower number for the threads that should
participate in GC. During GC, if there are more than this number of workers active, some
of them will sleep for the duration of the GC.

The -qn flag may be useful when running with a large -A value (so that GC is infrequent),
and a large -N value (so as to make use of hyperthreaded cores, for example). For ex-
ample, on a 24-core machine with 2 hyperthreads per core, we might use -N48 -qn24
-A128m to specify that the mutator should use hyperthreads but the GC should only use
real cores. Note that this configuration would use 6GB for the allocation area.

-H [(size)]

Default 0

This option provides a “suggested heap size” for the garbage collector. Think of -Hsize
as a variable -A (size) (page 151) option. It says: I want to use at least (size) bytes, so
use whatever is left over to increase the -A value.

This option does not put a limit on the heap size: the heap may grow beyond the given
size as usual.

If (size) is omitted, then the garbage collector will take the size of the heap at the pre-
vious GC as the (size). This has the effect of allowing for a larger -A value but without
increasing the overall memory requirements of the program. It can be useful when the
default small -A value is suboptimal, as it can be in programs that create large amounts
of long-lived data.

-I (seconds)

Default 0.3 seconds

In the threaded and SMP versions of the RTS (see -threaded (page 207), Options af-
fecting linking (page 205)), a major GC is automatically performed if the runtime has
been idle (no Haskell computation has been running) for a period of time. The amount of
idle time which must pass before a GC is performed is set by the -I (seconds) option.
Specifying -I0 disables the idle GC.

154

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

-ki

-kc

-kb

For an interactive application, it is probably a good idea to use the idle GC, because this
will allow finalizers to run and deadlocked threads to be detected in the idle time when
no Haskell computation is happening. Also, it will mean that a GC is less likely to happen
when the application is busy, and so responsiveness may be improved. However, if the
amount of live data in the heap is particularly large, then the idle GC can cause a signif-
icant delay, and too small an interval could adversely affect interactive responsiveness.

This is an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

(size)
Default 1k
Set the initial stack size for new threads.

Thread stacks (including the main thread’s stack) live on the heap. As the stack grows,
new stack chunks are added as required; if the stack shrinks again, these extra stack
chunks are reclaimed by the garbage collector. The default initial stack size is delib-
erately small, in order to keep the time and space overhead for thread creation to a
minimum, and to make it practical to spawn threads for even tiny pieces of work.

Note: This flag used to be simply -k, but was renamed to -ki in GHC 7.2.1. The old
name is still accepted for backwards compatibility, but that may be removed in a future
version.

(size)
Default 32k

Set the size of “stack chunks”. When a thread’s current stack overflows, a new stack
chunk is created and added to the thread’s stack, until the limit set by -K (size)
(page 155) is reached.

The advantage of smaller stack chunks is that the garbage collector can avoid traversing
stack chunks if they are known to be unmodified since the last collection, so reducing
the chunk size means that the garbage collector can identify more stack as unmodified,
and the GC overhead might be reduced. On the other hand, making stack chunks too
small adds some overhead as there will be more overflow/underflow between chunks.
The default setting of 32k appears to be a reasonable compromise in most cases.

(size)
Default 1k

Sets the stack chunk buffer size. When a stack chunk overflows and a new stack chunk
is created, some of the data from the previous stack chunk is moved into the new chunk,
to avoid an immediate underflow and repeated overflow/underflow at the boundary. The
amount of stack moved is set by the -kb option.

Note that to avoid wasting space, this value should typically be less than 10% of the
size of a stack chunk (-kc (size) (page 155)), because in a chain of stack chunks, each
chunk will have a gap of unused space of this size.

-K (size)

Default 80% of physical memory

10.7. Running a compiled program 155

GHC User’s Guide Documentation, Release 8.6.5

Set the maximum stack size for an individual thread to (size) bytes. If the thread at-
tempts to exceed this limit, it will be sent the StackOverflow exception. The limit can
be disabled entirely by specifying a size of zero.

This option is there mainly to stop the program eating up all the available memory in the
machine if it gets into an infinite loop.

-m (n)

Default 3%

Minimum % (n) of heap which must be available for allocation.

-M (size)

Default unlimited

Set the maximum heap size to (size) bytes. The heap normally grows and shrinks accord-
ing to the memory requirements of the program. The only reason for having this option
is to stop the heap growing without bound and filling up all the available swap space,
which at the least will result in the program being summarily killed by the operating
system.

The maximum heap size also affects other garbage collection parameters: when the
amount of live data in the heap exceeds a certain fraction of the maximum heap size,
compacting collection will be automatically enabled for the oldest generation, and the
-F parameter will be reduced in order to avoid exceeding the maximum heap size.

-Mgrace=(size)

Default 1M

If the program’s heap exceeds the value set by -M (size) (page 156), the RTS throws
an exception to the program, and the program gets an additional quota of allocation
before the exception is raised again, the idea being so that the program can execute its
exception handlers. -Mgrace= controls the size of this additional quota.

--numa
- -numa=<mask>

Enable NUMA-aware memory allocation in the runtime (only available with -threaded,
and only on Linux and Windows currently).

Background: some systems have a Non-Uniform Memory Architecture, whereby main
memory is split into banks which are “local” to specific CPU cores. Accessing local
memory is faster than accessing remote memory. The OS provides APIs for allocating
local memory and binding threads to particular CPU cores, so that we can ensure certain
memory accesses are using local memory.

The --numa option tells the RTS to tune its memory usage to maximize local memory
accesses. In particular, the RTS will:

* Determine the number of NUMA nodes (N) by querying the OS.

* Manage separate memory pools for each node.

* Map capabilities to NUMA nodes. Capability C is mapped to NUMA node C mod N.
* Bind worker threads on a capability to the appropriate node.

* Allocate the nursery from node-local memory.

¢ Perform other memory allocation, including in the GC, from node-local memory.

156

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

* When load-balancing, we prefer to migrate threads to another Capability on the
same node.

The - -numa flag is typically beneficial when a program is using all cores of a large multi-
core NUMA system, with a large allocation area (-A). All memory accesses to the alloca-
tion area will go to local memory, which can save a significant amount of remote memory
access. A runtime speedup on the order of 10% is typical, but can vary a lot depending
on the hardware and the memory behaviour of the program.

Note that the RTS will not set CPU affinity for bound threads and threads entering
Haskell from C/C++, so if your program uses bound threads you should ensure that each
bound thread calls the RTS API rts setInCallCapability(c,1) from C/C++ before calling
into Haskell. Otherwise there could be a mismatch between the CPU that the thread is
running on and the memory it is using while running Haskell code, which will negate
any benefits of - -numa.

If given an explicit <mask>, the <mask> is interpreted as a bitmap that indicates the
NUMA nodes on which to run the program. For example, --numa=3 would run the pro-
gram on NUMA nodes 0 and 1.

--long-gc-sync
--long-gc-sync=<seconds>

When a GC starts, all the running mutator threads have to stop and synchronise. The
period between when the GC is initiated and all the mutator threads are stopped is called
the GC synchronisation phase. If this phase is taking a long time (longer than 1ms is
considered long), then it can have a severe impact on overall throughput.

A long GC sync can be caused by a mutator thread that is inside an unsafe FFI call, or
running in a loop that doesn’t allocate memory and so doesn’t yield. To fix the former,
make the call safe, and to fix the latter, either avoid calling the code in question or
compile it with - fomit-yields (page 109).

By default, the flag will cause a warning to be emitted to stderr when the sync
time exceeds the specified time. This behaviour can be overriden, however: the
longGCSync () hook is called when the sync time is exceeded during the sync period,
and the longGCSyncEnd () hook at the end. Both of these hooks can be overriden in the
RtsConfig when the runtime is started with hs init ghc(). The default implementa-
tions of these hooks (LongGcSync () and LongGCSyncEnd () respectively) print warnings
to stderr.

One way to use this flag is to set a breakpoint on LongGCSync () in the debugger, and find
the thread that is delaying the sync. You probably want to use -g (page 531) to provide
more info to the debugger.

The GC sync time, along with other GC stats, are available by calling the getRTSStats ()
function from C, or GHC.Stats.getRTSStats from Haskell.

10.7.4 RTS options to produce runtime statistics

-T

-t [(file)]
-s [(file)]
-S [(file)]
--machine-readable
--internal-counters

These options produce runtime-system statistics, such as the amount of time spent exe-
cuting the program and in the garbage collector, the amount of memory allocated, the

10.7. Running a compiled program 157

GHC User’s Guide Documentation, Release 8.6.5

maximum size of the heap, and so on. The three variants give different levels of detail:
-T collects the data but produces no output -t produces a single line of output in the
same format as GHC’s -Rghc-timing option, -s produces a more detailed summary at
the end of the program, and -S additionally produces information about each and every
garbage collection. Passing --internal-counters to a threaded runtime will cause a
detailed summary to include various internal counts accumulated during the run; note
that these are unspecified and may change between releases.

The output is placed in (file). If {file) is omitted, then the output is sent to stderr.
If you use the -T flag then, you should access the statistics using GHC.Stats.

If you use the -t flag then, when your program finishes, you will see something like this:

<<ghc: 36169392 bytes, 69 GCs, 603392/1065272 avg/max bytes residency (2 samples),
< 3M in use, 0.00 INIT (0.00 elapsed), 0.02 MUT (0.02 elapsed), 0.07 GC (0.07,
—elapsed) :ghc>>

This tells you:
* The total number of bytes allocated by the program over the whole run.
* The total number of garbage collections performed.

* The average and maximum “residency”, which is the amount of live data in bytes.
The runtime can only determine the amount of live data during a major GC, which is
why the number of samples corresponds to the number of major GCs (and is usually
relatively small). To get a better picture of the heap profile of your program, use the
-hT (page 160) RTS option (RTS options for profiling (page 160)).

* The peak memory the RTS has allocated from the OS.

* The amount of CPU time and elapsed wall clock time while initialising the runtime
system (INIT), running the program itself (MUT, the mutator), and garbage collect-
ing (GC).

You can also get this in a more future-proof, machine readable format, with -t
--machine-readable:

[("bytes allocated", "36169392")

, ("num GCs", "69")

, ("average bytes used", "603392")
, ("max_bytes used", "1065272")

, ("num_byte usage samples", "2")

, ("peak megabytes allocated", "3")
,("init _cpu_seconds", "0.00")
,("init wall seconds", "0.00")

, ("mutator cpu seconds", "0.02")

, ("mutator wall seconds", "0.02")
, ("GC cpu seconds", "0.07")

, ("GC wall seconds", "0.07")

1

If you use the -s flag then, when your program finishes, you will see something like this
(the exact details will vary depending on what sort of RTS you have, e.g. you will only
see profiling data if your RTS is compiled for profiling):

36,169,392 bytes allocated in the heap
4,057,632 bytes copied during GC
1,065,272 bytes maximum residency (2 sample(s))

(continues on next page)

158 Chapter 10. Using GHC

../libraries/base-4.12.0.0/GHC-Stats.html

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

Gene
Gene

SPAR
INIT
MUT
GC
EXIT
Tota
%GC
Allo

Prod

54,312 bytes maximum slop
3 MB total memory in use (0 MB lost due to fragmentation)

ration 0: 67 collections, 0 parallel, 0.04s, 0.03s elapsed
ration 1: 2 collections, 0 parallel, 0.03s, 0.04s elapsed
KS: 359207 (557 converted, 149591 pruned)

time 0.00s
time 0.01s
time 0.07s
time 0.00s
1 time 0.08s

0.00s elapsed)
0.02s elapsed)
0.07s elapsed)
0.00s elapsed)
0.09s elapsed)

—~ e~ e~~~

time 89.5% (75.3% elapsed)
c rate 4,520,608,923 bytes per MUT second

uctivity 10.5% of total user, 9.1% of total elapsed

The “bytes allocated in the heap” is the total bytes allocated by the program over
the whole run.

GHC uses a copying garbage collector by default. “bytes copied during GC” tells
you how many bytes it had to copy during garbage collection.

The maximum space actually used by your program is the “bytes maximum resi-
dency” figure. This is only checked during major garbage collections, so it is only
an approximation; the number of samples tells you how many times it is checked.

The “bytes maximum slop” tells you the most space that is ever wasted due to the
way GHC allocates memory in blocks. Slop is memory at the end of a block that
was wasted. There’s no way to control this; we just like to see how much memory is
being lost this way.

The “total memory in use” tells you the peak memory the RTS has allocated from
the OS.

Next there is information about the garbage collections done. For each generation it
says how many garbage collections were done, how many of those collections were
done in parallel, the total CPU time used for garbage collecting that generation, and
the total wall clock time elapsed while garbage collecting that generation.

The SPARKS statistic refers to the use of Control.Parallel.par and related func-
tionality in the program. Each spark represents a call to par; a spark is “converted”
when it is executed in parallel; and a spark is “pruned” when it is found to be already
evaluated and is discarded from the pool by the garbage collector. Any remaining
sparks are discarded at the end of execution, so “converted” plus “pruned” does not
necessarily add up to the total.

Next there is the CPU time and wall clock time elapsed broken down by what the
runtime system was doing at the time. INIT is the runtime system initialisation.
MUT is the mutator time, i.e. the time spent actually running your code. GC is the
time spent doing garbage collection. RP is the time spent doing retainer profiling.
PROF is the time spent doing other profiling. EXIT is the runtime system shutdown
time. And finally, Total is, of course, the total.

10.7.

Running a compiled program 159

GHC User’s Guide Documentation, Release 8.6.5

%GC time tells you what percentage GC is of Total. “Alloc rate” tells you the “bytes
allocated in the heap” divided by the MUT CPU time. “Productivity” tells you what
percentage of the Total CPU and wall clock elapsed times are spent in the mutator
(MUT).

The -S flag, as well as giving the same output as the -s flag, prints information about
each GC as it happens:

Alloc Copied Live GC GC TOT TOT Page Flts

bytes bytes bytes user elap user elap

528496 47728 141512 0.01 0.02 0.02 0.02 0 0 (Gen: 1)
]

[...
524944 175944 1726384 0.00 0.00 0.08 0.11 0 0 (Gen: 0)

For each garbage collection, we print:
* How many bytes we allocated this garbage collection.
* How many bytes we copied this garbage collection.
* How many bytes are currently live.
* How long this garbage collection took (CPU time and elapsed wall clock time).
* How long the program has been running (CPU time and elapsed wall clock time).
* How many page faults occurred this garbage collection.
* How many page faults occurred since the end of the last garbage collection.

* Which generation is being garbage collected.

10.7.5 RTS options for concurrency and parallelism

The RTS options related to concurrency are described in Using Concurrent Haskell
(page 115), and those for parallelism in RTS options for SMP parallelism (page 116).

10.7.6 RTS options for profiling

Most profiling runtime options are only available when you compile your program for profiling
(see Compiler options for profiling (page 227), and RTS options for heap profiling (page 232)
for the runtime options). However, there is one profiling option that is available for ordinary
non-profiled executables:

-hT

-h
Generates a basic heap profile, in the file prog.hp. To produce the heap profile graph,
use hp2ps (see hpZ2ps - Rendering heap profiles to PostScript (page 236)). The basic
heap profile is broken down by data constructor, with other types of closures (functions,
thunks, etc.) grouped into broad categories (e.g. FUN, THUNK). To get a more detailed
profile, use the full profiling support (Profiling (page 223)). Can be shortened to -h
(page 160).

-L (n)
Default 25 characters

Sets the maximum length of the cost-centre names listed in the heap profile.

160 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

10.7.7 Tracing

When the program is linked with the -eventlog (page 208) option (Options affecting linking
(page 205)), runtime events can be logged in several ways:

* In binary format to a file for later analysis by a variety of tools. One such tool is Thread-
Scope, which interprets the event log to produce a visual parallel execution profile of
the program.

* In binary format to customized event log writer. This enables live analysis of the events
while the program is running.

* As text to standard output, for debugging purposes.

-1 (flags)
Log events in binary format. Without any (flags) specified, this logs a default set of
events, suitable for use with tools like ThreadScope.

Per default the events are written to program.eventlog though the mechanism for writ-
ing event log data can be overriden with a custom EventLogWriter.

For some special use cases you may want more control over which events are included.
The (flags) is a sequence of zero or more characters indicating which classes of events
to log. Currently these the classes of events that can be enabled/disabled:

* s — scheduler events, including Haskell thread creation and start/stop events. En-
abled by default.

* g — GC events, including GC start/stop. Enabled by default.
* p — parallel sparks (sampled). Enabled by default.
* f — parallel sparks (fully accurate). Disabled by default.

* u — user events. These are events emitted from Haskell code using functions such
as Debug.Trace.traceEvent. Enabled by default.

You can disable specific classes, or enable/disable all classes at once:
* a — enable all event classes listed above
* -(x) — disable the given class of events, for any event class listed above
* -a — disable all classes
For example, -1-ag would disable all event classes (-a) except for GC events (g).

For spark events there are two modes: sampled and fully accurate. There are various
events in the life cycle of each spark, usually just creating and running, but there are
some more exceptional possibilities. In the sampled mode the number of occurrences
of each kind of spark event is sampled at frequent intervals. In the fully accurate mode
every spark event is logged individually. The latter has a higher runtime overhead and
is not enabled by default.

The format of the log file is described by the header EventLogFormat.h that comes with
GHC, and it can be parsed in Haskell using the ghc-events library. To dump the contents
of a .eventlog file as text, use the tool ghc-events show that comes with the ghc-events
package.

-v [(flags)]
Log events as text to standard output, instead of to the .eventlog file. The (flags) are the
same as for -1, with the additional option t which indicates that the each event printed

10.7. Running a compiled program 161

http://www.haskell.org/haskellwiki/ThreadScope
http://www.haskell.org/haskellwiki/ThreadScope
http://hackage.haskell.org/package/ghc-events
http://hackage.haskell.org/package/ghc-events

GHC User’s Guide Documentation, Release 8.6.5

should be preceded by a timestamp value (in the binary .eventlog file, all events are
automatically associated with a timestamp).

The debugging options -Dx also generate events which are logged using the tracing frame-
work. By default those events are dumped as text to stdout (-Dx implies -v), but they may
instead be stored in the binary eventlog file by using the -1 option.

10.7.8 RTS options for hackers, debuggers, and over-interested souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what’s really happening”,
or (c) because you feel like it. Not recommended for everyday use!

-B

Sound the bell at the start of each (major) garbage collection.

Oddly enough, people really do use this option! Our pal in Durham (England), Paul
Callaghan, writes: “Some people here use it for a variety of purposes—honestly!—e.g.,
confirmation that the code/machine is doing something, infinite loop detection, gauging
cost of recently added code. Certain people can even tell what stage [the program] is in
by the beep pattern. But the major use is for annoying others in the same office...”

-D (x)

An RTS debugging flag; only available if the program was linked with the -debug
(page 207) option. Various values of (x) are provided to enable debug messages and
additional runtime sanity checks in different subsystems in the RTS, for example +RTS
-Ds -RTS enables debug messages from the scheduler. Use +RTS -? to find out which
debug flags are supported.

Debug messages will be sent to the binary event log file instead of stdout if the -1
(page 233) option is added. This might be useful for reducing the overhead of debug
tracing.

-r (file)

=XC

Produce “ticky-ticky” statistics at the end of the program run (only available if the pro-
gram was linked with -debug (page 207)). The (file) business works just like on the -S
[(file)] (page 157) RTS option, above.

For more information on ticky-ticky profiling, see Using “ticky-ticky” profiling (for im-
plementors) (page 245).

(Only available when the program is compiled for profiling.) When an exception is raised
in the program, this option causes a stack trace to be dumped to stderr.

This can be particularly useful for debugging: if your program is complaining about a
head [] error and you haven’t got a clue which bit of code is causing it, compiling with
-prof -fprof-auto (see -prof (page 227)) and running with +RTS -xc -RTS will tell
you exactly the call stack at the point the error was raised.

The output contains one report for each exception raised in the program (the program
might raise and catch several exceptions during its execution), where each report looks
something like this:

*** Exception raised (reporting due to +RTS -xc), stack trace:
GHC.List.CAF
--> evaluated by: Main.polynomial.table search,
called from Main.polynomial.theta index,
called from Main.polynomial,

(continues on next page)

162

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

called from Main.zonal pressure,

called from Main.make pressure.p,

called from Main.make pressure,

called from Main.compute initial state.p,
called from Main.compute initial state,
called from Main.CAF

The stack trace may often begin with something uninformative like GHC.List.CAF; this
is an artifact of GHC’s optimiser, which lifts out exceptions to the top-level where the
profiling system assigns them to the cost centre “CAF”. However, +RTS -xc doesn’t just
print the current stack, it looks deeper and reports the stack at the time the CAF was
evaluated, and it may report further stacks until a non-CAF stack is found. In the example
above, the next stack (after --> evaluated by) contains plenty of information about
what the program was doing when it evaluated head [].

Implementation details aside, the function names in the stack should hopefully give you
enough clues to track down the bug.

See also the function traceStack in the module Debug.Trace for another way to view
call stacks.

Turn off “update-frame squeezing” at garbage-collection time. (There’s no particularly
good reason to turn it off, except to ensure the accuracy of certain data collected regard-
ing thunk entry counts.)

10.7.9 Getting information about the RTS

--info

It is possible to ask the RTS to give some information about itself. To do this, use the
--1info (page 163) flag, e.g.

$./a.out +RTS --info
[("GHC RTS", "YES")

, ("GHC version", "6.7")

, ("RTS way", "rts p")

, ("Host platform", "x86_64-unknown-linux")

, ("Host architecture", "x86 64")

, ("Host 0S", "linux")

, ("Host vendor", "unknown")

, ("Build platform", "x86 64-unknown-linux")
, ("Build architecture", "x86 _64")

, ("Build 0S", "linux")

, ("Build vendor", "unknown")

, ("Target platform", "x86 64-unknown-linux")
,("Target architecture", "x86 _64")

, ("Target 0S", "linux")

, ("Target vendor", "unknown")

,("Word size", "64")

, ("Compiler unregisterised", "NO")

, ("Tables next to code", "YES")

1

The information is formatted such that it can be read as a of type [(String, String)].
Currently the following fields are present:

10.7. Running a compiled program 163

GHC User’s Guide Documentation, Release 8.6.5

GHC RTS Is this program linked against the GHC RTS? (always “YES”).
GHC version The version of GHC used to compile this program.

RTS way The variant (“way”) of the runtime. The most common values are rts v
(vanilla), rts_ thr (threaded runtime, i.e. linked using the -threaded (page 207)
option) and rts p (profiling runtime, i.e. linked using the -prof (page 227) option).
Other variants include debug (linked using -debug (page 207)), and dyn (the RTS
is linked in dynamically, i.e. a shared library, rather than statically linked into the
executable itself). These can be combined, e.g. you might have rts _thr_debug p.

Target platformTarget architectureTarget 0STarget vendor These are the plat-
form the program is compiled to run on.

Build platformBuild architectureBuild 0SBuild vendor These are the platform
where the program was built on. (That is, the target platform of GHC itself.) Or-
dinarily this is identical to the target platform. (It could potentially be different if
cross-compiling.)

Host platformHost architectureHost 0SHost vendor These are the platform where
GHC itself was compiled. Again, this would normally be identical to the build and
target platforms.

Word size Either "32" or "64", reflecting the word size of the target platform.

Compiler unregistered Was this program compiled with an “unregistered” (page 199)
version of GHC? (I.e., a version of GHC that has no platform-specific optimisations
compiled in, usually because this is a currently unsupported platform.) This value
will usually be no, unless you’'re using an experimental build of GHC.

Tables next to code Putting info tables directly next to entry code is a useful perfor-
mance optimisation that is not available on all platforms. This field tells you whether
the program has been compiled with this optimisation. (Usually yes, except on un-
usual platforms.)

10.8 Filenames and separate compilation

This section describes what files GHC expects to find, what files it creates, where these files
are stored, and what options affect this behaviour.

Pathname conventions vary from system to system. In particular, the directory separator
is “/” on Unix systems and “\” on Windows systems. In the sections that follow, we shall
consistently use “/” as the directory separator; substitute this for the appropriate character
for your system.

10.8.1 Haskell source files

Each Haskell source module should be placed in a file on its own.

Usually, the file should be named after the module name, replacing dots in the module name
by directory separators. For example, on a Unix system, the module A.B.C should be placed
in the file A/B/C. hs, relative to some base directory. If the module is not going to be imported
by another module (Main, for example), then you are free to use any filename for it.

GHC assumes that source files are ASCII or UTF-8 only, other encoding are not recognised.
However, invalid UTF-8 sequences will be ignored in comments, so it is possible to use other
encodings such as Latin-1, as long as the non-comment source code is ASCII only.

164 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

10.8.2 Output files

When asked to compile a source file, GHC normally generates two files: an object file, and an
interface file.

The object file, which normally ends in a . o suffix, contains the compiled code for the module.

The interface file, which normally ends in a .hi suffix, contains the information that GHC
needs in order to compile further modules that depend on this module. It contains things like
the types of exported functions, definitions of data types, and so on. It is stored in a binary
format, so don’t try to read one; use the --show-iface (file) (page 80) option instead (see
Other options related to interface files (page 169)).

You should think of the object file and the interface file as a pair, since the interface file is in a
sense a compiler-readable description of the contents of the object file. If the interface file and
object file get out of sync for any reason, then the compiler may end up making assumptions
about the object file that aren’t true; trouble will almost certainly follow. For this reason,
we recommend keeping object files and interface files in the same place (GHC does this by
default, but it is possible to override the defaults as we’ll explain shortly).

Every module has a module name defined in its source code (module A.B.C where ...).

The name of the object file generated by GHC is derived according to the following rules,
where (osuf) is the object-file suffix (this can be changed with the -osuf option).

» If there is no -odir option (the default), then the object filename is derived from the
source filename (ignoring the module name) by replacing the suffix with (osuf).

e If -odir (dir) has been specified, then the object filename is (dir)/(mod).(osuf), where
({mod) is the module name with dots replaced by slashes. GHC will silently create the
necessary directory structure underneath (dir), if it does not already exist.

The name of the interface file is derived using the same rules, except that the suffix is (hisuf)
(.hi by default) instead of (osuf), and the relevant options are -hidir (dir) (page 167)
and -hisuf (suffix) (page 167) instead of -odir (dir) (page 167) and -osuf (suffix)
(page 167) respectively.

For example, if GHC compiles the module A.B.C in the file src/A/B/C.hs, with no -odir or
-hidir flags, the interface file will be putin src/A/B/C. hi and the object file in src/A/B/C. 0.

For any module that is imported, GHC requires that the name of the module in the import
statement exactly matches the name of the module in the interface file (or source file) found
using the strategy specified in The search path (page 165). This means that for most modules,
the source file name should match the module name.

However, note that it is reasonable to have a module Main in a file named foo.hs, but this
only works because GHC never needs to search for the interface for module Main (because it
is never imported). It is therefore possible to have several Main modules in separate source
files in the same directory, and GHC will not get confused.

In batch compilation mode, the name of the object file can also be overridden using the -0
(file) (page 166) option, and the name of the interface file can be specified directly using
the -ohi (file) (page 167) option.

10.8.3 The search path

In your program, you import a module Foo by saying import Foo. In - -make (page 80) mode
or GHCi, GHC will look for a source file for Foo and arrange to compile it first. Without - -make
(page 80), GHC will look for the interface file for Foo, which should have been created by an

10.8. Filenames and separate compilation 165

GHC User’s Guide Documentation, Release 8.6.5

earlier compilation of Foo. GHC uses the same strategy in each of these cases for finding the
appropriate file.

This strategy is as follows: GHC keeps a list of directories called the search path. For each
of these directories, it tries appending (basename) . (extension) to the directory, and checks
whether the file exists. The value of (basename) is the module name with dots replaced by
the directory separator (“/” or “\\", depending on the system), and (extension) is a source
extension (hs, lhs) if we are in - -make (page 80) mode or GHCi, or (hisuf) otherwise.

For example, suppose the search path contains directories d1, d2, and d3, and we are in
- -make (page 80) mode looking for the source file for a module A.B.C. GHC will look in d1/
A/B/C.hs, d1/A/B/C.1hs, d2/A/B/C.hs, and so on.

The search path by default contains a single directory: “.” (i.e. the current directory). The
following options can be used to add to or change the contents of the search path:
-i(dir)[:(dir)]*

This flag appends a colon-separated list of dirs to the search path.

resets the search path back to nothing.

This isn’t the whole story: GHC also looks for modules in pre-compiled libraries, known as
packages. See the section on packages (Packages (page 181)) for details.

10.8.4 Redirecting the compilation output(s)

-0 (file)
GHC'’s compiled output normally goes into a . hc, .0, etc., file, depending on the last-run
compilation phase. The option -0 file re-directs the output of that last-run phase to
(file).

Note: This “feature” can be counterintuitive: ghc -C -0 foo.o foo.hs will put the
intermediate C code in the file f00.0, name notwithstanding!

This option is most often used when creating an executable file, to set the filename of
the executable. For example:

ghc -o prog --make Main

will compile the program starting with module Main and put the executable in the file
prog.

Note: on Windows, if the result is an executable file, the extension “.exe” is added if the
specified filename does not already have an extension. Thus

ghc -o foo Main.hs

will compile and link the module Main.hs, and put the resulting executable in foo.exe
(not foo).

If you use ghc --make and you don’t use the -o, the name GHC will choose for the
executable will be based on the name of the file containing the module Main. Note that
with GHC the Main module doesn’t have to be put in file Main.hs. Thus both

ghc --make Prog

166 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

and

ghc --make Prog.hs

will produce Prog (or Prog.exe if you are on Windows).

-odir (dir)
Redirects object files to directory (dir). For example:

$ ghc -c parse/Foo.hs parse/Bar.hs gurgle/Bumble.hs -odir “uname -m’

The object files, Foo.o0, Bar.o, and Bumble.o would be put into a subdirectory named
after the architecture of the executing machine (x86, mips, etc).

Note that the -odir option does not affect where the interface files are put; use the
-hidir option for that. In the above example, they would still be put in parse/Foo.hi,
parse/Bar.hi, and gurgle/Bumble.hi.

-ohi (file)
The interface output may be directed to another file bar2/Wurble. iface with the option
-ohi bar2/Wurble.iface (not recommended).

Warning: If you redirect the interface file somewhere that GHC can’t find it, then
the recompilation checker may get confused (at the least, you won’t get any recompi-
lation avoidance). We recommend using a combination of -hidir and -hisuf options
instead, if possible.

To avoid generating an interface at all, you could use this option to redirect the interface
into the bit bucket: -ohi /dev/null, for example.

-hidir (dir)
Redirects all generated interface files into (dir), instead of the default.

-stubdir (dir)
Redirects all generated FFI stub files into (dir). Stub files are generated when the
Haskell source contains a foreign export or foreign import "&wrapper" declaration
(see Using foreign export and foreign import ccall "wrapper” with GHC (page 506)). The
-stubdir option behaves in exactly the same way as -odir and -hidir with respect to
hierarchical modules.

-dumpdir (dir)
Redirects all dump files into (dir). Dump files are generated when -ddump-to-file is
used with other -ddump-* flags.

-outputdir (dir)
The -outputdir option is shorthand for the combination of -odir (dir) (page 167),
-hidir (dir) (page 167), -stubdir (dir) (page 167)and -dumpdir (dir) (page 167).

-osuf (suffix)
The -osuf (suffix) will change the .o file suffix for object files to whatever you specify.
We use this when compiling libraries, so that objects for the profiling versions of the
libraries don’t clobber the normal ones.

-hisuf (suffix)
Similarly, the -hisuf (suffix) will change the .hi file suffix for non-system interface files
(see Other options related to interface files (page 169)).

10.8. Filenames and separate compilation 167

GHC User’s Guide Documentation, Release 8.6.5

The -hisuf/-osuf game is particularly useful if you want to compile a program both with
and without profiling, in the same directory. You can say:

’ghc

to get the ordinary version, and

’ghc ... -osuf prof.o -hisuf prof.hi -prof -fprof-auto

to get the profiled version.

-hcsuf (suffix)
Finally, the option -hcsuf (suffix) will change the .hc file suffix for compiler-generated
intermediate C files.

10.8.5 Keeping Intermediate Files

The following options are useful for keeping (or not keeping) certain intermediate files around,
when normally GHC would throw these away after compilation:

-keep-hc-file

-keep-hc-files
Keep intermediate .hc files when doing . hs-to-.0 compilations via C (page 198) (Note:
.hc files are only generated by unregisterised (page 199) compilers).

-keep-hi-files
Keep intermediate . hi files. This is the default. You may use -no-keep-hi-files if you
are not interested in the .hi files.

-keep-1lvm-file
-keep-1lvm-files

Implies -fllvm (page 204)

Keep intermediate .11 files when doing .hs-to-.0 compilations via LLVM (page 198)
(Note: .11 files aren’t generated when using the native code generator, you may need
to use - fllvm (page 204) to force them to be produced).

-keep-o-files
Keep intermediate .o files. This is the default. You may use -no-keep-o-files if you
are not interested in the .o files.

-keep-s-file
-keep-s-files
Keep intermediate . s files.

-keep-tmp-files
Instructs the GHC driver not to delete any of its temporary files, which it normally keeps
in /tmp (or possibly elsewhere; see Redirecting temporary files (page 168)). Running
GHC with -v will show you what temporary files were generated along the way.

10.8.6 Redirecting temporary files

-tmpdir (dir)
If you have trouble because of running out of space in /tmp (or wherever your installation
thinks temporary files should go), you may use the -tmpdir (dir) (page 168) option

168 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

option to specify an alternate directory. For example, -tmpdir . says to put temporary
files in the current working directory.

Alternatively, use your TMPDIR environment variable. Set it to the name of the directory
where temporary files should be put. GCC and other programs will honour the TMPDIR
variable as well.

10.8.7 Other options related to interface files

-ddump-hi
Dumps the new interface to standard output.

-ddump-hi-diffs
The compiler does not overwrite an existing . hi interface file if the new one is the same
as the old one; this is friendly to make. When an interface does change, it is often enlight-
ening to be informed. The -ddump-hi-diffs (page 169) option will make GHC report
the differences between the old and new . hi files.

-ddump-minimal-imports
Dump to the file M.imports (where (M) is the name of the module being compiled) a
“minimal” set of import declarations. The directory where the . imports files are created
can be controlled via the -dumpdir (dir) (page 167) option.

You can safely replace all the import declarations in M. hs with those found in its respec-
tive .imports file. Why would you want to do that? Because the “minimal” imports (a)
import everything explicitly, by name, and (b) import nothing that is not required. It can
be quite painful to maintain this property by hand, so this flag is intended to reduce the
labour.

--show-iface (file)
where (file) is the name of an interface file, dumps the contents of that interface in a
human-readable format. See Modes of operation (page 80).

10.8.8 The recompilation checker

-fforce-recomp
Turn off recompilation checking (which is on by default). Recompilation checking nor-
mally stops compilation early, leaving an existing .o file in place, if it can be determined
that the module does not need to be recompiled.

-fignore-optim-changes
-fignore-hpc-changes

In the olden days, GHC compared the newly-generated .hi file with the previous version;
if they were identical, it left the old one alone and didn’t change its modification date. In
consequence, importers of a module with an unchanged output . hi file were not recompiled.

This doesn’t work any more. Suppose module C imports module B, and B imports module A. So
changes to module A might require module C to be recompiled, and hence when A.hi changes
we should check whether C should be recompiled. However, the dependencies of C will only
list B.hi, not A.hi, and some changes to A (changing the definition of a function that appears
in an inlining of a function exported by B, say) may conceivably not change B.hi one jot. So
now...

GHC calculates a fingerprint (in fact an MD5 hash) of each interface file, and of each decla-
ration within the interface file. It also keeps in every interface file a list of the fingerprints

10.8. Filenames and separate compilation 169

GHC User’s Guide Documentation, Release 8.6.5

of everything it used when it last compiled the file. If the source file’s modification date is
earlier than the .o file’s date (i.e. the source hasn’t changed since the file was last compiled),
and the recompilation checking is on, GHC will be clever. It compares the fingerprints on the
things it needs this time with the fingerprints on the things it needed last time (gleaned from
the interface file of the module being compiled); if they are all the same it stops compiling
early in the process saying “Compilation IS NOT required”. What a beautiful sight!

You can read about how all this works in the GHC commentary.

10.8.9 How to compile mutually recursive modules

GHC supports the compilation of mutually recursive modules. This section explains how.

Every cycle in the module import graph must be broken by a hs-boot file. Suppose that
modules A.hs and B. hs are Haskell source files, thus:

module A where
import B(TB(..))

newtype TA = MKTA Int

f :: TB -> TA
f (MKTB x) = MKTA x

module B where
import {-# SOURCE #-} A(TA(..))

data TB = MKTB !Int

g :: TA -> TB
g (MKTA x) = MKTB x

Here A imports B, but B imports A with a {-# SOURCE #-} pragma, which breaks the circular
dependency. Every loop in the module import graph must be broken by a {-# SOURCE #-}
import; or, equivalently, the module import graph must be acyclic if {-# SOURCE #-} imports
are ignored.

For every module A. hs that is {-# SOURCE #-}-imported in this way there must exist a source
file A.hs-boot. This file contains an abbreviated version of A. hs, thus:

module A where
newtype TA = MKTA Int

To compile these three files, issue the following commands:

ghc -c A.hs-boot -- Produces A.hi-boot, A.o-boot
ghc -c B.hs -- Consumes A.hi-boot, produces B.hi, B.o
ghc -c A.hs -- Consumes B.hi, produces A.hi, A.o

ghc -o foo A.o B.o - Linking the program

There are several points to note here:

» The file A.hs-boot is a programmer-written source file. It must live in the same directory
as its parent source file A. hs. Currently, if you use a literate source file A. lhs you must
also use a literate boot file, A. lhs-boot; and vice versa.

* A hs-boot file is compiled by GHC, just like a hs file:

170 Chapter 10. Using GHC

http://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/RecompilationAvoidance

GHC User’s Guide Documentation, Release 8.6.5

ghc -c A.hs-boot

When a hs-boot file A. hs-boot is compiled, it is checked for scope and type errors. When
its parent module A.hs is compiled, the two are compared, and an error is reported if
the two are inconsistent.

» Just as compiling A. hs produces an interface file A.hi, and an object file A. 0, so compil-
ing A.hs-boot produces an interface file A.hi-boot, and a pseudo-object file A.o0-boot:

- The pseudo-object file A.o-boot is empty (don’t link it!), but it is very useful when
using a Makefile, to record when the A.hi-boot was last brought up to date (see
Using make (page 177)).

- The hi-boot generated by compiling a hs-boot file is in the same machine-
generated binary format as any other GHC-generated interface file (e.g. B.hi). You
can display its contents with ghc --show-iface. If you specify a directory for inter-
face files, the -ohidir flag, then that affects hi-boot files too.

» If hs-boot files are considered distinct from their parent source files, and if a {-# SOURCE
#-} import is considered to refer to the hs-boot file, then the module import graph must
have no cycles. The command ghc -M will report an error if a cycle is found.

* Amodule Mthat is {-# SOURCE #-}-imported in a program will usually also be ordinarily
imported elsewhere. If not, ghc --make automatically adds Mto the set of modules it tries
to compile and link, to ensure that M’s implementation is included in the final program.

A hs-boot file need only contain the bare minimum of information needed to get the bootstrap-
ping process started. For example, it doesn’t need to contain declarations for everything that
module A exports, only the things required by the module(s) that import A recursively.

A hs-boot file is written in a subset of Haskell:

* The module header (including the export list), and import statements, are exactly as in
Haskell, and so are the scoping rules. Hence, to mention a non-Prelude type or class,
you must import it.

» There must be no value declarations, but there can be type signatures for values. For
example:

double :: Int -> Int

 Fixity declarations are exactly as in Haskell.
* Vanilla type synonym declarations are exactly as in Haskell.
* Open type and data family declarations are exactly as in Haskell.

* A closed type family may optionally omit its equations, as in the following example:

type family ClosedFam a where ..

The .. is meant literally - you should write two dots in your file. Note that the where
clause is still necessary to distinguish closed families from open ones. If you give any
equations of a closed family, you must give all of them, in the same order as they appear
in the accompanying Haskell file.

* A data type declaration can either be given in full, exactly as in Haskell, or it can be
given abstractly, by omitting the ‘=’ sign and everything that follows. For example:

data Ta b

10.8. Filenames and separate compilation 171

GHC User’s Guide Documentation, Release 8.6.5

In a source program this would declare TA to have no constructors (a GHC extension:
see Data types with no constructors (page 287)), but in an hi-boot file it means “I don’t
know or care what the constructors are”. This is the most common form of data type
declaration, because it’s easy to get right. You can also write out the constructors but,
if you do so, you must write it out precisely as in its real definition.

If you do not write out the constructors, you may need to give a kind annotation
(Explicitly-kinded quantification (page 402)), to tell GHC the kind of the type variable, if
it is not “*”. (In source files, this is worked out from the way the type variable is used in
the constructors.) For example:

data R (x :: * -> *) y

You cannot use deriving on a data type declaration; write an instance declaration in-
stead.

* Class declarations is exactly as in Haskell, except that you may not put default method
declarations. You can also omit all the superclasses and class methods entirely; but you
must either omit them all or put them all in.

* You can include instance declarations just as in Haskell; but omit the “where” part.

» The default role for abstract datatype parameters is now representational. (An abstract
datatype is one with no constructors listed.) To get another role, use a role annotation.
(See Roles (page 483).)

10.8.10 Module signatures

GHC 8.2 supports module signatures (hsig files), which allow you to write a signature in
place of a module implementation, deferring the choice of implementation until a later point
in time. This feature is not intended to be used without Cabal; this manual entry will focus
on the syntax and semantics of signatures.

To start with an example, suppose you had a module A which made use of some string oper-
ations. Using normal module imports, you would only be able to pick a particular implemen-
tation of strings:

module Str where
type Str = String

empty :: Str
empty = "

toString :: Str -> String
toString s = s

module A where
import Str
z = toString empty

By replacing Str.hs with a signature Str.hsig, A (and any other modules in this package)
are now parametrized by a string implementation:

signature Str where
data Str
empty :: Str
toString :: Str -> String

172 Chapter 10. Using GHC

http://www.haskell.org/cabal/

GHC User’s Guide Documentation, Release 8.6.5

We can typecheck A against this signature, or we can instantiate Str with a module that
provides the following declarations. Refer to Cabal’s documentation for a more in-depth dis-
cussion on how to instantiate signatures.

Module signatures actually consist of two closely related features:

» The ability to define an hsig file, containing type definitions and type signature for values
which can be used by modules that import the signature, and must be provided by the
eventual implementing module, and

» The ability to inherit required signatures from packages we depend upon, combining the
signatures into a single merged signature which reflects the requirements of any locally
defined signature, as well as the requirements of our dependencies.

A signature file is denoted by an hsig file; every required signature must have an hsig file
(even if it is an empty one), including required signatures inherited from dependencies. Sig-
natures can be imported using an ordinary import Sig declaration.

hsig files are written in a variant of Haskell similar to hs-boot files, but with some slight
changes:

* The header of a signature is signature A where ... (instead of the usual module A
where ...).

* Import statements and scoping rules are exactly as in Haskell. To mention a non-Prelude
type or class, you must import it.

* Unlike regular modules, the defined entities of a signature include not only those written
in the local hsig file, but also those from inherited signatures (as inferred from the
-package-id (unit-id) (page 184) flags). These entities are not considered in scope
when typechecking the local hsig file, but are available for import by any module or
signature which imports the signature. The one exception to this rule is the export list,
described below.

If a declaration occurs in multiple inherited signatures, they will be merged together.
For values, we require that the types from both signatures match exactly; however, other
declarations may merge in more interesting ways. The merging operation in these cases
has the effect of textually replacing all occurrences of the old name with a reference to
the new, merged declaration. For example, if we have the following two signatures:

signature A where
data T
fi:T->T

signature A where
data T = MkT
g :: T

the resulting merged signature would be:

signature A where
data T = MkT
f::T->T
g :: T

* If no export list is provided for a signature, the exports of a signature are all of its defined
entities merged with the exports of all inherited signatures.

If you want to reexport an entity from a signature, you must also include a module
SigName export, so that all of the entities defined in the signature are exported. For

10.8. Filenames and separate compilation 173

GHC User’s Guide Documentation, Release 8.6.5

example, the following module exports both f and Int from Prelude:

signature A(module A, Int) where
import Prelude (Int)
f :: Int

Reexports merge with local declarations; thus, the signature above would successfully
merge with:

signature A where
data Int

The only permissible implementation of such a signature is a module which reexports
precisely the same entity:

module A (f, Int) where
import Prelude (Int)
f=2:: Int

Conversely, any entity requested by a signature can be provided by a reexport from the
implementing module. This is different from hs-boot files, which require every entity to
be defined locally in the implementing module.

GHC has experimental support for signature thinning, which is used when a signature
has an explicit export list without a module export of the signature itself. In this case,
the export list applies to the final export list after merging, in particular, you may refer
to entities which are not declared in the body of the local hsig file.

The semantics in this case is that the set of required entities is defined exclusively by its
exports; if an entity is not mentioned in the export list, it is not required. The motivation
behind this feature is to allow a library author to provide an omnibus signature contain-
ing the type of every function someone might want to use, while a client thins down the
exports to the ones they actually require. For example, supposing that you have inher-
ited a signature for strings, you might write a local signature of this form, listing only
the entities that you need:

signature Str (Str, empty, append, concat) where
-- empty

A few caveats apply here. First, it is illegal to export an entity which refers to a locally
defined type which itself is not exported (GHC will report an error in this case). Second,
signatures which come from dependencies which expose modules cannot be thinned in
this way (after all, the dependency itself may need the entity); these requirements are
unconditionally exported. Finally, any module reexports must refer to modules imported
by the local signature (even if an inherited signature exported the module).

We may change the syntax and semantics of this feature in the future.

The declarations and types from signatures of dependencies that will be merged in are
not in scope when type checking an hsig file. To refer to any such type, you must declare
it yourself:

-- 0K, assuming we inherited an A that defines T
signature A (T) where
-- empty

-- Not OK

(continues on next page)

174

Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

signature A (T, f) where
f:i:T->T

-- 0K

signature A (T, f) where
data T
f:i:T->T

* There must be no value declarations, but there can be type signatures for values. For
example, we might define the signature:

signature A where
double :: Int -> Int

A module implementing A would have to export the function double with a type defini-
tionally equal to the signature. Note that this means you can’t implement double using
a polymorphic function double :: Num a => a -> a.

Note that signature matching does check if fixity matches, so be sure specify fixity of
ordinary identifiers if you intend to use them with backticks.

» Fixity, type synonym, open type/data family declarations are permitted as in normal
Haskell.

* Closed type family declarations are permitted as in normal Haskell. They can also be
given abstractly, as in the following example:

type family ClosedFam a where ..

The .. is meant literally - you should write two dots in your file. The where clause
distinguishes closed families from open ones.

* A data type declaration can either be given in full, exactly as in Haskell, or it can be
given abstractly, by omitting the ‘=’ sign and everything that follows. For example:

signature A where
data T a b

Abstract data types can be implemented not only with data declarations, but also new-
types and type synonyms (with the restriction that a type synonym must be fully eta-
reduced, e.g., type T = ... to be accepted.) For example, the following are all valid
implementations of the T above:

-- Algebraic data type
data T a b = MkT a b

-- Newtype
newtype T a b = MKT (a, b)

-- Type synonym
data T2 a b =MkT2 aabb
type T = T2

Data type declarations merge only with other data type declarations which match exactly,
except abstract data, which can merge with data, newtype or type declarations. Merges
with type synonyms are especially useful: suppose you are using a package of strings
which has left the type of characters in the string unspecified:

10.8. Filenames and separate compilation 175

GHC User’s Guide Documentation, Release 8.6.5

signature Str where
data Str
data Elem
head :: Str -> Elem

If you locally define a signature which specifies type Elem = Char, you can now use
head from the inherited signature as if it returned a Char.

If you do not write out the constructors, you may need to give a kind to tell GHC what
the kinds of the type variables are, if they are not the default *. Unlike regular data
type declarations, the return kind of an abstract data declaration can be anything (in
which case it probably will be implemented using a type synonym.) This can be used to
allow compile-time representation polymorphism (as opposed to run-time representation
polymorphism (page ??)), as in this example:

signature Number where
import GHC.Types
data Rep :: RuntimeRep
data Number :: TYPE Rep
plus :: Number -> Number -> Number

Roles of type parameters are subject to the subtyping relation phantom <
representational < nominal: for example, an abstract type with a nominal type
parameter can be implemented using a concrete type with a representational type
parameter. Merging respects this subtyping relation (e.g., nominal merged with
representational is representational.) Roles in signatures default to nominal,
which gives maximum flexibility on the implementor’s side. You should only need to
give an explicit role annotation if a client of the signature would like to coerce the
abstract type in a type parameter (in which case you should specify representational
explicitly.) Unlike regular data types, we do not assume that abstract data types
are representationally injective: if we have Coercible (T a) (T b), and T has role
nominal, this does not imply thata ~ b.

e A class declarations can either be abstract or concrete. An abstract class is one with no
superclasses or class methods:

signature A where
class Key k

It can be implemented in any way, with any set of superclasses and methods; however,
modules depending on an abstract class are not permitted to define instances (as of
GHC 8.2, this restriction is not checked, see Trac #13086.) These declarations can
be implemented by type synonyms of kind Constraint; this can be useful if you want
to parametrize over a constraint in functions. For example, with the ConstraintKinds
extension, this type synonym is a valid implementation of the signature above:

module A where
type Key = Eq

A concrete class specifies its superclasses, methods, default method signatures (but not
their implementations) and a MINIMAL pragma. Unlike regular Haskell classes, you don't
have to explicitly declare a default for a method to make it optional vis-a-vis the MINIMAL
pragma.

When merging class declarations, we require that the superclasses and methods match
exactly; however, MINIMAL pragmas are logically ORed together, and a method with a
default signature will merge successfully against one that does not.

176 Chapter 10. Using GHC

https://ghc.haskell.org/trac/ghc/ticket/13086

GHC User’s Guide Documentation, Release 8.6.5

* You can include instance declarations as in Haskell; just omit the “where” part. An

instance declaration need not be implemented directly; if an instance can be derived
based on instances in the environment, it is considered implemented. For example, the
following signature:

signature A where
data Str
instance Eq Str

is considered implemented by the following module, since there are instances of Eq for
[1 and Char which can be combined to form an instance Eq [Char]:

module A where
type Str = [Char]

Unlike other declarations, for which only the entities declared in a signature file are
brought into scope, instances from the implementation are always brought into scope,
even if they were not declared in the signature file. This means that a module may
typecheck against a signature, but not against a matching implementation. You can
avoid situations like this by never defining orphan instances inside a package that has
signatures.

Instance declarations are only merged if their heads are exactly the same, so it is possible
to get into a situation where GHC thinks that instances in a signature are overlapping,
even if they are implemented in a non-overlapping way. If this is giving you problems
give us a shout.

* Any orphan instances which are brought into scope by an import from a signature are

unconditionally considered in scope, even if the eventual implementing module doesn’t
actually import the same orphans.

Known limitations:

Pattern synonyms are not supported.

» Algebraic data types specified in a signature cannot be implemented using pattern syn-

onyms. See Trac #12717

10.8.11 Using make

It is reasonably straightforward to set up a Makefile to use with GHC, assuming you name
your source files the same as your modules. Thus:

HC = ghc

HC_OPTS = -cpp $(EXTRA_HC_OPTS)
SRCS = Main.lhs Foo.lhs Bar.lhs
0BJS = Main.o Foo.o Bar.o

.SUFFIXES : .0 .hs .hi .lhs .hc .s

cool pgm : $(0BJS)

rm -f $@
$(HC) -0 $@ $(HC OPTS) $(0BJS)

Standard suffix rules
.0.hi:

(continues on next page)

10.8. Filenames and separate compilation 177

https://ghc.haskell.org/trac/ghc/ticket/12717

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

.lhs.o:
$(HC) -c $< $(HC OPTS)

.hs.o:
$(HC) -c $< $(HC OPTS)

.0-boot.hi-boot:
@:

.lhs-boot.o-boot:
$(HC) -c $< $(HC OPTS)

.hs-boot.o-boot:
$(HC) -c $< $(HC OPTS)

Inter-module dependencies
Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz
Main.o Main.hc Main.s : Foo.hi Baz.hi # Main imports Foo and Baz

Note: Sophisticated make variants may achieve some of the above more elegantly. Notably,
gmake’s pattern rules let you write the more comprehensible:

%.0 : %.lhs
$(HC) -c $< $(HC OPTS)

What we’ve shown should work with any make.

Note the cheesy .0.hi rule: It records the dependency of the interface (. hi) file on the source.
The rule says a . hi file can be made from a .o file by doing...nothing. Which is true.

Note that the suffix rules are all repeated twice, once for normal Haskell source files, and
once for hs-boot files (see How to compile mutually recursive modules (page 170)).

Note also the inter-module dependencies at the end of the Makefile, which take the form

Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz

They tell make that if any of Foo.0, Foo.hc or Foo.s have an earlier modification date than
Baz.hi, then the out-of-date file must be brought up to date. To bring it up to date, make looks
for a rule to do so; one of the preceding suffix rules does the job nicely. These dependencies
can be generated automatically by ghc; see Dependency generation (page 178)

10.8.12 Dependency generation

Putting inter-dependencies of the form Foo.o : Bar.hi into your Makefile by hand is rather
error-prone. Don’t worry, GHC has support for automatically generating the required depen-
dencies. Add the following to your Makefile:

depend :
ghc -dep-suffix '' -M $(HC_OPTS) $(SRCS)

178 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Now, before you start compiling, and any time you change the imports in your program, do
make depend before you do make cool pgm. The command ghc -M will append the needed
dependencies to your Makefile.

In general, ghc -M Foo does the following. For each module M in the set Foo plus all its
imports (transitively), it adds to the Makefile:

* Aline recording the dependence of the object file on the source file.

’M.o : M.hs ‘

(or M. lhs if that is the filename you used).

» For each import declaration import Xin M, a line recording the dependence of M on X:

’M.o : X.hi ‘

* For each import declaration import {-# SOURCE #-} XinM, a line recording the depen-
dence of M on X:

’M.o : X.hi-boot

(See How to compile mutually recursive modules (page 170) for details of hi-boot style
interface files.)

If M imports multiple modules, then there will be multiple lines with M. o as the target.

There is no need to list all of the source files as arguments to the ghc -M command; ghc traces
the dependencies, just like ghc --make (a new feature in GHC 6.4).

Note that ghc -Mneeds to find a source file for each module in the dependency graph, so that
it can parse the import declarations and follow dependencies. Any pre-compiled modules
without source files must therefore belong to a package'.

By default, ghc -M generates all the dependencies, and then concatenates them onto the
end of makefile (or Makefile if makefile doesn’t exist) bracketed by the lines “# DO NOT
DELETE: Beginning of Haskell dependencies” and “# DO NOT DELETE: End of Haskell
dependencies”. If these lines already exist in the makefile, then the old dependencies are
deleted first.

Don’t forget to use the same -package options on the ghc -M command line as you would
when compiling; this enables the dependency generator to locate any imported modules that
come from packages. The package modules won’t be included in the dependencies generated,
though (but see the -include-pkg-deps option below).

The dependency generation phase of GHC can take some additional options, which you may
find useful. The options which affect dependency generation are:

-ddump-mod-cycles
Display a list of the cycles in the module graph. This is useful when trying to eliminate
such cycles.

-v2
Print a full list of the module dependencies to stdout. (This is the standard verbosity
flag, so the list will also be displayed with -v3 and -v4; see Verbosity options (page 83).)

-dep-makefile (file)
Use (file) as the makefile, rather than makefile or Makefile. If (file) doesn’t exist,

1 This is a change in behaviour relative to 6.2 and earlier.

10.8. Filenames and separate compilation 179

GHC User’s Guide Documentation, Release 8.6.5

mkdependHS creates it. We often use -dep-makefile .depend to put the dependencies
in .depend and then include the file .depend into Makefile.

-dep-suffix (suffix)
Make dependencies that declare that files with suffix . (suf){osuf) depend on inter-
face files with suffix . (suf)hi, or (for {-# SOURCE #-} imports) on .hi-boot. Multiple
-dep-suffix flags are permitted. For example, -dep-suffix a -dep-suffix b will
make dependencies for .hs on .hi, .a hson .a hi, and .b hson .b hi. Note that you
must provide at least one suffix; if you do not want a suffix then pass -dep-suffix '’

--exclude-module=(file)
Regard (file) as “stable”; i.e., exclude it from having dependencies on it.

-include-pkg-deps
Regard modules imported from packages as unstable, i.e., generate dependencies on
any imported package modules (including Prelude, and all other standard Haskell li-
braries). Dependencies are not traced recursively into packages; dependencies are only
generated for home-package modules on external-package modules directly imported
by the home package module. This option is normally only used by the various system
libraries.

10.8.13 Orphan modules and instance declarations

Haskell specifies that when compiling module M, any instance declaration in any module “be-
low” M is visible. (Module A is “below” M if A is imported directly by M, or if A is below a
module that M imports directly.) In principle, GHC must therefore read the interface files of
every module below M, just in case they contain an instance declaration that matters to M. This
would be a disaster in practice, so GHC tries to be clever.

In particular, if an instance declaration is in the same module as the definition of any type
or class mentioned in the head of the instance declaration (the part after the “=>"; see Re-
laxed rules for instance contexts (page 349)), then GHC has to visit that interface file anyway.
Example:

module A where
instance C a => D (T a) where ...
data Ta= ...

The instance declaration is only relevant if the type T is in use, and if so, GHC will have visited
A’s interface file to find T’s definition.

The only problem comes when a module contains an instance declaration and GHC has no
other reason for visiting the module. Example:

module Orphan where
instance C a => D (T a) where ...
class C a where ...

Here, neither D nor T is declared in module Orphan. We call such modules “orphan modules”.
GHC identifies orphan modules, and visits the interface file of every orphan module below the
module being compiled. This is usually wasted work, but there is no avoiding it. You should
therefore do your best to have as few orphan modules as possible.

Functional dependencies complicate matters. Suppose we have:

180 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

module B where
instance E T Int where ...
data T = ...

Is this an orphan module? Apparently not, because T is declared in the same module. But
suppose class E had a functional dependency:

module Lib where
class Exy | y -> x where ...

Then in some importing module M, the constraint (E a Int) should be “improved” by setting
a = T, even though there is no explicit mention of T in M.

These considerations lead to the following definition of an orphan module:

* An orphan module orphan module contains at least one orphan instance or at least one
orphan rule.

* An instance declaration in a module M is an orphan instance if orphan instance
- The class of the instance declaration is not declared in M, and

- Either the class has no functional dependencies, and none of the type constructors
in the instance head is declared in M; or there is a functional dependency for which
none of the type constructors mentioned in the non-determined part of the instance
head is defined in M.

Only the instance head counts. In the example above, it is not good enough for C’s
declaration to be in module A; it must be the declaration of D or T.

* A rewrite rule in a module M is an orphan rule orphan rule if none of the variables, type
constructors, or classes that are free in the left hand side of the rule are declared in M.

If you use the flag -Worphans (page 98), GHC will warn you if you are creating an orphan
module. Like any warning, you can switch the warning off with -Wno-orphans (page 98), and
-Werror (page 90) will make the compilation fail if the warning is issued.

You can identify an orphan module by looking in its interface file, M.hi, using the
--show-iface (file) (page 80) mode (page 80). If there is a [orphan module] on the first
line, GHC considers it an orphan module.

10.9 Packages

A package is a library of Haskell modules known to the compiler. GHC comes with several
packages: see the accompanying library documentation. More packages to install can be
obtained from HackageDB.

Using a package couldn’t be simpler: if you're using - -make or GHCi, then most of the in-
stalled packages will be automatically available to your program without any further options.
The exceptions to this rule are covered below in Using Packages (page 182).

Building your own packages is also quite straightforward: we provide the Cabal infrastructure
which automates the process of configuring, building, installing and distributing a package.
All you need to do is write a simple configuration file, put a few files in the right places, and
you have a package. See the Cabal documentation for details, and also the Cabal libraries
(Distribution.Simple, for example).

10.9. Packages 181

../libraries/index.html
http://hackage.haskell.org/packages/hackage.html
http://www.haskell.org/cabal/
http://www.haskell.org/cabal/users-guide/
../libraries/Cabal-2.4.0.1/Distribution-Simple.html

GHC User’s Guide Documentation, Release 8.6.5

10.9.1 Using Packages

GHC only knows about packages that are installed. Installed packages live in package
databases. For details on package databases and how to control which package databases or
specific set of packages are visible to GHC, see Package Databases (page 186).

To see which packages are currently available, use the ghc-pkg list command:

$ ghc-pkg list
/usr/lib/ghc-6.12.1/package.conf.d:
Cabal-1.7.4
array-0.2.0.1
base-3.0.3.0
base-4.2.0.0
bin-package-db-0.0.0.0
binary-0.5.0.1
bytestring-0.9.1.4
containers-0.2.0.1
directory-1.0.0.2
(dph-base-0.4.0)
dph-par-0.4.0)
dph-prim-interface-0.4.0)
dph-prim-par-0.4.0)
dph-prim-seq-0.4.0)
(dph-seq-0.4.0)
extensible-exceptions-0.1.1.0

(
(
(
(

ffi-1.0
filepath-1.1.0.1
(ghc-6.12.1)

ghc-prim-0.1.0.0
haskeline-0.6.2
haskel198-1.0.1.0
hpc-0.5.0.2
integer-gmp-0.1.0.0
mtl-1.1.0.2
old-locale-1.0.
old-time-1.0.0.
pretty-1.0.1.0
process-1.0.1.1
random-1.0.0.1
rts-1.0
syb-0.1.0.0
template-haskell-2.4.0.0
terminfo-0.3.1
time-1.1.4

unix-2.3.1.0
utf8-string-0.3.4

0.1
1

An installed package is either exposed or hidden by default. Packages hidden by default are
listed in parentheses (e.g. (lang-1.0)), or possibly in blue if your terminal supports colour,
in the output of ghc-pkg list. Command-line flags, described below, allow you to expose
a hidden package or hide an exposed one. Only modules from exposed packages may be
imported by your Haskell code; if you try to import a module from a hidden package, GHC
will emit an error message. It should be noted that a hidden package might still get linked
with your program as a dependency of an exposed package, it is only restricted from direct
imports.

If there are multiple exposed versions of a package, GHC will prefer the latest one. Addi-

182 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

tionally, some packages may be broken: that is, they are missing from the package database,
or one of their dependencies are broken; in this case; these packages are excluded from the
default set of packages.

Note: If you're using Cabal, then the exposed or hidden status of a package is irrelevant:
the available packages are instead determined by the dependencies listed in your .cabal
specification. The exposed/hidden status of packages is only relevant when using ghc or ghci
directly.

Similar to a package’s hidden status is a package’s trusted status. A package can be either
trusted or not trusted (distrusted). By default packages are distrusted. This property of a
package only plays a role when compiling code using GHC’s Safe Haskell feature (see Safe
Haskell (page 491)) with the - fpackage-trust flag enabled.

To see which modules are provided by a package use the ghc-pkg command (see Package
management (the ghc-pkg command) (page 190)):

$ ghc-pkg field network exposed-modules
exposed-modules: Network.BSD,
Network.CGI,
Network.Socket,
Network.URI,
Network

The GHC command line options that control packages are:

-package (pkg)
This option causes the installed package (pkg) to be exposed. The package (pkg) can be
specified in full with its version number (e.g. network-1.0) or the version number can
be omitted in which case GHC will automatically expose the latest non-broken version
from the installed versions of the package.

By default (when -hide-all-packages (page 184) is not specified), GHC exposes only
one version of a package, all other versions become hidden. If -package option is spec-
ified multiple times for the same package the last one overrides the previous ones. On
the other hand, if -hide-all-packages (page 184) is used, GHC allows you to expose
multiple versions of a package by using the -package option multiple times with different
versions of the same package.

-package supports thinning and renaming described in Thinning and renaming modules
(page 185).

The -package (pkg) option also causes package (pkg) to be linked into the resulting ex-
ecutable or shared object. Whether a packages’ library is linked statically or dynamically
is controlled by the flag pair -static (page 206)/ -dynamic (page 206).

In - -make (page 80) mode and - -interactive (page 80) mode (see Modes of operation
(page 80)), the compiler normally determines which packages are required by the cur-
rent Haskell modules, and links only those. In batch mode however, the dependency
information isn’t available, and explicit - package options must be given when linking.
The one other time you might need to use -package to force linking a package is when
the package does not contain any Haskell modules (it might contain a C library only,
for example). In that case, GHC will never discover a dependency on it, so it has to be
mentioned explicitly.

For example, to link a program consisting of objects Foo.o0 and Main.o, where we made
use of the network package, we need to give GHC the -package flag thus:

10.9. Packages 183

GHC User’s Guide Documentation, Release 8.6.5

’$ ghc -0 myprog Foo.o Main.o -package network ‘

The same flag is necessary even if we compiled the modules from source, because GHC
still reckons it’s in batch mode:

’$ ghc -0 myprog Foo.hs Main.hs -package network ‘

-package-id (unit-id)
Exposes a package like -package (pkg) (page 183), but the package is named by its
unit ID (i.e. the value of id in its entry in the installed package database, also previously
known as an installed package ID) rather than by name. This is a more robust way to
name packages, and can be used to select packages that would otherwise be shadowed.
Cabal passes -package-id flags to GHC. -package-id supports thinning and renaming
described in Thinning and renaming modules (page 185).

-hide-all-packages
Ignore the exposed flag on installed packages, and hide them all by default. If you use
this flag, then any packages you require (including base) need to be explicitly exposed
using -package (pkg) (page 183) options.

This is a good way to insulate your program from differences in the globally exposed
packages, and being explicit about package dependencies is a Good Thing. Cabal always
passes the -hide-all-packages flag to GHC, for exactly this reason.

-hide-package (pkg)
This option does the opposite of -package (pkg) (page 183): it causes the specified
package to be hidden, which means that none of its modules will be available for import
by Haskell import directives.

Note that the package might still end up being linked into the final program, if it is a
dependency (direct or indirect) of another exposed package.

-ignore-package (pkg)
Causes the compiler to behave as if package (pkg), and any packages that depend on
(pkg), are not installed at all.

Saying -ignore-package (pkg) is the same as giving -hide-package (pkg) (page 184)
flags for (pkg) and all the packages that depend on (pkg). Sometimes we don’t know
ahead of time which packages will be installed that depend on (pkg), which is when the
-ignore-package (pkg) (page 184) flag can be useful.

-no-auto-link-packages
By default, GHC will automatically link in the base and rts packages. This flag disables
that behaviour.

-this-unit-id (unit-id)
Tells GHC that the module being compiled forms part of unit ID (unit-id); internally, these
keys are used to determine type equality and linker symbols. As of GHC 8.0, unit IDs
must consist solely of alphanumeric characters, dashes, underscores and periods. GHC
reserves the right to interpret other characters in a special way in later releases.

-trust (pkg)
This option causes the install package (pkg) to be both exposed and trusted by GHC.
This command functions in a very similar way to the -package (pkg) (page 183) com-
mand but in addition sets the selected packages to be trusted by GHC, regardless of the
contents of the package database. (see Safe Haskell (page 491)).

-distrust (pkg)
This option causes the install package (pkg) to be both exposed and distrusted by GHC.

184 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

This command functions in a very similar way to the -package (pkg) (page 183) com-
mand but in addition sets the selected packages to be distrusted by GHC, regardless of
the contents of the package database. (see Safe Haskell (page 491)).

-distrust-all-packages
Ignore the trusted flag on installed packages, and distrust them by default. If you
use this flag and Safe Haskell then any packages you require to be trusted (including
base) need to be explicitly trusted using -trust (pkg) (page 498) options. This option
does not change the exposed/hidden status of a package, so it isn’t equivalent to ap-
plying -distrust (pkg) (page 499) to all packages on the system. (see Safe Haskell
(page 491)).

10.9.2 The main package

Every complete Haskell program must define main in module Main in package main. Omitting
the -this-unit-id (unit-id) (page 184) flag compiles code for package main. Failure to
do so leads to a somewhat obscure link-time error of the form:

/usr/bin/ld: Undefined symbols:
~ZCMain main closure

10.9.3 Consequences of packages for the Haskell language

It is possible that by using packages you might end up with a program that contains two
modules with the same name: perhaps you used a package P that has a hidden module M,
and there is also a module M in your program. Or perhaps the dependencies of packages that
you used contain some overlapping modules. Perhaps the program even contains multiple
versions of a certain package, due to dependencies from other packages.

None of these scenarios gives rise to an error on its own', but they may have some interesting
consequences. For instance, if you have a type M.T from version 1 of package P, then this is
not the same as the type M. T from version 2 of package P, and GHC will report an error if you
try to use one where the other is expected.

Formally speaking, in Haskell 98, an entity (function, type or class) in a program is uniquely
identified by the pair of the module name in which it is defined and its name. In GHC, an
entity is uniquely defined by a triple: package, module, and name.

10.9.4 Thinning and renaming modules

When incorporating packages from multiple sources, you may end up in a situation where mul-
tiple packages publish modules with the same name. Previously, the only way to distinguish
between these modules was to use Package-qualified imports (page 283). However, since
GHC 7.10, the -package (pkg) (page 183) flags (and their variants) have been extended to
allow a user to explicitly control what modules a package brings into scope, by analogy to the
import lists that users can attach to module imports.

The basic syntax is that instead of specifying a package name P to the package flag - package,
instead we specify both a package name and a parenthesized, comma-separated list of mod-
ule names to import. For example, -package "base (Data.List, Data.Bool)" makes only

1 it used to in GHC 6.4, but not since 6.6

10.9. Packages 185

GHC User’s Guide Documentation, Release 8.6.5

Data.List and Data.Bool visible from package base. We also support renaming of mod-
ules, in case you need to refer to both modules simultaneously; this is supporting by writ-
ing 0ldModName as NewModName, e.g. -package "base (Data.Bool as Bool). You can also
write -package "base with (Data.Bool as Bool) to include all of the original bindings
(e.g. the renaming is strictly additive). It’s important to specify quotes so that your shell
passes the package name and thinning/renaming list as a single argument to GHC.

Package imports with thinning/renaming do not hide other versions of the package: e.g.
if containers-0.9 is already exposed, -package "containers-0.8 (Data.List as ListV8)"
will only add an additional binding to the environment. Similarly, -package "base (Data.
Bool as Bool)" -package "base (Data.List as List)" is equivalent to -package "base
(Data.Bool as Bool, Data.List as List)". Literal names must refer to modules defined
by the original package, so for example -package "base (Data.Bool as Bool, Bool as
Baz)" is invalid unless there was a Bool module defined in the original package. Hiding
a package also clears all of its renamings.

You can use renaming to provide an alternate prelude, e.g. -hide-all-packages -package
"basic-prelude (BasicPrelude as Prelude)", inlieu of the Rebindable syntax and the im-
plicit Prelude import (page 277) extension.

10.9.5 Package Databases

A package database is where the details about installed packages are stored. It is a directory,
usually called package.conf.d, that contains a file for each package, together with a binary
cache of the package data in the file package.cache. Normally you won’t need to look at or
modify the contents of a package database directly; all management of package databases
can be done through the ghc-pkg tool (see Package management (the ghc-pkg command)
(page 190)).

GHC knows about two package databases in particular:

* The global package database, which comes with your GHC installation, e.g. /usr/lib/
ghc-6.12.1/package.conf.d.

» The user package database private to each user. On Unix systems this will be
$HOME/ .ghc/arch-os-version/package.conf.d, and on Windows it will be something
like C:\Documents And Settings\user\ghc\package.conf.d. The ghc-pkg tool knows
where this file should be located, and will create it if it doesn’t exist (see Package man-
agement (the ghc-pkg command) (page 190)).

Package database stack: Package databases are arranged in a stack structure. When GHC
starts up it adds the global and the user package databases to the stack, in that order, unless
GHC PACKAGE PATH (page 187) is specified. When GHC PACKAGE PATH is specified then it
will determine the initial database stack. Several command line options described below can
further manipulate this initial stack. You can see GHC'’s effective package database stack by
running GHC with the -v (page 83) flag.

This stack structure means that the order of -package-db (file) (page 187) flags or
GHC PACKAGE PATH (page 187) is important. Each substack of the stack must be well formed
(packages in databases on top of the stack can refer to packages below, but not vice versa).

Package shadowing: When multiple package databases are in use it is possible, though rarely,
that the same installed package id is present in more than one database. In that case, pack-
ages closer to the top of the stack will override (shadow) those below them. If the conflicting
packages are found to be equivalent (by ABI hash comparison) then one of them replaces all
references to the other, otherwise the overridden package and all those depending on it will
be removed.

186 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Package version selection: When selecting a package, GHC will search for packages in all
available databases. If multiple versions of the same package are available the latest non-
broken version will be chosen.

Version conflict resolution: If multiple instances of a package version chosen by GHC are
available then GHC will choose an unspecified instance.

You can control GHC’s package database stack using the following options:

-package-db (file)
Add the package database (file) on top of the current stack.

-no-global-package-db
Remove the global package database from the package database stack.

-no-user-package-db
Prevent loading of the user’s local package database in the initial stack.

-clear-package-db
Reset the current package database stack. This option removes every previously spec-
ified package database (including those read from the GHC PACKAGE PATH (page 187)
environment variable) from the package database stack.

-global-package-db
Add the global package database on top of the current stack. This option can be used
after -no-global-package-db (page 187) to specify the position in the stack where the
global package database should be loaded.

-user-package-db
Add the user’s package database on top of the current stack. This option can be used
after -no-user-package-db (page 187) to specify the position in the stack where the
user’s package database should be loaded.

10.9.5.1 The GHC_PACKAGE_PATH environment variable

GHC_PACKAGE_PATH
The GHC PACKAGE PATH environment variable may be set to a :-separated (;-
separated on Windows) list of files containing package databases. This list of package
databases, used by GHC and ghc-pkg, specifies a stack of package databases from top to
bottom. This order was chosen to match the behaviour of the PATH environment variable
where entries earlier in the PATH override ones that come later. See Package Databases
(page 186) for details on how the package database stack is used.

Normally GHC PACKAGE PATH replaces the default package stack. For example, all of
the following commands are equivalent, creating a stack with db1 at the top followed by
db2 (use ; instead of : on Windows):

$ ghc -clear-package-db -package-db db2.conf -package-db dbl.conf
$ env GHC_ PACKAGE PATH=dbl.conf:db2.conf ghc
$ env GHC PACKAGE PATH=db2.conf ghc -package-db dbl.conf

However, if GHC PACKAGE PATH ends in a separator, the default databases (i.e. the
user and global package databases, in that order) are appended to the path. For example,

to augment the usual set of packages with a database of your own, you could say (on
Unix):

$ export GHC_ PACKAGE_ PATH=$HOME/.my-ghc-packages.conf:

10.9. Packages 187

GHC User’s Guide Documentation, Release 8.6.5

To check whether your GHC PACKAGE PATH setting is doing the right thing, ghc-pkg
list will list all the databases in use, in the reverse order they are searched.

10.9.5.2 Package environments

A package environment file is a file that tells ghc precisely which packages should be visible.
It can be used to create environments for ghc or ghci that are local to a shell session or to
some file system location. They are intended to be managed by build/package tools, to enable
ghc and ghci to automatically use an environment created by the tool.

The file contains package IDs and optionally package databases, one directive per line:

clear-package-db
global-package-db
user-package-db
package-db db.d/
package-id id 1
package-id id 2

package-id id n

If such a package environment is found, it is equivalent to passing these command line argu-
ments to ghc:

-hide-all-packages
-clear-package-db
-global-package-db
-user-package-db
-package-db db.d/
-package-id id 1
-package-id id 2

-package-id id n

Note the implicit -hide-all-packages (page 184) and the fact that it is -package-id
(unit-id) (page 184), not -package (pkg) (page 183). This is because the environment
specifies precisely which packages should be visible.

Note that for the package-db directive, if a relative path is given it must be relative to the
location of the package environment file.

-package-env (file)|(name)
Use the package environment in (file}), or in $HOME/.ghc/arch-os-version/
environments/(name)

In order, ghc will look for the package environment in the following locations:
* File (file) if you pass the option -package-env (file)|(name) (page 188).

* File $HOME/.ghc/arch-os-version/environments/name if you pass the option
-package-env (name).

* File (file) if the environment variable GHC ENVIRONMENT is set to {file).

» File $HOME/.ghc/arch-os-version/environments/name if the environment variable
GHC_ENVIRONMENT is set to {(name).

Additionally, unless -hide-all-packages is specified ghc will also look for the package envi-
ronment in the following locations:

188 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

» File .ghc.environment.arch-os-version if it exists in the current directory or any par-
ent directory (but not the user’s home directory).

» File $HOME/ .ghc/arch-os-version/environments/default if it exists.

Package environments can be modified by further command line arguments; for example, if
you specify -package foo on the command line, then package (foo) will be visible even if it’s
not listed in the currently active package environment.

10.9.6 Installed package IDs, dependencies, and broken packages

Each installed package has a unique identifier (the “installed package ID”), which distin-
guishes it from all other installed packages on the system. To see the installed package IDs
associated with each installed package, use ghc-pkg list -v:

$ ghc-pkg list -v

using cache: /usr/lib/ghc-6.12.1/package.conf.d/package.cache

/usr/lib/ghc-6.12.1/package.conf.d
Cabal-1.7.4 (Cabal-1.7.4-48f5247e06853a193593883240e11238)
array-0.2.0.1 (array-0.2.0.1-9cbf76a576b6ee9c1f880cf171a0928d)
base-3.0.3.0 (base-3.0.3.0-6cbb157b92ae852096266e113b8Tac4a2)
base-4.2.0.0 (base-4.2.0.0-247bb20cde37c3ef4093eel24e04bclc)

The string in parentheses after the package name is the installed package ID: it normally be-
gins with the package name and version, and ends in a hash string derived from the compiled
package. Dependencies between packages are expressed in terms of installed package IDs,
rather than just packages and versions. For example, take a look at the dependencies of the
haskell98 package:

$ ghc-pkg field haskell98 depends

depends: array-0.2.0.1-9cbf76a576b6ee9c1f880cf171a0928d
base-4.2.0.0-247bb20cde37c3ef4093eel24e04bclc
directory-1.0.0.2-f51711bc872c35ce4a453aa19c799008
old-locale-1.0.0.1-d17c9777c8ee53a0d459734e2712b8e9
old-time-1.0.0.1-1c0d8ea38056e5087efle75ch0d139d1
process-1.0.1.1-d8fc6d3baf44678a29b9d59calad5780
random-1.0.0.1-423d08c90f004795fd10e60384ce6561

The purpose of the installed package ID is to detect problems caused by re-installing a pack-
age without also recompiling the packages that depend on it. Recompiling dependencies is
necessary, because the newly compiled package may have a different ABI (Application Binary
Interface) than the previous version, even if both packages were built from the same source
code using the same compiler. With installed package IDs, a recompiled package will have a
different installed package ID from the previous version, so packages that depended on the
previous version are now orphaned - one of their dependencies is not satisfied. Packages that
are broken in this way are shown in the ghc-pkg list output either in red (if possible) or oth-
erwise surrounded by braces. In the following example, we have recompiled and reinstalled
the filepath package, and this has caused various dependencies including Cabal to break:

$ ghc-pkg list
WARNING: there are broken packages. Run 'ghc-pkg check' for more details.
/usr/lib/ghc-6.12.1/package.conf.d:

{Cabal-1.7.4}

array-0.2.0.1

(continues on next page)

10.9. Packages 189

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

base-3.0.3.0
. etc ...

Additionally, ghc-pkg list reminds you that there are broken packages and suggests
ghc-pkg check, which displays more information about the nature of the failure:

$ ghc-pkg check
There are problems in package ghc-6.12.1:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist
There are problems in package haskeline-0.6.2:

dependency "filepath-1.1.0.1-87511764eb0@af2bce4db05e702750e63" doesn't exist
There are problems in package Cabal-1.7.4:

dependency "filepath-1.1.0.1-87511764eb0af2bced4db05e702750e63" doesn't exist
There are problems in package process-1.0.1.1:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn't exist
There are problems in package directory-1.0.0.2:

dependency "filepath-1.1.0.1-87511764eb0@af2bce4db05e702750e63" doesn't exist

The following packages are broken, either because they have a problem
listed above, or because they depend on a broken package.

ghc-6.12.1

haskeline-0.6.2

Cabal-1.7.4

process-1.0.1.1

directory-1.0.0.2

bin-package-db-0.0.0.0

hpc-0.5.0.2

haskel198-1.0.1.0

To fix the problem, you need to recompile the broken packages against the new dependen-
cies. The easiest way to do this is to use cabal-install, or download the packages from
HackageDB and build and install them as normal.

Be careful not to recompile any packages that GHC itself depends on, as this may render the
ghc package itself broken, and ghc cannot be simply recompiled. The only way to recover
from this would be to re-install GHC.

10.9.7 Package management (the ghc-pkg command)

The ghc-pkg tool is for querying and modifying package databases. To see what pack-
age databases are in use, use ghc-pkg list. The stack of databases that ghc-pkg knows
about can be modified using the GHC PACKAGE PATH (page 187) environment variable (see
The GHC PACKAGE PATH environment variable (page 187), and using -package-db (file)
(page 187) options on the ghc-pkg command line.

When asked to modify a database, ghc-pkg modifies the global database by default. Speci-
fying - -user causes it to act on the user database, or - -package-db can be used to act on
another database entirely. When multiple of these options are given, the rightmost one is
used as the database to act upon.

Commands that query the package database (list, latest, describe, field, dot) operate on the
list of databases specified by the flags --user, --global, and - -package-db. If none of these
flags are given, the default is - -global --user.

If the environment variable GHC PACKAGE PATH (page 187) is set, and its value does not end
in a separator (: on Unix, ; on Windows), then the last database is considered to be the

190 Chapter 10. Using GHC

http://hackage.haskell.org/packages/hackage.html

GHC User’s Guide Documentation, Release 8.6.5

global database, and will be modified by default by ghc-pkg. The intention here is that
GHC_PACKAGE_PATH can be used to create a virtual package environment into which Cabal
packages can be installed without setting anything other than GHC PACKAGE_PATH.

The ghc-pkg program may be run in the ways listed below. Where a package name is required,
the package can be named in full including the version number (e.g. network-1.0), or without
the version number. Naming a package without the version number matches all versions of
the package; the specified action will be applied to all the matching packages. A package
specifier that matches all version of the package can also be written (pkg) -*, to make it
clearer that multiple packages are being matched. To match against the installed package ID
instead of just package name and version, pass the --ipid flag.

ghc-pkg init path Creates a new, empty, package database at (path), which must not al-
ready exist.

ghc-pkg register (file) Reads a package specification from (file) (which may be “-” to
indicate standard input), and adds it to the database of installed packages. The syntax
of (file) is given in InstalledPackagelnfo: a package specification (page 194).

The package specification must be a package that isn’t already installed.

ghc-pkg update (file) The same as register, except that if a package of the same name
is already installed, it is replaced by the new one.

ghc-pkg unregister (P) Remove the specified package from the database.

ghc-pkg check Check consistency of dependencies in the package database, and report
packages that have missing dependencies.

ghc-pkg expose (P) Sets the exposed flag for package (P) to True.
ghc-pkg hide (P) Sets the exposed flag for package (P) to False.
ghc-pkg trust (P) Sets the trusted flag for package (P) to True.
ghc-pkg distrust (P) Sets the trusted flag for package (P} to False.

ghc-pkg list [{(P)] [--simple-output] This option displays the currently installed pack-
ages, for each of the databases known to ghc-pkg. That includes the global database, the
user’s local database, and any further files specified using the - f option on the command
line.

Hidden packages (those for which the exposed flag is False) are shown in parentheses
in the list of packages.

If an optional package identifier (P) is given, then only packages matching that identifier
are shown.

If the option --simple-output is given, then the packages are listed on a single line
separated by spaces, and the database names are not included. This is intended to make
it easier to parse the output of ghc-pkg list using a script.

ghc-pkg find-module (M) [--simple-output] This option lists registered packages expos-
ing module (M). Examples:

$ ghc-pkg find-module Var
c:/fptools/validate/ghc/driver/package.conf.inplace:
(ghc-6.9.20080428)

$ ghc-pkg find-module Data.Sequence
c:/fptools/validate/ghc/driver/package.conf.inplace:
containers-0.1

10.9. Packages 191

GHC User’s Guide Documentation, Release 8.6.5

Otherwise, it behaves like ghc-pkg list, including options.

ghc-pkg latest (P) Prints the latest available version of package (P).

ghc-pkg describe (P) Emit the full description of the specified package. The description is

in the form of an InstalledPackageInfo, the same as the input file format for ghc-pkg
register. See InstalledPackagelnfo: a package specification (page 194) for details.

If the pattern matches multiple packages, the description for each package is emitted,
separated by the string - - - on a line by itself.

ghc-pkg field (P) (field)[,(field)]* Show just a single field of the installed package

description for P. Multiple fields can be selected by separating them with commas

ghc-pkg dot Generate a graph of the package dependencies in a form suitable for input for

the graphviz tools. For example, to generate a PDF of the dependency graph:

ghc-pkg dot | tred | dot -Tpdf >pkgs.pdf

ghc-pkg dump Emit the full description of every package, in the form of an

InstalledPackageInfo. Multiple package descriptions are separated by the string - - -
on a line by itself.

This is almost the same as ghc-pkg describe '*', exceptthatghc-pkg dumpisintended
for use by tools that parse the results, so for example where ghc-pkg describe '*' will
emit an error if it can’t find any packages that match the pattern, ghc-pkg dump will
simply emit nothing.

ghc-pkg recache Re-creates the binary cache file package.cache for the selected database.

This may be necessary if the cache has somehow become out-of-sync with the contents
of the database (ghc-pkg will warn you if this might be the case).

The other time when ghc-pkg recache is useful is for registering packages manually:
it is possible to register a package by simply putting the appropriate file in the package
database directory and invoking ghc-pkg recache to update the cache. This method of

registering packages may be more convenient for automated packaging systems.

Substring matching is supported for (M) in find-module and for (P) in list, describe, and
field, where a '*' indicates open substring ends (prefix*, *suffix, *infix*). Examples

(output omitted):

-- list all regex-related packages

ghc-pkg list '*regex*' --ignore-case
-- list all string-related packages
ghc-pkg list '*string*' --ignore-case

-- list OpenGL-related packages

ghc-pkg list '*gl*' --ignore-case

-- list packages exporting modules in the Data hierarchy
ghc-pkg find-module 'Data.*'

-- list packages exporting Monad modules

ghc-pkg find-module '*Monad*'’

-- list names and maintainers for all packages
ghc-pkg field '*' name,maintainer

-- list location of haddock htmls for all packages
ghc-pkg field '*' haddock-html

-- dump the whole database

ghc-pkg describe '*'

Additionally, the following flags are accepted by ghc-pkg:

192

Chapter 10.

Using GHC

http://www.graphviz.org/

GHC User’s Guide Documentation, Release 8.6.5

-f (file), -package-db (file) Adds (file) to the stack of package databases. Additionally,
(file) will also be the database modified by a register, unregister, expose or hide
command, unless it is overridden by a later - -package-db, --user or - -global option.

--force Causes ghc-pkg to ignore missing dependencies, directories and libraries when reg-
istering a package, and just go ahead and add it anyway. This might be useful if your
package installation system needs to add the package to GHC before building and in-
stalling the files.

--global Operate on the global package database (this is the default). This flag affects the
register, update, unregister, expose, and hide commands.

--help, -? Outputs the command-line syntax.

--user Operate on the current user’s local package database. This flag affects the register,
update, unregister, expose, and hide commands.

-v [{n)], --verbose [=(n)] Control verbosity. Verbosity levels range from 0-2, where the
default is 1, and -v alone selects level 2.

-V; --version Output the ghc-pkg version number.

--ipid Causes ghc-pkg to interpret arguments as installed package IDs (e.g., an identifier
like unix-2.3.1.0-de7803f1a8cd88d2161b29b083c94240). This is useful if providing
just the package name and version are ambiguous (in old versions of GHC, this was
guaranteed to be unique, but this invariant no longer necessarily holds).

--package-key Causes ghc-pkg to interpret arguments as unit IDs
(e.g., an identifier like I5BErHzyOmO7EBNpKBEeUV). Package
keys are used to prefix symbol names GHC produces (e.g.,
6VWy06pWzzJq9evDvK2d4w6 DataziByteStringziInternal unsafePackLenChars info),
so if you need to figure out what package a symbol belongs to, use ghc-pkg with this
flag.

10.9.8 Building a package from Haskell source

We don’t recommend building packages the hard way. Instead, use the Cabal infrastructure
if possible. If your package is particularly complicated or requires a lot of configuration, then
you might have to fall back to the low-level mechanisms, so a few hints for those brave souls
follow.

You need to build an “installed package info” file for passing to ghc-pkg when installing your
package. The contents of this file are described in InstalledPackagelnfo: a package specifi-
cation (page 194).

The Haskell code in a package may be built into one or more archive libraries (e.g. 1ibHSfoo.
a), or a single shared object (e.g. 1ibHSfoo.d11l/.so/.dylib). The restriction to a single
shared object is because the package system is used to tell the compiler when it should
make an inter-shared-object call rather than an intra-shared-object-call call (inter-shared-
object calls require an extra indirection).

» Building a static library is done by using the ar tool, like so:

ar cqs libHSfoo-1.0.a A.o B.o C.o ...

where A.o, B.o and so on are the compiled Haskell modules, and 1ibHSfo0o0.a is the
library you wish to create. The syntax may differ slightly on your system, so check the
documentation if you run into difficulties.

10.9. Packages 193

http://www.haskell.org/cabal/users-guide/

GHC User’s Guide Documentation, Release 8.6.5

* To load a package foo, GHCi can load its 1ibHSfoo0.a library directly, but it can also
load a package in the form of a single HSfoo.o0 file that has been pre-linked. Loading
the .o file is slightly quicker, but at the expense of having another copy of the compiled
package. The rule of thumb is that if the modules of the package were compiled with
-split-objs (page 206) then building the HSfoo. 0 is worthwhile because it saves time
when loading the package into GHCi. Without -split-objs (page 206), there is not
much difference in load time between the .0 and .a libraries, so it is better to save the
disk space and only keep the .a around. In a GHC distribution we provide .o files for
most packages except the GHC package itself.

The HSfoo.o0 file is built by Cabal automatically; use --disable-library-for-ghci to
disable it. To build one manually, the following GNU 1d command can be used:

1ld -r --whole-archive -o HSfoo.o libHSfoo.a

(replace --whole-archive with -all load on MacOS X)

* When building the package as shared library, GHC can be used to perform the link step.
This hides some of the details out the underlying linker and provides a common interface
to all shared object variants that are supported by GHC (DLLs, ELF DSOs, and Mac OS
dylibs). The shared object must be named in specific way for two reasons: (1) the name
must contain the GHC compiler version, so that two library variants don’t collide that
are compiled by different versions of GHC and that therefore are most likely incompat-
ible with respect to calling conventions, (2) it must be different from the static name
otherwise we would not be able to control the linker as precisely as necessary to make
the -static (page 206)/-dynamic (page 206) flags work, see Options affecting linking
(page 205).

ghc -shared 1ibHSfoo-1.0-ghcGHCVersion.so A.o B.o C.o

Using GHC'’s version number in the shared object name allows different library versions
compiled by different GHC versions to be installed in standard system locations, e.g. un-
der *nix /usr/1ib. To obtain the version number of GHC invoke ghc --numeric-version
and use its output in place of (GHCVersion). See also Options affecting code generation
(page 204) on how object files must be prepared for shared object linking.

To compile a module which is to be part of a new package, use the - package-name (to identify
the name of the package) and -library-name (to identify the version and the version hashes
of its identities.) options (Using Packages (page 182)). Failure to use these options when
compiling a package will probably result in disaster, but you will only discover later when
you attempt to import modules from the package. At this point GHC will complain that the
package name it was expecting the module to come from is not the same as the package name
stored in the .hi file.

It is worth noting with shared objects, when each package is built as a single shared object
file, since a reference to a shared object costs an extra indirection, intra-package references
are cheaper than inter-package references. Of course, this applies to the main package as
well.

10.9.9 InstalledPackageInfo: a package specification

A package specification is a Haskell record; in particular, it is the record
Distribution.InstalledPackagelnfo.InstalledPackagelnfo in the module Distribu-
tion.InstalledPackagelInfo, which is part of the Cabal package distributed with GHC.

194 Chapter 10. Using GHC

../libraries/Cabal-2.4.0.1/Distribution-InstalledPackageInfo.html#t:InstalledPackageInfo

GHC User’s Guide Documentation, Release 8.6.5

An InstalledPackageInfo has a human readable/writable syntax. The functions
parseInstalledPackageInfo and showInstalledPackageInfo read and write this syntax re-
spectively. Here’s an example of the InstalledPackageInfo for the unix package:

$ ghc-pkg describe unix

name: unix

version: 2.3.1.0

id: unix-2.3.1.0-de7803f1a8cd88d2161b29b083c94240

license: BSD3

copyright:

maintainer: libraries@haskell.org

stability:

homepage:

package-url:

description: This package gives you access to the set of operating system
services standardised by POSIX 1003.1b (or the IEEE Portable
Operating System Interface for Computing Environments -
IEEE Std. 1003.1).

The package is not supported under Windows (except under Cygwin).

category: System

author:

exposed: True

exposed-modules: System.Posix System.Posix.DynamicLinker.Module
System.Posix.DynamicLinker.Prim System.Posix.Directory
System.Posix.DynamicLinker System.Posix.Env System.Posix.Error
System.Posix.Files System.Posix.I0 System.Posix.Process
System.Posix.Process.Internals System.Posix.Resource
System.Posix.Temp System.Posix.Terminal System.Posix.Time
System.Posix.Unistd System.Posix.User System.Posix.Signals
System.Posix.Signals.Exts System.Posix.Semaphore
System.Posix.SharedMem

hidden-modules:

trusted: False

import-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0

library-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0

hs-libraries: HSunix-2.3.1.0

extra-libraries: rt util dl

extra-ghci-libraries:

include-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0/include

includes: HsUnix.h execvpe.h

depends: base-4.2.0.0-247bb20cde37c3ef4093eel24e04bclc

hugs-options:

cc-options:

ld-options:

framework-dirs:

frameworks:

haddock-interfaces: /usr/share/doc/ghc/html/libraries/unix/unix.haddock

haddock-html: /usr/share/doc/ghc/html/libraries/unix

Here is a brief description of the syntax of this file:

A package description consists of a number of field/value pairs. A field starts with the field

“

name in the left-hand column followed by a “:”, and the value continues until the next line
that begins in the left-hand column, or the end of file.

The syntax of the value depends on the field. The various field types are:

freeform Any arbitrary string, no interpretation or parsing is done.

10.9. Packages 195

GHC User’s Guide Documentation, Release 8.6.5

string A sequence of non-space characters, or a sequence of arbitrary characters surrounded

by quotes "....".
string list A sequence of strings, separated by commas. The sequence may be empty.

In addition, there are some fields with special syntax (e.g. package names, version, depen-
dencies).

The allowed fields, with their types, are:
name (string) The package’s name (without the version).
id (string) The installed package ID. It is up to you to choose a suitable one.

version (string) The package’s version, usually in the form A.B (any number of components
are allowed).

license (string) The type of license under which this package is distributed. This field is a
value of the Distribution.License.License type.

license-file (optional string) The name of a file giving detailed license information for this
package.

copyright (optional freeform) The copyright string.
maintainer (optional freeform) The email address of the package’s maintainer.

stability (optional freeform) A string describing the stability of the package (e.g. stable,
provisional or experimental).

homepage (optional freeform) URL of the package’s home page.

package-url (optional freeform) URL of a downloadable distribution for this package. The
distribution should be a Cabal package.

description (optional freeform) Description of the package.

category (optional freeform) Which category the package belongs to. This field is for use in
conjunction with a future centralised package distribution framework, tentatively titled
Hackage.

author (optional freeform) Author of the package.
exposed (bool) Whether the package is exposed or not.
exposed-modules (string list) modules exposed by this package.

hidden-modules (string list) modules provided by this package, but not exposed to the pro-
grammer. These modules cannot be imported, but they are still subject to the overlap-
ping constraint: no other package in the same program may provide a module of the
same name.

reexported-modules Modules reexported by this package. This list takes the form of
pkg:0ldName as NewName (A@orig-pkg-0.1-HASH): the first portion of the string is the
user-written reexport specification (possibly omitting the package qualifier and the re-
naming), while the parenthetical is the original package which exposed the module under
are particular name. Reexported modules have a relaxed overlap constraint: it’s permis-
sible for two packages to reexport the same module as the same name if the reexported
moduleis identical.

trusted (bool) Whether the package is trusted or not.

import-dirs (string list) A list of directories containing interface files (. hi files) for this pack-
age.

196 Chapter 10. Using GHC

../libraries/Cabal-2.4.0.1/Distribution-License.html#t:License

GHC User’s Guide Documentation, Release 8.6.5

If the package contains profiling libraries, then the interface files for those library mod-
ules should have the suffix .p_hi. So the package can contain both normal and profiling
versions of the same library without conflict (see also library dirs below).

library-dirs (string list) A list of directories containing libraries for this package.

hs-libraries (string list) A list of libraries containing Haskell code for this package, with
the .a or .dl1 suffix omitted. When packages are built as libraries, the 1ib prefix is also
omitted.

For use with GHCIi, each library should have an object file too. The name of the object
file does not have a 1ib prefix, and has the normal object suffix for your platform.

For example, if we specify a Haskell library as HSfoo in the package spec, then the various
flavours of library that GHC actually uses will be called:

1ibHSfoo.a The name of the library on Unix and Windows (mingw) systems. Note that
we don’t support building dynamic libraries of Haskell code on Unix systems.

HSfoo.dll The name of the dynamic library on Windows systems (optional).
HSfoo.0; HSfoo.0obj The object version of the library used by GHCi.

extra-libraries (string list) A list of extra libraries for this package. The difference be-
tween hs-libraries and extra-libraries is that hs-libraries normally have several
versions, to support profiling, parallel and other build options. The various versions
are given different suffixes to distinguish them, for example the profiling version of the
standard prelude library is named 1ibHSbase p.a, with the p indicating that this is a
profiling version. The suffix is added automatically by GHC for hs-1libraries only, no
suffix is added for libraries in extra-libraries.

The libraries listed in extra-1libraries may be any libraries supported by your system’s
linker, including dynamic libraries (.so on Unix, .DLL on Windows).

Also, extra-libraries are placed on the linker command line after the hs-libraries
for the same package. If your package has dependencies in the other direction (i.e.
extra-libraries depends on hs-libraries), and the libraries are static, you might
need to make two separate packages.

include-dirs (string list) A list of directories containing C includes for this package.

includes (string list) A list of files to include for via-C compilations using this package. Typ-
ically the include file(s) will contain function prototypes for any C functions used in the
package, in case they end up being called as a result of Haskell functions from the pack-
age being inlined.

depends (package id list) Packages on which this package depends.
hugs-options (string list) Options to pass to Hugs for this package.

cc-options (string list) Extra arguments to be added to the gcc command line when this
package is being used (only for via-C compilations).

1d-options (string list) Extra arguments to be added to the gcc command line (for linking)
when this package is being used.

framework-dirs (string list) On Darwin/MacOS X, a list of directories containing frameworks
for this package. This corresponds to the - framework-path option. It is ignored on all
other platforms.

frameworks (string list) On Darwin/MacOS X, a list of frameworks to link to. This corresponds
to the -framework option. Take a look at Apple’s developer documentation to find out
what frameworks actually are. This entry is ignored on all other platforms.

10.9. Packages 197

GHC User’s Guide Documentation, Release 8.6.5

haddock-interfaces (string list) A list of filenames containing Haddock interface files (.
haddock files) for this package.

haddock-html (optional string) The directory containing the Haddock-generated HTML for
this package.

10.10 GHC Backends

GHC supports multiple backend code generators. This is the part of the compiler responsible
for taking the last intermediate representation that GHC uses (a form called Cmm that is a
simple, C like language) and compiling it to executable code. The backends that GHC support
are described below.

10.10.1 Native Code Generator (-fasm)

The default backend for GHC. It is a native code generator, compiling Cmm all the way to
assembly code. It is the fastest backend and generally produces good performance code. It
has the best support for compiling shared libraries. Select it with the - fasm flag.

10.10.2 LLVM Code Generator (-fllvm)

This is an alternative backend that uses the LLVM compiler to produce executable code. It
generally produces code as with performance as good as the native code generator but for
some cases can produce much faster code. This is especially true for numeric, array heavy
code using packages like vector. The penalty is a significant increase in compilation times.
Select the LLVM backend with the - fllvm (page 204) flag.

You must install and have LLVM available on your PATH for the LLVM code generator to work.
Specifically GHC needs to be able to call the opt and 11lc tools. Secondly, if you are run-
ning Mac OS X with LIVM 3.0 or greater then you also need the Clang C compiler compiler
available on your PATH.

Note: Note that this GHC release expects an LLVM version in the 6.0 release series.

To install LLVM and Clang:
* Linux: Use your package management tool.

* Mac OS X: Clang is included by default on recent OS X machines when XCode is installed
(from 10.6 and later). LLVM is not included. In order to use the LLVM based code
generator, you should install the Homebrew package manager for OS X. Alternatively
you can download binaries for LLVM and Clang from here.

» Windows: You should download binaries for LLVM and clang from here.

10.10.3 C Code Generator (-fvia-C)
This is the oldest code generator in GHC and is generally not included any more having been
deprecated around GHC 7.0. Select it with the -fvia-C flag.

The C code generator is only supported when GHC is built in unregisterised mode, a mode
where GHC produces “portable” C code as output to facilitate porting GHC itself to a new

198 Chapter 10. Using GHC

http://www.haskell.org/haddock/
http://llvm.org
http://clang.llvm.org
http://mxcl.github.com/homebrew/
http://llvm.org/releases/download.html
http://llvm.org/releases/download.html

GHC User’s Guide Documentation, Release 8.6.5

platform. This mode produces much slower code though so it’s unlikely your version of GHC
was built this way. If it has then the native code generator probably won’t be available. You
can check this information by calling ghc --info (see --info (page 81)).

10.10.4 Unregisterised compilation

The term “unregisterised” really means “compile via vanilla C”, disabling some of the
platform-specific tricks that GHC normally uses to make programs go faster. When compiling
unregisterised, GHC simply generates a C file which is compiled via gcc.

When GHC is build in unregisterised mode only the LLVM and C code generators will be
available. The native code generator won’t be. LLVM usually offers a substantial performance
benefit over the C backend in unregisterised mode.

Unregisterised compilation can be useful when porting GHC to a new machine, since it re-
duces the prerequisite tools to gcc, as, and 1d and nothing more, and furthermore the amount
of platform-specific code that needs to be written in order to get unregisterised compilation
going is usually fairly small.

Unregisterised compilation cannot be selected at compile-time; you have to build GHC with
the appropriate options set. Consult the GHC Building Guide for details.

You can check if your GHC is unregisterised by calling ghc --info (see --info (page 81)).

10.11 Options related to a particular phase

10.11.1 Replacing the program for one or more phases

You may specify that a different program be used for one of the phases of the compilation
system, in place of whatever the ghc has wired into it. For example, you might want to try
a different assembler. The following options allow you to change the external program used
for a given compilation phase:

-pgmL {cmd)
Use (cmd) as the literate pre-processor.

-pgmP (cmd)
Use (cmd) as the C pre-processor (with -cpp only).

-pgmc {cmd)
Use (cmd) as the C compiler.

-pgmlo (cmd)
Use (cmd) as the LLVM optimiser.

-pgmlc {(cmd)
Use (cmd) as the LLVM compiler.

-pgms (cmd)
Use (cmd) as the splitter.

-pgma {cmd)
Use (cmd) as the assembler.

-pgml (cmd)
Use (cmd) as the linker.

10.11. Options related to a particular phase 199

GHC User’s Guide Documentation, Release 8.6.5

-pgmdll (cmd)
Use {(cmd) as the DLL generator.

-pgmF (cmd)
Use {(cmd) as the pre-processor (with -F only).

-pgmwindres (cmd)
Use (cmd) as the program to use for embedding manifests on Windows. Nor-
mally this is the program windres, which is supplied with a GHC installation. See
-fno-embed-manifest in Options affecting linking (page 205).

-pgmlibtool (cmd)
Use (cmd) as the libtool command (when using -staticlib only).

-pgmi (cmd)
Use (cmd) as the external interpreter command (see: Running the interpreter in a sep-
arate process (page 73)). Default: ghc-iserv-prof if -prof is enabled, ghc-iserv-dyn
if -dynamic is enabled, or ghc-iserv otherwise.

10.11.2 Forcing options to a particular phase

Options can be forced through to a particular compilation phase, using the following flags:

-optL (option)
Pass {(option) to the literate pre-processor

-optP (option)
Pass {option) to CPP (makes sense only if -cpp is also on).

-optF (option)
Pass (option) to the custom pre-processor (see Options affecting a Haskell pre-processor
(page 203)).

-optc (option)
Pass {option) to the C compiler.

-optlo (option)
Pass {option) to the LLVM optimiser.

-optlc (option)
Pass {(option) to the LLVM compiler.

-opta (option)
Pass {option) to the assembler.

-optl (option)
Pass (option) to the linker.

-optdll (option)
Pass (option) to the DLL generator.

-optwindres (option)
Pass (option) to windres when embedding manifests on Windows. See
-fno-embed-manifest in Options affecting linking (page 205).

-opti (option)
Pass (option) to the interpreter sub-process (see Running the interpreter in a separate
process (page 73)). A common use for this is to pass RTS options e.g., -opti+RTS
-opti-A64m, or to enable verbosity with -opti-v to see what messages are being ex-
changed by GHC and the interpreter.

200 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

So, for example, to force an -Ewurble option to the assembler, you would tell the driver
-opta-Ewurble (the dash before the E is required).

GHC is itself a Haskell program, so if you need to pass options directly to GHC’s runtime
system you can enclose them in +RTS ... -RTS (see Running a compiled program (page 148)).

10.11.3 Options affecting the C pre-processor

CPP
Since 6.8.1

-Cpp
The C pre-processor cpp is run over your Haskell code only if the - cpp option -cpp option
is given. Unless you are building a large system with significant doses of conditional
compilation, you really shouldn’t need it.

-D{symbol) [=(value)]
Define macro (symbol) in the usual way. When no value is given, the value is taken to be
1. For instance, -DUSE_MYLIB is equivalent to -DUSE_MYLIB=1.

Note: -D(symbol)[=(value)] (page 201) does not affect -D macros passed to the
C compiler when compiling an unregisterised build! In this case use the -optc-Dfoo
hack... (see Forcing options to a particular phase (page 200)).

-U(symbol)
Undefine macro (symbol) in the usual way.

-I(dir)
Specify a directory in which to look for #include files, in the usual C way.

The GHC driver pre-defines several macros when processing Haskell source code (. hs or . lLhs
files).

10.11.3.1 Standard CPP macros

The symbols defined by GHC are listed below. To check which symbols are defined by your
local GHC installation, the following trick is useful:

$ ghc -E -optP-dM -cpp foo.hs
$ cat foo.hspp

(you need a file foo.hs, but it isn’t actually used).

__GLASGOW_HASKELL__ For version x.y.z of GHC, the value of = GLASGOW HASKELL is the
integer (xyy) (if {y) is a single digit, then a leading zero is added, so for example in version
6.2 of GHC, GLASGOW HASKELL ==602). More information in GHC version numbering
policy (page 6).
With any luck, GLASGOW HASKELL will be undefined in all other implementations that
support C-style pre-processing.

Note: The comparable symbols for other systems are: ~ HUGS for Hugs, NHC _ for
nhc98, and _ HBC__ for hbc).

10.11. Options related to a particular phase 201

GHC User’s Guide Documentation, Release 8.6.5

NB. This macro is set when pre-processing both Haskell source and C source, including
the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc files).

__GLASGOW_HASKELL_PATCHLEVEL1__; _ GLASGOW_HASKELL_PATCHLEVEL2__ These macros
are available starting with GHC 7.10.1.

For three-part GHC version numbers X.Y¥.zZ, the value of
_ GLASGOW HASKELL PATCHLEVEL1 is the integer (z).

For four-part GHC version numbers X.y.z.z', the value of
_ GLASGOW HASKELL PATCHLEVEL1 is the integer (z) while the wvalue of

_ GLASGOW HASKELL PATCHLEVEL2 is set to the integer (z’).

These macros are provided for allowing finer granularity than is provided by
_ GLASGOW _HASKELL . Usually, this should not be necessary as it’s expected for most
APIs to remain stable between patchlevel releases, but occasionally internal API changes
are necessary to fix bugs. Also conditional compilation on the patchlevel can be useful
for working around bugs in older releases.

Tip: These macros are set when pre-processing both Haskell source and C source,
including the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc
files).

MIN_VERSION_GLASGOW_HASKELL(x,y,z,z') This macro is available starting with GHC
7.10.1.

This macro is provided for convenience to write CPP conditionals testing whether the
GHC version used is version x.y.z.z' or later.

If compatibility with Haskell compilers (including GHC prior to version 7.10.1)
which do not define MIN VERSION GLASGOW HASKELL is required, the presence of the
MIN VERSION GLASGOW HASKELL macro needs to be ensured before it is called, e.g.:

#1ifdef MIN VERSION GLASGOW HASKELL

#1if MIN VERSION GLASGOW HASKELL(7,10,2,0)

/* code that applies only to GHC 7.10.2 or later */
#endif

#endif

Tip: This macro is set when pre-processing both Haskell source and C source, including
the C source generated from a Haskell module (i.e. .hs, .lhs, .c and .hc files).

__GLASGOW_HASKELL_TH__ This is set to 1 when the compiler supports Template Haskell, and
to 0 when not. The latter is the case for a stage-1 compiler during bootstrapping, or on
architectures where the interpreter is not available.

__GLASGOW_HASKELL_LLVM__ Only defined when - fllvmis specified. When GHC is using ver-
sion X.y.z of LLVM, the value of = GLASGOW HASKELL LLVM is the integer {xyy) (if (y)
is a single digit, then a leading zero is added, so for example when using version 3.7 of
LIVM, GLASGOW HASKELL LLVM ==307).

__PARALLEL_HASKELL__ Only defined when -parallel is in use! This symbol is defined when
pre-processing Haskell (input) and pre-processing C (GHC output).

os_HOST_0S=1 This define allows conditional compilation based on the Operating System,
where(os) is the name of the current Operating System (eg. 1inux, mingw32 for Windows,
solaris, etc.).

202 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

arch_HOST_ARCH=1 This define allows conditional compilation based on the host architecture,
where(arch) is the name of the current architecture (eg. 1386, x86 64, powerpc, sparc,
etc.).

VERSION_pkgname This macro is available starting GHC 8.0. It is defined for every exposed
package. This macro expands to a string recording the version of pkgname that is exposed
for module import. It is identical in behavior to the VERSION pkgname macros that Cabal
defines.

MIN_VERSION_pkgname(x,y,z) This macro is available starting GHC 8.0. It is defined for
every exposed package. This macro is provided for convenience to write CPP condi-
tionals testing if a package version is x.y.z or later. It is identical in behavior to the
MIN VERSION pkgname macros that Cabal defines.

10.11.3.2 CPP and string gaps

A small word of warning: -cpp (page 201) is not friendly to “string gaps”. In other words,
strings such as the following:

strmod = "\
\ p\
\II

don’t work with -cpp (page 201); /usr/bin/cpp elides the backslash-newline pairs.

However, it appears that if you add a space at the end of the line, then cpp (at least GNU cpp
and possibly other cpps) leaves the backslash-space pairs alone and the string gap works as
expected.

10.11.4 Options affecting a Haskell pre-processor

-F
A custom pre-processor is run over your Haskell source file only if the -F option is given.

Running a custom pre-processor at compile-time is in some settings appropriate and
useful. The -F option lets you run a pre-processor as part of the overall GHC compilation
pipeline, which has the advantage over running a Haskell pre-processor separately in
that it works in interpreted mode and you can continue to take reap the benefits of
GHC'’s recompilation checker.

The pre-processor is run just before the Haskell compiler proper processes the Haskell
input, but after the literate markup has been stripped away and (possibly) the C pre-
processor has washed the Haskell input.

Use -pgmF (cmd) (page 200) to select the program to use as the preprocessor. When
invoked, the (cmd) pre-processor is given at least three arguments on its command-line:
the first argument is the name of the original source file, the second is the name of the
file holding the input, and the third is the name of the file where (cmd) should write its
output to.

Additional arguments to the pre-processor can be passed in using the -optF (option)
(page 200) option. These are fed to (cmd) on the command line after the three standard
input and output arguments.

An example of a pre-processor is to convert your source files to the input encoding that
GHC expects, i.e. create a script convert.sh containing the lines:

10.11. Options related to a particular phase 203

GHC User’s Guide Documentation, Release 8.6.5

#!/bin/sh
(echo "{-# LINE 1 \"$2\" #-}" ; iconv -f 11 -t utf-8 $2) > $3

and pass -F -pgmF convert.sh to GHC. The -f 11 option tells iconv to convert your
Latin-1 file, supplied in argument $2, while the “-t utf-8” options tell iconv to return a
UTF-8 encoded file. The result is redirected into argument $3. The echo "{-# LINE 1
\"$2\" #-1}" just makes sure that your error positions are reported as in the original
source file.

10.11.5 Options affecting code generation

-fasm
Use GHC'’s native code generator (page 198) rather than compiling via LLVM. -fasm is
the default.

-fllvm
Compile via LLVM (page 198) instead of using the native code generator. This will gen-
erally take slightly longer than the native code generator to compile. Produced code is
generally the same speed or faster than the other two code generators. Compiling via
LLVM requires LLVM’s opt and 11lc executables to be in PATH.

Note: Note that this GHC release expects an LLVM version in the 6.0 release series.

-fno-code
Omit code generation (and all later phases) altogether. This is useful if you're only in-
terested in type checking code.

-fwrite-interface
Always write interface files. GHC will normally write interface files automatically, but
this flag is useful with - fno-code (page 204), which normally suppresses generation of
interface files. This is useful if you want to type check over multiple runs of GHC without
compiling dependencies.

-fobject-code
Generate object code. This is the default outside of GHCi, and can be used with GHCi to
cause object code to be generated in preference to bytecode.

-fbyte-code
Generate byte-code instead of object-code. This is the default in GHCi. Byte-code can
currently only be used in the interactive interpreter, not saved to disk. This option is
only useful for reversing the effect of - fobject-code (page 204).

-fPIC
Generate position-independent code (code that can be put into shared libraries). This
currently works on Linux x86 and x86-64. On Windows, position-independent code is
never used so the flag is a no-op on that platform.

-fexternal-dynamic-refs
When generating code, assume that entities imported from a different module might be
dynamically linked. This flag is enabled automatically by -dynamic (page 206).

-fPIE
Generate code in such a way to be linkable into a position-independent executable This
currently works on Linux x86 and x86-64. On Windows, position-independent code is

204 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

never used so the flag is a no-op on that platform. To link the final executable use -pie
(page 210).

-dynamic
Build code for dynamic linking. This can reduce code size tremendously, but may slow-
down cross-module calls of non-inlined functions. There can be some complications com-
bining - shared (page 206) with this flag relating to linking in the RTS under Linux. See
Trac #10352.

Note that using this option when linking causes GHC to link against shared libraries.

-dynamic-too
Generates both dynamic and static object files in a single run of GHC. This option is
functionally equivalent to running GHC twice, the second time adding -dynamic -osuf
dyn o -hisuf dyn hi.

Although it is equivalent to running GHC twice, using -dynamic-too is more efficient,
because the earlier phases of the compiler up to code generation are performed just
once.

When using -dynamic-too, the options -dyno, -dynosuf, and -dynhisuf are the coun-
terparts of -0, -osuf, and -hisuf respectively, but applying to the dynamic compilation.

10.11.6 Options affecting linking

GHC has to link your code with various libraries, possibly including: user-supplied, GHC-
supplied, and system-supplied (- lm math library, for example).

-1 (lib)
Link in the (lib) library. On Unix systems, this will be in a file called liblib.a or liblib.
so which resides somewhere on the library directories path.

Because of the sad state of most UNIX linkers, the order of such options does matter.
If library {foo) requires library (bar), then in general -1 {foo) should come before -1
(bar) on the command line.

There’s one other gotcha to bear in mind when using external libraries: if the library con-
tains a main() function, then this will be a link conflict with GHC’s own main() function
(eg. libf2c and lib1l have their own main()s).

You can use an external main function if you initialize the RTS manually and pass
-no-hs-main. See also Using your own main() (page 507).

Omits the link step. This option can be used with - -make (page 80) to avoid the automatic
linking that takes place if the program contains a Main module.

-package (name)
If you are using a Haskell “package” (see Packages (page 181)), don’t forget to add the
relevant -package option when linking the program too: it will cause the appropriate
libraries to be linked in with the program. Forgetting the -package option will likely
result in several pages of link errors.

-framework (name)
On Darwin/OS X/iOS only, link in the framework (name). This option corresponds to
the -framework option for Apple’s Linker. Please note that frameworks and packages
are two different things - frameworks don’t contain any Haskell code. Rather, they are
Apple’s way of packaging shared libraries. To link to Apple’s “Carbon” API, for example,
you’d use -framework Carbon.

10.11. Options related to a particular phase 205

https://ghc.haskell.org/trac/ghc/ticket/10352

GHC User’s Guide Documentation, Release 8.6.5

-staticlib
Link all passed files into a static library suitable for linking. To control the name, use
the -0 (file) (page 166) option as usual. The default name is liba.a.

-L (dir)
Where to find user-supplied libraries... Prepend the directory (dir) to the library direc-
tories path.

-framework-path (dir)
On Darwin/OS X/iOS only, prepend the directory (dir) to the framework directories path.
This option corresponds to the -F option for Apple’s Linker (-F already means something
else for GHC).

-split-objs
Tell the linker to split the single object file that would normally be generated into multiple
object files, one per top-level Haskell function or type in the module. This only makes
sense for libraries, where it means that executables linked against the library are smaller
as they only link against the object files that they need. However, assembling all the
sections separately is expensive, so this is slower than compiling normally. Additionally,
the size of the library itself (the .a file) can be a factor of 2 to 2.5 larger.

-split-sections
Place each generated function or data item into its own section in the output file if the
target supports arbitrary sections. The name of the function or the name of the data
item determines the section’s name in the output file.

When linking, the linker can automatically remove all unreferenced sections and thus
produce smaller executables. The effect is similar to -split-objs (page 206), but
somewhat more efficient - the generated library files are about 30% smaller than with
-split-objs (page 2006).

-static
Tell the linker to avoid shared Haskell libraries, if possible. This is the default.

-dynamic
This flag tells GHC to link against shared Haskell libraries. This flag only affects the
selection of dependent libraries, not the form of the current target (see -shared). See
Using shared libraries (page 210) on how to create them.

Note that this option also has an effect on code generation (see above).

-shared
Instead of creating an executable, GHC produces a shared object with this linker flag.
Depending on the operating system target, this might be an ELF DSO, a Windows DLL,
or a Mac OS dylib. GHC hides the operating system details beneath this uniform flag.

The flags -dynamic (page 206) and -static (page 206) control whether the result-
ing shared object links statically or dynamically to Haskell package libraries given as
-package (pkg) (page 183) option. Non-Haskell libraries are linked as gcc would regu-
larly link it on your system, e.g. on most ELF system the linker uses the dynamic libraries
when found.

Object files linked into shared objects must be compiled with - fPIC (page 204), see
Options affecting code generation (page 204)

When creating shared objects for Haskell packages, the shared object must be named
properly, so that GHC recognizes the shared object when linked against this package.
See shared object name mangling.

206 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

-dynload
This flag selects one of a number of modes for finding shared libraries at runtime. See
Finding shared libraries at runtime (page 212) for a description of each mode.

-main-is (thing)
The normal rule in Haskell is that your program must supply a main function in module
Main. When testing, it is often convenient to change which function is the “main” one,
and the -main-1is flag allows you to do so. The (thing) can be one of:

¢ A lower-case identifier foo. GHC assumes that the main function is Main. foo.
A module name A. GHC assumes that the main function is A.main.
¢ A qualified name A. foo. GHC assumes that the main function is A. foo.

Strictly speaking, -main-is is not a link-phase flag at all; it has no effect on the link
step. The flag must be specified when compiling the module containing the specified
main function (e.g. module A in the latter two items above). It has no effect for other
modules, and hence can safely be given to ghc --make. However, if all the modules are
otherwise up to date, you may need to force recompilation both of the module where the
new “main” is, and of the module where the “main” function used to be; ghc is not clever
enough to figure out that they both need recompiling. You can force recompilation by
removing the object file, or by using the - fforce-recomp (page 169) flag.

-no-hs-main
In the event you want to include ghc-compiled code as part of another (non-Haskell)
program, the RTS will not be supplying its definition of main() at link-time, you will
have to. To signal that to the compiler when linking, use -no-hs-main. See also Using
your own main() (page 507).

Notice that since the command-line passed to the linker is rather involved, you probably
want to use ghc to do the final link of your ‘mixed-language’ application. This is not a
requirement though, just try linking once with -v (page 83) on to see what options the
driver passes through to the linker.

The -no-hs-main flag can also be used to persuade the compiler to do the link step in
--make (page 80) mode when there is no Haskell Main module present (normally the
compiler will not attempt linking when there is no Main).

The flags -rtsopts[=(none|some|all|ignore|ignoreAll)] (page 208) and
-with-rtsopts=(opts) (page 208) have no effect when used with -no-hs-main
(page 207), because they are implemented by changing the definition of main
that GHC generates. See Using your own main() (page 507) for how to get
the effect of -rtsopts[=(none|some|all|ignore|ignoreAll)] (page 208) and
-with-rtsopts=(opts) (page 208) when using your own main.

-debug
Link the program with a debugging version of the runtime system. The debugging run-
time turns on numerous assertions and sanity checks, and provides extra options for
producing debugging output at runtime (run the program with +RTS -7 to see a list).

-threaded
Link the program with the “threaded” version of the runtime system. The threaded
runtime system is so-called because it manages multiple OS threads, as opposed to the
default runtime system which is purely single-threaded.

Note that you do not need -threaded in order to use concurrency; the single-threaded
runtime supports concurrency between Haskell threads just fine.

The threaded runtime system provides the following benefits:

10.11. Options related to a particular phase 207

GHC User’s Guide Documentation, Release 8.6.5

* It enables the -N (x) (page 116) RTS option to be used, which allows threads to run
in parallel on a multiprocessor or multicore machine. See Using SMP parallelism
(page 115).

e If a thread makes a foreign call (and the call is not marked unsafe), then other
Haskell threads in the program will continue to run while the foreign call is in
progress. Additionally, foreign exported Haskell functions may be called from
multiple OS threads simultaneously. See Multi-threading and the FFI (page 511).

-eventlog
Link the program with the “eventlog” version of the runtime system. A program linked
in this way can generate a runtime trace of events (such as thread start/stop) to a binary
file program.eventlog, which can then be interpreted later by various tools. See Tracing
(page 161) for more information.

-eventlog (page 208) can be used with - threaded (page 207). It is implied by -debug
(page 207).

-rtsopts[=(none|some|all|ignore|ignoreAll)]
Default all

This option affects the processing of RTS control options given either on the command
line or via the GHCRTS (page 149) environment variable. There are three possibilities:

-rtsopts=none Disable all processing of RTS options. If +RTS appears anywhere on the
command line, then the program will abort with an error message. If the GHCRTS
environment variable is set, then the program will emit a warning message, GHCRTS
will be ignored, and the program will run as normal.

-rtsopts=ignore Disables all processing of RTS options. Unlike none this treats all RTS
flags appearing on the command line the same way as regular arguments. (Passing
them on to your program as arguments). GHCRTS options will be processed normally.

-rtsopts=ignoreAll Same as ignore but also ignores GHCRTS.

-rtsopts=some [this is the default setting] Enable only the “safe” RTS options: (Cur-
rently only -? and --info.) Any other RTS options on the command line or in the
GHCRTS environment variable causes the program with to abort with an error mes-
sage.

-rtsopts=all or just -rtsopts Enable all RTS option processing, both on the com-
mand line and through the GHCRTS environment variable.

In GHC 6.12.3 and earlier, the default was to process all RTS options. However, since
RTS options can be used to write logging data to arbitrary files under the security context
of the running program, there is a potential security problem. For this reason, GHC 7.0.1
and later default to -rtsopts=some.

Note that - rtsopts has no effect when used with -no-hs-main (page 207); see Using
your own main() (page 507) for details.

-rtsopts does not affect RTS options passed via -with-rtsopts; those are used regard-
less of -rtsopts.

-with-rtsopts=(opts)
This option allows you to set the default RTS options at link-time. For example,
-with-rtsopts="-H128m" sets the default heap size to 128MB. This will always be the
default heap size for this program, unless the user overrides it. (Depending on the set-
ting of the -rtsopts option, the user might not have the ability to change RTS options
at run-time, in which case -with-rtsopts would be the only way to set them.)

208 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Note that -with-rtsopts has no effect when used with -no-hs-main; see Using your
own main() (page 507) for details.

-no-rtsopts-suggestions
This option disables RTS suggestions about linking with
-rtsopts[=(none|some|all|ignore|ignoreAll)] (page 208) when they are not
available. These suggestions would be unhelpful if the users have installed Haskell
programs through their package managers. With this option enabled, these suggestions
will not appear. It is recommended for people distributing binaries to build with either
-rtsopts or -no-rtsopts-suggestions.

-fno-gen-manifest

On Windows, GHC normally generates a manifestmanifest file when linking a binary.
The manifest is placed in the file prog.exe.manifest™ where (prog.exe) is the name
of the executable. The manifest file currently serves just one purpose: it disables the
“installer detection” in Windows Vista that attempts to elevate privileges for executables
with certain names (e.g. names containing “install”, “setup” or “patch”). Without the
manifest file to turn off installer detection, attempting to run an executable that Windows
deems to be an installer will return a permission error code to the invoker. Depending
on the invoker, the result might be a dialog box asking the user for elevated permissions,
or it might simply be a permission denied error.

Installer detection can be also turned off globally for the system using the security con-
trol panel, but GHC by default generates binaries that don’t depend on the user having
disabled installer detection.

The -fno-gen-manifest disables generation of the manifest file. One reason to do this
would be if you had a manifest file of your own, for example.

In the future, GHC might use the manifest file for more things, such as supplying the
location of dependent DLLs.

-fno-gen-manifest (page 209) also implies - fno-embed-manifest (page 209), see be-
low.

-fno-embed-manifest
The manifest file that GHC generates when linking a binary on Windows is also embedded
in the executable itself, by default. This means that the binary can be distributed without
having to supply the manifest file too. The embedding is done by running windres; to
see exactly what GHC does to embed the manifest, use the -v (page 83) flag. A GHC
installation comes with its own copy of windres for this reason.

See also -pgmwindres (cmd) (page 200) (Replacing the program for one or more phases
(page 199)) and -optwindres (option) (page 200) (Forcing options to a particular
phase (page 200)).

-fno-shared-implib
DLLs on Windows are typically linked to by linking to a corresponding .1lib or .dll.a
— the so-called import library. GHC will typically generate such a file for every DLL you
create by compiling in -shared (page 206) mode. However, sometimes you don’t want
to pay the disk-space cost of creating this import library, which can be substantial — it
might require as much space as the code itself, as Haskell DLLs tend to export lots of
symbols.

As long as you are happy to only be able to link to the DLL using GetProcAddress and
friends, you can supply the - fno-shared-implib (page 209) flag to disable the creation
of the import library entirely.

-dylib-install-name (path)

10.11. Options related to a particular phase 209

GHC User’s Guide Documentation, Release 8.6.5

On Darwin/OS X, dynamic libraries are stamped at build time with an “install name”,
which is the ultimate install path of the library file. Any libraries or executables that
subsequently link against it will pick up that path as their runtime search location for
it. By default, ghc sets the install name to the location where the library is built. This
option allows you to override it with the specified file path. (It passes -install name to
Apple’s linker.) Ignored on other platforms.

-rdynamic
This instructs the linker to add all symbols, not only used ones, to the dynamic symbol
table. Currently Linux and Windows/MinGW32 only. This is equivalent to using -optl
-rdynamic on Linux, and -optl -export-all-symbols on Windows.

-fwhole-archive-hs-1libs
When linking a binary executable, this inserts the flag -Wl, - -whole-archive before any
-1 flags for Haskell libraries, and -Wl, --no-whole-archive afterwards (on OS X, the
flag is -Wl, -all load, there is no equivalent for -Wl, - -no-whole-archive). This flag
also disables the use of -Wl, --gc-sections (-Wl, -dead strip on OS X).

This is for specialist applications that may require symbols defined in these Haskell li-
braries at runtime even though they aren’t referenced by any other code linked into
the executable. If you're using -fwhole-archive-hs-1libs, you probably also want
-rdynamic.

-pie
Since 8.2.2

This instructs the linker to produce a position-independent executable. This flag is only
valid while producing executables and all object code being linked must have been pro-
duced with - fPIE (page 204).

Position independent executables are required by some platforms as they enable
address-space layout randomization (ASLR), a common security measure. They can also
be useful as they can be dynamically loaded and used as shared libraries by other exe-
cutables.

Position independent executables should be dynamically-linked (e.g. built with - dynamic
(page 206) and only loaded into other dynamically-linked executables to ensure that only
one LibHSrts is present if loaded into the address space of another Haskell process.

Also, you may need to use the - rdynamic (page 210) flag to ensure that that symbols are
not dropped from your PIE objects.

10.12 Using shared libraries

On some platforms GHC supports building Haskell code into shared libraries. Shared libraries
are also sometimes known as dynamic libraries, in particular on Windows they are referred
to as dynamic link libraries (DLLs).

Shared libraries allow a single instance of some pre-compiled code to be shared between sev-
eral programs. In contrast, with static linking the code is copied into each program. Using
shared libraries can thus save disk space. They also allow a single copy of code to be shared
in memory between several programs that use it. Shared libraries are often used as a way of
structuring large projects, especially where different parts are written in different program-
ming languages. Shared libraries are also commonly used as a plugin mechanism by various
applications. This is particularly common on Windows using COM.

210 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

In GHC version 6.12 building shared libraries is supported for Linux (on x86 and x86-64
architectures). GHC version 7.0 adds support on Windows (see Building and using Win32
DLLs (page 544)), FreeBSD and OpenBSD (x86 and x86-64), Solaris (x86) and Mac OS X (x86
and PowerPC).

Building and using shared libraries is slightly more complicated than building and using static
libraries. When using Cabal much of the detail is hidden, just use --enable-shared when
configuring a package to build it into a shared library, or to link it against other packages built
as shared libraries. The additional complexity when building code is to distinguish whether
the code will be used in a shared library or will use shared library versions of other packages
it depends on. There is additional complexity when installing and distributing shared libraries
or programs that use shared libraries, to ensure that all shared libraries that are required at
runtime are present in suitable locations.

10.12.1 Building programs that use shared libraries

To build a simple program and have it use shared libraries for the runtime system and the
base libraries use the -dynamic (page 206) flag:

ghc --make -dynamic Main.hs

This has two effects. The first is to compile the code in such a way that it can be linked against
shared library versions of Haskell packages (such as base). The second is when linking, to
link against the shared versions of the packages’ libraries rather than the static versions.
Obviously this requires that the packages were built with shared libraries. On supported
platforms GHC comes with shared libraries for all the core packages, but if you install ex-
tra packages (e.g. with Cabal) then they would also have to be built with shared libraries
(--enable-shared for Cabal).

10.12.2 Shared libraries for Haskell packages

You can build Haskell code into a shared library and make a package to be used by other
Haskell programs. The easiest way is using Cabal, simply configure the Cabal package with
the - -enable-shared flag.

If you want to do the steps manually or are writing your own build system then there are
certain conventions that must be followed. Building a shared library that exports Haskell
code, to be used by other Haskell code is a bit more complicated than it is for one that exports
a C API and will be used by C code. If you get it wrong you will usually end up with linker
errors.

In particular Haskell shared libraries must be made into packages. You cannot freely assign
which modules go in which shared libraries. The Haskell shared libraries must match the
package boundaries. The reason for this is that GHC handles references to symbols within
the same shared library (or main executable binary) differently from references to symbols
between different shared libraries. GHC needs to know for each imported module if that
module lives locally in the same shared lib or in a separate shared lib. The way it does this is
by using packages. When using -dynamic (page 206), a module from a separate package is
assumed to come from a separate shared lib, while modules from the same package (or the
default “main” package) are assumed to be within the same shared lib (or main executable
binary).

Most of the conventions GHC expects when using packages are described in Building a pack-
age from Haskell source (page 193). In addition note that GHC expects the . hi files to use the

10.12. Using shared libraries 211

GHC User’s Guide Documentation, Release 8.6.5

extension .dyn hi. The other requirements are the same as for C libraries and are described
below, in particular the use of the flags -dynamic (page 206), - fPIC (page 204) and -shared
(page 206).

10.12.3 Shared libraries that export a C API

Building Haskell code into a shared library is a good way to include Haskell code in a larger
mixed-language project. While with static linking it is recommended to use GHC to perform
the final link step, with shared libraries a Haskell library can be treated just like any other
shared library. The linking can be done using the normal system C compiler or linker.

It is possible to load shared libraries generated by GHC in other programs not written in
Haskell, so they are suitable for using as plugins. Of course to construct a plugin you will
have to use the FFI to export C functions and follow the rules about initialising the RTS. See
Making a Haskell library that can be called from foreign code (page 509). In particular you
will probably want to export a C function from your shared library to initialise the plugin
before any Haskell functions are called.

To build Haskell modules that export a C API into a shared library use the -dynamic
(page 206), - fPIC (page 204) and -shared (page 206) flags:

ghc --make -dynamic -shared -fPIC Foo.hs -o libfoo.so

As before, the -dynamic (page 206) flag specifies that this library links against the shared
library versions of the rts and base package. The - fPIC (page 204) flag is required for all
code that will end up in a shared library. The -shared (page 206) flag specifies to make a
shared library rather than a program. To make this clearer we can break this down into
separate compilation and link steps:

ghc -dynamic -fPIC -c Foo.hs
ghc -dynamic -shared Foo.o -o libfoo.so

In principle you can use -shared (page 206) without -dynamic (page 206) in the link step.
That means to statically link the runtime system and all of the base libraries into your new
shared library. This would make a very big, but standalone shared library. On most platforms
however that would require all the static libraries to have been built with - fPIC (page 204) so
that the code is suitable to include into a shared library and we do not do that at the moment.

Warning: Ifyour shared library exports a Haskell API then you cannot directly link it into
another Haskell program and use that Haskell API. You will get linker errors. You must
instead make it into a package as described in the section above.

10.12.4 Finding shared libraries at runtime

The primary difficulty with managing shared libraries is arranging things such that programs
can find the libraries they need at runtime. The details of how this works varies between
platforms, in particular the three major systems: Unix ELF platforms, Windows and Mac OS
X.

212 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

10.12.4.1 Unix

On Unix there are two mechanisms. Shared libraries can be installed into standard locations
that the dynamic linker knows about. For example /usr/1lib or /usr/local/lib on most
systems. The other mechanism is to use a “runtime path” or “rpath” embedded into programs
and libraries themselves. These paths can either be absolute paths or on at least Linux and
Solaris they can be paths relative to the program or library itself. In principle this makes it
possible to construct fully relocatable sets of programs and libraries.

GHC has a -dynload linking flag to select the method that is used to find shared libraries at
runtime. There are currently two modes:

sysdep A system-dependent mode. This is also the default mode. On Unix ELF systems this
embeds RPATH/RUNPATH entries into the shared library or executable. In particular it uses
absolute paths to where the shared libraries for the rts and each package can be found.
This means the program can immediately be run and it will be able to find the libraries
it needs. However it may not be suitable for deployment if the libraries are installed in
a different location on another machine.

deploy This does not embed any runtime paths. It relies on the shared libraries being avail-
able in a standard location or in a directory given by the LD LIBRARY PATH environment
variable.

To use relative paths for dependent libraries on Linux and Solaris you can pass a suitable
-rpath flag to the linker:

ghc -dynamic Main.hs -o main -1foo -L. -optl-Wl,-rpath, '$0RIGIN'

This assumes that the library libfoo.so is in the current directory and will be able to be
found in the same directory as the executable main once the program is deployed. Similarly
it would be possible to use a subdirectory relative to the executable e.g. -optl-WLl, - rpath,
'$ORIGIN/lib".

This relative path technique can be used with either of the two -dynload modes, though it
makes most sense with the deploy mode. The difference is that with the deploy mode, the
above example will end up with an ELF RUNPATH of just $0RIGIN while with the sysdep mode
the RUNPATH will be $0RIGIN followed by all the library directories of all the packages that the
program depends on (e.g. base and rts packages etc.) which are typically absolute paths.
The unix tool readelf --dynamic is handy for inspecting the RPATH/RUNPATH entries in ELF
shared libraries and executables.

On most UNIX platforms it is also possible to build executables that can be dlopen’d like
shared libraries using the -pie (page 210) flag during linking.

10.12.4.2 Mac OS X

The standard assumption on Darwin/Mac OS X is that dynamic libraries will be stamped at
build time with an “install name”, which is the full ultimate install path of the library file.
Any libraries or executables that subsequently link against it (even if it hasn’t been installed
yet) will pick up that path as their runtime search location for it. When compiling with ghc
directly, the install name is set by default to the location where it is built. You can override this
with the -dylib-install-name (path) (page 209) option (which passes -install name to
the Apple linker). Cabal does this for you. It automatically sets the install name for dynamic
libraries to the absolute path of the ultimate install location.

10.12. Using shared libraries 213

GHC User’s Guide Documentation, Release 8.6.5

10.13 Debugging the compiler

HACKER TERRITORY. HACKER TERRITORY. (You were warned.)

Dump flags

e Debugging the compiler (page 214)
- Dumping out compiler intermediate structures (page 214)
* Front-end (page 215)
* Type-checking and renaming (page 215)
* Core representation and simplification (page 216)
* STG representation (page 217)
* C- representation (page 217)
* LLVM code generator (page 218)
* Native code generator (page 218)
* Miscellaneous backend dumps (page 219)

Formatting dumps (page 219)

Suppressing unwanted information (page 220)

Checking for consistency (page 220)

Checking for determinism (page 221)

10.13.1 Dumping out compiler intermediate structures

-ddump-to-file
Causes the output from all of the flags listed below to be dumped to a file. The file name
depends upon the output produced; for instance, output from -ddump-simpl (page 217)
will end up in module.dump-simpl.

-ddump-json
Dump error messages as JSON documents. This is intended to be consumed by external
tooling. A good way to use it is in conjunction with -ddump-to-file (page 214).

-dshow-passes
Print out each pass name, its runtime and heap allocations as it happens. Note that this
may come at a slight performance cost as the compiler will be a bit more eager in forcing
pass results to more accurately account for their costs.

Two types of messages are produced: Those beginning with *** do denote the beginning
of a compilation phase whereas those starting with !!! mark the end of a pass and are
accompanied by allocation and runtime statistics.

-dfaststring-stats
Show statistics on the usage of fast strings by the compiler.

-dppr-debug
Debugging output is in one of several “styles.” Take the printing of types, for example. In
the “user” style (the default), the compiler’s internal ideas about types are presented in

214 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Haskell source-level syntax, insofar as possible. In the “debug” style (which is the default
for debugging output), the types are printed in with explicit foralls, and variables have
their unique-id attached (so you can check for things that look the same but aren’t). This
flag makes debugging output appear in the more verbose debug style.

-ddump-timings

Show allocation and runtime statistics for various stages of compilation.
GHC is a large program consisting of a number of stages. You can tell GHC to dump infor-
mation from various stages of compilation using the -ddump- (pass) flags listed below. Note
that some of these tend to produce a lot of output. You can prevent them from clogging up
your standard output by passing -ddump-to-file (page 214).

10.13.1.1 Front-end

These flags dump various information from GHC'’s frontend. This includes the parser and
interface file reader.

-ddump-parsed
Dump parser output

-ddump-parsed-ast
Dump parser output as a syntax tree

-ddump-if-trace
Make the interface loader be real chatty about what it is up to.

10.13.1.2 Type-checking and renaming

These flags dump various information from GHC’s typechecker and renamer.

-ddump-tc-trace
Make the type checker be real chatty about what it is up to.

-ddump-rn-trace
Make the renamer be real chatty about what it is up to.

-ddump-ec-trace
Make the pattern match exhaustiveness checker be real chatty about what it is up to.

-ddump-rn-stats
Print out summary of what kind of information the renamer had to bring in.

-ddump-rn
Dump renamer output

-ddump-rn-ast
Dump renamer output as a syntax tree

-ddump-tc
Dump typechecker output

-ddump-tc-ast
Dump typechecker output as a syntax tree

-ddump-splices
Dump Template Haskell expressions that we splice in, and what Haskell code the expres-
sion evaluates to.

10.13. Debugging the compiler 215

GHC User’s Guide Documentation, Release 8.6.5

-dth-dec-file
Dump expansions of all top-level Template Haskell splices into module.th.hs for each
file module.hs.

-ddump-types
Dump a type signature for each value defined at the top level of the module. The list is
sorted alphabetically. Using -dppr-debug (page 214) dumps a type signature for all the
imported and system-defined things as well; useful for debugging the compiler.

-ddump-deriv
Dump derived instances

10.13.1.3 Core representation and simplification

These flags dump various phases of GHC’s Core-to-Core pipeline. This begins with the desug-
arer and includes the simplifier, worker-wrapper transformation, the rule engine, the spe-
cialiser, the strictness/occurrence analyser, and a common subexpression elimination pass.

-ddump-core-stats
Print a one-line summary of the size of the Core program at the end of the optimisation
pipeline.

-ddump-ds -ddump-ds-preopt
Dump desugarer output. -ddump-ds dumps the output after the very simple op-
timiser has run (which discards a lot of clutter and hence is a sensible default.
-ddump-ds-preopt shows the output after desugaring but before the very simple op-
timiser.

-ddump-simpl-iterations
Show the output of each iteration of the simplifier (each run of the simplifier has a max-
imum number of iterations, normally 4).

-ddump-simpl-stats
Dump statistics about how many of each kind of transformation took place. If you add
-dppr-debug (page 214) you get more detailed information.

-dverbose-core2core
Show the output of the intermediate Core-to-Core pass. (lots of output!) So: when we’re
really desperate:

% ghc -noC -0 -ddump-simpl -dverbose-core2core -dcore-lint Foo.hs

-ddump-spec
Dump output of specialisation pass

-ddump-rules
Dumps all rewrite rules specified in this module; see Controlling what’s going on in
rewrite rules (page 479).

-ddump-rule-firings
Dumps the names of all rules that fired in this module

-ddump-rule-rewrites
Dumps detailed information about all rules that fired in this module

-drule-check=(str)
This flag is useful for debugging why a rule you expect to be firing isn’t.

216 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

Rules are filtered by the user provided string, a rule is kept if a prefix of its name matches
the string. The pass then checks whether any of these rules could apply to the program
but which didn’t file for some reason. For example, specifying -drule-check=SPEC will
check whether there are any applications which might be subject to a rule created by
specialisation.

-dinline-check=(str)

This flag is useful for debugging why a definition is not inlined.

When a string is passed to this flag we report information about all functions whose name
shares a prefix with the string.

For example, if you are inspecting the core of your program and you observe that foo
is not being inlined. You can pass -dinline-check foo and you will see a report about

why foo is not inlined.

-ddump-simpl
Dump simplifier output (Core-to-Core passes)

-ddump-inlinings

Dumps inlining info from the simplifierr Note that if used in conjunction with
-dverbose-coreZcore (page 216) the compiler will also dump the inlinings that it con-

siders but passes up, along with its rationale.

-ddump-stranal
Dump strictness analyser output

-ddump-str-signatures
Dump strictness signatures

-ddump-cse
Dump common subexpression elimination (CSE) pass output

-ddump-worker-wrapper
Dump worker/wrapper split output

-ddump-occur-anal
Dump “occurrence analysis” output

-ddump-prep
Dump output of Core preparation pass

10.13.1.4 STG representation

These flags dump various phases of GHC’s STG pipeline.

-ddump-stg
Dump output of STG-to-STG passes

-dverbose-stg2stg
Show the output of the intermediate STG-to-STG pass. (lots of output!)

10.13.1.5 C- representation

These flags dump various phases of GHC’s C- pipeline.

-ddump-cmm-verbose

Dump output from all C- pipeline stages. In case of .cmm compilation this also dumps

the result of file parsing.

10.13. Debugging the compiler

217

GHC User’s Guide Documentation, Release 8.6.5

Cmm dumps don’t include unreachable blocks since we print blocks in reverse post-
order.

-ddump-cmm-from-stg
Dump the result of STG-to-C- conversion

-ddump-cmm-raw
Dump the “raw” C-.

-ddump-cmm-cfg
Dump the results of the C- control flow optimisation pass.

-ddump-cmm-che
Dump the results of the C- Common Block Elimination (CBE) pass.

-ddump-cmm-switch
Dump the results of the C- switch lowering pass.

-ddump-cmm-proc
Dump the results of the C- proc-point analysis pass.

-ddump-cmm-sp
Dump the results of the C- stack layout pass.

-ddump-cmm-sink
Dump the results of the C- sinking pass.

-ddump-cmm-caf
Dump the results of the C- CAF analysis pass.

-ddump-cmm-procmap
Dump the results of the C- proc-point map pass.

-ddump-cmm-split
Dump the results of the C- proc-point splitting pass.

-ddump-cmm-info
Dump the results of the C- info table augmentation pass.

-ddump-cmm-cps
Dump the results of the CPS pass.

-ddump-cmm
Dump the result of the C- pipeline processing

10.13.1.6 LLVM code generator

-ddump-1lvm
Implies -fllvm (page 204)
LLVM code from the LLVM code generator (page 198)

10.13.1.7 Native code generator
These flags dump various stages of the native code generator’s (page 198) pipeline, which
starts with C- and produces native assembler.

~-ddump-opt-cmm
Dump the results of C- to C- optimising passes performed by the NCG.

218 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

-ddump-asm-native
Dump the initial assembler output produced from C-.

-ddump-asm-liveness
Dump the result of the register liveness pass.

-ddump-asm-regalloc
Dump the result of the register allocation pass.

-ddump-asm-regalloc-stages
Dump the build/spill stages of the - fregs-graph (page 110) register allocator.

-ddump-asm-stats
Dump statistics from the register allocator.

-ddump-asm-expanded
Dump the result of the synthetic instruction expansion pass.

-ddump-asm
Dump assembly language produced by the

10.13.1.8 Miscellaneous backend dumps

These flags dump various bits of information from other backends.

-ddump-bcos
Dump byte-code objects (BCOs) produced for the GHC’s byte-code interpreter.

-ddump-foreign
Dump foreign export stubs.

10.13.2 Formatting dumps

-dppr-user-length
In error messages, expressions are printed to a certain “depth”, with subexpressions
beyond the depth replaced by ellipses. This flag sets the depth. Its default value is 5.

-dppr-cols=(n)
Set the width of debugging output. Use this if your code is wrapping too much. For
example: -dppr-cols=200.

-dppr-case-as-let
Print single alternative case expressions as though they were strict let expressions. This
is helpful when your code does a lot of unboxing.

-dhex-word-literals

Print values of type Word# and Word64# (but not values of type Int# and Int64#) in
hexadecimal instead of decimal. The hexadecimal is zero-padded to make the length of
the representation a power of two. For example: Ox0AOA##, O0xO00FFFFF##, OxC##.
This flag may be helpful when you are producing a bit pattern that to expect to work
correctly on a 32-bit or a 64-bit architecture. Dumping hexadecimal literals after opti-
mizations and constant folding makes it easier to confirm that the generated bit pattern
is correct.

-dno-debug-output
Suppress any unsolicited debugging output. When GHC has been built with the DEBUG
option it occasionally emits debug output of interest to developers. The extra output can

10.13. Debugging the compiler 219

GHC User’s Guide Documentation, Release 8.6.5

confuse the testing framework and cause bogus test failures, so this flag is provided to
turn it off.

10.13.3 Suppressing unwanted information

Core dumps contain a large amount of information. Depending on what you are doing, not all
of it will be useful. Use these flags to suppress the parts that you are not interested in.

-dsuppress-all
Suppress everything that can be suppressed, except for unique ids as this often makes
the printout ambiguous. If you just want to see the overall structure of the code, then
start here.

-dsuppress-ticks
Suppress “ticks” in the pretty-printer output.

-dsuppress-uniques
Suppress the printing of uniques. This may make the printout ambiguous (e.g. unclear
where an occurrence of ‘x’ is bound), but it makes the output of two compiler runs have
many fewer gratuitous differences, so you can realistically apply diff. Once diff has
shown you where to look, you can try again without -dsuppress-uniques (page 220)

-dsuppress-idinfo
Suppress extended information about identifiers where they are bound. This includes
strictness information and inliner templates. Using this flag can cut the size of the core
dump in half, due to the lack of inliner templates

-dsuppress-unfoldings
Suppress the printing of the stable unfolding of a variable at its binding site.

-dsuppress-module-prefixes
Suppress the printing of module qualification prefixes. This is the Data.List in Data.
List.length.

-dsuppress-timestamps
Suppress the printing of timestamps. This makes it easier to diff dumps.

-dsuppress-type-signatures
Suppress the printing of type signatures.

-dsuppress-type-applications
Suppress the printing of type applications.

-dsuppress-coercions
Suppress the printing of type coercions.

-dsuppress-var-kinds
Suppress the printing of variable kinds

-dsuppress-stg-free-vars
Suppress the printing of closure free variable lists in STG output

10.13.4 Checking for consistency

-dcore-lint
Turn on heavyweight intra-pass sanity-checking within GHC, at Core level. (It checks
GHC'’s sanity, not yours.)

220 Chapter 10. Using GHC

GHC User’s Guide Documentation, Release 8.6.5

-dstg-lint
Ditto for STG level.

-dcmm-1lint
Ditto for C- level.

-fllvm-fill-undef-with-garbage
Instructs the LLVM code generator to fill dead STG registers with garbage instead of
undef in calls. This makes it easier to catch subtle code generator and runtime system
bugs (e.g. see Trac #11487).

-falignment-sanitisation
Compile with alignment checks for all info table dereferences. This can be useful when
finding pointer tagging issues.

-fproc-alignment
Align functions to multiples of the given value. Only valid values are powers of two.

-fproc-alignment=64 can be used to limit alignment impact on performance as each
function will start at a cache line. However forcing larger alignments in general reduces
performance.

-fcatch-bottoms
Instructs the simplifier to emit error expressions in the continuation of empty case anal-
yses (which should bottom and consequently not return). This is helpful when debugging
demand analysis bugs which can sometimes manifest as segmentation faults.

10.13.5 Checking for determinism
-dinitial-unique=(s)
Start UniqSupply allocation from (s).

-dunique-increment=(i)
Set the increment for the generated Unique’s to (i).

This is useful in combination with -dinitial-unique=(s) (page 221) to test if the gen-
erated files depend on the order of Unique’s.

Some interesting values:
e -dinitial-unique=0 -dunique-increment=1 - current sequential UniqSupply

e -dinitial-unique=16777215 -dunique-increment=-1 - UniqSupply that gener-
ates in decreasing order

e -dinitial-unique=1 -dunique-increment=PRIME - where PRIME big enough to
overflow often - nonsequential order

10.13. Debugging the compiler 221

https://ghc.haskell.org/trac/ghc/ticket/11487

GHC User’s Guide Documentation, Release 8.6.5

222 Chapter 10. Using GHC

CHAPTER
ELEVEN

PROFILING

GHC comes with a time and space profiling system, so that you can answer questions like
“why is my program so slow?”, or “why is my program using so much memory?”.

Profiling a program is a three-step process:

1. Re-compile your program for profiling with the -prof (page 227) option, and probably
one of the options for adding automatic annotations: - fprof-auto (page 227) is the most
common’.

If you are using external packages with cabal, you may need to reinstall these pack-
ages with profiling support; typically this is done with cabal install -p package
--reinstall.

2. Having compiled the program for profiling, you now need to run it to generate the profile.
For example, a simple time profile can be generated by running the program with +RTS
-p (see -p (page 228)), which generates a file named prog.prof where (prog) is the
name of your program (without the .exe extension, if you are on Windows).

There are many different kinds of profile that can be generated, selected by different
RTS options. We will be describing the various kinds of profile throughout the rest of this
chapter. Some profiles require further processing using additional tools after running
the program.

3. Examine the generated profiling information, use the information to optimise your pro-
gram, and repeat as necessary.

11.1 Cost centres and cost-centre stacks

GHC'’s profiling system assigns costs to cost centres. A cost is simply the time or space
(memory) required to evaluate an expression. Cost centres are program annotations around
expressions; all costs incurred by the annotated expression are assigned to the enclosing cost
centre. Furthermore, GHC will remember the stack of enclosing cost centres for any given
expression at run-time and generate a call-tree of cost attributions.

Let’s take a look at an example:

main = print (fib 30)
fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as follows:

1 _fprof-auto (page 227) was known as -auto-all prior to GHC 7.4.1.

223

GHC User’s Guide Documentation, Release 8.6.5

$ ghc -prof -fprof-auto -rtsopts Main.hs
$./Main +4RTS -p

121393

$

When a GHC-compiled program is run with the -p (page 228) RTS option, it generates a file
called prog.prof. In this case, the file will contain something like this:

Wed Oct 12 16:14 2011 Time and Allocation Profiling Report (Final)
Main +RTS -p -RTS

total time
total alloc

0.68 secs (34 ticks @ 20 ms)
204,677,844 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

fib Main 100.0 100.0
individual inherited

COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO0.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
fib Main 205 2692537 100.0 100.0 100.0 100.0

The first part of the file gives the program name and options, and the total time and total
memory allocation measured during the run of the program (note that the total memory al-
location figure isn’t the same as the amount of live memory needed by the program at any
one time; the latter can be determined using heap profiling, which we will describe later in
Profiling memory usage (page 231)).

The second part of the file is a break-down by cost centre of the most costly functions in the
program. In this case, there was only one significant function in the program, namely fib,
and it was responsible for 100% of both the time and allocation costs of the program.

The third and final section of the file gives a profile break-down by cost-centre stack. This is
roughly a call-tree profile of the program. In the example above, it is clear that the costly call
to fib came from main.

The time and allocation incurred by a given part of the program is displayed in two ways:
“individual”, which are the costs incurred by the code covered by this cost centre stack alone,
and “inherited”, which includes the costs incurred by all the children of this node.

The usefulness of cost-centre stacks is better demonstrated by modifying the example slightly:

main = print (f 30 + g 30)

where
fn = fibn
gn = fib (n “div" 2)

fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as before, and take a look at the new profiling results:

224 Chapter 11. Profiling

GHC User’s Guide Documentation, Release 8.6.5

COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO0.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
main.g Main 207 1 0.0 0.0 0.0 0.1
fib Main 208 1973 0.0 0.1 0.0 0.1
main. f Main 205 1 0.0 0.0 100.0 99.9
fib Main 206 2692537 100.0 99.9 100.0 99.9

Now although we had two calls to fib in the program, it is immediately clear that it was the
call from f which took all the time. The functions f and g which are defined in the where
clause in main are given their own cost centres, main.f and main.g respectively.

The actual meaning of the various columns in the output is:
The number of times this particular point in the call tree was entered.

The percentage of the total run time of the program spent at this point in the call
tree.

The percentage of the total memory allocations (excluding profiling overheads) of
the program made by this call.

The percentage of the total run time of the program spent below this point in the
call tree.

The percentage of the total memory allocations (excluding profiling overheads) of
the program made by this call and all of its sub-calls.

In addition you can use the -P (page 228) RTS option to get the following additional informa-
tion:

ticks The raw number of time “ticks” which were attributed to this cost-centre; from this,
we get the %Stime figure mentioned above.

bytes Number of bytes allocated in the heap while in this cost-centre; again, this is the raw
number from which we get the %alloc figure mentioned above.

What about recursive functions, and mutually recursive groups of functions? Where are the
costs attributed? Well, although GHC does keep information about which groups of functions
called each other recursively, this information isn’t displayed in the basic time and allocation
profile, instead the call-graph is flattened into a tree as follows: a call to a function that occurs
elsewhere on the current stack does not push another entry on the stack, instead the costs
for this call are aggregated into the caller?.

11.1.1 Inserting cost centres by hand

Cost centres are just program annotations. When you say -fprof-auto to the compiler, it
automatically inserts a cost centre annotation around every binding not marked INLINE in
your program, but you are entirely free to add cost centre annotations yourself.

The syntax of a cost centre annotation for expressions is

2 Note that this policy has changed slightly in GHC 7.4.1 relative to earlier versions, and may yet change further,
feedback is welcome.

11.1. Cost centres and cost-centre stacks 225

GHC User’s Guide Documentation, Release 8.6.5

{-# SCC "name" #-} <expression>

where "name" is an arbitrary string, that will become the name of your cost centre as it ap-
pears in the profiling output, and <expression> is any Haskell expression. An SCC annotation
extends as far to the right as possible when parsing. (SCC stands for “Set Cost Centre”). The
double quotes can be omitted if name is a Haskell identifier, for example:

{-# SCC id #-} <expression>

Cost centre annotations can also appear in the top-level or in a declaration context. In that
case you need to pass a function name defined in the same module or scope with the annota-
tion. Example:

fxy=...
where
gz=...
{-# SCC g #-}

{-# SCC T #-}

If you want to give a cost centre different name than the function name, you can pass a string
to the annotation

fxy .
{-# SCC f "cost centre_name" #-}

Here is an example of a program with a couple of SCCs:

main :: I0 ()

main = do let xs = [1..1000000]
let ys = [1..2000000]
print $ {-# SCC last xs #-} last xs
print $ {-# SCC last init xs #-} last $ init xs
print $ {-# SCC last ys #-} last ys
print $ {-# SCC last init ys #-} last $ init ys

which gives this profile when run:

COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 130 0 0.0 0.0 0.0 0.0
CAF GHC.IO0.Encoding.Iconv 122 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 111 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
last _init ys Main 210 1 25.0 27.4 25.0 27.4
main.ys Main 209 1 25.0 39.2 25.0 39.2
last_ys Main 208 1 12.5 0.0 12.5 0.0
last _init xs Main 207 1 12.5 13.7 12.5 13.7
main.xs Main 206 1 18.8 19.6 18.8 19.6
last_xs Main 205 1 6.2 0.0 6.2 0.0

226 Chapter 11. Profiling

GHC User’s Guide Documentation, Release 8.6.5

11.1.2 Rules for attributing costs

While running a program with profiling turned on, GHC maintains a cost-centre stack behind
the scenes, and attributes any costs (memory allocation and time) to whatever the current
cost-centre stack is at the time the cost is incurred.

The mechanism is simple: whenever the program evaluates an expression with an SCC an-
notation, {-# SCC c -#} E, the cost centre c is pushed on the current stack, and the entry
count for this stack is incremented by one. The stack also sometimes has to be saved and
restored; in particular when the program creates a thunk (a lazy suspension), the current
cost-centre stack is stored in the thunk, and restored when the thunk is evaluated. In this
way, the cost-centre stack is independent of the actual evaluation order used by GHC at run-
time.

At a function call, GHC takes the stack stored in the function being called (which for a top-
level function will be empty), and appends it to the current stack, ignoring any prefix that is
identical to a prefix of the current stack.

We mentioned earlier that lazy computations, i.e. thunks, capture the current stack when they
are created, and restore this stack when they are evaluated. What about top-level thunks?
They are “created” when the program is compiled, so what stack should we give them? The
technical name for a top-level thunk is a CAF (“Constant Applicative Form”). GHC assigns
every CAF in a module a stack consisting of the single cost centre M.CAF, where M is the
name of the module. It is also possible to give each CAF a different stack, using the option
-fprof-cafs (page 228). This is especially useful when compiling with - ffull-laziness
(page 107) (as is default with -0 (page 104) and higher), as constants in function bodies
will be lifted to the top-level and become CAFs. You will probably need to consult the Core
(-ddump-simpl (page 217)) in order to determine what these CAFs correspond to.

11.2 Compiler options for profiling

-prof
To make use of the profiling system all modules must be compiled and linked with the
-prof (page 227) option. Any SCC annotations you’ve put in your source will spring to
life.

Without a -prof (page 227) option, your SCCs are ignored; so you can compile SCC-laden
code without changing it.

There are a few other profiling-related compilation options. Use them in addition to -prof
(page 227). These do not have to be used consistently for all modules in a program.

-fprof-auto
All bindings not marked INLINE, whether exported or not, top level or nested, will be
given automatic SCC annotations. Functions marked INLINE must be given a cost centre
manually.

-fprof-auto-top
GHC will automatically add SCC annotations for all top-level bindings not marked IN-
LINE. If you want a cost centre on an INLINE function, you have to add it manually.

-fprof-auto-exported
GHC will automatically add SCC annotations for all exported functions not marked IN-
LINE. If you want a cost centre on an INLINE function, you have to add it manually.

-fprof-auto-calls
Adds an automatic SCC annotation to all call sites. This is particularly useful when

11.2. Compiler options for profiling 227

GHC User’s Guide Documentation, Release 8.6.5

using profiling for the purposes of generating stack traces; see the function De-
bug.Trace.traceShow, or the -xc (page 162) RTS flag (RTS options for hackers, debug-
gers, and over-interested souls (page 162)) for more details.

-fprof-cafs
The costs of all CAFs in a module are usually attributed to one “big” CAF cost-centre.
With this option, all CAFs get their own cost-centre. An “if all else fails” option...

-fno-prof-auto
Disables any previous -fprof-auto (page 227), -fprof-auto-top (page 227), or
-fprof-auto-exported (page 227) options.

-fno-prof-cafs
Disables any previous - fprof-cafs (page 228) option.

-fno-prof-count-entries
Tells GHC not to collect information about how often functions are entered at runtime
(the “entries” column of the time profile), for this module. This tends to make the profiled
code run faster, and hence closer to the speed of the unprofiled code, because GHC is
able to optimise more aggressively if it doesn’t have to maintain correct entry counts.
This option can be useful if you aren’t interested in the entry counts (for example, if you
only intend to do heap profiling).

11.3 Time and allocation profiling

To generate a time and allocation profile, give one of the following RTS options to the compiled
program when you run it (RTS options should be enclosed between +RTS ... -RTS as usual):

-P

-P

-pa
The -p (page 228) option produces a standard time profile report. It is written into
the file <stem>.prof; the stem is taken to be the program name by default, but can be
overridden by the -po (stem) (page 228) flag.

The -P (page 228) option produces a more detailed report containing the actual time and
allocation data as well. (Not used much.)

The -pa (page 228) option produces the most detailed report containing all cost centres
in addition to the actual time and allocation data.

-pj
The -pj (page 228) option produces a time/allocation profile report in JSON format writ-
ten into the file <program>.prof.
-po (stem)
The -po (stem) (page 228) option overrides the stem used to form the output file paths
for the cost-centre profiler (see -p (page 228) and -pj (page 228) flags above) and heap
profiler (see -h (page 160)).
For instance, running a program with +RTS -h -p -pohello-world would produce a
heap profile named hello-world.hp and a cost-centre profile named hello-world.prof.
-V (secs)

Default 0.02

228 Chapter 11. Profiling

../libraries/base-4.12.0.0/Debug-Trace.html#v:traceShow
../libraries/base-4.12.0.0/Debug-Trace.html#v:traceShow

GHC User’s Guide Documentation, Release 8.6.5

Sets the interval that the RTS clock ticks at, which is also the sampling interval of the
time and allocation profile. The default is 0.02 seconds. The runtime uses a single timer
signal to count ticks; this timer signal is used to control the context switch timer (Using
Concurrent Haskell (page 115)) and the heap profiling timer RTS options for heap profil-
ing (page 232). Also, the time profiler uses the RTS timer signal directly to record time
profiling samples.

Normally, setting the -V (secs) (page 228) option directly is not necessary: the res-
olution of the RTS timer is adjusted automatically if a short interval is requested with
the -C (s) (page 115) or -1 (secs) (page 234) options. However, setting -V (secs)
(page 228) is required in order to increase the resolution of the time profiler.

Using a value of zero disables the RTS clock completely, and has the effect of disabling
timers that depend on it: the context switch timer and the heap profiling timer. Context
switches will still happen, but deterministically and at a rate much faster than normal.
Disabling the interval timer is useful for debugging, because it eliminates a source of
non-determinism at runtime.

-XC
This option causes the runtime to print out the current cost-centre stack whenever an
exception is raised. This can be particularly useful for debugging the location of ex-
ceptions, such as the notorious Prelude.head: empty list error. See RTS options for
hackers, debuggers, and over-interested souls (page 162).

11.3.1 JSON profile format

When invoked with the -pj (page 228) flag the runtime will emit the cost-centre profile in a
machine-readable JSON format. The top-level object of this format has the following proper-
ties,

program (string) The name of the program
arguments (list of strings) The command line arguments passed to the program
rts_arguments (list of strings) The command line arguments passed to the runtime system

initial_capabilities (integral number) How many capabilities the program was started
with (e.g. using the -N (x) (page 116) option). Note that the number of capabilities may
change during execution due to the setNumCapabilities function.

total_time (number) The total wall time of the program’s execution in seconds.

total_ticks (integral number) How many profiler “ticks” elapsed over the course of the
program’s execution.

end_time (number) The approximate time when the program finished execution as a UNIX
epoch timestamp.

tick_interval (float) How much time between profiler ticks.
total_alloc (integer) The cumulative allocations of the program in bytes.
cost_centres (list of objects) A list of the program’s cost centres
profile (object) The profile tree itself

Each entry in cost centres is an object describing a cost-centre of the program having the
following properies,

id (integral number) A unique identifier used to refer to the cost-centre

is_caf (boolean) Whether the cost-centre is a Constant Applicative Form (CAF)

11.3. Time and allocation profiling 229

GHC User’s Guide Documentation, Release 8.6.5

label (string) A descriptive string roughly identifying the cost-centre.
src_Lloc (string) A string describing the source span enclosing the cost-centre.

The profile data itself is described by the profile field, which contains a tree-like object
(which we’ll call a “cost-centre stack” here) with the following properties,

id (integral number) The id of a cost-centre listed in the cost centres list.
entries (integral number) How many times was this cost-centre entered?

ticks (integral number) How many ticks was the program’s execution inside of this cost-
centre? This does not include child cost-centres.

alloc (integral number) How many bytes did the program allocate while inside of this cost-
centre? This does not include allocations while in child cost-centres.

children (list) A list containing child cost-centre stacks.

For instance, a simple profile might look like this,

{

"program": "Main",

"arguments": [
"nofib/shootout/n-body/Main",
"50000"

1,

"rts_arguments": [

"_pj "I
Il_hyll

1,

"end_time": "Thu Feb 23 17:15 2017",

"initial_capabilities": 0,

"total_time": 1.7,

"total_ticks": 1700,

"tick_interval”: 1000,

"total_alloc": 3770785728,

"cost_centres": [

{
"id": 168,
"label": "IDLE",
"module™: "IDLE",
"src_loc": "<built-in>",
"is caf": false
H
{
"id": 156,
"label": "CAF",
"module": "GHC.Integer.Logarithms.Internals",
"src_loc": "<entire-module>",
"is_caf": true
}
{
"id": 155,
"label": "CAF",
"module”: "GHC.Integer.Logarithms",
"src_loc": "<entire-module>",
"is caf": true
1
{

"id": 154,

(continues on next page)

230 Chapter 11. Profiling

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

"label": "CAF",
"module™: "GHC.Event.Array",
"src_loc": "<entire-module>",
"is caf": true
}
1,
"profile": {
"id": 162,
"entries": 0,
"alloc": 688,
“ticks": 0,
"children": [
{
"id": 1,
"entries": 0,
"alloc": 208,
“ticks": 0,
"children": [
{
"id": 22,
"entries": 1,
"alloc": 80,
“ticks": 0,
"children": []

"id": 42,
"entries": 1,
"alloc": 1632,
“ticks": 0,
"children": []

11.4 Profiling memory usage

In addition to profiling the time and allocation behaviour of your program, you can also gen-
erate a graph of its memory usage over time. This is useful for detecting the causes of space
leaks, when your program holds on to more memory at run-time that it needs to. Space leaks
lead to slower execution due to heavy garbage collector activity, and may even cause the

program to run out of memory altogether.

To generate a heap profile from your program:

1. Compile the program for profiling (Compiler options for profiling (page 227)).

2. Run it with one of the heap profiling options described below (eg. -h (page 160) for a

basic producer profile). This generates the file prog.hp.

If the event log (page 161) is enabled (with the - 1 (page 233) runtime system flag) heap
samples will additionally be emitted to the GHC event log (see Heap profiler event log

11.4. Profiling memory usage

231

GHC User’s Guide Documentation, Release 8.6.5

output (page 557) for details about event format).

3. Run hp2ps to produce a Postscript file, prog.ps. The hp2ps utility is described in detail
in hp2ps - Rendering heap profiles to PostScript (page 236).

4. Display the heap profile using a postscript viewer such as Ghostview, or print it out on a
Postscript-capable printer.

For example, here is a heap profile produced for the sphere program from GHC’s nofib
benchmark suite,

Main 100 +RTS -hc 9,661 bytes x seconds Fri Oct 2 15:01 2015

bytes

(54)PINNED
(92)GHC.10.Encoding.CAF
(77)GHC.I0.Handle.FD.CAF
30k | (84)GHC.Conc.Signal.CAF
(103)Main.CAF
(109)ray/run/main.Vmain/M...
25k (185)shade/tracepixel/ray....
(119)testspheres/Main.CAF
(217)vecsum/Main.CAF
80)GHC.I0.Encoding.lconv.CAF

110)rbg/pixels/ppm/run/ma...

20k]

15k | 140)vecsub/camparams.firs...

(
(
(
(157)vecscale/camparams.sc...
(147)vecscale/camparams.sc...
10k (221)vecadd/vecsum/shade.d...
(108)pixels/ppm/run/main.\...
(183)rbg.eight_bit/rbg/pix...

5Kk | (122)sphereintersect/trace...
(112)tracepixel/ray.f/ray/...

OTHER

HEROR N ONCEEENCNCOE-

O = = — =
0.0 0.1 0.1 0.2 0.2 0.2 seconds

You might also want to take a look at hp2any, a more advanced suite of tools (not distributed
with GHC) for displaying heap profiles.

11.4.1 RTS options for heap profiling

There are several different kinds of heap profile that can be generated. All the different profile
types yield a graph of live heap against time, but they differ in how the live heap is broken
down into bands. The following RTS options select which break-down to use:

-hT
Breaks down the graph by heap closure type.
-hc
-h
Requires :ghc-flag:’-prof’. Breaks down the graph by the cost-centre stack which pro-
duced the data.
-hm
Requires :ghc-flag:*-prof*. Break down the live heap by the module containing the code

232 Chapter 11. Profiling

http://www.haskell.org/haskellwiki/Hp2any

GHC User’s Guide Documentation, Release 8.6.5

-hd

-hy

-hr

-hb

which produced the data.

Requires :ghc-flag:’-prof’. Breaks down the graph by closure description. For actual
data, the description is just the constructor name, for other closures it is a compiler-
generated string identifying the closure.

Requires :ghc-flag:’-prof’. Breaks down the graph by type. For closures which have
function type or unknown/polymorphic type, the string will represent an approximation
to the actual type.

Requires :ghc-flag:*-prof’. Break down the graph by retainer set. Retainer profiling is
described in more detail below (Retainer Profiling (page 234)).

Requires :ghc-flag:*-prof’. Break down the graph by biography. Biographical profiling is
described in more detail below (Biographical Profiling (page 235)).

Noindex

Emit profile samples to the GHC event log (page 161). This format is both more expres-
sive than the old . hp format and can be correlated with other events over the program’s
runtime. See Heap profiler event log output (page 557) for details on the produced event
structure.

In addition, the profile can be restricted to heap data which satisfies certain criteria - for
example, you might want to display a profile by type but only for data produced by a certain
module, or a profile by retainer for a certain type of data. Restrictions are specified as follows:

-hc

-hC

-hm

-hd

-hy

-hr

-hb

{name)
Restrict the profile to closures produced by cost-centre stacks with one of the specified
cost centres at the top.

{name)
Restrict the profile to closures produced by cost-centre stacks with one of the specified
cost centres anywhere in the stack.

(module)
Restrict the profile to closures produced by the specified modules.

(desc)
Restrict the profile to closures with the specified description strings.

(type)
Restrict the profile to closures with the specified types.

(cc)

Restrict the profile to closures with retainer sets containing cost-centre stacks with one
of the specified cost centres at the top.

(bio)
Restrict the profile to closures with one of the specified biographies, where (bio) is one
of lag, drag, void, or use.

For example, the following options will generate a retainer profile restricted to Branch and
Leaf constructors:

11.4. Profiling memory usage 233

GHC User’s Guide Documentation, Release 8.6.5

prog +RTS -hr -hdBranch,Leaf

There can only be one “break-down” option (eg. -hr (page 233) in the example above), but
there is no limit on the number of further restrictions that may be applied. All the options may
be combined, with one exception: GHC doesn’t currently support mixing the -hr (page 233)
and -hb (page 233) options.

There are three more options which relate to heap profiling:

-i (secs)
Set the profiling (sampling) interval to (secs) seconds (the default is 0.1 second). Frac-
tions are allowed: for example -i0.2 will get 5 samples per second. This only affects
heap profiling; time profiles are always sampled with the frequency of the RTS clock.
See Time and allocation profiling (page 228) for changing that.

-xt
Include the memory occupied by threads in a heap profile. Each thread takes up a small
area for its thread state in addition to the space allocated for its stack (stacks normally
start small and then grow as necessary).

This includes the main thread, so using - xt (page 234) is a good way to see how much
stack space the program is using.

Memory occupied by threads and their stacks is labelled as “TSO” and “STACK” respec-
tively when displaying the profile by closure description or type description.

-L (num)
Sets the maximum length of a cost-centre stack name in a heap profile. Defaults to 25.

11.4.2 Retainer Profiling

Retainer profiling is designed to help answer questions like “why is this data being retained?”.
We start by defining what we mean by a retainer:

A retaineris either the system stack, an unevaluated closure (thunk), or an explicitly
mutable object.

In particular, constructors are not retainers.

An object B retains object A if (i) B is a retainer object and (ii) object A can be reached by re-
cursively following pointers starting from object B, but not meeting any other retainer objects
on the way. Each live object is retained by one or more retainer objects, collectively called
its retainer set, or its retainer set, or its retainers.

When retainer profiling is requested by giving the program the -hr option, a graph is gener-
ated which is broken down by retainer set. A retainer set is displayed as a set of cost-centre
stacks; because this is usually too large to fit on the profile graph, each retainer set is num-
bered and shown abbreviated on the graph along with its number, and the full list of retainer
sets is dumped into the file prog.prof.

Retainer profiling requires multiple passes over the live heap in order to discover the full
retainer set for each object, which can be quite slow. So we set a limit on the maximum
size of a retainer set, where all retainer sets larger than the maximum retainer set size are
replaced by the special set MANY. The maximum set size defaults to 8 and can be altered with
the -R (size) (page 234) RTS option:

-R (size)
Restrict the number of elements in a retainer set to (size) (default 8).

234 Chapter 11. Profiling

GHC User’s Guide Documentation, Release 8.6.5

11.4.2.1 Hints for using retainer profiling

The definition of retainers is designed to reflect a common cause of space leaks: a large struc-
ture is retained by an unevaluated computation, and will be released once the computation
is forced. A good example is looking up a value in a finite map, where unless the lookup is
forced in a timely manner the unevaluated lookup will cause the whole mapping to be retained.
These kind of space leaks can often be eliminated by forcing the relevant computations to be
performed eagerly, using seq or strictness annotations on data constructor fields.

Often a particular data structure is being retained by a chain of unevaluated closures, only
the nearest of which will be reported by retainer profiling - for example A retains B, B retains
C, and C retains a large structure. There might be a large number of Bs but only a single A,
so A is really the one we’re interested in eliminating. However, retainer profiling will in this
case report B as the retainer of the large structure. To move further up the chain of retainers,
we can ask for another retainer profile but this time restrict the profile to B objects, so we get
a profile of the retainers of B:

prog +RTS -hr -hcB

This trick isn’t foolproof, because there might be other B closures in the heap which aren’t the
retainers we are interested in, but we’ve found this to be a useful technique in most cases.

11.4.3 Biographical Profiling

A typical heap object may be in one of the following four states at each point in its lifetime:
* The lag stage, which is the time between creation and the first use of the object,
» the use stage, which lasts from the first use until the last use of the object, and

* The drag stage, which lasts from the final use until the last reference to the object is
dropped.

* An object which is never used is said to be in the void state for its whole lifetime.

A biographical heap profile displays the portion of the live heap in each of the four states
listed above. Usually the most interesting states are the void and drag states: live heap in
these states is more likely to be wasted space than heap in the lag or use states.

It is also possible to break down the heap in one or more of these states by a different criteria,
by restricting a profile by biography. For example, to show the portion of the heap in the drag
or void state by producer:

’prog +RTS -hc -hbdrag,void

|

Once you know the producer or the type of the heap in the drag or void states, the next step
is usually to find the retainer(s):

’prog +RTS -hr -hccc...

Note: This two stage process is required because GHC cannot currently profile using both
biographical and retainer information simultaneously.

11.4. Profiling memory usage 235

GHC User’s Guide Documentation, Release 8.6.5

11.4.4 Actual memory residency

How does the heap residency reported by the heap profiler relate to the actual memory res-
idency of your program when you run it? You might see a large discrepancy between the
residency reported by the heap profiler, and the residency reported by tools on your system
(eg. ps or top on Unix, or the Task Manager on Windows). There are several reasons for this:

» There is an overhead of profiling itself, which is subtracted from the residency figures
by the profiler. This overhead goes away when compiling without profiling support, of
course. The space overhead is currently 2 extra words per heap object, which probably
results in about a 30% overhead.

* Garbage collection requires more memory than the actual residency. The factor depends
on the kind of garbage collection algorithm in use: a major GC in the standard generation
copying collector will usually require 3L bytes of memory, where L is the amount of live
data. This is because by default (see the RTS -F (factor) (page 153) option) we allow
the old generation to grow to twice its size (2L) before collecting it, and we require
additionally L bytes to copy the live data into. When using compacting collection (see
the - c (page 152) option), this is reduced to 2L, and can further be reduced by tweaking
the -F (factor) (page 153) option. Also add the size of the allocation area (see -A
(size) (page 151)).

» The stack isn’t counted in the heap profile by default. See the RTS -xt (page 234) option.

* The program text itself, the C stack, any non-heap data (e.g. data allocated by foreign
libraries, and data allocated by the RTS), and mmap ()’d memory are not counted in the
heap profile.

11.5 hp2ps - Rendering heap profiles to PostScript

Usage:

’hprs [flags] [<file>[.hp]]

The program hp2ps program converts a .hp file produced by the -h<break-down> runtime
option into a PostScript graph of the heap profile. By convention, the file to be processed by
hp2ps has a . hp extension. The PostScript output is written to file@.ps. If <file> is omitted
entirely, then the program behaves as a filter.

hp2ps is distributed in ghc/utils/hp2ps in a GHC source distribution. It was originally de-
veloped by Dave Wakeling as part of the HBC/LML heap profiler.

The flags are:

-d
In order to make graphs more readable, hp2ps sorts the shaded bands for each identifier.
The default sort ordering is for the bands with the largest area to be stacked on top of the
smaller ones. The -d option causes rougher bands (those representing series of values
with the largest standard deviations) to be stacked on top of smoother ones.

-b

Normally, hp2ps puts the title of the graph in a small box at the top of the page. However,
if the JOB string is too long to fit in a small box (more than 35 characters), then hp2ps
will choose to use a big box instead. The -b option forces hp2ps to use a big box.

-e(float)[in|mm|pt]
Generate encapsulated PostScript suitable for inclusion in LaTeX documents. Usually,

236 Chapter 11. Profiling

GHC User’s Guide Documentation, Release 8.6.5

the PostScript graph is drawn in landscape mode in an area 9 inches wide by 6 inches
high, and hp2ps arranges for this area to be approximately centred on a sheet of a4 paper.
This format is convenient of studying the graph in detail, but it is unsuitable for inclusion
in LaTeX documents. The -e option causes the graph to be drawn in portrait mode, with
float specifying the width in inches, millimetres or points (the default). The resulting
PostScript file conforms to the Encapsulated PostScript (EPS) convention, and it can be
included in a LaTeX document using Rokicki’s dvi-to-PostScript converter dvips.

Create output suitable for the gs PostScript previewer (or similar). In this case the graph
is printed in portrait mode without scaling. The output is unsuitable for a laser printer.

Normally a profile is limited to 20 bands with additional identifiers being grouped into
an OTHER band. The -1 flag removes this 20 band and limit, producing as many bands as
necessary. No key is produced as it won’t fit!. It is useful for creation time profiles with
many bands.

-m{int)

=S

Normally a profile is limited to 20 bands with additional identifiers being grouped into
an OTHER band. The -m flag specifies an alternative band limit (the maximum is 20).

-mO requests the band limit to be removed. As many bands as necessary are produced.
However no key is produced as it won’t fit! It is useful for displaying creation time
profiles with many bands.

Use previous parameters. By default, the PostScript graph is automatically scaled both
horizontally and vertically so that it fills the page. However, when preparing a series
of graphs for use in a presentation, it is often useful to draw a new graph using the
same scale, shading and ordering as a previous one. The -p flag causes the graph to be
drawn using the parameters determined by a previous run of hp2ps on file. These are
extracted from file@.aux.

Use a small box for the title.

-t(float)

Normally trace elements which sum to a total of less than 1% of the profile are removed
from the profile. The -t option allows this percentage to be modified (maximum 5%).

-t0 requests no trace elements to be removed from the profile, ensuring that all the data
will be displayed.
Generate colour output.

Ignore marks.

Print out usage information.

11.5.1 Manipulating the hp file

(Notes kindly offered by Jan-Willem Maessen.)

The F00. hp file produced when you ask for the heap profile of a program FO0O is a text file with
a particularly simple structure. Here’s a representative example, with much of the actual data

11.5. hp2ps - Rendering heap profiles to PostScript 237

GHC User’s Guide Documentation, Release 8.6.5

omitted:

JOB "FOO -hC"
DATE "Thu Dec 26 18:17 2002"
SAMPLE UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN SAMPLE 0.00
END SAMPLE 0.00
BEGIN SAMPLE 15.07

. sample data ...
END SAMPLE 15.07
BEGIN SAMPLE 30.23

. sample data ...
END SAMPLE 30.23

. etc.

BEGIN SAMPLE 11695.47
END SAMPLE 11695.47

The first four lines (JOB, DATE, SAMPLE _UNIT, VALUE UNIT) form a header. Each block of lines
starting with BEGIN SAMPLE and ending with END SAMPLE forms a single sample (you can think
of this as a vertical slice of your heap profile). The hp2ps utility should accept any input with
a properly-formatted header followed by a series of complete samples.

11.5.2 Zooming in on regions of your profile

You can look at particular regions of your profile simply by loading a copy of the . hp file into
a text editor and deleting the unwanted samples. The resulting . hp file can be run through
hp2ps and viewed or printed.

11.5.3 Viewing the heap profile of a running program

The .hp file is generated incrementally as your program runs. In principle, running hp2ps on
the incomplete file should produce a snapshot of your program’s heap usage. However, the
last sample in the file may be incomplete, causing hp2ps to fail. If you are using a machine with
UNIX utilities installed, it’s not too hard to work around this problem (though the resulting
command line looks rather Byzantine):

head - fgrep -n END SAMPLE F00.hp | tail -1 | cut -d : -f 1° FOO.hp \
| hp2ps > F00.ps

The command fgrep -n END SAMPLE FO0O0.hp finds the end of every complete sample in F0O.
hp, and labels each sample with its ending line number. We then select the line number of the
last complete sample using tail and cut. This is used as a parameter to head; the result is as
if we deleted the final incomplete sample from F00.hp. This results in a properly-formatted
.hp file which we feed directly to hp2ps.

11.5.4 Viewing a heap profile in real time

The gv and ghostview programs have a “watch file” option can be used to view an up-to-
date heap profile of your program as it runs. Simply generate an incremental heap profile as
described in the previous section. Run gv on your profile:

238 Chapter 11. Profiling

GHC User’s Guide Documentation, Release 8.6.5

gv -watch -orientation=seascape F00.ps

If you forget the -watch flag you can still select “Watch file” from the “State” menu. Now
each time you generate a new profile F00. ps the view will update automatically.

This can all be encapsulated in a little script:

#!/bin/sh
head - fgrep -n END SAMPLE F00.hp | tail -1 | cut -d : -f 1° F0O.hp \
| hp2ps > F00.ps
gv -watch -orientation=seascape F00.ps &
while [1] ; do
sleep 10 # We generate a new profile every 10 seconds.
head - fgrep -n END SAMPLE F00.hp | tail -1 | cut -d : -f 1° F0O.hp \
| hp2ps > FO00.ps
done

Occasionally gv will choke as it tries to read an incomplete copy of F00.ps (because hp2ps
is still running as an update occurs). A slightly more complicated script works around this
problem, by using the fact that sending a SIGHUP to gv will cause it to re-read its input file:

#!/bin/sh
head - fgrep -n END SAMPLE F00.hp | tail -1 | cut -d : -f 1° FOO.hp \
| hp2ps > F00.ps
gv F00.ps &
gvpsnum=$!
while [1] ; do
sleep 10
head - fgrep -n END SAMPLE F0O.hp | tail -1 | cut -d : -f 1° FOO.hp \
| hp2ps > F00.ps
kill -HUP $gvpsnum
done

11.6 Profiling Parallel and Concurrent Programs

Combining -threaded (page 207) and -prof (page 227) is perfectly fine, and indeed it is
possible to profile a program running on multiple processors with the RTS -N (x) (page 116)
option.?

Some caveats apply, however. In the current implementation, a profiled program is likely to
scale much less well than the unprofiled program, because the profiling implementation uses
some shared data structures which require locking in the runtime system. Furthermore, the
memory allocation statistics collected by the profiled program are stored in shared memory
but not locked (for speed), which means that these figures might be inaccurate for parallel
programs.

We strongly recommend that you use - fno-prof-count-entries (page 228) when compiling
a program to be profiled on multiple cores, because the entry counts are also stored in shared
memory, and continuously updating them on multiple cores is extremely slow.

We also recommend using ThreadScope for profiling parallel programs; it offers a GUI for
visualising parallel execution, and is complementary to the time and space profiling features
provided with GHC.

3 This feature was added in GHC 7.4.1.

11.6. Profiling Parallel and Concurrent Programs 239

http://www.haskell.org/haskellwiki/ThreadScope

GHC User’s Guide Documentation, Release 8.6.5

11.7 Observing Code Coverage

Code coverage tools allow a programmer to determine what parts of their code have been
actually executed, and which parts have never actually been invoked. GHC has an option
for generating instrumented code that records code coverage as part of the Haskell Program
Coverage (HPC) toolkit, which is included with GHC. HPC tools can be used to render the
generated code coverage information into human understandable format.

Correctly instrumented code provides coverage information of two kinds: source coverage
and boolean-control coverage. Source coverage is the extent to which every part of the pro-
gram was used, measured at three different levels: declarations (both top-level and local),
alternatives (among several equations or case branches) and expressions (at every level).
Boolean coverage is the extent to which each of the values True and False is obtained in
every syntactic boolean context (ie. guard, condition, qualifier).

HPC displays both kinds of information in two primary ways: textual reports with summary
statistics (hpc report) and sources with color mark-up (hpc markup). For boolean coverage,
there are four possible outcomes for each guard, condition or qualifier: both True and False
values occur; only True; only False; never evaluated. In hpc-markup output, highlighting
with a yellow background indicates a part of the program that was never evaluated; a green
background indicates an always-True expression and a red background indicates an always-
False one.

11.7.1 A small example: Reciprocation

For an example we have a program, called Recip.hs, which computes exact decimal repre-
sentations of reciprocals, with recurring parts indicated in brackets.

reciprocal :: Int -> (String, Int)

reciprocal n | n > 1= ('0' b
| otherwise = error
"attempting to compute reciprocal of number <= 1"

: digits, recur)

where
(digits, recur) = divide n 1 []
divide :: Int -> Int -> [Int] -> (String, Int)
divide n c cs | ¢ “elem’ cs ([1, position c cs)
| r == (show g, 0)
| r/=20 (show q ++ digits, recur)

where
(g, r) = (c*10) “quotRem’ n
(digits, recur) = divide n r (c:cs)

position :: Int -> [Int] -> Int
position n (x:xs) | n==x
| otherwise

1
1 + position n xs

showRecip :: Int -> String
showRecip n =
"1/" ++ show n ++ " = " ++
if r==0 then d else take p d ++ "(" ++ drop p d ++ ")"
where
p=lengthd - r
(d, r) = reciprocal n

main = do

(continues on next page)

240 Chapter 11. Profiling

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

number <- readLn
putStrLn (showRecip number)
main

HPC instrumentation is enabled with the - fhpc (page 241) flag:

$ ghc -fhpc Recip.hs

GHC creates a subdirectory .hpc in the current directory, and puts HPC index (.mix) files in
there, one for each module compiled. You don’t need to worry about these files: they contain
information needed by the hpc tool to generate the coverage data for compiled modules after
the program is run.

$./Recip
1/3
= 0.(3)

Running the program generates a file with the .tix suffix, in this case Recip.tix, which
contains the coverage data for this run of the program. The program may be run multiple
times (e.g. with different test data), and the coverage data from the separate runs is accumu-
lated in the .tix file. To reset the coverage data and start again, just remove the .tix file.
You can control where the .tix file is generated using the environment variable HPCTIXFILE
(page 241).

HPCTIXFILE
Set the HPC . tix file output path.

Having run the program, we can generate a textual summary of coverage:

$ hpc report Recip
80% expressions used (81/101)
12% boolean coverage (1/8)
14% guards (1/7), 3 always True,
1 always False,
2 unevaluated
0% 'if' conditions (0/1), 1 always False
100% qualifiers (0/0)
55% alternatives used (5/9)
100% local declarations used (9/9)
100% top-level declarations used (5/5)

We can also generate a marked-up version of the source.

$ hpc markup Recip
writing Recip.hs.html

This generates one file per Haskell module, and 4 index files, hpc index.html,
hpc_index_alt.html, hpc_index exp.html, hpc_index fun.html.

11.7.2 Options for instrumenting code for coverage
-fhpc
Enable code coverage for the current module or modules being compiled.

Modules compiled with this option can be freely mixed with modules compiled without
it; indeed, most libraries will typically be compiled without - fhpc (page 241). When

11.7. Observing Code Coverage 241

GHC User’s Guide Documentation, Release 8.6.5

the program is run, coverage data will only be generated for those modules that were
compiled with - fhpc (page 241), and the hpc tool will only show information about those
modules.

11.7.3 The hpc toolkit

The hpc command has several sub-commands:

$ hpc
Usage: hpc COMMAND ...

Commands:
help Display help for hpc or a single command
Reporting Coverage:
report Output textual report about program coverage
markup Markup Haskell source with program coverage
Processing Coverage files:
sum Sum multiple .tix files in a single .tix file
combine Combine two .tix files in a single .tix file
map Map a function over a single .tix file
Coverage Overlays:
overlay Generate a .tix file from an overlay file
draft Generate draft overlay that provides 100% coverage
Others:
show Show .tix file in readable, verbose format
version Display version for hpc

In general, these options act on a . tix file after an instrumented binary has generated it.

The hpc tool assumes you are in the top-level directory of the location where you built your
application, and the .tix file is in the same top-level directory. You can use the flag - -srcdir
to use hpc for any other directory, and use --srcdir multiple times to analyse programs
compiled from difference locations, as is typical for packages.

We now explain in more details the major modes of hpc.

11.7.3.1 hpc report

hpc report gives a textual report of coverage. By default, all modules and packages are
considered in generating report, unless include or exclude are used. The report is a summary
unless the - -per-module flag is used. The --xml-output option allows for tools to use hpc to
glean coverage.

$ hpc help report

Usage: hpc report [OPTION] .. <TIX FILE> [<MODULE> [<MODULE> ..]]
Options:
--per-module show module level detail
--decl-list show unused decls

--exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE

--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files

(continues on next page)

242 Chapter 11. Profiling

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

--reset-hpcdirs

--xml-output

default .hpc [rarely used]
empty the list of hpcdir's
[rarely used]

show output in XML

11.7.3.2 hpc markup

hpc markup marks up source files into colored html.

$ hpc help markup

Usage: hpc markup [OPTION] .. <TIX FILE> [<MODULE> [<MODULE> ..1]]

Options:
- -exclude=[PACKAGE:] [MODULE]
--include=[PACKAGE:] [MODULE]
--srcdir=DIR
--hpcdir=DIR
--reset-hpcdirs
--fun-entry-count

--highlight-covered
--destdir=DIR

exclude MODULE and/or PACKAGE

include MODULE and/or PACKAGE

path to source directory of .hs files
multi-use of srcdir possible

append sub-directory that contains .mix files
default .hpc [rarely used]

empty the list of hpcdir's

[rarely used]

show top-level function entry counts
highlight covered code, rather that code gaps
path to write output to

11.7.3.3 hpc sum

hpc sum adds together any number of .tix files into a single .tix file. hpc sum does not
change the original .tix file; it generates a new .tix file.

$ hpc help sum

Usage: hpc sum [OPTION] .. <TIX FILE> [<TIX FILE> [<TIX FILE> ..]]
Sum multiple .tix files in a single .tix file

Options:

- -exclude=[PACKAGE:] [MODULE]
--include=[PACKAGE:] [MODULE]
--output=FILE
--union

—intersection)

exclude MODULE and/or PACKAGE

include MODULE and/or PACKAGE

output FILE

use the union of the module namespace (default is,

11.7.3.4 hpc combine

hpc combine is the swiss army knife of hpc. It can be used to take the difference between
.tix files, to subtract one .tix file from another, or to add two .tix files. hpc combine does
not change the original .tix file; it generates a new .tix file.

$ hpc help combine

Usage: hpc combine [OPTION] .. <TIX FILE> <TIX FILE>
Combine two .tix files in a single .tix file

(continues on next page)

11.7. Observing Code Coverage

243

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

Options:

--exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:] [MODULE] include MODULE and/or PACKAGE

--output=FILE output FILE
--function=FUNCTION combine .tix files with join function, default = ADD
FUNCTION = ADD | DIFF | SUB
--union use the union of the module namespace (default is,
—intersection)

11.7.3.5 hpc map

hpc map inverts or zeros a .tix file. hpc map does not change the original .tix file; it
generates a new .tix file.

$ hpc help map
Usage: hpc map [OPTION] .. <TIX FILE>
Map a function over a single .tix file

Options:

--exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:] [MODULE] include MODULE and/or PACKAGE

--output=FILE output FILE
--function=FUNCTION apply function to .tix files, default = ID
FUNCTION = ID | INV | ZERO
--union use the union of the module namespace (default is,
—intersection)

11.7.3.6 hpc overlay and hpc draft

Overlays are an experimental feature of HPC, a textual description of coverage. hpc draft is
used to generate a draft overlay from a .tix file, and hpc overlay generates a .tix files from an
overlay.

% hpc help overlay
Usage: hpc overlay [OPTION] .. <OVERLAY FILE> [<OVERLAY FILE> [...]]

Options:

--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible

--hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's

[rarely used]
--output=FILE output FILE
% hpc help draft
Usage: hpc draft [OPTION] .. <TIX FILE>

Options:

(continues on next page)

244 Chapter 11. Profiling

GHC User’s Guide Documentation, Release 8.6.5

(continued from previous page)

--exclude=[PACKAGE:] [MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:] [MODULE] include MODULE and/or PACKAGE

--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible

--hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]

--reset-hpcdirs empty the list of hpcdir's
[rarely used]

--output=FILE output FILE

11.7.4 Caveats and Shortcomings of Haskell Program Coverage

HPC does not attempt to lock the .tix file, so multiple concurrently running binaries in the
same directory will exhibit a race condition. At compile time, there is no way to change
the name of the .tix file generated; at runtime, the name of the generated .tix file can
be changed using HPCTIXFILE (page 241); the name of the .tix file will also change if you
rename the binary. HPC does not work with GHCi.

11.8 Using “ticky-ticky” profiling (for implementors)

-ticky
Enable ticky-ticky profiling.
Because ticky-ticky profiling requires a certain familiarity with GHC internals, we have moved

the documentation to the GHC developers wiki. Take a look at its overview of the profiling
options, which includeds a link to the ticky-ticky profiling page.

11.8. Using “ticky-ticky” profiling (for implementors) 245

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Profiling
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Profiling

GHC User’s Guide Documentation, Release 8.6.5

246 Chapter 11. Profiling

CHAPTER
TWELVE

ADVICE ON: SOONER, FASTER, SMALLER, THRIFTIER

Please advise us of other “helpful hints” that should go here!

12.1 Sooner: producing a program more quickly

Don’t use -0 (page 104) or (especially) -02 (page 104): By using them, you are telling
GHC that you are willing to suffer longer compilation times for better-quality code.

GHC is surprisingly zippy for normal compilations without -0 (page 104)!

Use more memory: Within reason, more memory for heap space means less garbage collec-
tion for GHC, which means less compilation time. If you use the -Rghc-timing option,
you’ll get a garbage-collector report. (Again, you can use the cheap-and-nasty +RTS -S
-RTS option to send the GC stats straight to standard error.)

If it says you're using more than 20% of total time in garbage collecting, then more
memory might help: use the -H{(size) (see -H [(size)] (page 154)) option. Increasing
the default allocation area size used by the compiler’s RTS might also help: use the +RTS
-A(size) -RTS option (see -A (size) (page 151)).

If GHC persists in being a bad memory citizen, please report it as a bug.

Don’t use too much memory! Assoon as GHC plus its “fellow citizens” (other processes on
your machine) start using more than the real memory on your machine, and the machine
starts “thrashing,” the party is over. Compile times will be worse than terrible! Use
something like the csh builtin time command to get a report on how many page faults
you're getting.

If you don’t know what virtual memory, thrashing, and page faults are, or you don’t
know the memory configuration of your machine, don’t try to be clever about memory
use: you’ll just make your life a misery (and for other people, too, probably).

Try to use local disks when linking: Because Haskell objects and libraries tend to be
large, it can take many real seconds to slurp the bits to/from a remote filesystem.

It would be quite sensible to compile on a fast machine using remotely-mounted disks;
then link on a slow machine that had your disks directly mounted.

Don’t derive/use Read unnecessarily: It’s ugly and slow.

GHC compiles some program constructs slowly: We’d rather you reported such be-
haviour as a bug, so that we can try to correct it.

To figure out which part of the compiler is badly behaved, the -v2 option is your friend.

247

GHC User’s Guide Documentation, Release 8.6.5

12.2 Faster: producing a program that runs quicker

The key tool to use in making your Haskell program run faster are GHC’s profiling facilities,
described separately in Profiling (page 223). There is no substitute for finding where your
program’s time/space is really going, as opposed to where you imagine it is going.

Another point to bear in mind: By far the best way to improve a program’s performance
dramatically is to use better algorithms. Once profiling has thrown the spotlight on the guilty
time-consumer(s), it may be better to re-think your program than to try all the tweaks listed
below.

Another extremely efficient way to make your program snappy is to use library code that has
been Seriously Tuned By Someone Else. You might be able to write a better quicksort than
the one in Data.List, but it will take you much longer than typing import Data.List.

Please report any overly-slow GHC-compiled programs. Since GHC doesn’t have any credi-
ble competition in the performance department these days it’s hard to say what overly-slow
means, so just use your judgement! Of course, if a GHC compiled program runs slower than
the same program compiled with NHC or Hugs, then it’s definitely a bug.

Optimise, using -0 or -02: This is the most basic way to make your program go faster.
Compilation time will be slower, especially with -02.

At present, -02 is nearly indistinguishable from -0.

Compile via LLVM: The LLVM code generator (page 198) can sometimes do a far better job
at producing fast code than the native code generator (page 198). This is not universal
and depends on the code. Numeric heavy code seems to show the best improvement
when compiled via LLVM. You can also experiment with passing specific flags to LLVM
with the -optlo (option) (page 200) and -optlc (option) (page 200) flags. Be care-
ful though as setting these flags stops GHC from setting its usual flags for the LLVM
optimiser and compiler.

Overloaded functions are not your friend: Haskell’s overloading (using type classes) is
elegant, neat, etc., etc., but it is death to performance if left to linger in an inner loop.
How can you squash it?

Give explicit type signatures: Signatures are the basic trick; putting them on exported,
top-level functions is good software-engineering practice, anyway. (Tip: using the
-Wmissing-signatures (page 97) option can help enforce good signature-practice).

The automatic specialisation of overloaded functions (with -0) should take care of over-
loaded local and/or unexported functions.

Use SPECIALIZE pragmas: Specialize the overloading on key functions in your program. See
SPECIALIZE pragma (page 467) and SPECIALIZE instance pragma (page 469).

“But how do I know where overloading is creeping in?” A low-tech way: grep (search)
your interface files for overloaded type signatures. You can view interface files using
the --show-iface (file) (page 80) option (see Other options related to interface files
(page 169)).

$ ghc --show-iface Foo.hi | egrep '"“[a-z].*::.*=>'

Strict functions are your dear friends: And, among other things, lazy pattern-matching is
your enemy.

(If you don’t know what a “strict function” is, please consult a functional-programming
textbook. A sentence or two of explanation here probably would not do much good.)

248 Chapter 12. Advice on: sooner, faster, smaller, thriftier

GHC User’s Guide Documentation, Release 8.6.5

Consider these two code fragments:

f (Wibble x y) = ... # strict

f arg = let { (Wibble x y) = arg } in ... # lazy

The former will result in far better code.

A less contrived example shows the use of cases instead of lets to get stricter code (a

good thing):
f (Wibble x y) # beautiful but slow
= let
(al, bl, cl) = unpackFoo x
(a2, b2, c2) = unpackFoo y
in ...

f (Wibble x y) # ugly, and proud of it
= case (unpackFoo x) of { (al, bl, cl) ->
case (unpackFoo y) of { (a2, b2, c2) ->

35

GHC loves single-constructor data-types: It’'s all the better if a function is strict in a
single-constructor type (a type with only one data-constructor; for example, tuples are
single-constructor types).

Newtypes are better than datatypes: If your datatype has a single constructor with a sin-
gle field, use a newtype declaration instead of a data declaration. The newtype will be
optimised away in most cases.

“How do I find out a function’s strictness?” Don’t guess—look it up.

Look for your function in the interface file, then for the third field in the pragma; it
should say Strictness: (string). The (string) gives the strictness of the function’s
arguments: see the GHC Commentary for a description of the strictness notation.

For an “unpackable” U(...) argument, the info inside tells the strictness of its com-
ponents. So, if the argument is a pair, and it says U(AU(LSS)), that means “the first
component of the pair isn’t used; the second component is itself unpackable, with three
components (lazy in the first, strict in the second \& third).”

If the function isn’t exported, just compile with the extra flag -ddump-simpl (page 217);
next to the signature for any binder, it will print the self-same pragmatic information as
would be put in an interface file. (Besides, Core syntax is fun to look at!)

Force key functions to be INLINEd (esp. monads): Placing INLINE pragmas on certain
functions that are used a lot can have a dramatic effect. See INLINE pragma (page 463).

Explicit export list: If you do not have an explicit export list in a module, GHC must assume
that everything in that module will be exported. This has various pessimising effects.
For example, if a bit of code is actually unused (perhaps because of unfolding effects),
GHC will not be able to throw it away, because it is exported and some other module
may be relying on its existence.

GHC can be quite a bit more aggressive with pieces of code if it knows they are not
exported.

Look at the Core syntax! (The form in which GHC manipulates your code.) Just run your
compilation with -ddump-simpl (page 217) (don’t forget the -0 (page 104)).

12.2. Faster: producing a program that runs quicker 249

https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/Demand

GHC User’s Guide Documentation, Release 8.6.5

If profiling has pointed the finger at particular functions, look at their Core code. lets
are bad, cases are good, dictionaries (d. {Class).{Unique}) [or anything overloading-
ish] are bad, nested lambdas are bad, explicit data constructors are good, primitive op-
erations (e.g., eqInt#) are good, ...

Use strictness annotations: Putting a strictness annotation (!) on a constructor field helps
in two ways: it adds strictness to the program, which gives the strictness analyser more
to work with, and it might help to reduce space leaks.

It can also help in a third way: when used with - funbox-strict-fields (page 113) (see
-f*: platform-independent flags (page 104)), a strict field can be unpacked or unboxed in
the constructor, and one or more levels of indirection may be removed. Unpacking only
happens for single-constructor datatypes (Int is a good candidate, for example).

Using - funbox-strict-fields (page 113) is only really a good idea in conjunction with
-0 (page 104), because otherwise the extra packing and unpacking won’t be optimised
away. In fact, it is possible that - funbox-strict-fields (page 113) may worsen perfor-
mance even with -0 (page 104), but this is unlikely (let us know if it happens to you).

Use unboxed types (a GHC extension): When you are really desperate for speed, and you
want to get right down to the “raw bits.” Please see Unboxed types (page 257) for some
information about using unboxed types.

Before resorting to explicit unboxed types, try using strict constructor fields and
-funbox-strict-fields (page 113) first (see above). That way, your code stays
portable.

Use foreign import (a GHC extension) to plug into fast libraries: This may take real
work, but... There exist piles of massively-tuned library code, and the best thing is not
to compete with it, but link with it.

Foreign function interface (FFI) (page 503) describes the foreign function interface.

Don’t use Floats: If you're using Complex, definitely use Complex Double rather than
Complex Float (the former is specialised heavily, but the latter isn’t).

Floats (probably 32-bits) are almost always a bad idea, anyway, unless you Really Know
What You Are Doing. Use Doubles. There’s rarely a speed disadvantage—modern ma-
chines will use the same floating-point unit for both. With Doubles, you are much less
likely to hang yourself with numerical errors.

One time when Float might be a good idea is if you have a lot of them, say a giant array
of Floats. They take up half the space in the heap compared to Doubles. However, this
isn’t true on a 64-bit machine.

Use unboxed arrays (UArray) GHC supports arrays of unboxed elements, for several basic
arithmetic element types including Int and Char: see the Data.Array.Unboxed library
for details. These arrays are likely to be much faster than using standard Haskell 98
arrays from the Data.Array library.

Use a bigger heap! If your program’s GC stats (-S [(file)] (page 157) RTS option) indi-
cate that it’s doing lots of garbage-collection (say, more than 20% of execution time),
more memory might help — with the -H(size) or -A(size) RTS options (see RTS op-
tions to control the garbage collector (page 151)). As a rule of thumb, try setting -H
(size) to the amount of memory you're willing to let your process consume, or perhaps
try passing -H (size) (page 87) without any argument to let GHC calculate a value
based on the amount of live data.

Compact your data: The GHC.Compact module provides a way to make garbage collection
more efficient for long-lived data structures. Compacting a data structure collects the

250 Chapter 12. Advice on: sooner, faster, smaller, thriftier

../libraries/array-@LIBRARY_array_VERSION@/Data-Array-Unboxed.html
../libraries/array-@LIBRARY_array_VERSION@/Data-Array.html
../libraries/ghc-compact-0.1.0.0/GHC-Compact.html

GHC User’s Guide Documentation, Release 8.6.5

objects together in memory, where they are treated as a single object by the garbage
collector and not traversed individually.

12.3 Smaller: producing a program that is smaller

Decrease the “go-for-it” threshold for unfolding smallish expressions. Give a
-funfolding-use-threshold=0 (page 114) option for the extreme case. (“Only unfold-
ings with zero cost should proceed.”) Warning: except in certain specialised cases (like
Happy parsers) this is likely to actually increase the size of your program, because unfolding
generally enables extra simplifying optimisations to be performed.

Avoid Prelude.Read.

Use strip on your executables.

12.4 Thriftier: producing a program that gobbles less
heap space

“I think I have a space leak...”

Re-run your program with +RTS -S, and remove all doubt! (You’ll see the heap usage get
bigger and bigger...) (Hmmm... this might be even easier with the -G1 (page 153) RTS option;
so... ./a.out +RTS -S -G1)

Once again, the profiling facilities (Profiling (page 223)) are the basic tool for demystifying
the space behaviour of your program.

Strict functions are good for space usage, as they are for time, as discussed in the previous
section. Strict functions get right down to business, rather than filling up the heap with
closures (the system’s notes to itself about how to evaluate something, should it eventually
be required).

12.3. Smaller: producing a program that is smaller 251

../libraries/base-4.12.0.0/Prelude.html#t:Read

GHC User’s Guide Documentation, Release 8.6.5

252 Chapter 12. Advice on: sooner, faster, smaller, thriftier

CHAPTER
THIRTEEN

GHC LANGUAGE FEATURES

As with all known Haskell systems, GHC implements some extensions to the standard Haskell
language. They can all be enabled or disabled by command line flags or language pragmas.
By default GHC understands the most recent Haskell version it supports, plus a handful of
extensions.

Some of the Glasgow extensions serve to give you access to the underlying facilities with
which we implement Haskell. Thus, you can get at the Raw Iron, if you are willing to write
some non-portable code at a more primitive level. You need not be “stuck” on performance
because of the implementation costs of Haskell’s “high-level” features—you can always code
“under” them. In an extreme case, you can write all your time-critical code in C, and then
just glue it together with Haskell!

Before you get too carried away working at the lowest level (e.g., sloshing
MutableByteArray#s around your program), you may wish to check if there are libraries
that provide a “Haskellised veneer” over the features you want. The separate libraries
documentation describes all the libraries that come with GHC.

13.1 Language options

The language extensions control what variation of the language are permitted.

Language options can be controlled in two ways:

”

 Every language option can switched on by a command-line flag “-X...
(e.g. -XTemplateHaskell), and switched off by the flag “-XNo...”; (e.g.
-XNoTemplateHaskell).

* Language options recognised by Cabal can also be enabled using the LANGUAGE pragma,
thus {-# LANGUAGE TemplateHaskell #-} (see LANGUAGE pragma (page 461)).

GHC supports these language options:

Extension Description

AllowAmbiguousTypes (page 400) Allow the user to write ambiguous types, and the type infere
ApplicativeDo (page 269) Enable Applicative do-notation desugaring

Arrows (page 444) Enable arrow notation extension

BangPatterns (page 451) Enable bang patterns.

BinarylLiterals (page 262) Enable support for binary literals.

BlockArguments (page 284) Allow do blocks and other constructs as function arguments.
CApiFFI (page 505) Enable the CAPI calling convention.
ConstrainedClassMethods (page 340) Enable constrained class methods.

253

../libraries/index.html
../libraries/index.html

GHC User’s Guide Documentation, Release 8.6.5

Extension

Description

ConstraintKinds (page 394)

Enable a kind of constraints.

CPP (page 201)

Enable the C preprocessor.

DataKinds (page 377)

Enable datatype promotion.

DatatypeContexts (page 287)

Allow contexts on data types.

DefaultSignatures (page 341)

Enable default signatures.

DeriveAnyClass (page 326)

Enable deriving for any class.

DeriveDataTypeable (page 319)

Enable deriving for the Data class. Implied by AutoDeriveTy

DeriveFoldable (page 316)

Enable deriving for the Foldable class. Implied by DeriveTre

DeriveFunctor (page 313)

Enable deriving for the Functor class. Implied by DeriveTra

DeriveGeneric (page 480)

Enable deriving for the Generic class.

DerivelLift (page 320)

Enable deriving for the Lift class

DeriveTraversable (page 318)

Enable deriving for the Traversable class. Implies DeriveFur

DerivingStrategies (page 329)

Enables deriving strategies.

DerivingVia (page 330)

Enable deriving instances via types of the same runtime rep

DisambiguateRecordFields (page 300)

Enable record field disambiguation. Implied by RecordiWildC

DuplicateRecordFields (page 301)

Allow definition of record types with identically-named fields

EmptyCase (page 280)

Allow empty case alternatives.

EmptyDataDecls (page 287)

Allow definition of empty data types.

ExistentialQuantification (page 290)

Enable liberalised type synonyms.

ExplicitForAll (page 400)

Enable explicit universal quantification. Implied by ScopedT)

ExplicitNamespaces (page 284)

Enable using the keyword type to specify the namespace of

ExtendedDefaultRules (page 44)

Use GHCi’s extended default rules in a normal module.

FlexibleContexts (page 340)

Enable flexible contexts. Implied by ImplicitParams (page 4

FlexibleInstances (page 348)

Enable flexible instances. Implies TypeSynonymInstances (p

ForeignFunctionInterface (page 503)

Enable foreign function interface.

FunctionalDependencies (page 343)

Enable functional dependencies. Implies MultiParamTypeCl:

GADTs (page 298)

Enable generalised algebraic data types. Implies GADTSynta>

GADTSyntax (page 294)

Enable generalised algebraic data type syntax.

GeneralisedNewtypeDeriving (page 321)

Enable newtype deriving.

HexFloatLiterals (page 262)

Enable support for hexadecimal floating point literals (page

ImplicitParams (page 411)

Enable Implicit Parameters. Implies FlexibleContexts (pag

ImplicitPrelude (page 277)

Don’t implicitly import Prelude. Implied by RebindableSyn

ImpredicativeTypes (page 418)

Enable impredicative types. Implies RankNTypes (page 414).

IncoherentInstances (page 352)

Enable incoherent instances. Implies OverlappingInstance:

InstanceSigs (page 355)

Enable instance signatures.

InterruptibleFFI (page 505)

Enable interruptible FFI.

KindSignatures (page 402)

Enable kind signatures. Implied by TypeFamilies (page 362

LambdaCase (page 280)

Enable lambda-case expressions.

LiberalTypeSynonyms (page 289)

Enable liberalised type synonyms.

MagicHash (page 261)

Allow # as a postfix modifier on identifiers.

MonadComprehensions (page 275)

Enable monad comprehensions.

MonadFailDesugaring (page 277)

Enable monadfail desugaring.

MonoLocalBinds (page 408)

Enable do not generalise local bindings. Implied by TypeFam.

MonomorphismRestriction (page 407)

Disable the monomorphism restriction.

MultiParamTypeClasses (page 339)

Enable multi parameter type classes. Implied by Functional

MultiWayIf (page 281)

Enable multi-way if-expressions.

NamedFieldPuns (page 304)

Enable record puns.

NamedWildCards (page 427)

Enable named wildcards.

NegativelLiterals (page 262)

Enable support for negative literals.

254

Chapter 13. GHC Language Features

GHC User’s Guide Documentation, Release 8.6.5

Extension

Description

NPlusKPatterns (page 266)

Enable support for n+k patterns. Implied by Haskel198.

NullaryTypeClasses (page 343)

Deprecated, does nothing. nullary (no parameter) type class

NumDecimals (page 262)

Enable support for ’fractional’ integer literals.

NumericUnderscores (page 263)

Enable support for numeric underscores (page 263).

OverlappingInstances (page 352)

Enable overlapping instances.

OverloadedLabels (page 357)

Enable overloaded labels.

OverloadedLists (page 358)

Enable overloaded lists.

OverloadedStrings (page 356)

Enable overloaded string literals.

PackageImports (page 283)

Enable package-qualified imports.

ParallellListComp (page 272)

Enable parallel list comprehensions.

PartialTypeSignatures (page 426)

Enable partial type signatures.

PatternGuards (page 264)

Disable pattern guards. Implied by Haskel198.

PatternSynonyms (page 332)

Enable pattern synonyms.

PolyKinds (page 380)

Enable kind polymorphism. Implies KindSignatures (page 4

PostfixOperators (page 279)

Enable postfix operators.

QuantifiedConstraints (page 395)

Allow forall quantifiers in constraints.

QuasiQuotes (page 441)

Enable quasiquotation.

Rank2Types (page 414)

Enable rank-2 types. Synonym for RankNTypes (page 414).

RankNTypes (page 414)

Enable rank-N types. Implied by ImpredicativeTypes (page

RebindableSyntax (page 277)

Employ rebindable syntax. Implies NoImplicitPrelude (pag

RecordwWildCards (page 305)

Enable record wildcards. Implies DisambiguateRecordFielc

RecursiveDo (page 267)

Enable recursive do (mdo) notation.

RoleAnnotations (page 485)

Enable role annotations.

Safe (page 499)

Enable the Safe Haskell (page 491) Safe mode.

ScopedTypeVariables (page 403)

Enable lexically-scoped type variables.

StandaloneDeriving (page 310)

Enable standalone deriving.

StarIsType (page 387)

Treat * as Data.Kind.Type.

StaticPointers (page 458)

Enable static pointers.

Strict (page 452)

Make bindings in the current module strict by default.

StrictData (page 452)

Enable default strict datatype fields.

TemplateHaskell (page 434)

Enable Template Haskell.

TemplateHaskellQuotes (page 434)

Enable quotation subset of Template Haskell (page 434).

TraditionalRecordSyntax (page 300)

Disable support for traditional record syntax (as supported b

TransformListComp (page 273)

Enable generalised list comprehensions.

Trustworthy (page 500)

Enable the Safe Haskell (page 491) Trustworthy mode.

TupleSections (page 279)

Enable tuple sections.

TypeApplications (page 409)

Enable type application syntax.

TypeFamilies (page 362)

Enable type families. Implies ExplicitNamespaces (page 28:

TypeFamilyDependencies (page 375)

Enable injective type families. Implies TypeFamilies (page -

TypeInType (page 380)

Deprecated. Enable kind polymorphism and datatype promo

TypeOperators (page 288)

Enable type operators. Implies ExplicitNamespaces (page 2

TypeSynonymInstances (page 348)

Enable type synonyms in instance heads. Implied by Flexib

UnboxedSums (page 259)

Enable unboxed sums.

UnboxedTuples (page 258)

Enable the use of unboxed tuple syntax.

UndecidableInstances (page 349)

Enable undecidable instances.

UndecidableSuperClasses (page 361)

Allow all superclass constraints, including those that may re:

UnicodeSyntax (page 260)

Enable unicode syntax.

Unsafe (page 500)

Enable Safe Haskell (page 491) Unsafe mode.

ViewPatterns (page 264)

Enable view patterns.

13.1. Language options

255

GHC User’s Guide Documentation, Release 8.6.5

Although not recommended, the deprecated - fglasgow-exts (page 256) flag enables a large
swath of the extensions supported by GHC at once.

-fglasgow-exts
The flag - fglasgow-exts is equivalent to enabling the following extensions:

ConstrainedClassMethods (page 340)
DeriveDataTypeable (page 319)
DeriveFoldable (page 316)
DeriveFunctor (page 313)
DeriveGeneric (page 480)
DeriveTraversable (page 318)
EmptyDataDecls (page 287)
ExistentialQuantification (page 290)
ExplicitNamespaces (page 284)
FlexibleContexts (page 340)
FlexibleInstances (page 348)
ForeignFunctionInterface (page 503)
FunctionalDependencies (page 343)
GeneralizedNewtypeDeriving (page 321)
ImplicitParams (page 411)
KindSignatures (page 402)
LiberalTypeSynonyms (page 289)
MagicHash (page 261)
MultiParamTypeClasses (page 339)
ParallellListComp (page 272)
PatternGuards (page 264)
PostfixOperators (page 279)
RankNTypes (page 414)

RecursiveDo (page 267)
ScopedTypeVariables (page 403)
StandaloneDeriving (page 310)
TypeOperators (page 288)
TypeSynonymInstances (page 348)
UnboxedTuples (page 258)
UnicodeSyntax (page 260)
UnliftedFFITypes

Enabling these options is the only effect of - fglasgow-exts. We are trying to move away
from this portmanteau flag, and towards enabling features individually.

13.2 Unboxed types and primitive operations

GHC is built on a raft of primitive data types and operations; “primitive” in the sense that
they cannot be defined in Haskell itself. While you really can use this stuff to write fast code,
we generally find it a lot less painful, and more satisfying in the long run, to use higher-level
language features and libraries. With any luck, the code you write will be optimised to the
efficient unboxed version in any case. And if it isn’t, we’d like to know about it.

All these primitive data types and operations are exported by the library GHC.Prim, for which
there is detailed online documentation <GHC.Prim.>. (This documentation is generated from
the file compiler/prelude/primops.txt.pp.)

If you want to mention any of the primitive data types or operations in your program, you
must first import GHC.Prim to bring them into scope. Many of them have names ending in #,

256 Chapter 13. GHC Language Features

../libraries/ghc-prim-0.5.3/detailed online documentation \TU\textless {}GHC-Prim.html#v:\TU\textgreater {}

GHC User’s Guide Documentation, Release 8.6.5

and to mention such names you need the MagicHash (page 261) extension.

The primops make extensive use of unboxed types (page 257) and unboxed tuples (page 258),
which we briefly summarise here.

13.2.1 Unboxed types

Most types in GHC are boxed, which means that values of that type are represented by a
pointer to a heap object. The representation of a Haskell Int, for example, is a two-word
heap object. An unboxed type, however, is represented by the value itself, no pointers or
heap allocation are involved.

Unboxed types correspond to the “raw machine” types you would use in C: Int# (long int),
Double# (double), Addr# (void *), etc. The primitive operations (PrimOps) on these types are
what you might expect; e.g., (+#) is addition on Int#s, and is the machine-addition that we
all know and love—usually one instruction.

Primitive (unboxed) types cannot be defined in Haskell, and are therefore built into the lan-
guage and compiler. Primitive types are always unlifted; that is, a value of a primitive type
cannot be bottom. (Note: a “boxed” type means that a value is represented by a pointer to a
heap object; a “lifted” type means that terms of that type may be bottom. See the next para-
graph for an example.) We use the convention (but it is only a convention) that primitive types,
values, and operations have a # suffix (see The magic hash (page 261)). For some primitive
types we have special syntax for literals, also described in the same section (page 261).

Primitive values are often represented by a simple bit-pattern, such as Int#, Float#, Double#.
But this is not necessarily the case: a primitive value might be represented by a pointer to a
heap-allocated object. Examples include Array#, the type of primitive arrays. Thus, Array#
is an unlifted, boxed type. A primitive array is heap-allocated because it is too big a value to
fit in a register, and would be too expensive to copy around; in a sense, it is accidental that it
is represented by a pointer. If a pointer represents a primitive value, then it really does point
to that value: no unevaluated thunks, no indirections. Nothing can be at the other end of the
pointer than the primitive value. A numerically-intensive program using unboxed types can
go a lot faster than its “standard” counterpart—we saw a threefold speedup on one example.

13.2.2 Unboxed type kinds

Because unboxed types are represented without the use of pointers, we cannot store them
in use a polymorphic datatype at an unboxed type. For example, the Just node of Just
42# would have to be different from the Just node of Just 42; the former stores an integer
directly, while the latter stores a pointer. GHC currently does not support this variety of Just
nodes (nor for any other datatype). Accordingly, the kind of an unboxed type is different from
the kind of a boxed type.

The Haskell Report describes that * (spelled Type and imported from Data.Kind in the GHC
dialect of Haskell) is the kind of ordinary datatypes, such as Int. Furthermore, type construc-
tors can have kinds with arrows; for example, Maybe has kind Type -> Type. Unboxed types
have a kind that specifies their runtime representation. For example, the type Int# has kind
TYPE 'IntRep and Double# has kind TYPE 'DoubleRep. These kinds say that the runtime rep-
resentation of an Int# is a machine integer, and the runtime representation of a Double# is a
machine double-precision floating point. In contrast, the kind Type is actually just a synonym
for TYPE 'LiftedRep. More details of the TYPE mechanisms appear in the section on runtime
representation polymorphism (page 389).

13.2. Unboxed types and primitive operations 257

GHC User’s Guide Documentation, Release 8.6.5

Given that Int#’s kind is not Type, it then it follows that Maybe Int# is disallowed. Similarly,
because type variables tend to be of kind Type (for example, in (.) :: (b -> c) -> (a ->
b) -> a -> c, all the type variables have kind Type), polymorphism tends not to work over
primitive types. Stepping back, this makes some sense, because a polymorphic function needs
to manipulate the pointers to its data, and most primitive types are unboxed.

There are some restrictions on the use of primitive types:

* You cannot define a newtype whose representation type (the argument type of the data
constructor) is an unboxed type. Thus, this is illegal:

newtype A = MkA Int#

* You cannot bind a variable with an unboxed type in a top-level binding.
* You cannot bind a variable with an unboxed type in a recursive binding.

* You may bind unboxed variables in a (non-recursive, non-top-level) pattern binding,
but you must make any such pattern-match strict. (Failing to do so emits a warning
-Wunbanged-strict-patterns (page 103).) For example, rather than:

data Foo = Foo Int Int#

f x = let (Foo a b, w) = ..rhs.. in ..body..

you must write:

data Foo = Foo Int Int#

f x = let !(Foo a b, w) = ..rhs.. in ..body..

since b has type Int#.

13.2.3 Unboxed tuples

UnboxedTuples
Since 6.8.1

Unboxed tuples aren’t really exported by GHC.Exts; they are a syntactic extension
(UnboxedTuples (page 258)). An unboxed tuple looks like this:

(#el, ..., en #)

where e 1..e n are expressions of any type (primitive or non-primitive). The type of an
unboxed tuple looks the same.

Note that when unboxed tuples are enabled, (# is a single lexeme, so for example when using
operators like # and #- you need to write (#) and (#-) rather than (#) and (#-).

Unboxed tuples are used for functions that need to return multiple values, but they avoid the
heap allocation normally associated with using fully-fledged tuples. When an unboxed tuple
is returned, the components are put directly into registers or on the stack; the unboxed tuple
itself does not have a composite representation. Many of the primitive operations listed in
primops.txt.pp return unboxed tuples. In particular, the I0 and ST monads use unboxed
tuples to avoid unnecessary allocation during sequences of operations.

There are some restrictions on the use of unboxed tuples:

258 Chapter 13. GHC Language Features

GHC User’s Guide Documentation, Release 8.6.5

» The typical use of unboxed tuples is simply to return multiple values, binding those mul-
tiple results with a case expression, thus:

y = (# x+1, y-1 #)

f x
g x case f x x of { (#a, b #) ->a + b}

You can have an unboxed tuple in a pattern binding, thus

f x=Tlet (# p,q #) = h x in ..body..

If the types of p and q are not unboxed, the resulting binding is lazy like any other Haskell
pattern binding. The above example desugars like this:

f x=T1let t = case h x of { (# p,q #) -> (p,q) }
p=fstt
g=-snd t
in ..body..

Indeed, the bindings can even be recursive.

13.2.4 Unboxed sums

UnboxedSums
Since 8.2.1
Enable the use of unboxed sum syntax.

-XUnboxedSums enables new syntax for anonymous, unboxed sum types. The syntax for an
unboxed sum type with N alternatives is

’(#t_1|t_2| oo | tN #) ‘

where t 1 ... t N are types (which can be unlifted, including unboxed tuples and sums).

Unboxed tuples can be used for multi-arity alternatives. For example:

’(# (# Int, String #) | Bool #) ‘

The term level syntax is similar. Leading and preceding bars (]) indicate which alternative it
is. Here are two terms of the type shown above:

(# (# 1, "foo" #) | #) -- first alternative

(# | True #) -- second alternative

The pattern syntax reflects the term syntax:

case x of
(# (# 1, str #) | #) -> ...
(# | bool #) -> ...

Unboxed sums are “unboxed” in the sense that, instead of allocating sums in the heap and
representing values as pointers, unboxed sums are represented as their components, just like
unboxed tuples. These “components” depend on alternatives of a sum type. Like unboxed
tuples, unboxed sums are lazy in their lifted components.

13.2. Unboxed types and primitive operations 259

GHC User’s Guide Documentation, Release 8.6.5

The code generator tries to generate as compact layout as possible for each unboxed sum. In
the best case, size of an unboxed sum is size of its biggest alternative plus one word (for a
tag). The algorithm for generating the memory layout for a sum type works like this:

» All types are classified as one of these classes: 32bit word, 64bit word, 32bit float, 64bit
float, pointer.

» For each alternative of the sum type, a layout that consists of these fields is generated.
For example, if an alternative has Int, Float# and String fields, the layout will have an
32bit word, 32bit float and pointer fields.

* Layout fields are then overlapped so that the final layout will be as compact as possible.
For example, suppose we have the unboxed sum:

(# (# Word32#, String, Float# #)
| (# Float#, Float#, Maybe Int #) #)

The final layout will be something like

Int32, Float32, Float32, Word32, Pointer

The first Int32 is for the tag. There are two Float32 fields because floating point types
can’t overlap with other types, because of limitations of the code generator that we’'re
hoping to overcome in the future. The second alternative needs two Float32 fields:
The Word32 field is for the Word32# in the first alternative. The Pointer field is shared
between String and Maybe Int values of the alternatives.

As another example, this is the layout for the unboxed version of Maybe a type, (# (#
#) | a #):

’ Int32, Pointer

The Pointer field is not used when tag says that it’s Nothing. Otherwise Pointer points
to the value in Just. As mentioned above, this type is lazy in its lifted field. Therefore,
the type

data Maybe' a = Maybe' (# (# #) | a #)

is precisely isomorphic to the type Maybe a, although its memory representation is dif-
ferent.

In the degenerate case where all the alternatives have zero width, such as the Bool-
like (# (# #) | (# #) #), the unboxed sum layout only has an Int32 tag field (i.e., the
whole thing is represented by an integer).

13.3 Syntactic extensions

13.3.1 Unicode syntax

UnicodeSyntax
Since 6.8.1
Enable the use of Unicode characters in place of their equivalent ASCII sequences.

The language extension UnicodeSyntax (page 260) enables Unicode characters to be used to
stand for certain ASCII character sequences. The following alternatives are provided:

260 Chapter 13. GHC Language Features

GHC User’s Guide Documentation, Release 8.6.5

ASCII Unicode alterna- | Code Name
tive point
: 0 0x2237 PROPORTION

= = 0x21D2 RIGHTWARDS DOUBLE ARROW

-> — 0x2192 RIGHTWARDS ARROW

<- — 0x2190 LEFTWARDS ARROW

>- - 0x291a RIGHTWARDS ARROW-TAIL

-< — 0x2919 LEFTWARDS ARROW-TAIL

>>- » 0x291C RIGHTWARDS DOUBLE ARROW-TAIL

-<< —~« 0x291B LEFTWARDS DOUBLE ARROW-TAIL

* 0 0x2605 BLACK STAR

forall | V 0x2200 FOR ALL

(] 0 0x2987 Z NOTATION LEFT IMAGE BRACKET

|) 0 0x2988 Z NOTATION RIGHT IMAGE BRACKET

[]] 0x27E6 MATHEMATICAL LEFT WHITE SQUARE
BRACKET

|1 0 0x27E7 MATHEMATICAL RIGHT WHITE SQUARE
BRACKET

13.3.2 The magic hash

MagicHash
Since 6.8.1
Enables the use of the hash character (#) as an identifier suffix.

The language extension MagicHash (page 261) allows # as a postfix modifier to identifiers.
Thus, x# is a valid variable, and T# is a valid type constructor or data constructor.

The hash sign does not change semantics at all. We tend to use variable names ending in “#”
for unboxed values or types (e.g. Int#), but there is no requirement to do so; they are just
plain ordinary variables. Nor does the MagicHash (page 261) extension bring anything into
scope. For example, to bring Int# into scope you must import GHC.Prim (see Unboxed types
and primitive operations (page 256)); the MagicHash (page 261) extension then allows you to
refer to the Int# that is now in scope. Note that with this option, the meaning of x#y = 0 is
changed: it defines a function x# taking a single argument y; to define the operator #, put a
space: X # y = 0.

The MagicHash (page 261) also enables some new forms of literals (see Unboxed types
(page 257)):

e 'X'# has type Char#
* "foo"# has type Addr#

* 3# has type Int#. In general, any Haskell integer lexeme followed by a # is an Int#
literal, e.g. -Ox3A# as well as 32#.

» 3#4# has type Word#. In general, any non-negative Haskell integer lexeme followed by ##
is a Word#.

3.2# has type Float#.
3.2## has type Double#

13.3. Syntactic extensions 261

GHC User’s Guide Documentation, Release 8.6.5

13.3.3 Negative literals

NegativelLiterals
Since 7.8.1
Enable the use of un-parenthesized negative numeric literals.

The literal -123 is, according to Haskell98 and Haskell 2010, desugared as negate
(fromInteger 123). The