Bullet Collision Detection & Physics Library
|
Go to the documentation of this file.
25 #define CONETWIST_USE_OBSOLETE_SOLVER false
26 #define CONETWIST_DEF_FIX_THRESH btScalar(.05f)
110 calcAngleInfo2(transA, transB, invInertiaWorldA, invInertiaWorldB);
139 for (j = 0; j < 3; j++)
150 int srow = row * info->
rowskip;
162 int srow1 = srow + info->
rowskip;
166 J1[srow1 + 0] = q[0];
167 J1[srow1 + 1] = q[1];
168 J1[srow1 + 2] = q[2];
169 J2[srow + 0] = -p[0];
170 J2[srow + 1] = -p[1];
171 J2[srow + 2] = -p[2];
172 J2[srow1 + 0] = -q[0];
173 J2[srow1 + 1] = -q[1];
174 J2[srow1 + 2] = -q[2];
187 J1[srow + 0] = ax1[0];
188 J1[srow + 1] = ax1[1];
189 J1[srow + 2] = ax1[2];
190 J2[srow + 0] = -ax1[0];
191 J2[srow + 1] = -ax1[1];
192 J2[srow + 2] = -ax1[2];
211 J1[srow + 0] = ax1[0];
212 J1[srow + 1] = ax1[1];
213 J1[srow + 2] = ax1[2];
214 J2[srow + 0] = -ax1[0];
215 J2[srow + 1] = -ax1[1];
216 J2[srow + 2] = -ax1[2];
258 btVector3 relPos = pivotBInW - pivotAInW;
272 for (
int i = 0; i < 3; i++)
313 for (
int i = 0; i < 3; i++)
319 rel_vel = normal.
dot(vel);
321 btScalar depth = -(pivotAInW - pivotBInW).
dot(normal);
322 btScalar impulse = depth * tau / timeStep * jacDiagABInv - rel_vel * jacDiagABInv;
346 trACur, zerovec, omegaA, timeStep, trAPred);
350 trBCur, zerovec, omegaB, timeStep, trBPred);
370 btScalar kAxisAInv = 0, kAxisBInv = 0;
384 btVector3 avgAxis = kAxisAInv * axisA + kAxisBInv * axisB;
386 static bool bDoTorque =
true;
392 btScalar kInvCombined = kAxisAInv + kAxisBInv;
394 btVector3 impulse = (kAxisAInv * dOmegaA - kAxisBInv * dOmegaB) /
395 (kInvCombined * kInvCombined);
401 fMaxImpulse = fMaxImpulse / kAxisAInv;
405 if (newUnclampedMag > fMaxImpulse)
408 newUnclampedAccImpulse *= fMaxImpulse;
415 btVector3 impulseAxis = impulse / impulseMag;
437 btVector3 impulseAxis = impulse / impulseMag;
471 btVector3 impulseNoTwistCouple = impulse - impulseTwistCouple;
472 impulse = impulseNoTwistCouple;
475 impulseMag = impulse.
length();
476 btVector3 noTwistSwingAxis = impulse / impulseMag;
521 btVector3 b1Axis1(0, 0, 0), b1Axis2(0, 0, 0), b1Axis3(0, 0, 0);
522 btVector3 b2Axis1(0, 0, 0), b2Axis2(0, 0, 0);
537 swx = b2Axis1.
dot(b1Axis1);
538 swy = b2Axis1.dot(b1Axis2);
540 fact = (swy * swy + swx * swx) * thresh * thresh;
541 fact = fact / (fact +
btScalar(1.0));
548 swx = b2Axis1.
dot(b1Axis1);
549 swy = b2Axis1.dot(b1Axis3);
551 fact = (swy * swy + swx * swx) * thresh * thresh;
552 fact = fact / (fact +
btScalar(1.0));
558 btScalar EllipseAngle =
btFabs(swing1 * swing1) * RMaxAngle1Sq +
btFabs(swing2 * swing2) * RMaxAngle2Sq;
560 if (EllipseAngle > 1.0f)
565 m_swingAxis = b2Axis1.
cross(b1Axis2 * b2Axis1.dot(b1Axis2) + b1Axis3 * b2Axis1.
dot(b1Axis3));
567 btScalar swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f;
652 btScalar swingAngle, swingLimit = 0;
755 target[0] = x * ivA[0] + y * jvA[0] + z * kvA[0];
756 target[1] = x * ivA[1] + y * jvA[1] + z * kvA[1];
757 target[2] = x * ivA[2] + y * jvA[2] + z * kvA[2];
814 vSwingAxis =
btVector3(qCone.
x(), qCone.
y(), qCone.
z());
841 btScalar surfaceSlope2 = (yEllipse * yEllipse) / (xEllipse * xEllipse);
844 btScalar swingLimit2 = (1 + surfaceSlope2) / norm;
845 swingLimit = sqrt(swingLimit2);
861 else if (swingAngle < 0)
886 btScalar surfaceSlope2 = (yEllipse * yEllipse) / (xEllipse * xEllipse);
889 btScalar swingLimit2 = (1 + surfaceSlope2) / norm;
890 swingLimit = sqrt(swingLimit2);
895 btVector3 vSwingAxis(0, xEllipse, -yEllipse);
897 btVector3 vPointInConstraintSpace(fLength, 0, 0);
898 return quatRotate(qSwing, vPointInConstraintSpace);
912 qMinTwist = -(qTwist);
923 vTwistAxis =
btVector3(qMinTwist.
x(), qMinTwist.
y(), qMinTwist.
z());
997 if (swingAngle > swingLimit * softness)
998 swingAngle = swingLimit * softness;
999 else if (swingAngle < -swingLimit * softness)
1000 swingAngle = -swingLimit * softness;
1035 if ((axis >= 0) && (axis < 3))
1047 if ((axis >= 0) && (axis < 3))
1072 if ((axis >= 0) && (axis < 3))
1077 else if ((axis >= 3) && (axis < 6))
1088 if ((axis >= 0) && (axis < 3))
1093 else if ((axis >= 3) && (axis < 6))
virtual void solveConstraintObsolete(btSolverBody &bodyA, btSolverBody &bodyB, btScalar timeStep)
internal method used by the constraint solver, don't use them directly
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
TypedConstraint is the baseclass for Bullet constraints and vehicles.
bool m_bNormalizedMotorStrength
The btRigidBody is the main class for rigid body objects.
const btRigidBody & getRigidBodyB() const
#define btAssertConstrParams(_par)
const btScalar & y() const
Return the y value.
btScalar dot(const btQuaternion &q1, const btQuaternion &q2)
Calculate the dot product between two quaternions.
void btPlaneSpace1(const T &n, T &p, T &q)
The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatr...
btScalar length() const
Return the length of the vector.
virtual btScalar getParam(int num, int axis=-1) const
return the local value of parameter
btScalar getAngle() const
Return the angle [0, 2Pi] of rotation represented by this quaternion.
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
#define CONETWIST_DEF_FIX_THRESH
btScalar m_swingCorrection
void setZ(btScalar _z)
Set the z value.
Jacobian entry is an abstraction that allows to describe constraints it can be used in combination wi...
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
btQuaternion inverse() const
Return the inverse of this quaternion.
void internalGetAngularVelocity(btVector3 &angVel) const
btScalar * m_J2angularAxis
btScalar dot(const btVector3 &v) const
Return the dot product.
btScalar * m_J2linearAxis
void internalApplyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
btScalar computeAngularImpulseDenominator(const btVector3 &axis, const btMatrix3x3 &invInertiaWorld)
btQuaternion & normalize()
Normalize the quaternion Such that x^2 + y^2 + z^2 +w^2 = 1.
const btTransform & getCenterOfMassTransform() const
btVector3 GetPointForAngle(btScalar fAngleInRadians, btScalar fLength) const
const T & btMax(const T &a, const T &b)
const btScalar & y() const
Return the y value.
btVector3 m_accMotorImpulse
void internalGetVelocityInLocalPointObsolete(const btVector3 &rel_pos, btVector3 &velocity) const
const btVector3 & getInvInertiaDiagLocal() const
btScalar m_twistLimitRatio
btScalar m_twistCorrection
btScalar btSin(btScalar x)
void calcAngleInfo2(const btTransform &transA, const btTransform &transB, const btMatrix3x3 &invInertiaWorldA, const btMatrix3x3 &invInertiaWorldB)
btScalar m_accTwistLimitImpulse
btScalar btFabs(btScalar x)
btScalar m_twistLimitSign
btQuaternion shortestArcQuat(const btVector3 &v0, const btVector3 &v1)
#define CONETWIST_USE_OBSOLETE_SOLVER
void adjustSwingAxisToUseEllipseNormal(btVector3 &vSwingAxis) const
void computeConeLimitInfo(const btQuaternion &qCone, btScalar &swingAngle, btVector3 &vSwingAxis, btScalar &swingLimit)
btScalar m_maxMotorImpulse
btScalar btCos(btScalar x)
void setY(btScalar _y)
Set the y value.
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
void setMotorTarget(const btQuaternion &q)
btScalar * m_constraintError
btMatrix3x3 transpose() const
Return the transpose of the matrix.
btScalar getInvMass() const
void setMotorTargetInConstraintSpace(const btQuaternion &q)
btVector3 getColumn(int i) const
Get a column of the matrix as a vector.
btScalar getDiagonal() const
btVector3 can be used to represent 3D points and vectors.
virtual void getInfo1(btConstraintInfo1 *info)
internal method used by the constraint solver, don't use them directly
void computeTwistLimitInfo(const btQuaternion &qTwist, btScalar &twistAngle, btVector3 &vTwistAxis)
const btRigidBody & getRigidBodyA() const
bool btFuzzyZero(btScalar x)
btScalar m_appliedImpulse
const btScalar & x() const
Return the x value.
btScalar m_swingLimitRatio
void setLimit(int limitIndex, btScalar limitValue)
#define SIMD_FORCE_INLINE
const btScalar & x() const
Return the x value.
btConeTwistConstraint(btRigidBody &rbA, btRigidBody &rbB, const btTransform &rbAFrame, const btTransform &rbBFrame)
virtual void getInfo2(btConstraintInfo2 *info)
internal method used by the constraint solver, don't use them directly
void updateRHS(btScalar timeStep)
virtual void setFrames(const btTransform &frameA, const btTransform &frameB)
const btMatrix3x3 & getInvInertiaTensorWorld() const
void getInfo1NonVirtual(btConstraintInfo1 *info)
const btVector3 & getCenterOfMassPosition() const
void getInfo2NonVirtual(btConstraintInfo2 *info, const btTransform &transA, const btTransform &transB, const btMatrix3x3 &invInertiaWorldA, const btMatrix3x3 &invInertiaWorldB)
btScalar btAtan2(btScalar x, btScalar y)
btScalar m_accSwingLimitImpulse
btScalar * m_J1angularAxis
static btVector3 vTwist(1, 0, 0)
const btScalar & z() const
Return the z value.
void getSkewSymmetricMatrix(btVector3 *v0, btVector3 *v1, btVector3 *v2) const
btScalar btAtan2Fast(btScalar y, btScalar x)
btVector3 m_linearJointAxis
virtual void setParam(int num, btScalar value, int axis=-1)
override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0...
bool m_useSolveConstraintObsolete
btScalar m_relaxationFactor
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.
btVector3 normalized() const
Return a normalized version of this vector.
btScalar * m_J1linearAxis
virtual void buildJacobian()
internal method used by the constraint solver, don't use them directly
const btScalar & z() const
Return the z value.
btScalar computeAngularImpulseDenominator(const btVector3 &axis) const
btScalar length2() const
Return the length of the vector squared.
btVector3 quatRotate(const btQuaternion &rotation, const btVector3 &v)