The Coq Reference Manual
Release 8.9.1

The Coq Development Team

Oct 10, 2019

Introduction

1.1 How to read this book
1.2 List of additional documentation
1.3 License i

Credits

2.1 Credits: addendum for version 6.1
2.2 Credits: addendum for version 6.2
2.3 Credits: addendum for version 6.3
2.4 Credits: versions 7

2.5 Credits: version 8.0
2.6 Credits: version 8.1
2.7 Credits: version 8.2
2.8 Credits: version 8.3
2.9 Credits: version 8.4
2.10 Credits: version 8.5
2.11 Credits: version 8.6
2.12 Credits: version 8.7
2.13 Credits: version 8.8
2.14 Credits: version 8.9

The language

3.1 The Gallina specification language
3.2 Extensions of Gallina
3.3 The Coq library
3.4 Calculus of Inductive Constructions
3.5 The Module System

The proof engine

4.1 Vernacular commands

4.2 Proof handling

43 Tactics
4.4 The tactic language
4.5 Detailed examples of tactics

4.6 The SSReflect proof language

User extensions

5.1 Syntax extensions and interpretation scopes

5.2 Proof schemes

Practical tools

CONTENTS

6.1 The Cogqcommands e e 372

6.2 ULNLES o e e e e e 376
6.3 Coq Integrated Development Environment e 389
7 Addendum 395
7.1 Extended pattern matching e e e e e e e e e e e 395
7.2 Implicit COBTCIONS v v v v v e 404
7.3 Canonical StruCtures oL e e e e e e e e e e e 412
T4 TYypeclasses v v e e e 421
7.5 Omega: a solver for quantifier-free problems in Presburger Arithmetic 429
7.6 Micromega: tactics for solving arithmetic goals over ordered rings 432
7.7 Extraction of programs in OCaml and Haskell, 435
7.8 Program e e 443
7.9 Thering and field tactic families e 448
7.10 Nsatz: tactics for proving equalities in integral domains oL 458
711 Generalized rewriting L e e e e e e e e e e e e e 459
7.12 Asynchronous and Parallel Proof Processing 471
7.13 Miscellaneous eXtensions v vttt e e e e e e e e e e e e e e e e e e e 474
7.14 Polymorphic Universes e 475
Bibliography 483
Command Index 486
Tactic Index 490
Flags, options and Tables Index 493
Errors and Warnings Index 495
Index 499

CHAPTER
ONE

INTRODUCTION

This document is the Reference Manual of the Coq proof assistant. To start using Coq, it is advised to first read a
tutorial. Links to several tutorials can be found at https://coq.inria.fr/documentation and https://github.com/coqg/coq/
wiki#coq-tutorials

The Coq system is designed to develop mathematical proofs, and especially to write formal specifications, programs and
to verify that programs are correct with respect to their specifications. It provides a specification language named Gallina.
Terms of Gallina can represent programs as well as properties of these programs and proofs of these properties. Using
the so-called Curry-Howard isomorphism, programs, properties and proofs are formalized in the same language called
Calculus of Inductive Constructions, that is a A-calculus with a rich type system. All logical judgments in Coq are typing
judgments. The very heart of the Coq system is the type checking algorithm that checks the correctness of proofs, in
other words that checks that a program complies to its specification. Coq also provides an interactive proof assistant to
build proofs using specific programs called factics.

All services of the Coq proof assistant are accessible by interpretation of a command language called the vernacular.

Coq has an interactive mode in which commands are interpreted as the user types them in from the keyboard and a
compiled mode where commands are processed from a file.

* In interactive mode, users can develop their theories and proofs step by step, and query the system for available the-
orems and definitions. The interactive mode is generally run with the help of an IDE, such as CoqIDE, documented
in Coq Integrated Development Environment, Emacs with Proof-General [Asp00]°, or jsCoq to run Coq in your
browser (see https://github.com/ejgallego/jscoq). The cogt op read-eval-print-loop can also be used directly, for
debugging purposes.

» The compiled mode acts as a proof checker taking a file containing a whole development in order to ensure its
correctness. Moreover, Coq’s compiler provides an output file containing a compact representation of its input.
The compiled mode is run with the cogc command.

See also:

The Cog commands.

1.1 How to read this book

This is a Reference Manual, so it is not intended for continuous reading. We recommend using the various indexes to
quickly locate the documentation you are looking for. There is a global index, and a number of specific indexes for tactics,
vernacular commands, and error messages and warnings. Nonetheless, the manual has some structure that is explained
below.

» The first part describes the specification language, Gallina. Chapters The Gallina specification language
and Extensions of Gallina describe the concrete syntax as well as the meaning of programs, theorems and proofs

5 Proof-General is available at https:/proofgeneral.github.io/. Optionally, you can enhance it with the minor mode Company-Coq [PCC16] (see
https://github.com/cpitclaudel/company-coq).

https://coq.inria.fr/documentation
https://github.com/coq/coq/wiki#coq-tutorials
https://github.com/coq/coq/wiki#coq-tutorials
https://github.com/ejgallego/jscoq
https://proofgeneral.github.io/
https://github.com/cpitclaudel/company-coq

The Coq Reference Manual, Release 8.9.1

in the Calculus of Inductive Constructions. Chapter 7he Coq library describes the standard library of Coq. Chap-
ter Calculus of Inductive Constructions is a mathematical description of the formalism. Chapter 7he Module System
describes the module system.

¢ The second part describes the proof engine. It is divided in six chapters. Chapter Vernacular commands presents all
commands (we call them vernacular commands) that are not directly related to interactive proving: requests to the
environment, complete or partial evaluation, loading and compiling files. How to start and stop proofs, do multiple
proofs in parallel is explained in Chapter Proof handling. In Chapter Tactics, all commands that realize one or more
steps of the proof are presented: we call them factics. The language to combine these tactics into complex proof
strategies is given in Chapter The factic language. Examples of tactics are described in Chapter Detailed examples
of tactics. Finally, the SSReflect proof language is presented in Chapter The SSReflect proof language.

 The third part describes how to extend the syntax of Coq in Chapter Syntax extensions and interpretation scopes
and how to define new induction principles in Chapter Proof schemes.

¢ In the fourth part more practical tools are documented. First in Chapter 7he Cog commands, the usage of cogc
(batch mode) and coqgtop (interactive mode) with their options is described. Then, in Chapter Urilities, various
utilities that come with the Coq distribution are presented. Finally, Chapter Coq Integrated Development Environ-
ment describes CoqIDE.

 The fifth part documents a number of advanced features, including coercions, canonical structures, typeclasses,
program extraction, and specialized solvers and tactics. See the table of contents for a complete list.

1.2 List of additional documentation

This manual does not contain all the documentation the user may need about Coq. Various informations can be found in
the following documents:

Installation A text file INSTALL that comes with the sources explains how to install Coq.

The Coq standard library A commented version of sources of the Coq standard library (including only the specifica-
tions, the proofs are removed) is available at https://coq.inria.fr/stdlib/.

1.3 License

This material (the Coq Reference Manual) may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub).
Options A and B are not elected.

2 Chapter 1. Introduction

https://coq.inria.fr/stdlib/
http://www.opencontent.org/openpub

CHAPTER
TWO

CREDITS

Coq is a proof assistant for higher-order logic, allowing the development of computer programs consistent with their
formal specification. It is the result of about ten years of research of the Coq project. We shall briefly survey here three
main aspects: the logical language in which we write our axiomatizations and specifications, the proof assistant which
allows the development of verified mathematical proofs, and the program extractor which synthesizes computer programs
obeying their formal specifications, written as logical assertions in the language.

The logical language used by Coq is a variety of type theory, called the Calculus of Inductive Constructions. Without
going back to Leibniz and Boole, we can date the creation of what is now called mathematical logic to the work of Frege
and Peano at the turn of the century. The discovery of antinomies in the free use of predicates or comprehension prin-
ciples prompted Russell to restrict predicate calculus with a stratification of types. This effort culminated with Principia
Mathematica, the first systematic attempt at a formal foundation of mathematics. A simplification of this system along
the lines of simply typed A-calculus occurred with Church’s Simple Theory of Types. The A-calculus notation, originally
used for expressing functionality, could also be used as an encoding of natural deduction proofs. This Curry-Howard
isomorphism was used by N. de Bruijn in the Automath project, the first full-scale attempt to develop and mechanically
verify mathematical proofs. This effort culminated with Jutting’s verification of Landau’s Grundlagen in the 1970’s. Ex-
ploiting this Curry-Howard isomorphism, notable achievements in proof theory saw the emergence of two type-theoretic
frameworks; the first one, Martin-Lof’s Intuitionistic Theory of Types, attempts a new foundation of mathematics on con-
structive principles. The second one, Girard’s polymorphic A-calculus F, is a very strong functional system in which we
may represent higher-order logic proof structures. Combining both systems in a higher-order extension of the Automath
language, T. Coquand presented in 1985 the first version of the Calculus of Constructions, CoC. This strong logical sys-
tem allowed powerful axiomatizations, but direct inductive definitions were not possible, and inductive notions had to be
defined indirectly through functional encodings, which introduced inefficiencies and awkwardness. The formalism was
extended in 1989 by T. Coquand and C. Paulin with primitive inductive definitions, leading to the current Calculus of
Inductive Constructions. This extended formalism is not rigorously defined here. Rather, numerous concrete examples
are discussed. We refer the interested reader to relevant research papers for more information about the formalism, its
meta-theoretic properties, and semantics. However, it should not be necessary to understand this theoretical material
in order to write specifications. It is possible to understand the Calculus of Inductive Constructions at a higher level,
as a mixture of predicate calculus, inductive predicate definitions presented as typed PROLOG, and recursive function
definitions close to the language ML.

Automated theorem-proving was pioneered in the 1960’s by Davis and Putnam in propositional calculus. A complete
mechanization (in the sense of a semidecision procedure) of classical first-order logic was proposed in 1965 by J.A.
Robinson, with a single uniform inference rule called resolution. Resolution relies on solving equations in free algebras
(i.e. term structures), using the unification algorithm. Many refinements of resolution were studied in the 1970’s, but
few convincing implementations were realized, except of course that PROLOG is in some sense issued from this effort.
A less ambitious approach to proof development is computer-aided proof-checking. The most notable proof-checkers
developed in the 1970’s were LCF, designed by R. Milner and his colleagues at U. Edinburgh, specialized in proving
properties about denotational semantics recursion equations, and the Boyer and Moore theorem-prover, an automation
of primitive recursion over inductive data types. While the Boyer-Moore theorem-prover attempted to synthesize proofs
by a combination of automated methods, LCF constructed its proofs through the programming of factics, written in a
high-level functional meta-language, ML.

The Coq Reference Manual, Release 8.9.1

The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer and Moore’s, is its possibility
to extract programs from the constructive contents of proofs. This computational interpretation of proof objects, in the
tradition of Bishop’s constructive mathematics, is based on a realizability interpretation, in the sense of Kleene, due to C.
Paulin. The user must just mark his intention by separating in the logical statements the assertions stating the existence
of a computational object from the logical assertions which specify its properties, but which may be considered as just
comments in the corresponding program. Given this information, the system automatically extracts a functional term
from a consistency proof of its specifications. This functional term may be in turn compiled into an actual computer
program. This methodology of extracting programs from proofs is a revolutionary paradigm for software engineering.
Program synthesis has long been a theme of research in artificial intelligence, pioneered by R. Waldinger. The Tablog
system of Z. Manna and R. Waldinger allows the deductive synthesis of functional programs from proofs in tableau form
of their specifications, written in a variety of first-order logic. Development of a systematic programming logic, based on
extensions of Martin-Lof’s type theory, was undertaken at Cornell U. by the Nuprl team, headed by R. Constable. The
first actual program extractor, PX, was designed and implemented around 1985 by S. Hayashi from Kyoto University.
It allows the extraction of a LISP program from a proof in a logical system inspired by the logical formalisms of S.
Feferman. Interest in this methodology is growing in the theoretical computer science community. We can foresee the
day when actual computer systems used in applications will contain certified modules, automatically generated from a
consistency proof of their formal specifications. We are however still far from being able to use this methodology in a
smooth interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time systems taking
advantage of special hardware, debuggers, and the like. We hope that Coq can be of use to researchers interested in
experimenting with this new methodology.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its implementation language was CAML,
a functional programming language from the ML family designed at INRIA in Rocquencourt. The core of this system was
a proof-checker for CoC seen as a typed A-calculus, called the Constructive Engine. This engine was operated through a
high-level notation permitting the declaration of axioms and parameters, the definition of mathematical types and objects,
and the explicit construction of proof objects encoded as A-terms. A section mechanism, designed and implemented
by G. Dowek, allowed hierarchical developments of mathematical theories. This high-level language was called the
Mathematical Vernacular. Furthermore, an interactive Theorem Prover permitted the incremental construction of proof
trees in a top-down manner, subgoaling recursively and backtracking from dead-ends. The theorem prover executed
tactics written in CAML, in the LCF fashion. A basic set of tactics was predefined, which the user could extend by his
own specific tactics. This system (Version 4.10) was released in 1989. Then, the system was extended to deal with the new
calculus with inductive types by C. Paulin, with corresponding new tactics for proofs by induction. A new standard set
of tactics was streamlined, and the vernacular extended for tactics execution. A package to compile programs extracted
from proofs to actual computer programs in CAML or some other functional language was designed and implemented by
B. Werner. A new user-interface, relying on a CAML-X interface by D. de Rauglaudre, was designed and implemented
by A. Felty. It allowed operation of the theorem-prover through the manipulation of windows, menus, mouse-sensitive
buttons, and other widgets. This system (Version 5.6) was released in 1991.

Coq was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de Rauglaudre (Version 5.7) in
1992. A new version of Coq was then coordinated by C. Murthy, with new tools designed by C. Parent to prove properties
of ML programs (this methodology is dual to program extraction) and a new user-interaction loop. This system (Version
5.8) was released in May 1993. A Centaur interface CTCoq was then developed by Y. Bertot from the Croap project
from INRIA-Sophia-Antipolis.

In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general manipulation of existential
variables consistently with dependent types in an experimental version of Coq (V5.9).

The version V5.10 of Coq is based on a generic system for manipulating terms with binding operators due to Chet Murthy.
A new proof engine allows the parallel development of partial proofs for independent subgoals. The structure of these
proof trees is a mixed representation of derivation trees for the Calculus of Inductive Constructions with abstract syntax
trees for the tactics scripts, allowing the navigation in a proof at various levels of details. The proof engine allows generic
environment items managed in an object-oriented way. This new architecture, due to C. Murthy, supports several new
facilities which make the system easier to extend and to scale up:

» User-programmable tactics are allowed

* It is possible to separately verify development modules, and to load their compiled images without verifying them

4 Chapter 2. Credits

The Coq Reference Manual, Release 8.9.1

again - a quick relocation process allows their fast loading
* A generic parsing scheme allows user-definable notations, with a symmetric table-driven pretty-printer
* Syntactic definitions allow convenient abbreviations

¢ A limited facility of meta-variables allows the automatic synthesis of certain type expressions, allowing generic
notations for e.g. equality, pairing, and existential quantification.

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and families by a new structure,
allowing the mutually recursive definitions. P. Manoury implemented a translation of recursive definitions into the primi-
tive recursive style imposed by the internal recursion operators, in the style of the ProPre system. C. Muiloz implemented
a decision procedure for intuitionistic propositional logic, based on results of R. Dyckhoff. J.C. Filliatre implemented a
decision procedure for first-order logic without contraction, based on results of J. Ketonen and R. Weyhrauch. Finally C.
Murthy implemented a library of inversion tactics, relieving the user from tedious definitions of “inversion predicates”.

Rocquencourt, Feb. 1st 1995
Gérard Huet

2.1 Credits: addendum for version 6.1

The present version 6.1 of Coq is based on the V5.10 architecture. It was ported to the new language Objective Caml by
Bruno Barras. The underlying framework has slightly changed and allows more conversions between sorts.

The new version provides powerful tools for easier developments.

Cristina Cornes designed an extension of the Coq syntax to allow definition of terms using a powerful pattern matching
analysis in the style of ML programs.

Amokrane Saibi wrote a mechanism to simulate inheritance between types families extending a proposal by Peter Aczel.
He also developed a mechanism to automatically compute which arguments of a constant may be inferred by the system
and consequently do not need to be explicitly written.

Yann Coscoy designed a command which explains a proof term using natural language. Pierre Crégut built a new tactic
which solves problems in quantifier-free Presburger Arithmetic. Both functionalities have been integrated to the Coq
system by Hugo Herbelin.

Samuel Boutin designed a tactic for simplification of commutative rings using a canonical set of rewriting rules and equality
modulo associativity and commutativity.

Finally the organisation of the Coq distribution has been supervised by Jean-Christophe Fillidtre with the help of Judicaél
Courant and Bruno Barras.

Lyon, Nov. 18th 1996
Christine Paulin

2.2 Credits: addendum for version 6.2

In version 6.2 of Coq, the parsing is done using camlp4, a preprocessor and pretty-printer for CAML designed by Daniel
de Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation of Coq for camlp4, this work was continued by

2.1. Credits: addendum for version 6.1 5

The Coq Reference Manual, Release 8.9.1

Bruno Barras who also changed the structure of Coq abstract syntax trees and the primitives to manipulate them. The
result of these changes is a faster parsing procedure with greatly improved syntax-error messages. The user-interface to
introduce grammar or pretty-printing rules has also changed.

Eduardo Giménez redesigned the internal tactic libraries, giving uniform names to Caml functions corresponding to Coq
tactic names.

Bruno Barras wrote new, more efficient reduction functions.

Hugo Herbelin introduced more uniform notations in the Coq specification language: the definitions by fixpoints and
pattern matching have a more readable syntax. Patrick Loiseleur introduced user-friendly notations for arithmetic expres-
sions.

New tactics were introduced: Eduardo Giménez improved the mechanism to introduce macros for tactics, and designed
special tactics for (co)inductive definitions; Patrick Loiseleur designed a tactic to simplify polynomial expressions in
an arbitrary commutative ring which generalizes the previous tactic implemented by Samuel Boutin. Jean-Christophe
Filliatre introduced a tactic for refining a goal, using a proof term with holes as a proof scheme.

David Delahaye designed the tool to search an object in the library given its type (up to isomorphism).
Henri Laulhere produced the Coq distribution for the Windows environment.

Finally, Hugo Herbelin was the main coordinator of the Coq documentation with principal contributions by Bruno Barras,
David Delahaye, Jean-Christophe Fillidtre, Eduardo Giménez, Hugo Herbelin and Patrick Loiseleur.

Orsay, May 4th 1998
Christine Paulin

2.3 Credits: addendum for version 6.3

The main changes in version V6.3 were the introduction of a few new tactics and the extension of the guard condition for
fixpoint definitions.

B. Barras extended the unification algorithm to complete partial terms and fixed various tricky bugs related to universes.

D. Delahaye developed the AutoRewrite tactic. He also designed the new behavior of Intro and provided the
tacticals First and Solve.

J.-C. Filliatre developed the Correctness tactic.
E. Giménez extended the guard condition in fixpoints.
H. Herbelin designed the new syntax for definitions and extended the Induction tactic.

P. Loiseleur developed the Quote tactic and the new design of the Aut o tactic, he also introduced the index of errors
in the documentation.

C. Paulin wrote the Focus command and introduced the reduction functions in definitions, this last feature was proposed
by J.-F. Monin from CNET Lannion.

Orsay, Dec. 1999
Christine Paulin

6 Chapter 2. Credits

The Coq Reference Manual, Release 8.9.1

2.4 Credits: versions 7

The version V7 is a new implementation started in September 1999 by Jean-Christophe Fillidtre. This is a major revision
with respect to the internal architecture of the system. The Coq version 7.0 was distributed in March 2001, version 7.1
in September 2001, version 7.2 in January 2002, version 7.3 in May 2002 and version 7.4 in February 2003.

Jean-Christophe Filliatre designed the architecture of the new system. He introduced a new representation for environ-
ments and wrote a new kernel for type checking terms. His approach was to use functional data-structures in order to get
more sharing, to prepare the addition of modules and also to get closer to a certified kernel.

Hugo Herbelin introduced a new structure of terms with local definitions. He introduced “qualified” names, wrote a new
pattern matching compilation algorithm and designed a more compact algorithm for checking the logical consistency of
universes. He contributed to the simplification of Coq internal structures and the optimisation of the system. He added
basic tactics for forward reasoning and coercions in patterns.

David Delahaye introduced a new language for tactics. General tactics using pattern matching on goals and context can
directly be written from the Coq toplevel. He also provided primitives for the design of user-defined tactics in Caml.

Micaela Mayero contributed the library on real numbers. Olivier Desmettre extended this library with axiomatic trigono-
metric functions, square, square roots, finite sums, Chasles property and basic plane geometry.

Jean-Christophe Filliatre and Pierre Letouzey redesigned a new extraction procedure from Coq terms to Caml or Haskell
programs. This new extraction procedure, unlike the one implemented in previous version of Coq is able to handle all
terms in the Calculus of Inductive Constructions, even involving universes and strong elimination. P. Letouzey adapted
user contributions to extract ML programs when it was sensible. Jean-Christophe Fillidtre wrote cogdoc, a documenta-
tion tool for Coq libraries usable from version 7.2.

Bruno Barras improved the efficiency of the reduction algorithm and the confidence level in the correctness of Coq critical
type checking algorithm.

Yves Bertot designed the SearchPattern and SearchRewrite tools and the support for the pcoq interface (http:
/Iwww-sop.inria.fr/lemme/pcoq/).

Micaela Mayero and David Delahaye introduced Field, a decision tactic for commutative fields.
Christine Paulin changed the elimination rules for empty and singleton propositional inductive types.
Loic Pottier developed Fourier, a tactic solving linear inequalities on real numbers.

Pierre Crégut developed a new, reflection-based version of the Omega decision procedure.

Claudio Sacerdoti Coen designed an XML output for the Coq modules to be used in the Hypertextual Electronic Library
of Mathematics (HELM cf http://www.cs.unibo.it/helm).

A library for efficient representation of finite maps using binary trees contributed by Jean Goubault was integrated in the
basic theories.

Pierre Courtieu developed a command and a tactic to reason on the inductive structure of recursively defined functions.

Jacek Chrzaszcz designed and implemented the module system of Coq whose foundations are in Judica€l Courant’s PhD
thesis.

The development was coordinated by C. Paulin.

Many discussions within the Démons team and the LogiCal project influenced significantly the design of Coq especially
with J. Courant, J. Duprat, J. Goubault, A. Miquel, C. Marché, B. Monate and B. Werner.

Intensive users suggested improvements of the system : Y. Bertot, L. Pottier, L. Théry, P. Zimmerman from INRIA, C.
Alvarado, P. Crégut, J.-F. Monin from France Telecom R & D.

Orsay, May. 2002

2.4. Credits: versions 7 7

http://www-sop.inria.fr/lemme/pcoq/
http://www-sop.inria.fr/lemme/pcoq/
http://www.cs.unibo.it/helm

The Coq Reference Manual, Release 8.9.1

Hugo Herbelin & Christine Paulin

2.5 Credits: version 8.0

Coq version 8 is a major revision of the Coq proof assistant. First, the underlying logic is slightly different. The so-called
impredicativity of the sort Set has been dropped. The main reason is that it is inconsistent with the principle of description
which is quite a useful principle for formalizing mathematics within classical logic. Moreover, even in an constructive
setting, the impredicativity of Set does not add so much in practice and is even subject of criticism from a large part of the
intuitionistic mathematician community. Nevertheless, the impredicativity of Set remains optional for users interested in
investigating mathematical developments which rely on it.

Secondly, the concrete syntax of terms has been completely revised. The main motivations were

* a more uniform, purified style: all constructions are now lowercase, with a functional programming perfume (e.g.
abstraction is now written fun), and more directly accessible to the novice (e.g. dependent product is now written
forall and allows omission of types). Also, parentheses are no longer mandatory for function application.

* extensibility: some standard notations (e.g. “<” and “>”) were incompatible with the previous syntax. Now all
standard arithmetic notations (=, +, *, /, <, <=, ... and more) are directly part of the syntax.

Together with the revision of the concrete syntax, a new mechanism of interpretation scopes permits to reuse the same
symbols (typically +, -, *, /, <, <=) in various mathematical theories without any ambiguities for Coq, leading to a largely
improved readability of Coq scripts. New commands to easily add new symbols are also provided.

Coming with the new syntax of terms, a slight reform of the tactic language and of the language of commands has been
carried out. The purpose here is a better uniformity making the tactics and commands easier to use and to remember.

Thirdly, a restructuring and uniformization of the standard library of Coq has been performed. There is now just one
Leibniz equality usable for all the different kinds of Coq objects. Also, the set of real numbers now lies at the same level
as the sets of natural and integer numbers. Finally, the names of the standard properties of numbers now follow a standard
pattern and the symbolic notations for the standard definitions as well.

The fourth point is the release of CoqIDE, a new graphical gtk2-based interface fully integrated with Coq. Close in
style to the Proof General Emacs interface, it is faster and its integration with Coq makes interactive developments more
friendly. All mathematical Unicode symbols are usable within CoqIDE.

Finally, the module system of Coq completes the picture of Coq version 8.0. Though released with an experimental status
in the previous version 7.4, it should be considered as a salient feature of the new version.

Besides, Coq comes with its load of novelties and improvements: new or improved tactics (including a new tactic for
solving first-order statements), new management commands, extended libraries.

Bruno Barras and Hugo Herbelin have been the main contributors of the reflection and the implementation of the new
syntax. The smart automatic translator from old to new syntax released with Coq is also their work with contributions by
Olivier Desmettre.

Hugo Herbelin is the main designer and implementer of the notion of interpretation scopes and of the commands for
easily adding new notations.

Hugo Herbelin is the main implementer of the restructured standard library.

Pierre Corbineau is the main designer and implementer of the new tactic for solving first-order statements in presence of
inductive types. He is also the maintainer of the non-domain specific automation tactics.

Benjamin Monate is the developer of the CoqIDE graphical interface with contributions by Jean-Christophe Fillitre,
Pierre Letouzey, Claude Marché and Bruno Barras.

Claude Marché coordinated the edition of the Reference Manual for Coq V8.0.

8 Chapter 2. Credits

The Coq Reference Manual, Release 8.9.1

Pierre Letouzey and Jacek Chrzaszcz respectively maintained the extraction tool and module system of Coq.

Jean-Christophe Filliatre, Pierre Letouzey, Hugo Herbelin and other contributors from Sophia-Antipolis and Nijmegen
participated in extending the library.

Julien Narboux built a NSIS-based automatic Coq installation tool for the Windows platform.

Hugo Herbelin and Christine Paulin coordinated the development which was under the responsibility of Christine Paulin.

Palaiseau & Orsay, Apr. 2004
Hugo Herbelin & Christine Paulin
(updated Apr. 2006)

2.6 Credits: version 8.1

Coq version 8.1 adds various new functionalities.

Benjamin Grégoire implemented an alternative algorithm to check the convertibility of terms in the Coq type checker.
This alternative algorithm works by compilation to an efficient bytecode that is interpreted in an abstract machine similar
to Xavier Leroy’s ZINC machine. Convertibility is performed by comparing the normal forms. This alternative algorithm
is specifically interesting for proofs by reflection. More generally, it is convenient in case of intensive computations.

Christine Paulin implemented an extension of inductive types allowing recursively non uniform parameters. Hugo Her-
belin implemented sort-polymorphism for inductive types (now called template polymorphism).

Claudio Sacerdoti Coen improved the tactics for rewriting on arbitrary compatible equivalence relations. He also gener-
alized rewriting to arbitrary transition systems.

Claudio Sacerdoti Coen added new features to the module system.

Benjamin Grégoire, Assia Mahboubi and Bruno Barras developed a new, more efficient and more general simplification
algorithm for rings and semirings.

Laurent Théry and Bruno Barras developed a new, significantly more efficient simplification algorithm for fields.
Hugo Herbelin, Pierre Letouzey, Julien Forest, Julien Narboux and Claudio Sacerdoti Coen added new tactic features.
Hugo Herbelin implemented matching on disjunctive patterns.

New mechanisms made easier the communication between Coq and external provers. Nicolas Ayache and Jean-
Christophe Filliatre implemented connections with the provers cvcl, Simplify and zenon. Hugo Herbelin implemented an
experimental protocol for calling external tools from the tactic language.

Matthieu Sozeau developed Russell, an experimental language to specify the behavior of programs with subtypes.

A mechanism to automatically use some specific tactic to solve unresolved implicit has been implemented by Hugo Her-
belin.

Laurent Théry’s contribution on strings and Pierre Letouzey and Jean-Christophe Fillidtre’s contribution on finite maps
have been integrated to the Coq standard library. Pierre Letouzey developed a library about finite sets “a la Objective
Caml”. With Jean-Marc Notin, he extended the library on lists. Pierre Letouzey’s contribution on rational numbers has
been integrated and extended.

Pierre Corbineau extended his tactic for solving first-order statements. He wrote a reflection-based intuitionistic tautology
solver.

Pierre Courtieu, Julien Forest and Yves Bertot added extra support to reason on the inductive structure of recursively
defined functions.

2.6. Credits: version 8.1 9

The Coq Reference Manual, Release 8.9.1

Jean-Marc Notin significantly contributed to the general maintenance of the system. He also took care of cogdoc.
Pierre Castéran contributed to the documentation of (co-)inductive types and suggested improvements to the libraries.

Pierre Corbineau implemented a declarative mathematical proof language, usable in combination with the tactic-based
style of proof.

Finally, many users suggested improvements of the system through the Coq-Club mailing list and bug-tracker systems,
especially user groups from INRIA Rocquencourt, Radboud University, University of Pennsylvania and Yale University.

Palaiseau, July 2006
Hugo Herbelin

2.7 Credits: version 8.2

Coq version 8.2 adds new features, new libraries and improves on many various aspects.

Regarding the language of Coq, the main novelty is the introduction by Matthieu Sozeau of a package of commands
providing Haskell-style typeclasses. Typeclasses, which come with a few convenient features such as type-based resolution
of implicit arguments, play a new landmark role in the architecture of Coq with respect to automation. For instance, thanks
to typeclass support, Matthieu Sozeau could implement a new resolution-based version of the tactics dedicated to rewriting
on arbitrary transitive relations.

Another major improvement of Coq 8.2 is the evolution of the arithmetic libraries and of the tools associated to them.
Benjamin Grégoire and Laurent Théry contributed a modular library for building arbitrarily large integers from bounded
integers while Evgeny Makarov contributed a modular library of abstract natural and integer arithmetic together with a
few convenient tactics. On his side, Pierre Letouzey made numerous extensions to the arithmetic libraries on Z and Q,
including extra support for automation in presence of various number-theory concepts.

Frédéric Besson contributed a reflective tactic based on Krivine-Stengle Positivstellensatz (the easy way) for validating
provability of systems of inequalities. The platform is flexible enough to support the validation of any algorithm able to
produce a “certificate” for the Positivstellensatz and this covers the case of Fourier-Motzkin (for linear systems in Q and
R), Fourier-Motzkin with cutting planes (for linear systems in Z) and sum-of-squares (for non-linear systems). Evgeny
Makarov made the platform generic over arbitrary ordered rings.

Arnaud Spiwack developed a library of 31-bits machine integers and, relying on Benjamin Grégoire and Laurent Théry’s
library, delivered a library of unbounded integers in base 23!. As importantly, he developed a notion of “retro-knowledge”
so as to safely extend the kernel-located bytecode-based efficient evaluation algorithm of Coq version 8.1 to use 31-bits
machine arithmetic for efficiently computing with the library of integers he developed.

Beside the libraries, various improvements were contributed to provide a more comfortable end-user language and more
expressive tactic language. Hugo Herbelin and Matthieu Sozeau improved the pattern matching compilation algorithm
(detection of impossible clauses in pattern matching, automatic inference of the return type). Hugo Herbelin, Pierre
Letouzey and Matthieu Sozeau contributed various new convenient syntactic constructs and new tactics or tactic features:
more inference of redundant information, better unification, better support for proof or definition by fixpoint, more
expressive rewriting tactics, better support for meta-variables, more convenient notations...

Elie Soubiran improved the module system, adding new features (such as an “include” command) and making it more
flexible and more general. He and Pierre Letouzey improved the support for modules in the extraction mechanism.

Matthieu Sozeau extended the Russell language, ending in an convenient way to write programs of given specifications,
Pierre Corbineau extended the Mathematical Proof Language and the automation tools that accompany it, Pierre Letouzey
supervised and extended various parts of the standard library, Stéphane Glondu contributed a few tactics and improve-
ments, Jean-Marc Notin provided help in debugging, general maintenance and coqdoc support, Vincent Siles contributed
extensions of the Scheme command and of injection.

10 Chapter 2. Credits

The Coq Reference Manual, Release 8.9.1

Bruno Barras implemented the cogchk tool: this is a stand-alone type checker that can be used to certify .vo files.
Especially, as this verifier runs in a separate process, it is granted not to be “hijacked” by virtually malicious extensions
added to Cogq.

Yves Bertot, Jean-Christophe Fillidtre, Pierre Courtieu and Julien Forest acted as maintainers of features they imple-
mented in previous versions of Coq.

Julien Narboux contributed to CoqIDE. Nicolas Tabareau made the adaptation of the interface of the old “setoid rewrite”
tactic to the new version. Lionel Mamane worked on the interaction between Coq and its external interfaces. With Samuel
Mimram, he also helped making Coq compatible with recent software tools. Russell O’Connor, Cezary Kaliszyk, Milad
Niqui contributed to improve the libraries of integers, rational, and real numbers. We also thank many users and partners
for suggestions and feedback, in particular Pierre Castéran and Arthur Charguéraud, the INRIA Marelle team, Georges
Gonthier and the INRIA-Microsoft Mathematical Components team, the Foundations group at Radboud university in
Nijmegen, reporters of bugs and participants to the Coq-Club mailing list.

Palaiseau, June 2008
Hugo Herbelin

2.8 Credits: version 8.3

Coq version 8.3 is before all a transition version with refinements or extensions of the existing features and libraries and
a new tactic nsatz based on Hilbert’s Nullstellensatz for deciding systems of equations over rings.

With respect to libraries, the main evolutions are due to Pierre Letouzey with a rewriting of the library of finite sets FSets
and a new round of evolutions in the modular development of arithmetic (library Numbers). The reason for making
FSets evolve is that the computational and logical contents were quite intertwined in the original implementation, leading
in some cases to longer computations than expected and this problem is solved in the new MSets implementation. As
for the modular arithmetic library, it was only dealing with the basic arithmetic operators in the former version and its
current extension adds the standard theory of the division, min and max functions, all made available for free to any
implementation of N, Z or Z/nZ.

The main other evolutions of the library are due to Hugo Herbelin who made a revision of the sorting library (including
a certified merge-sort) and to Guillaume Melquiond who slightly revised and cleaned up the library of reals.

The module system evolved significantly. Besides the resolution of some efficiency issues and a more flexible construction
of module types, Elie Soubiran brought a new model of name equivalence, the A-equivalence, which respects as much as
possible the names given by the users. He also designed with Pierre Letouzey a new, convenient operator <+ for nesting
functor application that provides a light notation for inheriting the properties of cascading modules.

The new tactic nsatz is due to Loic Pottier. It works by computing Grobner bases. Regarding the existing tactics, various
improvements have been done by Matthieu Sozeau, Hugo Herbelin and Pierre Letouzey.

Matthieu Sozeau extended and refined the typeclasses and Program features (the Russell language). Pierre Letouzey
maintained and improved the extraction mechanism. Bruno Barras and Elie Soubiran maintained the Coq checker, Julien
Forest maintained the Function mechanism for reasoning over recursively defined functions. Matthieu Sozeau, Hugo
Herbelin and Jean-Marc Notin maintained coqdoc. Frédéric Besson maintained the Micromega platform for deciding
systems of inequalities. Pierre Courtieu maintained the support for the Proof General Emacs interface. Claude Marché
maintained the plugin for calling external provers (dp). Yves Bertot made some improvements to the libraries of lists and
integers. Matthias Puech improved the search functions. Guillaume Melquiond usefully contributed here and there. Yann
Régis-Gianas grounded the support for Unicode on a more standard and more robust basis.

Though invisible from outside, Arnaud Spiwack improved the general process of management of existential variables.
Pierre Letouzey and Stéphane Glondu improved the compilation scheme of the Coq archive. Vincent Gross provided
support to CoqIDE. Jean-Marc Notin provided support for benchmarking and archiving.

2.8. Credits: version 8.3 11

The Coq Reference Manual, Release 8.9.1

Many users helped by reporting problems, providing patches, suggesting improvements or making useful comments, either
on the bug tracker or on the Coq-Club mailing list. This includes but not exhaustively Cédric Auger, Arthur Charguéraud,
Frangois Garillot, Georges Gonthier, Robin Green, Stéphane Lescuyer, Eelis van der Weegen, ...

Though not directly related to the implementation, special thanks are going to Yves Bertot, Pierre Castéran, Adam Chli-
pala, and Benjamin Pierce for the excellent teaching materials they provided.

Paris, April 2010
Hugo Herbelin

2.9 Credits: version 8.4

Coq version 8.4 contains the result of three long-term projects: a new modular library of arithmetic by Pierre Letouzey,
a new proof engine by Arnaud Spiwack and a new communication protocol for CoqIDE by Vincent Gross.

The new modular library of arithmetic extends, generalizes and unifies the existing libraries on Peano arithmetic (types
nat, N and BigN), positive arithmetic (type positive), integer arithmetic (Z and BigZ) and machine word arithmetic (type
Int31). It provides with unified notations (e.g. systematic use of add and mul for denoting the addition and multiplication
operators), systematic and generic development of operators and properties of these operators for all the types mentioned
above, including gcd, pcm, power, square root, base 2 logarithm, division, modulo, bitwise operations, logical shifts,
comparisons, iterators, ...

The most visible feature of the new proof engine is the support for structured scripts (bullets and proof brackets) but, even
if yet not user-available, the new engine also provides the basis for refining existential variables using tactics, for applying
tactics to several goals simultaneously, for reordering goals, all features which are planned for the next release. The new
proof engine forced Pierre Letouzey to reimplement info and Show Script differently.

Before version 8.4, CogIDE was linked to Coq with the graphical interface living in a separate thread. From version
8.4, CoqIDE is a separate process communicating with Coq through a textual channel. This allows for a more robust
interfacing, the ability to interrupt Coq without interrupting the interface, and the ability to manage several sessions in
parallel. Relying on the infrastructure work made by Vincent Gross, Pierre Letouzey, Pierre Boutillier and Pierre-Marie
Pédrot contributed many various refinements of CoqIDE.

Coq 8.4 also comes with a bunch of various smaller-scale changes and improvements regarding the different components
of the system.

The underlying logic has been extended with n-conversion thanks to Hugo Herbelin, Stéphane Glondu and Benjamin
Grégoire. The addition of n-conversion is justified by the confidence that the formulation of the Calculus of Inductive
Constructions based on typed equality (such as the one considered in Lee and Werner to build a set-theoretic model of
CIC [LW11]) is applicable to the concrete implementation of Coq.

The underlying logic benefited also from a refinement of the guard condition for fixpoints by Pierre Boutillier, the point
being that it is safe to propagate the information about structurally smaller arguments through -redexes that are blocked
by the “match” construction (blocked commutative cuts).

Relying on the added permissiveness of the guard condition, Hugo Herbelin could extend the pattern matching compilation
algorithm so that matching over a sequence of terms involving dependencies of a term or of the indices of the type of a
term in the type of other terms is systematically supported.

Regarding the high-level specification language, Pierre Boutillier introduced the ability to give implicit arguments to
anonymous functions, Hugo Herbelin introduced the ability to define notations with several binders (e.g. exists x y
z, P), Matthieu Sozeau made the typeclass inference mechanism more robust and predictable, Enrico Tassi introduced
a command Arguments that generalizes Implicit Arguments and Arguments Scope for assigning various properties to

12 Chapter 2. Credits

The Coq Reference Manual, Release 8.9.1

arguments of constants. Various improvements in the type inference algorithm were provided by Matthieu Sozeau and
Hugo Herbelin with contributions from Enrico Tassi.

Regarding tactics, Hugo Herbelin introduced support for referring to expressions occurring in the goal by pattern in tactics
such as set or destruct. Hugo Herbelin also relied on ideas from Chung-Kil Hur’s Heq plugin to introduce automatic
computation of occurrences to generalize when using destruct and induction on types with indices. Stéphane Glondu
introduced new tactics constr_eq, is_evar, and has_evar, to be used when writing complex tactics. Enrico
Tassi added support to fine-tuning the behavior of simpI. Enrico Tassi added the ability to specify over which variables
of a section a lemma has to be exactly generalized. Pierre Letouzey added a tactic timeout and the interruptibility of
vm_compute. Bug fixes and miscellaneous improvements of the tactic language came from Hugo Herbelin, Pierre
Letouzey and Matthieu Sozeau.

Regarding decision tactics, Loic Pottier maintained nsatz, moving in particular to a typeclass based reification of goals
while Frédéric Besson maintained Micromega, adding in particular support for division.

Regarding vernacular commands, Stéphane Glondu provided new commands to analyze the structure of type universes.

Regarding libraries, a new library about lists of a given length (called vectors) has been provided by Pierre Boutillier. A
new instance of finite sets based on Red-Black trees and provided by Andrew Appel has been adapted for the standard
library by Pierre Letouzey. In the library of real analysis, Yves Bertot changed the definition of 7 and provided a proof
of the long-standing fact yet remaining unproved in this library, namely that sing = 1.

Pierre Corbineau maintained the Mathematical Proof Language (C-zar).

Bruno Barras and Benjamin Grégoire maintained the call-by-value reduction machines.

The extraction mechanism benefited from several improvements provided by Pierre Letouzey.
Pierre Letouzey maintained the module system, with contributions from Elie Soubiran.

Julien Forest maintained the Function command.

Matthieu Sozeau maintained the setoid rewriting mechanism.

Coq related tools have been upgraded too. In particular, coq_makefile has been largely revised by Pierre Boutillier. Also,
patches from Adam Chlipala for cogdoc have been integrated by Pierre Boutillier.

Bruno Barras and Pierre Letouzey maintained the cogchk checker.
Pierre Courtieu and Arnaud Spiwack contributed new features for using Coq through Proof General.
The Dp plugin has been removed. Use the plugin provided with Why 3 instead (http://why3.Iri.f1/).

Under the hood, the Coq architecture benefited from improvements in terms of efficiency and robustness, especially
regarding universes management and existential variables management, thanks to Pierre Letouzey and Yann Régis-Gianas
with contributions from Stéphane Glondu and Matthias Puech. The build system is maintained by Pierre Letouzey with
contributions from Stéphane Glondu and Pierre Boutillier.

A new backtracking mechanism simplifying the task of external interfaces has been designed by Pierre Letouzey.

The general maintenance was done by Pierre Letouzey, Hugo Herbelin, Pierre Boutillier, Matthieu Sozeau and Stéphane
Glondu with also specific contributions from Guillaume Melquiond, Julien Narboux and Pierre-Marie Pédrot.

Packaging tools were provided by Pierre Letouzey (Windows), Pierre Boutillier (MacOS), Stéphane Glondu (Debian).
Releasing, testing and benchmarking support was provided by Jean-Marc Notin.

Many suggestions for improvements were motivated by feedback from users, on either the bug tracker or the Coq-Club
mailing list. Special thanks are going to the users who contributed patches, starting with Tom Prince. Other patch
contributors include Cédric Auger, David Baelde, Dan Grayson, Paolo Herms, Robbert Krebbers, Marc Lasson, Hendrik
Tews and Eelis van der Weegen.

Paris, December 2011

2.9. Credits: version 8.4 13

http://why3.lri.fr/

The Coq Reference Manual, Release 8.9.1

Hugo Herbelin

2.10 Credits: version 8.5

Coq version 8.5 contains the result of five specific long-term projects:

¢ A new asynchronous evaluation and compilation mode by Enrico Tassi with help from Bruno Barras and Carst
Tankink.

* Full integration of the new proof engine by Arnaud Spiwack helped by Pierre-Marie Pédrot,
 Addition of conversion and reduction based on native compilation by Maxime Dénes and Benjamin Grégoire.
¢ Full universe polymorphism for definitions and inductive types by Matthieu Sozeau.

¢ An implementation of primitive projections with n-conversion bringing significant performance improvements
when using records by Matthieu Sozeau.

The full integration of the proof engine, by Arnaud Spiwack and Pierre-Marie Pédrot, brings to primitive tactics and
the user level Ltac language dependent subgoals, deep backtracking and multiple goal handling, along with miscellaneous
features and an improved potential for future modifications. Dependent subgoals allow statements in a goal to mention the
proof of another. Proofs of unsolved subgoals appear as existential variables. Primitive backtracking makes it possible to
write a tactic with several possible outcomes which are tried successively when subsequent tactics fail. Primitives are also
available to control the backtracking behavior of tactics. Multiple goal handling paves the way for smarter automation
tactics. It is currently used for simple goal manipulation such as goal reordering.

The way Coq processes a document in batch and interactive mode has been redesigned by Enrico Tassi with help from
Bruno Barras. Opaque proofs, the text between Proof and Qed, can be processed asynchronously, decoupling the checking
of definitions and statements from the checking of proofs. It improves the responsiveness of interactive development,
since proofs can be processed in the background. Similarly, compilation of a file can be split into two phases: the first one
checking only definitions and statements and the second one checking proofs. A file resulting from the first phase — with
the .vio extension — can be already Required. All .vio files can be turned into complete .vo files in parallel. The same
infrastructure also allows terminating tactics to be run in parallel on a set of goals via the par: goal selector.

CoqIDE was modified to cope with asynchronous checking of the document. Its source code was also made separate
from that of Coq, so that CoqIDE no longer has a special status among user interfaces, paving the way for decoupling its
release cycle from that of Coq in the future.

Carst Tankink developed a Coq back-end for user interfaces built on Makarius Wenzel’s Prover IDE framework (PIDE),
like PIDE/jEdit (with help from Makarius Wenzel) or PIDE/Coqoon (with help from Alexander Faithfull and Jesper
Bengtson). The development of such features was funded by the Paral-ITP French ANR project.

The full universe polymorphism extension was designed by Matthieu Sozeau. It conservatively extends the universes
system and core calculus with definitions and inductive declarations parameterized by universes and constraints. It is
based on a modification of the kernel architecture to handle constraint checking only, leaving the generation of constraints
to the refinement/type inference engine. Accordingly, tactics are now fully universe aware, resulting in more localized
error messages in case of inconsistencies and allowing higher-level algorithms like unification to be entirely type safe. The
internal representation of universes has been modified but this is invisible to the user.

The underlying logic has been extended with 7-conversion for records defined with primitive projections by Matthieu
Sozeau. This additional form of 7-conversion is justified using the same principle than the previously added 5-conversion
for function types, based on formulations of the Calculus of Inductive Constructions with typed equality. Primitive
projections, which do not carry the parameters of the record and are rigid names (not defined as a pattern matching
construct), make working with nested records more manageable in terms of time and space consumption. This extension
and universe polymorphism were carried out partly while Matthieu Sozeau was working at the IAS in Princeton.

14 Chapter 2. Credits

The Coq Reference Manual, Release 8.9.1

The guard condition has been made compliant with extensional equality principles such as propositional extensionality
and univalence, thanks to Maxime Dénes and Bruno Barras. To ensure compatibility with the univalence axiom, a new
flag —indices—matter has been implemented, taking into account the universe levels of indices when computing the
levels of inductive types. This supports using Coq as a tool to explore the relations between homotopy theory and type
theory.

Maxime Dénes and Benjamin Grégoire developed an implementation of conversion test and normal form computation
using the OCaml native compiler. It complements the virtual machine conversion offering much faster computation for
expensive functions.

Coq 8.5 also comes with a bunch of many various smaller-scale changes and improvements regarding the different com-
ponents of the system. We shall only list a few of them.

Pierre Boutillier developed an improved tactic for simplification of expressions called chn.
Maxime Dénes maintained the bytecode-based reduction machine. Pierre Letouzey maintained the extraction mechanism.

Pierre-Marie Pédrot has extended the syntax of terms to, experimentally, allow holes in terms to be solved by a locally
specified tactic.

Existential variables are referred to by identifiers rather than mere numbers, thanks to Hugo Herbelin who also improved
the tactic language here and there.

Error messages for universe inconsistencies have been improved by Matthieu Sozeau. Error messages for unification and
type inference failures have been improved by Hugo Herbelin, Pierre-Marie Pédrot and Arnaud Spiwack.

Pierre Courtieu contributed new features for using Coq through Proof General and for better interactive experience
(bullets, Search, etc).

The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot.

A distribution channel for Coq packages using the OPAM tool has been initiated by Thomas Braibant and developed by
Guillaume Claret, with contributions by Enrico Tassi and feedback from Hugo Herbelin.

Packaging tools were provided by Pierre Letouzey and Enrico Tassi (Windows), Pierre Boutillier, Matthieu Sozeau and
Maxime Dénes (MacOS X). Maxime Dénes improved significantly the testing and benchmarking support.

Many power users helped to improve the design of the new features via the bug tracker, the coq development mailing list
or the Coq-Club mailing list. Special thanks are going to the users who contributed patches and intensive brain-storming,
starting with Jason Gross, Jonathan Leivent, Greg Malecha, Clément Pit-Claudel, Marc Lasson, Lionel Rieg. It would
however be impossible to mention with precision all names of people who to some extent influenced the development.

Version 8.5 is one of the most important releases of Coq. Its development spanned over about 3 years and a half with
about one year of beta-testing. General maintenance during part or whole of this period has been done by Pierre Boutillier,
Pierre Courtieu, Maxime Dénes, Hugo Herbelin, Pierre Letouzey, Guillaume Melquiond, Pierre-Marie Pédrot, Matthieu
Sozeau, Arnaud Spiwack, Enrico Tassi as well as Bruno Barras, Yves Bertot, Frédéric Besson, Xavier Clerc, Pierre
Corbineau, Jean-Christophe Fillidtre, Julien Forest, Sébastien Hinderer, Assia Mahboubi, Jean-Marc Notin, Yann Régis-
Gianas, Francois Ripault, Carst Tankink. Maxime Dénes coordinated the release process.

Paris, January 2015, revised December 2015,
Hugo Herbelin, Matthieu Sozeau and the Coq development team

2.11 Credits: version 8.6

Coq version 8.6 contains the result of refinements, stabilization of 8.5’s features and cleanups of the internals of the system.
Over the year of (now time-based) development, about 450 bugs were resolved and over 100 contributions integrated. The

2.11. Credits: version 8.6 15

The Coq Reference Manual, Release 8.9.1

main user visible changes are:
* A new, faster state-of-the-art universe constraint checker, by Jacques-Henri Jourdan.

* In CogIDE and other asynchronous interfaces, more fine-grained asynchronous processing and error reporting by
Enrico Tassi, making Coq capable of recovering from errors and continue processing the document.

* More access to the proof engine features from Ltac: goal management primitives, range selectors and a
typeclasses eauto engine handling multiple goals and multiple successes, by Cyprien Mangin, Matthieu
Sozeau and Arnaud Spiwack.

¢ Tactic behavior uniformization and specification, generalization of intro-patterns by Hugo Herbelin and others.

¢ A brand new warning system allowing to control warnings, turn them into errors or ignore them selectively by
Maxime Dénes, Guillaume Melquiond, Pierre-Marie Pédrot and others.

* Irrefutable patterns in abstractions, by Daniel de Rauglaudre.

¢ The ssreflect subterm selection algorithm by Georges Gonthier and Enrico Tassi is now accessible to tactic writers
through the ssrmatching plugin.

* Integration of LtacProf, a profiler for Ltac by Jason Gross, Paul Steckler, Enrico Tassi and Tobias Tebbi.

Coq 8.6 also comes with a bunch of smaller-scale changes and improvements regarding the different components of the
system. We shall only list a few of them.

The iota reduction flag is now a shorthand for match, fix and cofix flags controlling the corresponding reduction rules (by
Hugo Herbelin and Maxime Dénes).

Maxime Dénes maintained the native compilation machinery.

Pierre-Marie Pédrot separated the Ltac code from general purpose tactics, and generalized and rationalized the handling
of generic arguments, allowing to create new versions of Ltac more easily in the future.

In patterns and terms, @, abbreviations and notations are now interpreted the same way, by Hugo Herbelin.

Name handling for universes has been improved by Pierre-Marie Pédrot and Matthieu Sozeau. The minimization algo-
rithm has been improved by Matthieu Sozeau.

The unifier has been improved by Hugo Herbelin and Matthieu Sozeau, fixing some incompatibilities introduced in Coq
8.5. Unification constraints can now be left floating around and be seen by the user thanks to a new option. The Keyed
Unification mode has been improved by Matthieu Sozeau.

The typeclass resolution engine and associated proof-search tactic have been reimplemented on top of the proof-engine
monad, providing better integration in tactics, and new options have been introduced to control it, by Matthieu Sozeau
with help from Théo Zimmermann.

The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot,
Maxime Dénes and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.

Standard library improvements by Jason Gross, Sébastien Hinderer, Pierre Letouzey and others.

Emilio Jesus Gallego Arias contributed many cleanups and refactorings of the pretty-printing and user interface commu-
nication components.

Frédéric Besson maintained the micromega tactic.

The OPAM repository for Coq packages has been maintained by Guillaume Claret, Guillaume Melquiond, Matthieu
Sozeau, Enrico Tassi and others. A list of packages is now available at https://coq.inria.fr/opam/www/.

Packaging tools and software development kits were prepared by Michael Soegtrop with the help of Maxime Dénes and
Enrico Tassi for Windows, and Maxime Dénes and Matthieu Sozeau for MacOS X. Packages are now regularly built on
the continuous integration server. Coq now comes with a META file usable with ocamlfind, contributed by Emilio Jests
Gallego Arias, Gregory Malecha, and Matthieu Sozeau.

16 Chapter 2. Credits

https://coq.inria.fr/opam/www/

The Coq Reference Manual, Release 8.9.1

Matej Kosik maintained and greatly improved the continuous integration setup and the testing of Coq contributions. He
also contributed many API improvements and code cleanups throughout the system.

The contributors for this version are Bruno Barras, C.J. Bell, Yves Bertot, Frédéric Besson, Pierre Boutillier, Tej Cha-
jed, Guillaume Claret, Xavier Clerc, Pierre Corbineau, Pierre Courtieu, Maxime Dénes, Ricky Elrod, Emilio Jests
Gallego Arias, Jason Gross, Hugo Herbelin, Sébastien Hinderer, Jacques-Henri Jourdan, Matej Kosik, Xavier Leroy,
Pierre Letouzey, Gregory Malecha, Cyprien Mangin, Erik Martin-Dorel, Guillaume Melquiond, Clément Pit—Claudel,
Pierre-Marie Pédrot, Daniel de Rauglaudre, Lionel Rieg, Gabriel Scherer, Thomas Sibut-Pinote, Matthieu Sozeau, Ar-
naud Spiwack, Paul Steckler, Enrico Tassi, Laurent Théry, Nickolai Zeldovich and Théo Zimmermann. The development
process was coordinated by Hugo Herbelin and Matthieu Sozeau with the help of Maxime Dénes, who was also in charge
of the release process.

Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the Coq-Club mailing list. Special thanks to the users who contributed patches and intensive
brain-storming and code reviews, starting with Cyril Cohen, Jason Gross, Robbert Krebbers, Jonathan Leivent, Xavier
Leroy, Gregory Malecha, Clément Pit—Claudel, Gabriel Scherer and Beta Ziliani. It would however be impossible to
mention exhaustively the names of everybody who to some extent influenced the development.

Version 8.6 is the first release of Coq developed on a time-based development cycle. Its development spanned 10 months
from the release of Coq 8.5 and was based on a public roadmap. To date, it contains more external contributions than
any previous Coq system. Code reviews were systematically done before integration of new features, with an important
focus given to compatibility and performance issues, resulting in a hopefully more robust release than Coq 8.5.

Coq Enhancement Proposals (CEPs for short) were introduced by Enrico Tassi to provide more visibility and a discussion
period on new features, they are publicly available https://github.com/cog/ceps.

Started during this period, an effort is led by Yves Bertot and Maxime Dénes to put together a Coq consortium.

Paris, November 2016,
Matthieu Sozeau and the Coq development team

2.12 Credits: version 8.7

Coq version 8.7 contains the result of refinements, stabilization of features and cleanups of the internals of the system
along with a few new features. The main user visible changes are:

¢ New tactics: variants of tactics supporting existential variables eassert, eenough, etc... by Hugo Herbelin.
Tactics extensionality in Hand inversion_sigma by Jason Gross, specialize with ... ac-
cepting partial bindings by Pierre Courtieu.

e Cumulative Polymorphic Inductive types, allowing cumulativity of universes to go through applied
inductive types, by Amin Timany and Matthieu Sozeau.

* Integration of the SSReflect plugin and its documentation in the reference manual, by Enrico Tassi, Assia Mahboubi
and Maxime Dénes.

e The cog_makefile tool was completely redesigned to improve its maintainability and the extensibility of gen-
erated Makefiles, and to make _CogProject files more palatable to IDEs by Enrico Tassi.

Coq 8.7 involved a large amount of work on cleaning and speeding up the code base, notably the work of Pierre-Marie
Pédrot on making the tactic-level system insensitive to existential variable expansion, providing a safer API to plugin
writers and making the code more robust. The dev/doc/changes. txt file documents the numerous changes to the
implementation and improvements of interfaces. An effort to provide an official, streamlined API to plugin writers is in
progress, thanks to the work of Matej Kosik.

2.12. Credits: version 8.7 17

https://github.com/coq/ceps

The Coq Reference Manual, Release 8.9.1

Version 8.7 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. We shall only list a few of them.

The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot,
Maxime Dénes and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.

Thomas Sibut-Pinote and Hugo Herbelin added support for side effect hooks in cbv, cbn and simpl. The side effects are
provided via a plugin available at https://github.com/herbelin/reduction-effects/.

The BigN, BigZ, BigQ libraries are no longer part of the Coq standard library, they are now provided by a separate
repository https://github.com/coq/bignums, maintained by Pierre Letouzey.

In the Reals library, IZR has been changed to produce a compact representation of integers and real constants are now
represented using I ZR (work by Guillaume Melquiond).

Standard library additions and improvements by Jason Gross, Pierre Letouzey and others, documented in the CHANGES .
md file.

The mathematical proof language/declarative mode plugin was removed from the archive.

The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.

Packaging tools and software development kits were prepared by Michael Soegtrop with the help of Maxime Déneés and
Enrico Tassi for Windows, and Maxime Dénes for MacOS X. Packages are regularly built on the Travis continuous
integration server.

The contributors for this version are Abhishek Anand, C.J. Bell, Yves Bertot, Frédéric Besson, Tej Chajed, Pierre
Courtieu, Maxime Dénes, Julien Forest, Gaétan Gilbert, Jason Gross, Hugo Herbelin, Emilio Jests Gallego Arias, Ralf
Jung, Matej Kosik, Xavier Leroy, Pierre Letouzey, Assia Mahboubi, Cyprien Mangin, Erik Martin-Dorel, Olivier Marty,
Guillaume Melquiond, Sam Pablo Kuper, Benjamin Pierce, Pierre-Marie Pédrot, Lars Rasmusson, Lionel Rieg, Valentin
Robert, Yann Régis-Gianas, Thomas Sibut-Pinote, Michael Soegtrop, Matthieu Sozeau, Arnaud Spiwack, Paul Steckler,
George Stelle, Pierre-Yves Strub, Enrico Tassi, Hendrik Tews, Amin Timany, Laurent Théry, Vadim Zaliva and Théo
Zimmermann.

The development process was coordinated by Matthieu Sozeau with the help of Maxime Dénes, who was also in charge
of the release process. Théo Zimmermann is the maintainer of this release.

Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the Coq-Club mailing list. Special thanks to the users who contributed patches and intensive
brain-storming and code reviews, starting with Jason Gross, Ralf Jung, Robbert Krebbers, Xavier Leroy, Clément Pit—
Claudel and Gabriel Scherer. It would however be impossible to mention exhaustively the names of everybody who to
some extent influenced the development.

Version 8.7 is the second release of Coq developed on a time-based development cycle. Its development spanned 9 months
from the release of Coq 8.6 and was based on a public road-map. It attracted many external contributions. Code reviews
and continuous integration testing were systematically used before integration of new features, with an important focus
given to compatibility and performance issues, resulting in a hopefully more robust release than Coq 8.6 while maintaining
compatibility.

Coq Enhancement Proposals (CEPs for short) and open pull request discussions were used to discuss publicly the new
features.

The Coq consortium, an organization directed towards users and supporters of the system, is now upcoming and will rely
on Inria’s newly created Foundation.

Paris, August 2017,
Matthieu Sozeau and the Coq development team

18 Chapter 2. Credits

https://github.com/herbelin/reduction-effects/
https://github.com/coq/bignums
https://coq.inria.fr/opam/www/

The Coq Reference Manual, Release 8.9.1

2.13 Credits: version 8.8

Coq version 8.8 contains the result of refinements and stabilization of features and deprecations, cleanups of the internals
of the system along with a few new features. The main user visible changes are:

» Kernel: fix a subject reduction failure due to allowing fixpoints on non-recursive values, by Matthieu Sozeau. Han-
dling of evars in the VM (the kernel still does not accept evars) by Pierre-Marie Pédrot.

» Notations: many improvements on recursive notations and support for destructuring patterns in the syntax of nota-
tions by Hugo Herbelin.

* Proof language: tacticals for profiling, timing and checking success or failure of tactics by Jason Gross. The focusing
bracket { supports single-numbered goal selectors, e.g. 2 : {, by Théo Zimmermann.

e Vernacular: deprecation of commands and more uniform handling of the Local flag, by Vincent Laporte and
Maxime Dénes, part of a larger attribute system overhaul. Experimental Show Extraction command by
Pierre Letouzey. Coercion now accepts Prop or Type as a source by Arthur Charguéraud. Export modifier for
options allowing to export the option to modules that Import and not only Require a module, by Pierre-Marie
Pédrot.

 Universes: many user-level and API level enhancements: qualified naming and printing, variance annotations for
cumulative inductive types, more general constraints and enhancements of the minimization heuristics, interaction
with modules by Gaétan Gilbert, Pierre-Marie Pédrot and Matthieu Sozeau.

 Library: Decimal Numbers library by Pierre Letouzey and various small improvements.

* Documentation: a large community effort resulted in the migration of the reference manual to the Sphinx docu-
mentation tool. The result is this manual. The new documentation infrastructure (based on Sphinx) is by Clément
Pit-Claudel. The migration was coordinated by Maxime Dénes and Paul Steckler, with some help of Théo Zim-
mermann during the final integration phase. The 14 people who ported the manual are Calvin Beck, Heiko Becker,
Yves Bertot, Maxime Dénes, Richard Ford, Pierre Letouzey, Assia Mahboubi, Clément Pit-Claudel, Laurence
Rideau, Matthieu Sozeau, Paul Steckler, Enrico Tassi, Laurent Théry, Nikita Zyuzin.

* Tools: experimental -mangle-names option to cogt op/cogc for linting proof scripts, by Jasper Hugunin.

On the implementation side, the dev/doc/changes . md file documents the numerous changes to the implementation
and improvements of interfaces. The file provides guidelines on porting a plugin to the new version.

Version 8.8 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. Most important ones are documented in the CHANGES . md file.

The efficiency of the whole system has seen improvements thanks to contributions from Gaétan Gilbert, Pierre-Marie
Pédrot, Maxime Dénes and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.

The official wiki and the bugtracker of Coq migrated to the GitHub platform, thanks to the work of Pierre Letouzey and
Théo Zimmermann. Gaétan Gilbert, Emilio Jesis Gallego Arias worked on maintaining and improving the continuous
integration system.

The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.

The 44 contributors for this version are Yves Bertot, Joachim Breitner, Tej Chajed, Arthur Charguéraud, Jacques-Pascal
Deplaix, Maxime Dénes, Jim Fehrle, Julien Forest, Yannick Forster, Gagtan Gilbert, Jason Gross, Samuel Gruetter,
Thomas Hebb, Hugo Herbelin, Jasper Hugunin, Emilio Jesus Gallego Arias, Ralf Jung, Johannes Kloos, Matej Kosik,
Robbert Krebbers, Tony Beta Lambda, Vincent Laporte, Peter LeFanu Lumsdaine, Pierre Letouzey, Farzon Lotfi, Cy-
prien Mangin, Guillaume Melquiond, Raphaél Monat, Carl Patenaude Poulin, Pierre-Marie Pédrot, Clément Pit-Claudel,
Matthew Ryan, Matt Quinn, Sigurd Schneider, Bernhard Schommer, Michael Soegtrop, Matthieu Sozeau, Arnaud Spi-
wack, Paul Steckler, Enrico Tassi, Anton Trunov, Martin Vassor, Vadim Zaliva and Théo Zimmermann.

2.13. Credits: version 8.8 19

https://coq.inria.fr/opam/www/

The Coq Reference Manual, Release 8.9.1

Version 8.8 is the third release of Coq developed on a time-based development cycle. Its development spanned 6 months
from the release of Coq 8.7 and was based on a public roadmap. The development process was coordinated by Matthieu
Sozeau. Maxime Dénes was in charge of the release process. Théo Zimmermann is the maintainer of this release.

Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the coq-club@inria.fr mailing list. Special thanks to the users who contributed patches and
intensive brain-storming and code reviews, starting with Jason Gross, Ralf Jung, Robbert Krebbers and Amin Timany.
It would however be impossible to mention exhaustively the names of everybody who to some extent influenced the
development.

The Coq consortium, an organization directed towards users and supporters of the system, is now running and employs
Maxime Dénes. The contacts of the Coq Consortium are Yves Bertot and Maxime Dénes.

Santiago de Chile, March 2018,
Matthieu Sozeau for the Coq development team

2.14 Credits: version 8.9

Coq version 8.9 contains the result of refinements and stabilization of features and deprecations or removals of deprecated
features, cleanups of the internals of the system and API along with a few new features. This release includes many user-
visible changes, including deprecations that are documented in CHANGES . md and new features that are documented in
the reference manual. Here are the most important changes:

» Kernel: mutually recursive records are now supported, by Pierre-Marie Pédrot.
* Notations:

— Support for autonomous grammars of terms called “custom entries”, by Hugo Herbelin (see Section Custom
entries of the reference manual).

— Deprecated notations of the standard library will be removed in the next version of Coq, see the CHANGES .
md file for a script to ease porting, by Jason Gross and Jean-Christophe Léchenet.

— Added the Numeral Notation command for registering decimal numeral notations for custom types, by
Daniel de Rauglaudre, Pierre Letouzey and Jason Gross.

* Tactics: Introduction tactics intro/intros on a goal that is an existential variable now force a refinement of the
goal into a dependent product rather than failing, by Hugo Herbelin.

Decision procedures: deprecation of tactic romega in favor of 1ia and removal of fourier, replaced by 1 ra
which subsumes it, by Frédéric Besson, Maxime Dénes, Vincent Laporte and Laurent Théry.

Proof language: focusing bracket { now supports named goals, e.g. [x] : { will focus on a goal (existential variable)
named x, by Théo Zimmermann.

SSReflect: the implementation of delayed clear was simplified by Enrico Tassi: the variables are always renamed
using inaccessible names when the clear switch is processed and finally cleared at the end of the intro pattern. In
addition to that, the use-and-discard flag { } typical of rewrite rules can now be also applied to views, e.g. =>
{} /v applies v and then clears v. See Section Introduction in the context.

¢ Vernacular:

— Experimental support for artributes on commands, by Vincent Laporte, as in # [Local] Lemma foo
bar. Tactics and tactic notations now support the deprecated attribute.

— Removed deprecated commands Arguments Scope and Implicit Arguments in favor of
Argument s, with the help of Jasper Hugunin.

20 Chapter 2. Credits

mailto:coq-club@inria.fr

The Coq Reference Manual, Release 8.9.1

— New flag Uniform Inductive Parameters by Jasper Hugunin to avoid repeating uniform parame-
ters in constructor declarations.

— New commands Hint Variables and Hint Constants, by Matthieu Sozeau, for controlling the
opacity status of variables and constants in hint databases. It is recommended to always use these commands
after creating a hint databse with Create HintDb.

— Multiple sections with the same name are now allowed, by Jasper Hugunin.

 Library: additions and changes in the VectorDef, Ascii, and String libraries. Syntax notations are now
available only when using Import of libraries and not merely Require, by various contributors (source of
incompatibility, see CHANGES . md for details).

 Toplevels: cogtop and cogide can now display diffs between proof steps in color, using the D1 £ s option, by
Jim Fehrle.

* Documentation: we integrated a large number of fixes to the new Sphinx documentation by various contributors,
coordinated by Clément Pit-Claudel and Théo Zimmermann.

 Tools: removed the gallina utility and the homebrewed Emacs mode.

 Packaging: as in Coq 8.8.2, the Windows installer now includes many more external packages that can be individ-
ually selected for installation, by Michael Soegtrop.

Version 8.9 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. Most important ones are documented in the CHANGES . md file.

On the implementation side, the dev/doc/changes . md file documents the numerous changes to the implementation
and improvements of interfaces. The file provides guidelines on porting a plugin to the new version and a plugin develop-
ment tutorial kept in sync with Coq was introduced by Yves Bertot http://github.com/ybertot/plugin_tutorials. The new
dev/doc/critical-bugs file documents the known critical bugs of Coq and affected releases.

The efficiency of the whole system has seen improvements thanks to contributions from Gaétan Gilbert, Pierre-Marie
Pédrot, and Maxime Dénes.

Maxime Dénes, Emilio Jests Gallego Arias, Gaétan Gilbert, Michael Soegtrop, Théo Zimmermann worked on maintain-
ing and improving the continuous integration system.

The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.

The 54 contributors for this version are Léo Andres, Rin Arakaki, Benjamin Barenblat, Langston Barrett, Siddharth Bhat,
Martin Bodin, Simon Boulier, Timothy Bourke, Joachim Breitner, Tej Chajed, Arthur Charguéraud, Pierre Courtieu,
Maxime Dénes, Andres Erbsen, Jim Fehrle, Julien Forest, Emilio Jesus Gallego Arias, Gaétan Gilbert, Maté&j Grabovsky,
Jason Gross, Samuel Gruetter, Armaél Guéneau, Hugo Herbelin, Jasper Hugunin, Ralf Jung, Sam Pablo Kuper, Ambroise
Lafont, Leonidas Lampropoulos, Vincent Laporte, Peter LeFanu Lumsdaine, Pierre Letouzey, Jean-Christophe Léchenet,
Nick Lewycky, Yishuai Li, Sven M. Hallberg, Assia Mahboubi, Cyprien Mangin, Guillaume Melquiond, Perry E. Metzger,
Clément Pit-Claudel, Pierre-Marie Pédrot, Daniel R. Grayson, Kazuhiko Sakaguchi, Michael Soegtrop, Matthieu Sozeau,
Paul Steckler, Enrico Tassi, Laurent Théry, Anton Trunov, whitequark, Théo Winterhalter, Zeimer, Beta Ziliani, Théo
Zimmermann.

Many power users helped to improve the design of the new features via the issue and pull request system, the Coq
development mailing list or the coq-club@inria.fr mailing list. It would be impossible to mention exhaustively the names
of everybody who to some extent influenced the development.

Version 8.9 is the fourth release of Coq developed on a time-based development cycle. Its development spanned 7 months
from the release of Coq 8.8. The development moved to a decentralized merging process during this cycle. Guillaume
Melquiond was in charge of the release process and is the maintainer of this release. This release is the result of ~2,000
commits and ~500 PRs merged, closing 75+ issues.

The Coq development team welcomed Vincent Laporte, a new Coq engineer working with Maxime Dénes in the Coq
consortium.

2.14. Credits: version 8.9 21

http://github.com/ybertot/plugin_tutorials
https://coq.inria.fr/opam/www/
mailto:coq-club@inria.fr

The Coq Reference Manual, Release 8.9.1

Paris, November 2018,
Matthieu Sozeau for the Coq development team

22 Chapter 2. Credits

CHAPTER
THREE

THE LANGUAGE

3.1 The Gallina specification language

This chapter describes Gallina, the specification language of Coq. It allows developing mathematical theories and to
prove specifications of programs. The theories are built from axioms, hypotheses, parameters, lemmas, theorems and
definitions of constants, functions, predicates and sets. The syntax of logical objects involved in theories is described in
Section Terms. The language of commands, called The Vernacular is described in Section The Vernacular.

In Coq, logical objects are typed to ensure their logical correctness. The rules implemented by the typing algorithm are
described in Chapter Calculus of Inductive Constructions.

3.1.1 About the grammars in the manual
Grammars are presented in Backus-Naur form (BNF). Terminal symbols are set in black typewriter font. In
addition, there are special notations for regular expressions.

An expression enclosed in square brackets [..] means at most one occurrence of this expression (this corresponds to an
optional component).

The notation “entry sep .. sep entry” stands for a non empty sequence of expressions parsed by entry and
separated by the literal “sep”.

Similarly, the notation “entry .. entry” stands for a non empty sequence of expressions parsed by the “entry”
entry, without any separator between.

At the end, the notation “[entry sep .. sep entry]” stands for a possibly empty sequence of expressions parsed
by the “ent ry” entry, separated by the literal “sep”.

3.1.2 Lexical conventions

Blanks Space, newline and horizontal tabulation are considered as blanks. Blanks are ignored but they separate tokens.

Comments Comments in Coq are enclosed between (* and *), and can be nested. They can contain any character.
However, st ring literals must be correctly closed. Comments are treated as blanks.

Identifiers and access identifiers Identifiers, written i dent, are sequences of letters, digits, _ and ', that do not start
with a digit or '. That is, they are recognized by the following lexical class:

first_letter = a..z | A..Z | _ | unicode-letter
subsequent_letter A..Z | 0..9 1 _ | " | unicode-letter | unicode-id-part

|
V]

! This is similar to the expression “entry { sep entry }” in standard BNF, or “entry (sep entry)*” in the syntax of regular expressions.

23

The Coq Reference Manual, Release 8.9.1

ident L= first_letter[subsequent_letter..subsequent_letter]
access_ident = .ldent

All characters are meaningful. In particular, identifiers are case-sensitive. The entry unicode-letter
non-exhaustively includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian, Hangul, Hiragana and
Katakana characters, CJK ideographs, mathematical letter-like symbols, hyphens, non-breaking space, ... The
entry unicode—-id-part non-exhaustively includes symbols for prime letters and subscripts.

Access identifiers, written access_ident, are identifiers prefixed by . (dot) without blank. They are used in
the syntax of qualified identifiers.

Natural numbers and integers Numerals are sequences of digits. Integers are numerals optionally preceded by a minus

sign.
digit = 0..9
num = digit..digit
integer = [-1num

Strings Strings are delimited by " (double quote), and enclose a sequence of any characters different from " or the
sequence " " to denote the double quote character. In grammars, the entry for quoted strings is st ring.

Keywords The following identifiers are reserved keywords, and cannot be employed otherwise:

_ as at cofix else end exists exists2 fix for
forall fun if IF in let match mod Prop return
Set then Type using where with

Special tokens The following sequences of characters are special tokens:

Vs g oss ()) A+, - > 0 (..

/ /Nt ot i< o= o> ;< <= <=> <: <= <> =
=> =D >>>>?272=@ [\/ 1 "~ {1 |-
[} ~ #I

Lexical ambiguities are resolved according to the “longest match” rule: when a sequence of non alphanumerical
characters can be decomposed into several different ways, then the first token is the longest possible one (among
all tokens defined at this moment), and so on.

3.1.3 Terms

Syntax of terms

The following grammars describe the basic syntax of the terms of the Calculus of Inductive Constructions (also called
Cic). The formal presentation of Cic is given in Chapter Calculus of Inductive Constructions. Extensions of this syntax
are given in Chapter Extensions of Gallina. How to customize the syntax is described in Chapter Syntax extensions and
interpretation scopes.

term = forall binders , term
| fun binders => term
| fix fix bodies
| cofix cofix_bodies
| let ident [binders] [: term] := term in term
| let fix fix _body in term

24 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

| let cofix cofix_body in term

| let ([name , .. , name]) [dep_ret_type]l := term in term
| let ' pattern [in term] := term [return_type]l in term

| 1f term [dep_ret_type] then term else term

| term : term

| term <: term

| term :>

| term -> term

| term arg .. arg

| @ qualid [term .. term]

| term % ident

| match match_item , .. , match_item [return_type] with
[[I] equation | .. | equation] end

| qualid

| sort

| num

|
|

(term)

arg = term

| (ident := term)
binders u= binder .. binder
binder n= name

| (name .. name : term)

| (name [: term] := term)

| ' pattern
name = ident |
qualid ident | qualid access_ident
sort Prop | Set | Type
fix_bodies n= fix_body

| fix_body with fix_body with .. with fix body for ident
cofix_bodies := cofix_body

| cofix_body with cofix_body with .. with cofix_body for ident
fix_body n= ident binders [annotation] [: term] := term
cofix_body
annotation
match_item
dep_ret_type
return_type

ident [binders] [: term] := term

{ struct ident }

term [as name] [in qualid [pattern .. pattern]]
[as name] return_type

return term

equation = mult_pattern | .. | mult_pattern => term
mult_pattern = pattern , .. , pattern
pattern = qualid pattern .. pattern

@ qualid pattern .. pattern
pattern as ident

|

|

| pattern % ident
| qualid
|

|

|

num
(or_pattern , .., or_pattern)
or_pattern = pattern | .. | pattern

3.1. The Gallina specification language 25

The Coq Reference Manual, Release 8.9.1

Types

Coq terms are typed. Coq types are recognized by the same syntactic class as term. We denote by type the semantic
subclass of types inside the syntactic class term.

Qualified identifiers and simple identifiers

Qualified identifiers (qua 11 d) denote global constants (definitions, lemmas, theorems, remarks or facts), global variables
(parameters or axioms), inductive types or constructors of inductive types. Simple identifiers (or shortly ident) are a
syntactic subset of qualified identifiers. Identifiers may also denote local variables, while qualified identifiers do not.

Numerals

Numerals have no definite semantics in the calculus. They are mere notations that can be bound to objects through the
notation mechanism (see Chapter Syntax extensions and interpretation scopes for details). Initially, numerals are bound to
Peano’s representation of natural numbers (see Datatypes).

Note: Negative integers are not at the same level as num, for this would make precedence unnatural.

Sorts

There are three sorts Set, Prop and Type.

* Prop is the universe of logical propositions. The logical propositions themselves are typing the proofs. We denote
propositions by form. This constitutes a semantic subclass of the syntactic class term.

* Set is the universe of program types or specifications. The specifications themselves are typing the programs. We
denote specifications by specif. This constitutes a semantic subclass of the syntactic class term.

e Type is the type of Prop and Set

More on sorts can be found in Section Sorts.

Binders

Various constructions such as fun, forall, fix and cofix bind variables. A binding is represented by an identifier.
If the binding variable is not used in the expression, the identifier can be replaced by the symbol _. When the type of a
bound variable cannot be synthesized by the system, it can be specified with the notation (ident : type). Thereis

+
also a notation for a sequence of binding variables sharing the same type: (| ident : type). A binder can also be
any pattern prefixed by a quote, e.g. ' (x,Vy).

Some constructions allow the binding of a variable to value. This is called a “let-binder”. The entry binder of
the grammar accepts either an assumption binder as defined above or a let-binder. The notation in the latter case is
(ident := term). In alet-binder, only one variable can be introduced at the same time. It is also possible to give
the type of the variable as follows: (ident : type := term).

Lists of binder are allowed. In the case of fun and forall, it is intended that at least one binder of the list is an
assumption otherwise fun and forall gets identical. Moreover, parentheses can be omitted in the case of a single sequence
of bindings sharing the same type (e.g.: fun (x y z : A) => tcanbeshortenedin fun x y z : A => t).

26 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Abstractions

The expression fun ident : type => termdefines the abstraction of the variable ident, of type type, over
the term term. It denotes a function of the variable ident that evaluates to the expression term (e.g. fun x
A => x denotes the identity function on type A). The keyword fun can be followed by several binders as given in
Section Binders. Functions over several variables are equivalent to an iteration of one-variable functions. For instance
the expression “fun ident, ... ident,, : type => term” denotes the same function as “ fun ident, : type=>...
fun ident,, : type=>term”. If a let-binder occurs in the list of binders, it is expanded to a let-in definition (see
Section Let-in definitions).

Products

The expression forall ident : type, termdenotesthe productof the variable ident of type t ype, over the
term term. As for abstractions, forall is followed by a binder list, and products over several variables are equivalent
to an iteration of one-variable products. Note that t e rm is intended to be a type.

If the variable ident occurs in term, the product is called dependent product. The intention behind a dependent
product forall x : A, Bistwofold. It denotes either the universal quantification of the variable x of type A in the
proposition B or the functional dependent product from A to B (a construction usually written IT_, ,. B in set theory).

Non dependent product types have a special notation: A —> B stands for forall _ : A, B. The non dependent
product is used both to denote the propositional implication and function types.

Applications

The expression term, term; denotes the application of term to term;.

The expression term, term, ... term, denotes the application of the term term, to the arguments term; ... then
term,. Itisequivalentto (... (termy term;) ...) term, : associativity is to the left.

The notation (ident := term) for arguments is used for making explicit the value of implicit arguments (see Sec-
tion Explicit applications).

Type cast

The expression term : type is atype cast expression. It enforces the type of termto be type.
term <: type locally sets up the virtual machine for checking that t e xm has type t ype.
term <<: type uses native compilation for checking that t erm has type t ype.

Inferable subterms

Expressions often contain redundant pieces of information. Subterms that can be automatically inferred by Coq can be
replaced by the symbol _ and Coq will guess the missing piece of information.

Let-in definitions

let ident := term in term’ denotes the local binding of term to the variable ident in tern’. There is
. ' + .
a syntactic sugar for let-in definition of functions: let ident binder := term in term’ stands for let
+
ident := fun |binder => term in term’.

3.1. The Gallina specification language 27

The Coq Reference Manual, Release 8.9.1

Definition by case analysis

Objects of inductive types can be destructurated by a case-analysis construction called pattern matching expression. A
pattern matching expression is used to analyze the structure of an inductive object and to apply specific treatments ac-
cordingly.

This paragraph describes the basic form of pattern matching. See Section Multiple and nested pattern matching and Chap-
ter Extended pattern matching for the description of the general form. The basic form of pattern matching is characterized

by a single match_item expression, a mult_pattern restricted to a single pattern and pattern restricted to
*
the form qualid | ident

The expression match ”term, return_type with pattern; => term, | ... | pattern, => term, end” denotes
a pattern matching over the term term, (expected to be of an inductive type I). The terms term,...term, are the
branches of the pattern matching expression. Each of pattern; has a form qualid ident where qualid must
denote a constructor. There should be exactly one branch for every constructor of .

The return_type expresses the type returned by the whole match expression. There are several cases. In the non
dependent case, all branches have the same type, and the return_type is the common type of branches. In this case,
return_type can usually be omitted as it can be inferred from the type of the branches’.

In the dependent case, there are three subcases. In the first subcase, the type in each branch may depend on the exact
value being matched in the branch. In this case, the whole pattern matching itself depends on the term being matched.
This dependency of the term being matched in the return type is expressed with an “as i dent” clause where ident is
dependent in the return type. For instance, in the following example:

Inductive bool : Type := true : bool | false : bool.
Inductive eq (A:Type) (x:A) : A —> Prop := eqg_refl : eqg A x X.
Inductive or (A:Prop) (B:Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.
Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) :=
match b as x return or (eq bool x true) (eq bool x false) with
| true => or_introl (eq bool true true) (eq bool true false) (eg_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false) (eq_refl bool false)
end.

the branches have respective types "or (eq bool true true) (eq bool true false)” and "or (eq
bool false true) (eq bool false false)” while the whole pattern matching expression has type "or
(eg bool b true) (eq bool b false)?”, the identifier b being used to represent the dependency.

Note: When the term being matched is a variable, the as clause can be omitted and the term being matched can serve
itself as binding name in the return type. For instance, the following alternative definition is accepted and has the same
meaning as the previous one.

Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) :=
match b return or (eq bool b true) (eq bool b false) with
| true => or_introl (eq bool true true) (eq bool true false) (eq_refl bool true)

| false => or_intror (eq bool false true) (eq bool false false) (eq_refl bool false)
end.

The second subcase is only relevant for annotated inductive types such as the equality predicate (see Section Equality),
the order predicate on natural numbers or the type of lists of a given length (see Section Matching objects of dependent
types). In this configuration, the type of each branch can depend on the type dependencies specific to the branch and
the whole pattern matching expression has a type determined by the specific dependencies in the type of the term being

2 Except if the inductive type is empty in which case there is no equation that can be used to infer the return type.

28 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

matched. This dependency of the return type in the annotations of the inductive type is expressed usinga “in I _ .. _
pattern; ... pattern,” clause, where

* I is the inductive type of the term being matched;
« the _ are matching the parameters of the inductive type: the return type is not dependent on them.
* the pat tern,; are matching the annotations of the inductive type: the return type is dependent on them

* in the basic case which we describe below, each pattern, is a name ident,; see Patterns in in for the general
case

For instance, in the following example:

Definition eqg_sym (A:Type) (x y:A) (Hitegq A xy) : eg Ay X :=
match H in eq _ _ z return eq A z x with

| eg refl = _ => eq_refl A x

end.

the type of the branchis eq A x x because the third argument of eq is x in the type of the pattern eq_ref1. On the
contrary, the type of the whole pattern matching expression has type eq A y x because the third argument of eq is y
in the type of H. This dependency of the case analysis in the third argument of eq is expressed by the identifier z in the
return type.

Finally, the third subcase is a combination of the first and second subcase. In particular, it only applies to pattern matching
on terms in a type with annotations. For this third subcase, both the clauses as and in are available.

There are specific notations for case analysis on types with one or two constructors: 1f .. then .. else ..and let
(wy..) 1= .. in .. (see Sections Pattern-matching on boolean values: the if expression and Irrefutable patterns: the
destructuring let variants).

Recursive functions

The expression “fix ident, binder; : type; := term; with .. with ident, binder, : type, :=
term, for ident;” denotes the i-th component of a block of functions defined by mutual structural recursion. It is
the local counterpart of the i xpoint command. When n = 1, the “for ident,” clause is omitted.

2

The expression “cofix ident; binder; : type; with .. with ident, binder, : type, for ident;
denotes the i-th component of a block of terms defined by a mutual guarded co-recursion. It is the local counterpart of
the CoFixpoint command. When n = 1, the “for ident;” clause is omitted.

The association of a single fixpoint and a local definition have a special syntax: let fix ident binders :=
term instands for let ident := fix ident binders := term in. The same applies for co-fixpoints.

3.1.4 The Vernacular

decorated-sentence [decoration] sentence
sentence n= assumption

| definition

| inductive

| fixpoint

| assertion proof
assumption u= assumption_keyword assums.
assumption_keyword = Axiom | Conjecture

| Parameter | Parameters

| Variable | Variables

3.1. The Gallina specification language 29

The Coq Reference Manual, Release 8.9.1

| Hypothesis | Hypotheses

assums u= ident .. ident : term

| (ident .. ident : term) .. (ident .. ident : term)
definition = [Local] Definition ident [binders] [: term] := term

| Let ident [binders] [: term] := term
inductive L= Inductive ind _body with .. with ind body

| CoInductive ind _body with .. with ind_body
ind_body = ident [binders] : term :=

[[|] ident [binders] [:term] | .. | ident [binders] [:term]]
fixpoint = Fixpoint fix body with .. with fix body

| CoFixpoint cofix_body with .. with cofix_body
assertion L= assertion_keyword ident [binders] : term
assertion_keyword = Theorem | Lemma

| Remark | Fact
| Corollary | Proposition

| Definition | Example
proof u= Proof . .. Qed
| Proof . .. Defined
| Proof . .. Admitted
decoration = #[attributes]
attributes = [attribute, .. , attribute]
attribute = ident
| ident = string
| ident (attributes)

This grammar describes The Vernacular which is the language of commands of Gallina. A sentence of the vernacular
language, like in many natural languages, begins with a capital letter and ends with a dot.

Sentences may be decorated with so-called attributes, which are described in the corresponding section (Aftributes).

The different kinds of command are described hereafter. They all suppose that the terms occurring in the sentences are
well-typed.

Assumptions

Assumptions extend the environment with axioms, parameters, hypotheses or variables. An assumption binds an ident
toa type. Itis accepted by Coq if and only if this ¢ ype is a correct type in the environment preexisting the declaration
and if i dent was not previously defined in the same module. This ¢ ype is considered to be the type (or specification,
or statement) assumed by ident and we say that i dent has type type.

Command: Parameter ident : type
This command links t ype to the name ident as its specification in the global context. The fact asserted by t ype
is thus assumed as a postulate.

Error: ident already exists.

+
Variant: Parameter ident : type
Adds several parameters with specification ¢ ype.

+

+
Variant: Parameter (ident : type)
Adds blocks of parameters with different specifications.

+
Variant: Local Parameter |(ident : type)
Such parameters are never made accessible through their unqualified name by Import and its variants. You
have to explicitly give their fully qualified name to refer to them.

30 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

+

? +

Variant: Local Parameters (ident : type)
+

? +

Variant: Local Axiom | (ident : type)
+

2 +

Variant: Local Axioms (ident : type)
+

? +

Variant: Local Conjecture | (ident : type)
+

? +

Variant: Local Conjectures (ident : type)
+
. ? +
These variants are synonyms of | Local Parameter | (ident : type)
+
+
Variant: Variable | (ident : type)
+
+
Variant: Variables (ident : type)
+
+
Variant: Hypothesis | (ident : type)
+
+
Variant: Hypotheses (ident : type)
Outside of any section, these variants are synonyms of Local Parameter
+
+
(|ident : type) | . For their meaning inside a section, see Variable in Section mech-

anism.

Warning: ident is declared as a local axiom [local-declaration, scopel]
Warning generated when using Variable instead of Local Parameter.

Note: Itis advised to use the commands Axiom, Conjectureand Hypothesis (and their plural forms) for logical
postulates (i.e. when the assertion t ype is of sort Prop), and to use the commands Parameter and Variable (and
their plural forms) in other cases (corresponding to the declaration of an abstract mathematical entity).

See also:

Section Section mechanism.

Definitions

Definitions extend the environment with associations of names to terms. A definition can be seen as a way to give a
meaning to a name or as a way to abbreviate a term. In any case, the name can later be replaced at any time by its
definition.

The operation of unfolding a name into its definition is called J-conversion (see Section d-reduction). A definition is
accepted by the system if and only if the defined term is well-typed in the current context of the definition and if the
name is not already used. The name defined by the definition is called a constant and the term it refers to is its body. A
definition has a type which is the type of its body.

A formal presentation of constants and environments is given in Section 7yping rules.

Command: Definition ident := term
This command binds term to the name ident in the environment, provided that term is well-typed.

3.1. The Gallina specification language 31

The Coq Reference Manual, Release 8.9.1

Error: ident already exists.

Variant: Definition ident : type := term
This variant checks that the type of term is definitionally equal to ¢t ype, and registers ident as being of
type type, and bound to value term.

Error: The term term has type type while it is expected to have type type'.

?
Variant: Definition ident binders : type 1= term
This is equivalent to Definition ident : forall binders, type := fun
binders => term.

? ?
Variant: Local Definition ident binders : type := term

Such definitions are never made accessible through their unqualified name by Tmport and its variants. You
have to explicitly give their fully qualified name to refer to them.
? ? ?
Variant: Local Example ident binders : type := term
This is equivalent to Definition.

Variant: Let ident := term
Outside of any section, this variant is a synonym of Local Definition ident := term. For its
meaning inside a section, see Let in Section mechanism.

Warning: ident is declared as a local definition [local-declaration, scope]
Warning generated when using Let instead of Local Definition.

See also:

Section Section mechanism, commands Opaque, Transparent, and tactic unfold.

Inductive definitions

We gradually explain simple inductive types, simple annotated inductive types, simple parametric inductive types, mutually
inductive types. We explain also co-inductive types.

Simple inductive types

? ? *

Command: Inductive ident : |sort | :=|| | ident : type || ident : type

This command defines a simple inductive type and its constructors. The first i dent is the name of the inductively
defined type and sort is the universe where it lives. The next i dents are the names of its constructors and t ype
their respective types. Depending on the universe where the inductive type ident lives (e.g. its type sort),
Coq provides a number of destructors. Destructors are named ident_ind, ident_rec or ident_rect
which respectively correspond to elimination principles on Prop, Set and Type. The type of the destructors
expresses structural induction/recursion principles over objects of type ident. The constant ident_ind is
always provided, whereas i dent_recand ident_rect can be impossible to derive (for example, when i dent
is a proposition).

Error: Non strictly positive occurrence of ident in type.
The types of the constructors have to satisfy a positivity condition (see Section Positivity Condition). This
condition ensures the soundness of the inductive definition.

Error: The conclusion of type is not valid; it must be built from ident.
The conclusion of the type of the constructors must be the inductive type i dent being defined (or ident
applied to arguments in the case of annotated inductive types — cf. next section).

32

Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Example
The set of natural numbers is defined as:

Inductive nat : Set :=

| O : nat

| S : nat —> nat.
nat is defined
nat_rect is defined
nat_ind is defined
nat_rec is defined

The type nat is defined as the least Set containing O and closed by the S constructor. The names nat, O and S
are added to the environment.

Now let us have a look at the elimination principles. They are three of them: nat_ind, nat_rec and
nat_rect. The type of nat_indis:

Check nat_ind.
nat_ind
forall P : nat -> Prop,
P O > (forall n : nat, Pn > P (S n)) —> forall n : nat, P n

This is the well known structural induction principle over natural numbers, i.e. the second-order form of Peano’s
induction principle. It allows proving some universal property of natural numbers (forall n:nat, P n)by
induction on n.

The types of nat_rec and nat_rect are similar, except that they pertain to (P:nat->Set) and
(P:nat->Type) respectively. They correspond to primitive induction principles (allowing dependent types)
respectively over sorts Set and Type.

? ? ? ?
Variant: Inductive ident : sort = | ident |binders : type

|
Constructors idents can come with binders in which case, the actual type of the constructor is forall

binders, type.

In the case where inductive types have no annotations (next section gives an example of such annotations), a
constructor can be defined by only giving the type of its arguments.

Example

Inductive nat : Set := O | S (_:nat).

Simple annotated inductive types

In an annotated inductive types, the universe where the inductive type is defined is no longer a simple sort, but what is

called an arity, which is a type whose conclusion is a sort.

Example

As an example of annotated inductive types, let us define the even predicate:

3.1. The Gallina specification language

33

The Coq Reference Manual, Release 8.9.1

Inductive even : nat -> Prop :=

| even_0 : even O

| even_SS : forall n:nat, even n —-> even (S (S n)).
even is defined
even_ind is defined

The type nat ->Prop means that even is a unary predicate (inductively defined) over natural numbers. The type of its
two constructors are the defining clauses of the predicate even. The type of even_ind is:

Check even_ind.
even_ind
forall P : nat -> Prop,
P O —>
(forall n : nat, even n > P n > P (S (S n))) —>
forall n : nat, even n -> P n

From a mathematical point of view it asserts that the natural numbers satisfying the predicate even are exactly in the
smallest set of naturals satisfying the clauses even_0 or even_SS. This is why, when we want to prove any predicate
P over elements of even, it is enough to prove it for O and to prove that if any natural number n satisfies P its double
successor (S (S n)) satisfies also P. This is indeed analogous to the structural induction principle we got for nat.

Parameterized inductive types

? ? *
Variant: Inductive ident binders |: type = ident : type || ident : type

In the previous example, each constructor introduces a different instance of the predicate even. In some cases,
all the constructors introduce the same generic instance of the inductive definition, in which case, instead of an
annotation, we use a context of parameters which are binders shared by all the constructors of the definition.

Parameters differ from inductive type annotations in the fact that the conclusion of each type of constructor invoke
the inductive type with the same values of parameters as its specification.

Example
A typical example is the definition of polymorphic lists:

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A —> list A —> list A.

In the type of nil and cons, we write (1ist A) and not just 1ist. The constructors nil and cons will
have respectively types:

Check nil.
nil
forall A : Set, list A

Check cons.
cons
forall A : Set, A -> list A -> list A

Types of destructors are also quantified with (A:Set).

Once again, it is possible to specify only the type of the arguments of the constructors, and to omit the type of the
conclusion:

34 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Inductive list (A:Set) Set

nil | cons (_:A) (_:1list A).

Note:

* Itis possible in the type of a constructor, to invoke recursively the inductive definition on an argument which is not

the parameter itself.

One can define :

Inductive list2?2 (A:Set) Set :=
| nil2 list2 A
| cons2 A —> list2 (A*A) —> list2 A.

list2 is defined
list2_rect is defined
list2_ind is defined
list2_rec is defined

that can also be written by specifying only the type of the arguments:

Inductive 1list2 (A:Set) Set := nil2 | cons2 (_:A) (_:1list2 (A*A)).
list2 is defined
list2_rect is defined
list2_ind is defined
list2_rec is defined
But the following definition will give an error:
Fail Inductive listw (A:Set) Set :=
| nilw listw (A*A)
| consw A —> listw (A*A) —> listw (A*A).
The command has indeed failed with message:
Last occurrence of "listw" must have "A" as 1lst argument in

"listw (A * A)Stype".

because the conclusion of the type of constructors should be 1istw A in both cases.

A parameterized inductive definition can be

defined using annotations instead of parameters but it will sometimes

give a different (bigger) sort for the inductive definition and will produce a less convenient rule for case elimination.

Flag: Uniform Inductive Parameters
When this option is set (it is off by default),
checking constructors, allowing to write:

Set Uniform

Inductive 1list3 (A:Set) Set :=
| nil3 list3
| cons3 A —> 1list3 -> 1list3.

1ist3 is defined
list3_rect is defined
list3_ind is defined
list3_rec is defined

inductive definitions are abstracted over their parameters before type

Inductive Parameters.

This behavior is essentially equivalent to starting a new section and using Context to give the uniform parameters,

like so (cf. Section mechanism):

3.1. The Gallina specification language

35

The Coq Reference Manual, Release 8.9.1

Section 1list3.
Context (A:Set).
A is declared

Inductive 1ist3 : Set :=

| nil3 : 1list3

| cons3 : A —> 1list3 —> list3.
1list3 is defined
list3_rect is defined
list3_ind is defined
list3_rec is defined

End list3.

See also:

Section Inductive Definitions and the i nduct ion tactic.

Variants

? ? w
Command: Variant ident binders : type = | ident : type || ident : type

The Variant command is identical to the Tnduct ive command, except that it disallows recursive definition
of types (for instance, lists cannot be defined using Variant). No induction scheme is generated for this variant,
unless option Nonrecursive Elimination Schemes ison.

Error: The num th argument of ident must be ident in type.

Mutually defined inductive types

? ? * ? ?
Variant: Inductive ident |: type = | ident : typeI with | ident |: type

This variant allows defining a block of mutually inductive types. It has the same semantics as the above
Inductive definition for each ident. All ident are simultaneously added to the environment. Then well-
typing of constructors can be checked. Each one of the i dent can be used on its own.

? ? * ?
Variant: Inductive ident binders |: type = ident : typeI with | ident binders

In this variant, the inductive definitions are parameterized with b i nde rs. However, parameters correspond
to a local context in which the whole set of inductive declarations is done. For this reason, the parameters
must be strictly the same for each inductive types.

Example

The typical example of a mutual inductive data type is the one for trees and forests. We assume given two types A and B
as variables. It can be declared the following way.

Variables A B : Set.
Inductive tree : Set := node : A -> forest —-> tree

with forest : Set :=

(continues on next page)

36 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

| leaf : B —> forest
| cons : tree —-> forest -> forest.

This declaration generates automatically six induction principles. They are respectively called t ree_rec, tree_ind,
tree_rect, forest_rec, forest_ind, forest_rect. These ones are not the most general ones but are just
the induction principles corresponding to each inductive part seen as a single inductive definition.

To illustrate this point on our example, we give the types of t ree_rec and forest_rec.

Check tree_rec.
tree_rec
forall P : tree —> Set,
(forall (a : A) (f : forest), P (node a f)) —-> forall t : tree, P t

Check forest_rec.
forest_rec
forall P : forest -> Set,
(forall b : B, P (leaf b)) —>
(forall (t : tree) (f0 : forest), P f0O -> P (cons t £f0)) —>
forall f1 : forest, P f1

Assume we want to parameterize our mutual inductive definitions with the two type variables A and B, the declaration
should be done the following way:

Inductive tree (A B:Set) : Set := node : A -> forest A B -> tree A B

with forest (A B:Set) : Set :=
| leaf : B —> forest A B
| cons : tree A B —-> forest A B —-> forest A B.

Assume we define an inductive definition inside a section (cf. Section mechanism). When the section is closed, the variables
declared in the section and occurring free in the declaration are added as parameters to the inductive definition.

See also:

A generic command Scheme is useful to build automatically various mutual induction principles.

Co-inductive types

The objects of an inductive type are well-founded with respect to the constructors of the type. In other words, such objects
contain only a finite number of constructors. Co-inductive types arise from relaxing this condition, and admitting types
whose objects contain an infinity of constructors. Infinite objects are introduced by a non-ending (but effective) process
of construction, defined in terms of the constructors of the type.
? ? *
Command: CoInductive ident binders : type = ident : type || ident : type
This command introduces a co-inductive type. The syntax of the command is the same as the command
Inductive. No principle of induction is derived from the definition of a co-inductive type, since such prin-
ciples only make sense for inductive types. For co-inductive types, the only elimination principle is case analysis.

Example

An example of a co-inductive type is the type of infinite sequences of natural numbers, usually called streams.

3.1. The Gallina specification language 37

The Coq Reference Manual, Release 8.9.1

CoInductive Stream Set := Seqg nat —> Stream —> Stream.

The usual destructors on streams hd: St ream—>nat and t1:Str—>Str can be defined as follows:

let
let

Definition hd X in a.

Definition tl

(a,s) :=
(a,s) :=

(x:Stream) :=

(x:Stream) := x in s.

Definition of co-inductive predicates and blocks of mutually co-inductive definitions are also allowed.

Example

An example of a co-inductive predicate is the extensional equality on streams:

CoInductive EgSt Stream -> Stream —> Prop :=
egst forall sl s2:Stream,
hd s1 = hd s2 -> EgSt (tl sl)

(tl s2) —-> EgSt sl s2.

In order to prove the extensional equality of two streams s1 and s2 we have to construct an infinite proof of equality,
that is, an infinite object of type (EqSt s1 s2). We will see how to introduce infinite objects in Section Definitions
of recursive objects in co-inductive types.

Caveat

The ability to define co-inductive types by constructors, hereafter called positive co-inductive types, is known to break
subject reduction. The story is a bit long: this is due to dependent pattern-matching which implies propositional 1-
equality, which itself would require full n-conversion for subject reduction to hold, but full n-conversion is not acceptable
as it would make type-checking undecidable.

Since the introduction of primitive records in Coq 8.5, an alternative presentation is available, called negative co-inductive
types. This consists in defining a co-inductive type as a primitive record type through its projections. Such a technique is
akin to the co-pattern style that can be found in e.g. Agda, and preserves subject reduction.

The above example can be rewritten in the following way.

Set Primitive Projections.

CoInductive Stream Set := Seq { hd nat; tl Stream }.
Stream is defined
hd is defined
tl is defined
CoInductive EgSt (sl s2: Stream) Prop := egst {
egst_hd hd s1 = hd s2;
egst_t1l EgSt (tl s1) (tl s2);
}.
EgSt is defined
egst_hd is defined

egst_t1l

is defined

Some properties that hold over positive streams are lost when going to the negative presentation, typically when they
imply equality over streams. For instance, propositional n-equality is lost when going to the negative presentation. It is
nonetheless logically consistent to recover it through an axiom.

Axiom Stream_eta

forall s:

Stream_eta is declared

Stream, s =

Seqg (hd s) (tl1 s).

38

Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

More generally, as in the case of positive coinductive types, it is consistent to further identify extensional equality of
coinductive types with propositional equality:

Axiom Stream_ext : forall (sl s2: Stream), EgSt sl s2 -> sl = s2.
Stream_ext is declared

As of Coq 8.9, it is now advised to use negative co-inductive types rather than their positive counterparts.
See also:

Primitive Projections for more information about negative records and primitive projections.

Definition of recursive functions

Definition of functions by recursion over inductive objects

This section describes the primitive form of definition by recursion over inductive objects. See the Funct i on command
for more advanced constructions.

? ?
Command: Fixpoint ident binders {struct ident} : type := term

This command allows defining functions by pattern matching over inductive objects using a fixed point construction.
The meaning of this declaration is to define i dent a recursive function with arguments specified by the binders
such that i dent applied to arguments corresponding to these binders has type t ype, and is equivalent to the
expression term. The type of ident is consequently forall binders, type and its value is equivalent
to fun binders => term.

To be accepted, a F'i xpoint definition has to satisfy some syntactical constraints on a special argument called the
decreasing argument. They are needed to ensure that the F'i xpoint definition always terminates. The point of
the { struct ident} annotation is to let the user tell the system which argument decreases along the recursive
calls.

The {struct ident} annotation may be left implicit, in this case the system tries successively arguments from
left to right until it finds one that satisfies the decreasing condition.

Note:

* Some fixpoints may have several arguments that fit as decreasing arguments, and this choice influences the
reduction of the fixpoint. Hence an explicit annotation must be used if the leftmost decreasing argument is
not the desired one. Writing explicit annotations can also speed up type checking of large mutual fixpoints.

* In order to keep the strong normalization property, the fixed point reduction will only be performed when the
argument in position of the decreasing argument (which type should be in an inductive definition) starts with
a constructor.

Example

One can define the addition function as :

Fixpoint add (n m:nat) {struct n} : nat :=
match n with

| O =>m
| Sp =>S (add p m)
end.

add is defined
add is recursively defined (decreasing on 1st argument)

3.1. The Gallina specification language 39

The Coq Reference Manual, Release 8.9.1

The match operator matches a value (here n) with the various constructors of its (inductive) type. The remaining
arguments give the respective values to be returned, as functions of the parameters of the corresponding constructor.
Thus here when n equals O we return m, and when n equals (S p) wereturn (S (add p m)).

The match operator is formally described in Section The match ... with ... end construction. The system recognizes
that in the inductive call (add p m) the first argument actually decreases because it is a pattern variable coming
frommatch n with.

Example
The following definition is not correct and generates an error message:

Fail Fixpoint wrongplus (n m:nat) {struct n} : nat :=

match m with

| O => n

| S p => S (wrongplus n p)

end.
The command has indeed failed with message:
Recursive definition of wrongplus is ill-formed.
In environment

wrongplus : nat —-> nat —-> nat
n : nat
m : nat
p : nat

Recursive call to wrongplus has principal argument equal to
"n" instead of a subterm of "n"
Recursive definition is:

"fun n m : nat => match m with
| 0 =>n
| S p =>S (wrongplus n p)
end".

because the declared decreasing argument n does not actually decrease in the recursive call. The function computing
the addition over the second argument should rather be written:

Fixpoint plus (n m:nat) {struct m} : nat :=
match m with

| O =>n

| Sp =>S (plus n p)

end.

plus is defined
plus is recursively defined (decreasing on 2nd argument)

Example

The recursive call may not only be on direct subterms of the recursive variable n but also on a deeper subterm and
we can directly write the function mod2 which gives the remainder modulo 2 of a natural number.

Fixpoint mod2 (n:nat) : nat :=
match n with
| O => 0
| S p => match p with
| 0O =>3S 0
| S g => mod2 g
end

(continues on next page)

40 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

end.
mod2 is defined
mod2 is recursively defined (decreasing on 1st argument)
. ? ?
Variant: Fixpoint ident binders |{struct ident} . type := term |with ident binders

This variant allows defining simultaneously several mutual fixpoints. It is especially useful when defining
functions over mutually defined inductive types.

Example
The size of trees and forests can be defined the following way:

Fixpoint tree_size (t:tree) : nat :=
match t with
| node a £ => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| leaf b => 1
| cons t f' => (tree_size t + forest_size f')
end.
tree_size is defined
forest_size is defined
tree_size, forest_size are recursively defined
(decreasing respectively on 1st, 1st arguments)

Definitions of recursive objects in co-inductive types

? ?
Command: CoFixpoint ident binders : type 1= term

This command introduces a method for constructing an infinite object of a coinductive type. For example, the
stream containing all natural numbers can be introduced applying the following method to the number O (see
Section Co-inductive types for the definition of St ream, hd and t1):

CoFixpoint from (n:nat) : Stream := Seg n (from (S n)).
from is defined
from is corecursively defined

Oppositely to recursive ones, there is no decreasing argument in a co-recursive definition. To be admissible, a
method of construction must provide at least one extra constructor of the infinite object for each iteration. A
syntactical guard condition is imposed on co-recursive definitions in order to ensure this: each recursive call in the
definition must be protected by at least one constructor, and only by constructors. That is the case in the former
definition, where the single recursive call of from is guarded by an application of Seqg. On the contrary, the
following recursive function does not satisfy the guard condition:

Fail CoFixpoint filter (p:nat —> bool) (s:Stream) : Stream :=
if p (hd s) then Seqg (hd s) (filter p (tl s)) else filter p (tl s).
The command has indeed failed with message:
Recursive definition of filter is ill-formed.
In environment
filter : (nat -> bool) -> Stream —> Stream
(continues on next page)

3.1. The Gallina specification language 41

The Coq Reference Manual, Release 8.9.1

(continued from previous page)
p : nat —-> bool
s : Stream
Unguarded recursive call in "filter p (tl s)".
Recursive definition is:

"fun (p : nat —-> bool) (s : Stream) =>
if p (hd s)
then {|] hd := hd s; tl := filter p (tl s) |}

else filter p (tl s)".

The elimination of co-recursive definition is done lazily, i.e. the definition is expanded only when it occurs at the
head of an application which is the argument of a case analysis expression. In any other context, it is considered as
a canonical expression which is completely evaluated. We can test this using the command Eva 1, which computes
the normal forms of a term:

Eval compute in (from O0).

= (cofix from (n : nat) : Stream := {| hd := n; tl := from (S n) [}) O
Stream
Eval compute in (hd (from 0)).
=0
nat
Eval compute in (tl (from 0)).
= (cofix from (n : nat) : Stream := {| hd := n; tl := from (S n) |}) 1
Stream
. B ? ? 2
Variant: CoFixpoint ident binders : type := term (with ident binders : type

As in the FFixpoint command, it is possible to introduce a block of mutually dependent methods.

Assertions and proofs

An assertion states a proposition (or a type) of which the proof (or an inhabitant of the type) is interactively built using
tactics. The interactive proof mode is described in Chapter Proof handling and the tactics in Chapter 7uctics. The basic
assertion command is:

?
Command: Theorem ident binders : type

After the statement is asserted, Coq needs a proof. Once a proof of type under the assumptions represented by
binders is given and validated, the proof is generalized into a proof of forall binders, type and the
theorem is bound to the name ident in the environment.

Error: The term term has type type which should be Set, Prop or Type.

Error: ident already exists.
The name you provided is already defined. You have then to choose another name.

Error: Nested proofs are not allowed unless you turn option Nested Proofs Allowed on.
You are asserting a new statement while already being in proof editing mode. This feature, called nested
proofs, is disabled by default. To activate it, turn option Nested Proofs Allowed on.

?

Variant: Lemma ident binders | : type
Variant: Remark ident binders z . type
Variant: Fact ident binders 7 : type
Variant: Corollary ident binders z : type

42 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

2

Variant: Proposition ident binders : type
?
These commands are all synonyms of Theorem ident |binders 1 type.
*
2 2
Variant: Theorem ident binders : type |with ident |binders : type

This command is useful for theorems that are proved by simultaneous induction over a mutually inductive assump-
tion, or that assert mutually dependent statements in some mutual co-inductive type. It is equivalent to F'i xpoint
or CoFixpoint but using tactics to build the proof of the statements (or the body of the specification, depending
on the point of view). The inductive or co-inductive types on which the induction or coinduction has to be done is
assumed to be non ambiguous and is guessed by the system.

Likeina Fixpoint or CoFixpoint definition, the induction hypotheses have to be used on structurally smaller
arguments (for a F'i xpoint) or be guarded by a constructor (for a CoF'i xpoint). The verification that recursive
proof arguments are correct is done only at the time of registering the lemma in the environment. To know if the
use of induction hypotheses is correct at some time of the interactive development of a proof, use the command
Guarded.

The command can be used also with Lemma, Remark, etc. instead of Theorem.

2
Variant: Definition ident binders . type

This allows defining a term of type ¢ ype using the proof editing mode. It behaves as Theorem but is intended to
be used in conjunction with De i ned in order to define a constant of which the computational behavior is relevant.

The command can be used also with Examp1e instead of Definition.
See also:

Opaque, Transparent, unfold.

?
Variant: Let ident binders : type
?
Like Definition ident binders : type except that the definition is turned into a let-in definition

generalized over the declarations depending on it after closing the current section.
*
Variant: Fixpoint ident binders : type with ident binders : type
This generalizes the syntax of F'i xpoint so that one or more bodies can be defined interactively using the proof
editing mode (when a body is omitted, its type is mandatory in the syntax). When the block of proofs is completed,
it is intended to be ended by Defined.

? ?
Variant: CoFixpoint ident binders : type |with ident |binders : type

This generalizes the syntax of CoFixpoint so that one or more bodies can be defined interactively using the
proof editing mode.

A proof starts by the keyword Proof. Then Coq enters the proof editing mode until the proof is completed. The proof
editing mode essentially contains tactics that are described in chapter 7acrics. Besides tactics, there are commands to
manage the proof editing mode. They are described in Chapter Proof handling.

When the proof is completed it should be validated and put in the environment using the keyword Oed.

Note:
1. Several statements can be simultaneously asserted provided option Nested Proofs Allowed was turned on.

2. Not only other assertions but any vernacular command can be given while in the process of proving a given assertion.
In this case, the command is understood as if it would have been given before the statements still to be proved.
Nonetheless, this practice is discouraged and may stop working in future versions.

3.1. The Gallina specification language 43

The Coq Reference Manual, Release 8.9.1

3. Proofs ended by Oed are declared opaque. Their content cannot be unfolded (see Performing computations), thus
realizing some form of proof-irrelevance. To be able to unfold a proof, the proof should be ended by De fined.

4. Proof is recommended but can currently be omitted. On the opposite side, Oed (or De £ ined) is mandatory to
validate a proof.

5. One can also use Admitted in place of Oed to turn the current asserted statement into an axiom and exit the
proof editing mode.

Attributes
Any vernacular command can be decorated with a list of attributes, enclosed between # [(hash and opening square
bracket) and] (closing square bracket) and separated by commas , .

Each attribute has a name (an identifier) and may have a value. A value is either a st ring (in which case it is specified
with an equal = sign), or a list of attributes, enclosed within brackets.

Currently, the following attributes names are recognized:

monomorphic, polymorphic Take no value, analogous to the Monomorphic and Polymorphic flags (see
Polymorphic Universes).

program Takes no value, analogous to the Program flag (see Program).
global, local Take no value, analogous to the Global and Local flags (see Controlling the locality of commands).
deprecated Takes as value the optional attributes since and note; both have a string value.
This attribute can trigger the following warnings:
Warning: Tactic qualid is deprecated since string. string.
Warning: Tactic Notation gualid is deprecated since string. string.
Here are a few examples:

From Cog Require Program.
[Loading ML file extraction_plugin.cmxs ... done]

[program] Definition one : nat := S _
one has type-checked, generating 1 obligation
Solving obligations automatically...
1 obligation remaining
Obligation 1 of one: nat.

Next Obligation.
1 subgoal

exact O.
No more subgoals.

Defined.
one_obligation_1 is defined
No more obligations remaining
one is defined

[deprecated (since="8.9.0", note="Use idtac instead.")]
(continues on next page)

44 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

Ltac foo := idtac.
foo is defined

Goal True.
1 subgoal

Proof.

now foo.
Toplevel input, characters 4-7:
> now foo.

> AANA

Warning: Tactic foo is deprecated since 8.9.0. Use idtac instead.
[deprecated-tactic, deprecated]
No more subgoals.

Abort.

3.2 Extensions of Gallina

Gallina is the kernel language of Coq. We describe here extensions of Gallina’s syntax.

3.2.1 Record types

The Record construction is a macro allowing the definition of records as is done in many programming languages. Its
syntax is described in the grammar below. In fact, the Re cord macro is more general than the usual record types, since
it allows also for “manifest” expressions. In this sense, the Record construction allows defining “signatures”.

record = record_keyword record _body with .. with record_body
Record | Inductive | CoInductive

record_keyword

record_body = ident [binders] [: sort] := [ident 1 { [field ; .. ;
field = ident [binders] : type [where notation]
| ident [binders] [: type] := term
? ? *
Command: Record ident binders |: sort := |ident { |ident binders : type [}

The first identifier i dent is the name of the defined record and sort is its type. The optional identifier following

: = is the name of its constructor. If it is omitted, the default name Build_ident, where ident is the record
name, is used. If sort is omitted, the default sort is Type. The identifiers inside the brackets are the names of
fields. For a given field ident, its type is forall binders, type. Remark that the type of a particular
identifier may depend on a previously-given identifier. Thus the order of the fields is important. Finally, binders
are parameters of the record.

More generally, a record may have explicitly defined (a.k.a. manifest) fields. For instance, we might have: Record
ident binders : sort := { ident, : type, ; ident, := term, ; ident; : type; }. in
which case the correctness of ¢ ype ., may rely on the instance term, of ident, and term, may in turn depend on
ident,.

3.2. Extensions of Gallina 45

field

]

'

The Coq Reference Manual, Release 8.9.1

Example

The set of rational numbers may be defined as:

Record Rat : Set := mkRat
{ sign : bool
; top : nat

; bottom : nat
; Rat_bottom_cond : 0 <> bottom
; Rat_irred_cond
forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1

Rat is defined

sign is defined

top is defined

bottom is defined
Rat_bottom_cond is defined
Rat_irred_cond is defined

Note here that the fields Rat_bottom_cond depends on the field bot t om and Rat_irred_cond depends on both
top and bottom.

Let us now see the work done by the Record macro. First the macro generates a variant type definition with just one
2 ?
constructor: Variant ident |binders : sort := ident, |binders

To build an object of type ident, one should provide the constructor i dent , with the appropriate number of terms
filling the fields of the record.

Example

Let us define the rational 1/2:

Theorem one_two_irred : forall x y z:nat, x * y =1 /\ x * z =2 -> x = 1.
Admitted.

Definition half := mkRat true 1 2 (O_S 1) one_two_irred.

Check half.

{| [field def ; .. ; field def] |}
name [binders] := record term

record_term
field_def

Alternatively, the following syntax allows creating objects by using named fields, as shown in this grammar. The fields do
not have to be in any particular order, nor do they have to be all present if the missing ones can be inferred or prompted
for (see Program).

Definition half' :=

{| sign := true;
Rat_bottom_cond := O_S 1;
Rat_irred_cond := one_two_irred |}.

half' is defined

The following settings let you control the display format for types:

Flag: Printing Records
If set, use the record syntax (shown above) as the default display format.

46 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

You can override the display format for specified types by adding entries to these tables:

Table: Printing Record qualid
Specifies a set of qualids which are displayed as records. Use the Add @table and Remove @table com-
mands to update the set of qualids.

Table: Printing Constructor qualid
Specifies a set of qualids which are displayed as constructors. Use the Add @table and Remove @table
commands to update the set of qualids.

This syntax can also be used for pattern matching.

Eval compute in (
match half with
| {| sign := true; top :=n |} =>n
| =>0
end) .
=1
nat

The macro generates also, when it is possible, the projection functions for destructuring an object of type i dent. These
projection functions are given the names of the corresponding fields. If a field is named _ then no projection is built for
it. In our example:

Eval compute in top half.
=1
nat

Eval compute in bottom half.
= 2
nat

Eval compute in Rat_bottom_cond half.
= 0_S 1
0 <> bottom half

An alternative syntax for projections based on a dot notation is available:

Eval compute in half. (top) .
=1
nat

Flag: Printing Projections
This flag activates the dot notation for printing.

Example

Set Printing Projections.
Check top half.

half. (top)
: nat
projection = term ~ . (qualid)
| term ~.° (qualid arg .. arg)
| term ~.° (@gqualid term .. term)

3.2. Extensions of Gallina 47

The Coq Reference Manual, Release 8.9.1

Syntax of Record projections

The corresponding grammar rules are given in the preceding grammar. When qua 11 d denotes a projection, the syntax

term. (qualid) is equivalent to qualid term, the syntax term. (qualid [arg +) to qualid [arg +

+ + .
term. and the syntax term. (Qqualid term |) to Qqualid |term term. In each case, term is the
object projected and the other arguments are the parameters of the inductive type.

Note: Records defined with the Record keyword are not allowed to be recursive (references to the record’s name in
the type of its field raises an error). To define recursive records, one can use the Inductive and CoInductive
keywords, resulting in an inductive or co-inductive record. Definition of mutal inductive or co-inductive records are also
allowed, as long as all of the types in the block are records.

Note: Induction schemes are automatically generated for inductive records. Automatic generation of induction
schemes for non-recursive records defined with the Record keyword can be activated with the Nonrecursive
Elimination Schemes option (see Generation of induction principles with Scheme).

Note: Structure is a synonym of the keyword Record.

Warning: ident cannot be defined.
It can happen that the definition of a projection is impossible. This message is followed by an explanation of this
impossibility. There may be three reasons:

1. The name ident already exists in the environment (see Ax iom).
2. The body of ident uses an incorrect elimination for i dent (see Fixpoint and Destructors).
3. The type of the projections ident depends on previous projections which themselves could not be defined.

Error: Records declared with the keyword Record or Structure cannot be recursive.
The record name ident appears in the type of its fields, but uses the keyword Record. Use the keyword
Inductive or CoInductive instead.

Error: Cannot handle mutually (co)inductive records.
Records cannot be defined as part of mutually inductive (or co-inductive) definitions, whether with records only or
mixed with standard definitions.

During the definition of the one-constructor inductive definition, all the errors of inductive definitions, as described in
Section Inductive definitions, may also occur.

See also:

Coercions and records in section Classes as Records of the chapter devoted to coercions.

Primitive Projections

Flag: Primitive Projections

Turns on the use of primitive projections when defining subsequent records (even through the Inductive and
CoInductive commands). Primitive projections extended the Calculus of Inductive Constructions with a new
binary term constructor r. (p) representing a primitive projection p applied to a record object r (i.e., primitive
projections are always applied). Even if the record type has parameters, these do not appear in the internal represen-
tation of applications of the projection, considerably reducing the sizes of terms when manipulating parameterized
records and type checking time. On the user level, primitive projections can be used as a replacement for the usual
defined ones, although there are a few notable differences.

48 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Flag: Printing Primitive Projection Parameters
This compatibility option reconstructs internally omitted parameters at printing time (even though they are absent
in the actual AST manipulated by the kernel).

Flag: Printing Primitive Projection Compatibility
This compatibility option (on by default) governs the printing of pattern matching over primitive records.

Primitive Record Types

When the Primitive Projections option is on, definitions of record types change meaning. When a type is
declared with primitive projections, its mat ch construct is disabled (see Primitive Projections though). To eliminate the
(co-)inductive type, one must use its defined primitive projections.

For compatibility, the parameters still appear to the user when printing terms even though they are absent in the ac-
tual AST manipulated by the kernel. This can be changed by unsetting the Printing Primitive Projection
Parameters flag. Further compatibility printing can be deactivated thanks to the Printing Primitive
Projection Compatibility option which governs the printing of pattern matching over primitive records.

There are currently two ways to introduce primitive records types:

1. Through the Record command, in which case the type has to be non-recursive. The defined type enjoys eta-
conversion definitionally, that is the generalized form of surjective pairing for records: r = Build_R (r. (p;)
... (p,)) . Eta-conversion allows to define dependent elimination for these types as well.

2. Through the Inductive and CoInductive commands, when the body of the definition is a record declaration
of the form Build R{p; : ty;; .. ; p, : t, }.Inthiscase the types can be recursive and eta-conversion is
disallowed. These kind of record types differ from their traditional versions in the sense that dependent elimination
is not available for them and only non-dependent case analysis can be defined.

Reduction

The basic reduction rule of a primitive projection is p; (Build_Rt; ... t,) —, t,. However, to take the ¢ flag into
account, projections can be in two states: folded or unfolded. An unfolded primitive projection application obeys the rule
above, while the folded version delta-reduces to the unfolded version. This allows to precisely mimic the usual unfolding
rules of constants. Projections obey the usual simpl flags of the Arguments command in particular. There is cur-
rently no way to input unfolded primitive projections at the user-level, and one must use the Printing Primitive
Projection Compatibility to display unfolded primitive projections as matches and distinguish them from
folded ones.

Compatibility Projections and match

To ease compatibility with ordinary record types, each primitive projection is also defined as a ordinary constant taking
parameters and an object of the record type as arguments, and whose body is an application of the unfolded primitive
projection of the same name. These constants are used when elaborating partial applications of the projection. One
can distinguish them from applications of the primitive projection if the Printing Primitive Projection
Parameters option is off: For a primitive projection application, parameters are printed as underscores while for the
compatibility projections they are printed as usual.

Additionally, user-written mat ch constructs on primitive records are desugared into substitution of the projections, they
cannot be printed back as mat ch constructs.

3.2. Extensions of Gallina 49

The Coq Reference Manual, Release 8.9.1

3.2.2 Variants and extensions of match

Multiple and nested pattern matching
The basic version of match allows pattern matching on simple patterns. As an extension, multiple nested patterns or
disjunction of patterns are allowed, as in ML-like languages.

The extension just acts as a macro that is expanded during parsing into a sequence of match on simple patterns. Espe-
cially, a construction defined using the extended match is generally printed under its expanded form (see Printing
Matching).

See also:

Extended pattern matching.

Pattern-matching on boolean values: the if expression

For inductive types with exactly two constructors and for pattern matching expressions that do not depend on the arguments
of the constructors, it is possible tousea 1f .. then .. else notation. For instance, the definition

Definition not (b:bool) :=
match b with
| true => false
| false => true
end.
not is defined

can be alternatively written

Definition not (b:bool) := if b then false else true.
not is defined

More generally, for an inductive type with constructors C; and C,, we have the following equivalence

if term [dep_ret_type] then term;, else term, =
match term [dep_ret_type] with

| C, _ .. _ => term
| C, _ .. _ => term,
end

Example

Check (fun x (H:{x=0}+{x<>0}) =>
match H with

| left _ => true
| right _ => false
end) .
fun (x : nat) (H : {x = 0} + {x <> 0}) => if H then true else false

forall x : nat, {x = 0} + {x <> 0} —-> bool

Notice that the printing uses the 1 f syntax because sumbool is declared as such (see Controlling pretty-printing of match
expressions).

50 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Irrefutable patterns: the destructuring let variants

Pattern-matching on terms inhabiting inductive type having only one constructor can be alternatively written using let
in .. constructions. There are two variants of them.

First destructuring let syntax

The expression let (ident;, .. , ident,) :=termyin term,; performs case analysis on termy, which must
be in an inductive type with one constructor having itself n arguments. Variables ident; ... ident,, are bound to the
n arguments of the constructor in expression term;. For instance, the definition

Definition fst (A B:Set) (H:A * B) := match H with
| pair x y => x
end.

fst is defined

can be alternatively written

Definition fst (A B:Set) (p:A * B)
fst is defined

let (x, _) := p in x.

Notice that reduction is different from regular 1et .. in .. construction since it happens only if t e rm is in constructor
form. Otherwise, the reduction is blocked.

The pretty-printing of a definition by matching on a irrefutable pattern can either be done using match or the let
construction (see Section Controlling pretty-printing of match expressions).

If term inhabits an inductive type with one constructor C, we have an equivalence between

let (ident,, .., ident[d) [dep_ret_type] := term in term’

and

match term [dep_ret_type] with
C ident, .. ident[d => term'
end

Second destructuring let syntax

Another destructuring let syntax is available for inductive types with one constructor by giving an arbitrary pattern instead
of just a tuple for all the arguments. For example, the preceding example can be written:

Definition fst (A B:Set) (p:A*B) := let 'pair x _ := p in x.
fst is defined

This is useful to match deeper inside tuples and also to use notations for the pattern, as the syntax let 'p := t in
b allows arbitrary patterns to do the deconstruction. For example:

Definition deep_tuple (A:Set) (x: (A*A)* (A*A)) : A*A*A*A :=
let '((a,b), (¢, d)) := x in (a,b,c,d).
deep_tuple is defined

Notation " x 'With' p " := (exist _ x p) (at level 20).
Identifier 'With' now a keyword

(continues on next page)

3.2. Extensions of Gallina 51

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

Definition projl_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A :=

let

'x With p := t in x.
projl_sig' is defined

When printing definitions which are written using this construct it takes precedence over let printing directives for the
datatype under consideration (see Section Controlling pretty-printing of match expressions).

Controlling pretty-printing of match expressions

The following commands give some control over the pretty-printing of mat ch expressions.

Printing nested patterns

Flag: Printing Matching

The Calculus of Inductive Constructions knows pattern matching only over simple patterns. It is however convenient
to re-factorize nested pattern matching into a single pattern matching over a nested pattern.

When this option is on (default), Coq’s printer tries to do such limited re-factorization. Turning it off tells Coq to
print only simple pattern matching problems in the same way as the Coq kernel handles them.

Factorization of clauses with same right-hand side

Flag: Printing Factorizable Match Patterns

When several patterns share the same right-hand side, it is additionally possible to share the clauses using disjunctive
patterns. Assuming that the printing matching mode is on, this option (on by default) tells Coqg’s printer to try to
do this kind of factorization.

Use of a default clause

Flag: Printing Allow Match Default Clause

When several patterns share the same right-hand side which do not depend on the arguments of the patterns, yet an
extra factorization is possible: the disjunction of patterns can be replaced with a _ default clause. Assuming that
the printing matching mode and the factorization mode are on, this option (on by default) tells Coq’s printer to use
a default clause when relevant.

Printing of wildcard patterns

Flag: Printing Wildcard

Some variables in a pattern may not occur in the right-hand side of the pattern matching clause. When this option
is on (default), the variables having no occurrences in the right-hand side of the pattern matching clause are just
printed using the wildcard symbol “_”.

Printing of the elimination predicate

Flag: Printing Synth

In most of the cases, the type of the result of a matched term is mechanically synthesizable. Especially, if the result
type does not depend of the matched term. When this option is on (default), the result type is not printed when
Coq knows that it can re- synthesize it.

52

Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Printing matching on irrefutable patterns

If an inductive type has just one constructor, pattern matching can be written using the first destructuring let syntax.

Table: Printing Let qualid
Specifies a set of qualids for which pattern matching is displayed using a let expression. Note that this only applies
to pattern matching instances entered with match. It doesn’t affect pattern matching explicitly entered with a
destructuring let. Use the Add @table and Remove (@table commands to update this set.

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern matching can be written using 1 f ... then ... else
This table controls which types are written this way:

Table: Printing If qualid
Specifies a set of qualids for which pattern matching is displayed using i f ... then ... else Use the Add
@tableand Remove @table commands to update this set.

This example emphasizes what the printing options offer.

Example

Definition snd (A B:Set) (H:A * B) := match H with
| pair x y => vy

end.

snd is defined

Test Printing Let for prod.
Cases on elements of prod are printed using a "let' form

Print snd.
snd =
fun (A B : Set) (H : A * B) => let (_, y) := H in y
forall A B : Set, A * B -—> B

Argument scopes are [type_scope type_scope _]

Remove Printing Let prod.
Unset Printing Synth.
Unset Printing Wildcard.
Print snd.
snd =
fun (A B : Set) (H : A * B) => match H return B with
| (%, y) => vy
end
forall A B : Set, A * B -—> B

Argument scopes are [type_scope type_scope _]

3.2.3 Advanced recursive functions

The following experimental command is available when the FunInd library has been loaded via Require Import
FunInd:

3.2. Extensions of Gallina 53

The Coq Reference Manual, Release 8.9.1

*
Command: Function ident binder { decrease_annot } : type := term

This command can be seen as a generalization of Fixpoint. Itis actually a wrapper for several ways of defining
a function and other useful related objects, namely: an induction principle that reflects the recursive structure of the
function (see function induction) and its fixpoint equality. The meaning of this declaration is to define a
function ident, similarly to Fixpoint. Like in Fixpoint, the decreasing argument must be given (unless the
function is not recursive), but it might not necessarily be structurally decreasing. The point of the { } annotation is to
name the decreasing argument and to describe which kind of decreasing criteria must be used to ensure termination
of recursive calls.

The Function construction also enjoys the with extension to define mutually recursive definitions. However, this
feature does not work for non structurally recursive functions.

See the documentation of functional induction (function induction)and Functional Scheme (Generation
of induction principles with Functional Scheme) for how to use the induction principle to easily reason about the function.

Remark: To obtain the right principle, it is better to put rigid parameters of the function as first arguments. For example
it is better to define plus like this:

Function plus (m n : nat) {struct n} : nat :=
match n with

| 0 =>m

| S p =>5 (plus m p)

end.

plus is defined

plus is recursively defined (decreasing on 2nd argument)
plus_equation is defined

plus_ind is defined

plus_rec is defined

plus_rect is defined

R_plus_correct is defined

R_plus_complete is defined

than like this:

Function plus (n m : nat) {struct n} : nat
match n with
| 0 =>m
| S p=>9S (plus p m)
end.
plus is defined
plus is recursively defined (decreasing on 1st argument)
plus_equation is defined
plus_ind is defined
plus_rec is defined
plus_rect is defined
R_plus_correct is defined
R_plus_complete is defined

Limitations
term, must be built as a pure pattern matching tree (match .. with) with applications only at the end of each branch.

Function does not support partial application of the function being defined. Thus, the following example cannot be
accepted due to the presence of partial application of wrong in the body of wrong:

Fail Function wrong (C:nat) : nat :=
List.hd 0 (List.map wrong (C::nil)).
The command has indeed failed with message:
The reference List.hd was not found in the current environment.

54 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

For now, dependent cases are not treated for non structurally terminating functions.

Error: The recursive argument must be specified.

Error: No argument name ident.

Error: Cannot use mutual definition with well-founded recursion or measure.

Warning: Cannot define graph for ident.
The generation of the graph relation (R_ident) used to compute the induction scheme of ident raised a typing
error. Only ident is defined; the induction scheme will not be generated. This error happens generally when:

« the definition uses pattern matching on dependent types, which Function cannot deal with yet.
* the definition is not a pattern matching tree as explained above.

Warning: Cannot define principle(s) for ident.
The generation of the graph relation (R_ident) succeeded but the induction principle could not be built. Only
ident is defined. Please report.

Warning: Cannot build functional inversion principle.
functional inversion will not be available for the function.

See also:
Generation of induction principles with Functional Scheme and function induction

Depending on the {...} annotation, different definition mechanisms are used by Function. A more precise description
is given below.

*
Variant: Function ident binder : type := term

Defines the not recursive function i dent as if declared with De finit ion. Moreover the following are defined:

e ident_rect, ident_rec and ident_ind, which reflect the pattern matching structure of term (see
Inductive),

¢ The inductive R__ i dent corresponding to the graph of ident (silently);

e ident_complete and ident_correct which are inversion information linking the function and its

graph.
*
Variant: Function ident binder { struct ident } : type := term
Defines the structural recursive function ident as if declared with Fixpoint. Moreover the following are
defined:

* The same objects as above;

¢ The fixpoint equation of ident: ident_equation.

*
Variant: Function ident binder { measure term ident } : type := term

*
Variant: Function ident binder { wf term ident } : type := term
Defines a recursive function by well-founded recursion. The module Recdef of the standard library must be
loaded for this feature. The { } annotation is mandatory and must be one of the following:

* {measure term ident } with ident being the decreasing argumentand t e rm being a function from
type of ident to nat for which value on the decreasing argument decreases (for the 1t order on nat) at
each recursive call of £t erm. Parameters of the function are bound in term;

e {wf term ident } with ident being the decreasing argument and term an ordering relation on the
type of ident (i.e. of type Tigent — Tigent — P rop) for which the decreasing argument decreases at each
recursive call of term. The order must be well-founded. Parameters of the function are bound in term.

3.2. Extensions of Gallina 55

The Coq Reference Manual, Release 8.9.1

Depending on the annotation, the user is left with some proof obligations that will be used to define the function.
These proofs are: proofs that each recursive call is actually decreasing with respect to the given criteria, and (if
the criteria is wf) a proof that the ordering relation is well-founded. Once proof obligations are discharged, the
following objects are defined:

* The same objects as with the struct;
* The lemma ident,,, which collects all proof obligations in one property;
* The lemmas identgminate and 1dentg which is needed to be inlined during extraction of ident.

The way this recursive function is defined is the subject of several papers by Yves Bertot and Antonia Balaa on the
one hand, and Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu on the other hand. Remark: Proof
obligations are presented as several subgoals belonging to a Lemma ident ;.

3.2.4 Section mechanism

Sections create local contexts which can be shared across multiple definitions.

Example
Sections are opened by the Sect i on command, and closed by End.

Section si.

Inside a section, local parameters can be introduced using Variable, Hypothesis, or Context (there are also
plural variants for the first two).

Variables x y : nat.
x is declared
y is declared

The command Let introduces section-wide Let-in definitions. These definitions won’t persist when the section is closed,

and all persistent definitions which depend on y ' will be prefixed with let y' := y in.
Let y' := y.
Definition x' := S x.
Definition x'' := x' + y'.
Print x'.
x' = S x
nat
Print x''.
x'' = x' + yl
nat
End sl.
Print x'.
x' = fun x : nat => S x

nat —-> nat
Argument scope is [nat_scope]

Print x''.

x'!

= fun x y : nat => let y' := y in x' x + y'
nat —-> nat —-> nat

(continues on next page)

56 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

Argument scopes are [nat_scope nat_scope]

Notice the difference between the value of x' and x' ' inside section s1 and outside.

Command: Section ident
This command is used to open a section named ident. Section names do not need to be unique.

Command: End ident
This command closes the section named i dent. After closing of the section, the local declarations (variables and
local definitions, see Variahble) get discharged, meaning that they stop being visible and that all global objects
defined in the section are generalized with respect to the variables and local definitions they each depended on in
the section.

Error: This is not the last opened section.

Note: Most commands, like Hint, Notat ion, option management, ... which appear inside a section are canceled
when the section is closed.

Command: Variable ident : type
This command links ¢ ype to the name ident in the context of the current section. When the current section
is closed, name ident will be unknown and every object using this variable will be explicitly parameterized (the
variable is discharged).

Error: ident already exists.

+
Variant: Variable ident : type
Links t ype to each ident.

+
Variant: Variable | (ident : type)
Declare one or more variables with various types.

+
+
Variant: Variables (ident : type)

+
Variant: Hypothesis | (ident : type)
+
+
Variant: Hypotheses (ident : type)

+
These variants are synonyms of Variable | (ident : type)

Command: Let ident := term
This command binds the value term to the name ident in the environment of the current section. The name
ident is accessible only within the current section. When the section is closed, all persistent definitions and
theorems within it and depending on ident will be prefixed by the let-in definition let ident := term
in.
Error: ident already exists.

? ?
Variant: Let ident binders : type := term

*

Variant: Let Fixpoint ident fix_body |with fix body

3.2. Extensions of Gallina 57

The Coq Reference Manual, Release 8.9.1

*
Variant: Let CoFixpoint ident cofix body with cofix body

Command: Context binders
Declare variables in the context of the current section, like Variahble, but also allowing implicit variables, Implicit
generalization, and let-binders.

Context {A : Type} (a b : A).
Context "~ {EgDec A}.
Context (b' := Db).

See also:
Section Binders. Section Sections and contexts in chapter T'ypeclasses.
3.2.5 Module system

The module system provides a way of packaging related elements together, as well as a means of massive abstraction.

module_type = qualid
module_type with Definition qualid := term
module_type with Module qualid := qualid

\

\

| qualid qualid .. qualid

| 'qualid qualid .. qualid
module_binding = ([Import |Export] ident .. ident : module_type)
module_bindings module_binding .. module_binding
module_expression qualid .. qualid

| 'qualid .. qualid

Syntax of modules

In the syntax of module application, the ! prefix indicates that any Inline directive in the type of the functor arguments
will be ignored (see the Module Type command below).

Command: Module ident
This command is used to start an interactive module named ident.

*
Variant: Module ident module_binding

Starts an interactive functor with parameters given by module_bindings.
Variant: Module ident : module_ type
Starts an interactive module specifying its module type.

*
Variant: Module ident module_binding : module_type

Starts an interactive functor with parameters given by the list of module_bindings, and output module type
module_type.

+
Variant: Module ident <: module type
<:

Starts an interactive module satisfying each module_type.

* +
Variant: Module ident module binding <: |module_ type I .
o

Starts an interactive functor with parameters given by the list of module_binding. The output module
type is verified against each module_type.

58 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Variant: Module [Import | Export]
Behaves like Modu 1 e, but automatically imports or exports the module.

Reserved commands inside an interactive module

Command: Include module
Includes the content of module in the current interactive module. Here module can be a module expression or
a module type expression. If module is a high-order module or module type expression then the system tries to
instantiate module by the current interactive module.

+
Command: Include module =

is a shortcut for the commands Include module for each module.

Command: End ident
This command closes the interactive module ident. If the module type was given the content of the module
is matched against it and an error is signaled if the matching fails. If the module is basic (is not a functor) its
components (constants, inductive types, submodules etc.) are now available through the dot notation.

Error: No such label ident.
Error: Signature components for label ident do not match.
Error: This is not the last opened module.

Command: Module ident := module_expression
This command defines the module identifier i dent to be equal to module_expression.
*
Variant: Module ident module_binding := module_expression
Defines a functor with parameters given by the list of module_binding and body
module_expression.
*
Variant: Module ident module_binding : module_type := module_expression
Defines a functor with parameters given by the list of module_binding (possibly none), and output mod-
ule type module_type, with body module_expression.

* +
Variant: Module ident module_binding <: |module_type := module_expression
o

Defines a functor with parameters given by module_bindings . (possibly none) with body
module_expression. The body is checked against each module type..

* +
Variant: Module ident module_binding := |module_expression
<+

is equivalent to an interactive module where each module expression is included.
Command: Module Type ident
This command is used to start an interactive module type ident.

*
Variant: Module Type ident module binding

Starts an interactive functor type with parameters given by module bindings.

Reserved commands inside an interactive module type:

Command: Include module
Same as Include inside a module.

+
Command: Include module =

This is a shortcut for the command Include module for each module.

3.2. Extensions of Gallina 59

The Coq Reference Manual, Release 8.9.1

Command: assumption_keyword Inline assums
The instance of this assumption will be automatically expanded at functor application, except when this functor
application is prefixed by a ! annotation.

Command: End ident
This command closes the interactive module type ident.

Error: This is not the last opened module type.

Command: Module Type ident := module_ type
Defines a module type ident equal to module_type.
*
Variant: Module Type ident module_binding := module_type
Defines a functor type ident specifying functors taking arguments module_bindings and
returning module_type.

*

+
Variant: Module Type ident module_binding := |module_type

<+
is equivalent to an interactive module type were each module_type is included.

Command: Declare Module ident : module_type
Declares a module ident of type module_type.
*
Variant: Declare Module ident module binding : module_type
Declares a functor with parameters given by the list of module_binding and output module
type module_type.

Example
Let us define a simple module.

Module M.
Interactive Module M started

Definition T := nat.
T is defined

Definition x := 0.
x is defined

Definition y : bool.
1 subgoal

exact true.
No more subgoals.

Defined.
y is defined

End M.
Module M is defined

Inside a module one can define constants, prove theorems and do any other things that can be done in the toplevel. Com-
ponents of a closed module can be accessed using the dot notation:

60 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Print M.x.
M.x = 0
nat

A simple module type:

Module Type SIG.
Interactive Module Type SIG started

Parameter T : Set.
T is declared

Parameter x : T.
x is declared

End SIG.
Module Type SIG is defined

Now we can create a new module from M, giving it a less precise specification: the y component is dropped as well as the
body of x.

Module N : SIG with Definition T := nat := M.
Module N is defined

Print N.T.
N.T = nat
Set

Print N.x.

FA*x [N.x : N.T]

Fail Print N.y.
The command has indeed failed with message:
N.y not a defined object.

The definition of N using the module type expression SIGwithDefinition T := nat isequivalent to the following
one:

Module Type SIG'.
Interactive Module Type SIG' started

Definition T : Set := nat.
T is defined

Parameter x : T.
x is declared

End SIG'.
Module Type SIG' is defined

Module N : SIG' := M.
Module N is defined

If we just want to be sure that our implementation satisfies a given module type without restricting the interface, we can
use a transparent constraint

3.2. Extensions of Gallina 61

The Coq Reference Manual, Release 8.9.1

Module P <: SIG := M.
Module P is defined

Print P.y.
P.y = true
bool

Now let us create a functor, i.e. a parametric module

Module Two (X Y: SIG).
Interactive Module Two started

Definition T := (X.T * Y.T) %type.
T is defined

Definition x := (X.x, Y.x).
x is defined

End Two.
Module Two is defined

and apply it to our modules and do some computations:

Module Q := Two M N.
Module Q is defined

Eval compute in (fst Q.x + snd Q.x).
= N.x
nat

In the end, let us define a module type with two sub-modules, sharing some of the fields and give one of its possible
implementations:

Module Type SIG2.
Interactive Module Type SIG2 started

Declare Module M1 : SIG.
Module M1 is declared

Module M2 <: SIG.
Interactive Module M2 started

Definition T := M1.T.
T is defined

Parameter x : T.
x is declared

End M2.
Module M2 is defined

End SIG2.
Module Type SIG2 is defined

Module Mod <: SIG2.
Interactive Module Mod started

(continues on next page)

62 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

Module M1.
Interactive Module M1 started

Definition T := nat.
T is defined

Definition x := 1.
x is defined

End M1.
Module M1 is defined

Module M2 := M.
Module M2 is defined

End Mod.
Module Mod is defined

Notice that M is a correct body for the component M2 since its T component is equal nat and hence M1 . T as specified.

Note:
1. Modules and module types can be nested components of each other.
2. One can have sections inside a module or a module type, but not a module or a module type inside a section.

3. Commands like Hint or Notation can also appear inside modules and module types. Note that in case of a
module definition like:

Module N : SIG := M.
or:
Module N : SIG. .. End N.

hints and the like valid for N are not those defined in M (or the module body) but the ones defined in SIG.

Command: Import qualid
If qualid denotes a valid basic module (i.e. its module type is a signature), makes its components available by
their short names.

Example

Module Mod.
Interactive Module Mod started

Definition T:=nat.
T is defined

Check T.
T
Set

End Mod.
Module Mod is defined

(continues on next page)

3.2. Extensions of Gallina 63

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

Check Mod.T.
Mod.T
Set

Fail Check T.
The command has indeed failed with message:
The reference T was not found in the current environment.

Import Mod.
Check T.
T
Set

Some features defined in modules are activated only when a module is imported. This is for instance the case of
notations (see Notations).

Declarations made with the Local flag are never imported by the Tmport command. Such declarations are only
accessible through their fully qualified name.

Example

Module A.
Interactive Module A started

Module B.
Interactive Module B started

Local Definition T := nat.
T is defined

End B.
Module B is defined

End A.
Module A is defined

Import A.
Fail Check B.T.
The command has indeed failed with message:
The reference B.T was not found in the current environment.

Variant: Export qualid
When the module containing the command Export qualid is imported, qualid is imported as well.

Error: gualid is not a module.
Warning: Trying to mask the absolute name qualid!

Command: Print Module ident
Prints the module type and (optionally) the body of the module i dent.

Command: Print Module Type ident
Prints the module type corresponding to i dent.

Flag: Short Module Printing

64 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

This option (off by default) disables the printing of the types of fields, leaving only their names, for the commands
Print Moduleand Print Module Type.

3.2.6 Libraries and qualified names
Names of libraries

The theories developed in Coq are stored in library files which are hierarchically classified into libraries and sublibraries.
To express this hierarchy, library names are represented by qualified identifiers qualid, i.e. as list of identifiers separated
by dots (see Qualified identifiers and simple identifiers). For instance, the library file Mult of the standard Coq library
Arithisnamed Cog.Arith.Mult. The identifier that starts the name of a library is called a library root. All library
files of the standard library of Coq have the reserved root Coq but library filenames based on other roots can be obtained
by using Coq commands (coqc, coqtop, cogdep, ...) options —Q or —R (see By command line options). Also, when an
interactive Coq session starts, a library of root Top is started, unless option —top or —notop is set (see By command
line options).

Qualified names

Library files are modules which possibly contain submodules which eventually contain constructions (axioms, parameters,
definitions, lemmas, theorems, remarks or facts). The absolute name, or full name, of a construction in some library file
is a qualified identifier starting with the logical name of the library file, followed by the sequence of submodules names
encapsulating the construction and ended by the proper name of the construction. Typically, the absolute name Cog.
Init.Logic.eqdenotes Leibniz’ equality defined in the module Logic in the sublibrary Init of the standard library
of Coq.

The proper name that ends the name of a construction is the short name (or sometimes base name) of the construction
(for instance, the short name of Cog.Init.Logic.eqis eq). Any partial suffix of the absolute name is a partially
qualified name (e.g. Logic.edq is a partially qualified name for Cog.Init.Logic.eq). Especially, the short name
of a construction is its shortest partially qualified name.

Coq does not accept two constructions (definition, theorem, ...) with the same absolute name but different constructions
can have the same short name (or even same partially qualified names as soon as the full names are different).

Notice that the notion of absolute, partially qualified and short names also applies to library filenames.

Visibility

Coq maintains a table called the name table which maps partially qualified names of constructions to absolute names.
This table is updated by the commands Require, Import and Export and also each time a new declaration is added
to the context. An absolute name is called visible from a given short or partially qualified name when this latter name is

enough to denote it. This means that the short or partially qualified name is mapped to the absolute name in Coq name
table. Definitions flagged as Local are only accessible with their fully qualified name (see Definitions).

It may happen that a visible name is hidden by the short name or a qualified name of another construction. In this case,
the name that has been hidden must be referred to using one more level of qualification. To ensure that a construction
always remains accessible, absolute names can never be hidden.

Example
Check 0.
0
nat
Definition nat := bool.

(continues on next page)

3.2. Extensions of Gallina 65

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

nat is defined

Check 0.
0
Datatypes.nat

Check Datatypes.nat.
Datatypes.nat
Set

Locate nat.
Constant Top.nat
Inductive Coqg.Init.Datatypes.nat
(shorter name to refer to it in current context is Datatypes.nat)

See also:

Commands Locate and Locate Library.

Libraries and filesystem

Note: The questions described here have been subject to redesign in Coq 8.5. Former versions of Coq use the same
terminology to describe slightly different things.

Compiled files (. vo and . vio) store sub-libraries. In order to refer to them inside Coq, a translation from file-system
names to Coq names is needed. In this translation, names in the file system are called physical paths while Coq names
are contrastingly called logical names.

A logical prefix Lib can be associated to a physical pathpath using the command line option —-Q path Lib. All subfolders
of path are recursively associated to the logical path Lib extended with the corresponding suffix coming from the physical
path. For instance, the folder path/f00/Bar maps to Lib.f00.Bar. Subdirectories corresponding to invalid Coq
identifiers are skipped, and, by convention, subdirectories named CVS or _darcs are skipped too.

Thanks to this mechanism, . vo files are made available through the logical name of the folder they are in, extended with
their own basename. For example, the name associated to the file path/f00/Bar/File.vo is Lib.f00.Bar.
File. The same caveat applies for invalid identifiers. When compiling a source file, the . vo file stores its logical name,
so that an error is issued if it is loaded with the wrong loadpath afterwards.

Some folders have a special status and are automatically put in the path. Coq commands associate auto-
matically a logical path to files in the repository trees rooted at the directory from where the command is
launched, coglib/user—contrib/, the directories listed in the $SCOQPATH, ${XDG_DATA_HOME }/coqg/ and
${XDG_DATA_DIRS}/coqg/ environment variables (see XDG base directory speciﬁcation(’) with the same physical-
to-logical translation and with an empty logical prefix.

The command line option —R is a variant of —Q which has the strictly same behavior regarding loadpaths, but which also
makes the corresponding . vo files available through their short names in a way not unlike the Import command (see
here). For instance, -R path Lib associates to the file /path/£f00/Bar/File.vo the logical name Lib. f00.
Bar.File, but allows this file to be accessed through the short names fOO.Bar.File,Bar.Fileand File. If
several files with identical base name are present in different subdirectories of a recursive loadpath, which of these files is
found first may be system- dependent and explicit qualification is recommended. The From argument of the Require
command can be used to bypass the implicit shortening by providing an absolute root to the required file (see Compiled

files).

6 http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

66 Chapter 3. The language

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

The Coq Reference Manual, Release 8.9.1

There also exists another independent loadpath mechanism attached to OCaml object files (. cmo or . cmxs) rather than
Coq object files as described above. The OCaml loadpath is managed using the option —I path (in the OCaml world,
there is neither a notion of logical name prefix nor a way to access files in subdirectories of path). See the command
Declare ML Module in Compiled files to understand the need of the OCaml loadpath.

See By command line options for a more general view over the Coq command line options.

3.2.7 Implicit arguments

An implicit argument of a function is an argument which can be inferred from contextual knowledge. There are different
kinds of implicit arguments that can be considered implicit in different ways. There are also various commands to control
the setting or the inference of implicit arguments.

The different kinds of implicit arguments

Implicit arguments inferable from the knowledge of other arguments of a function

The first kind of implicit arguments covers the arguments that are inferable from the knowledge of the type of other
arguments of the function, or of the type of the surrounding context of the application. Especially, such implicit arguments
correspond to parameters dependent in the type of the function. Typical implicit arguments are the type arguments in
polymorphic functions. There are several kinds of such implicit arguments.

Strict Implicit Arguments

An implicit argument can be either strict or non strict. An implicit argument is said to be strict if, whatever the other
arguments of the function are, it is still inferable from the type of some other argument. Technically, an implicit argument
is strict if it corresponds to a parameter which is not applied to a variable which itself is another parameter of the function
(since this parameter may erase its arguments), not in the body of a match, and not itself applied or matched against
patterns (since the original form of the argument can be lost by reduction).

For instance, the first argument of
cons: forall A:Set, A -> list A -> list A
in module List . v is strict because 1ist is an inductive type and A will always be inferable from the type 1ist A

of the third argument of cons. Also, the first argument of cons is strict with respect to the second one, since the first
argument is exactly the type of the second argument. On the contrary, the second argument of a term of type

forall P:nat->Prop, forall n:nat, P n -> ex nat P
is implicit but not strict, since it can only be inferred from the type P n of the third argument and if P is, e.g., fun _
=> True, it reduces to an expression where n does not occur any longer. The first argument P is implicit but not strict

either because it can only be inferred from P n and P is not canonically inferable from an arbitrary n and the normal
form of P n. Consider, e.g., that n is 0 and the third argument has type True, then any P of the form

fun n => match n with 0 => True | _ => anything end

would be a solution of the inference problem.
Contextual Implicit Arguments

An implicit argument can be contextual or not. An implicit argument is said contextual if it can be inferred only from the
knowledge of the type of the context of the current expression. For instance, the only argument of:

nil : forall A:Set, list A"

3.2. Extensions of Gallina 67

The Coq Reference Manual, Release 8.9.1

is contextual. Similarly, both arguments of a term of type:

forall P:nat->Prop, forall n:nat, P n \/ n =0

are contextual (moreover, n is strict and P is not).
Reversible-Pattern Implicit Arguments

There is another class of implicit arguments that can be reinferred unambiguously if all the types of the remaining ar-
guments are known. This is the class of implicit arguments occurring in the type of another argument in position of
reversible pattern, which means it is at the head of an application but applied only to uninstantiated distinct variables.
Such an implicit argument is called reversible- pattern implicit argument. A typical example is the argument P of nat_rec
in
nat_rec : forall P : nat -> Set, P 0 —>

(forall n : nat, Pn -> P (S n)) -> forall x : nat, P x
(P is reinferable by abstracting over n in the type P n).

See Controlling reversible-pattern implicit arguments for the automatic declaration of reversible-pattern implicit arguments.

Implicit arguments inferable by resolution

This corresponds to a class of non-dependent implicit arguments that are solved based on the structure of their type only.

Maximal or non maximal insertion of implicit arguments

In case a function is partially applied, and the next argument to be applied is an implicit argument, two disciplines are
applicable. In the first case, the function is considered to have no arguments furtherly: one says that the implicit argument
is not maximally inserted. In the second case, the function is considered to be implicitly applied to the implicit arguments
it is waiting for: one says that the implicit argument is maximally inserted.

Each implicit argument can be declared to have to be inserted maximally or non maximally. This can be governed
argument per argument by the command Arguments (implicits) or globally by the Maximal Implicit
Insertion option.

See also:

Displaying what the implicit arguments are.
Casual use of implicit arguments
In a given expression, if it is clear that some argument of a function can be inferred from the type of the other arguments,

the user can force the given argument to be guessed by replacing it by “_”. If possible, the correct argument will be
automatically generated.

Error: Cannot infer a term for this placeholder.
Coq was not able to deduce an instantiation of a “_”.

Declaration of implicit arguments

In case one wants that some arguments of a given object (constant, inductive types, constructors, assumptions, local or
not) are always inferred by Coq, one may declare once and for all which are the expected implicit arguments of this object.
There are two ways to do this, a priori and a posteriori.

68 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Implicit Argument Binders

In the first setting, one wants to explicitly give the implicit arguments of a declared object as part of its definition. To do
this, one has to surround the bindings of implicit arguments by curly braces:

Definition id {A : Type} (x : A) : A := X.
id is defined

This automatically declares the argument A of id as a maximally inserted implicit argument. One can then do as-if the
argument was absent in every situation but still be able to specify it if needed:

Definition compose {A B C} (g : B —>C) (£ : A —> B) := fun x => g (f x).
compose is defined

Goal forall A, compose id id = id (A:=A).
1 subgoal

forall A : Type, compose id id = id

The syntax is supported in all top-level definitions: Definition, Fixpoint, Lemma and so on. For (co-)inductive
datatype declarations, the semantics are the following: an inductive parameter declared as an implicit argument need not
be repeated in the inductive definition but will become implicit for the constructors of the inductive only, not the inductive
type itself. For example:

Inductive list {A : Type} : Type :=
| nil : 1list
| cons : A —> list —> list.

list is defined

list_rect is defined

list_ind is defined

list_rec is defined

Print list.
Inductive list (A : Type) : Type := nil : list | cons : A -> list —> list

For list: Argument A is implicit and maximally inserted
For nil: Argument A is implicit and maximally inserted
For cons: Argument A is implicit and maximally inserted
For list: Argument scope is [type_scope]

For nil: Argument scope is [type_scope]

For cons: Argument scopes are [type_scope _ _]

One can always specify the parameter if it is not uniform using the usual implicit arguments disambiguation syntax.

Declaring Implicit Arguments

*
Command: Arguments qualid [ident] | ident

This command is used to set implicit arguments a posteriori, where the list of possibly bracketed i dent is a prefix
of the list of arguments of qualid where the ones to be declared implicit are surrounded by square brackets and
the ones to be declared as maximally inserted implicits are surrounded by curly braces.

After the above declaration is issued, implicit arguments can just (and have to) be skipped in any expression involv-
ing an application of qualid.

3.2. Extensions of Gallina 69

The Coq Reference Manual, Release 8.9.1

Command: Arguments qualid : clear implicits
This command clears implicit arguments.
*
Variant: Global Arguments qualid [ident] | ident
This command is used to recompute the implicit arguments of qualid after ending of the current section if any,
enforcing the implicit arguments known from inside the section to be the ones declared by the command.
*
Variant: Local Arguments qualid |[ident] | ident
When in a module, tell not to activate the implicit arguments of qualid declared by this command to contexts
that require the module.

? +
Variant: Global | Local Arguments qualid | [ident] | ident

For names of constants, inductive types, constructors, lemmas which can only be applied to a fixed number of argu-
ments (this excludes for instance constants whose type is polymorphic), multiple implicit arguments declarations
can be given. Depending on the number of arguments qualid is applied to in practice, the longest applicable list of
implicit arguments is used to select which implicit arguments are inserted. For printing, the omitted arguments are
the ones of the longest list of implicit arguments of the sequence.

Example

Inductive list (A:Type) : Type :=
| nil : list A
| cons : A —> list A —-> list A.
list is defined
list_rect is defined
list_ind is defined
list_rec is defined

Check (cons nat 3 (nil nat)).
cons nat 3 (nil nat)
list nat
Arguments cons [A] _
Arguments nil [A].
Check (cons 3 nil).
cons 3 nil
list nat

Fixpoint map (A B:Type) (f:A->B) (l:1list A) : list B := match 1 with nil => nil |_
wcons a t => cons (f a) (map A B f t) end.
map is defined
map is recursively defined (decreasing on 4th argument)

Fixpoint length (A:Type) (l:1list A) : nat := match 1 with nil => 0 | cons _ m => S_
< (length A m) end.
length is defined
length is recursively defined (decreasing on 2nd argument)

Arguments map [A B] f 1.
Arguments length {A} 1.
(* A has to be maximally inserted *)

Check (fun 1l:1ist (list nat) => map length 1).
fun 1 : list (list nat) => map length 1
list (list nat) -> list nat
(continues on next page)

70 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

Arguments map [A B] £ 1, [A] B f 1, A B f 1.
Check (fun 1 => map length 1 = map (list nat) nat length 1).
fun 1 : list (list nat) => map length 1 = map length 1
list (list nat) —-> Prop

Note: To know which are the implicit arguments of an object, use the command Print Implicit (see Displaying
what the implicit arguments are).

Automatic declaration of implicit arguments

Command: Arguments qualid : default implicits
This command tells Coq to automatically detect what are the implicit arguments of a defined object.

The auto-detection is governed by options telling if strict, contextual, or reversible-pattern implicit arguments must
be considered or not (see Controlling strict implicit arguments, Controlling strict implicit arguments, Controlling
reversible-pattern implicit arguments, and also Controlling the insertion of implicit arguments not followed by explicit
arguments).

Variant: Global Arguments qualid : default implicits
Tell to recompute the implicit arguments of qualid after ending of the current section if any.

Variant: Local Arguments qualid : default implicits
When in a module, tell not to activate the implicit arguments of qualid computed by this declaration to
contexts that requires the module.

Example

Inductive list (A:Set) : Set :=

| nil : list A

| cons : A —> list A —-> list A.
list is defined
list_rect is defined
list_ind is defined
list_rec is defined

Arguments cons : default implicits.
Print Implicit cons.
cons : forall A : Set, A —> list A —-> list A

Argument A is implicit

Arguments nil : default implicits.
Print Implicit nil.
nil : forall A : Set, list A

Set Contextual Implicit.
Arguments nil : default implicits.
Print Implicit nil.

nil : forall A : Set, list A

Argument A is implicit and maximally inserted

3.2. Extensions of Gallina 71

The Coq Reference Manual, Release 8.9.1

The computation of implicit arguments takes account of the unfolding of constants. For instance, the variable p below has
type (Transitivity R) whichisreducibleto forall x,y:U, R x y -> forall z:U, Ry z -> R
x z. As the variables x, y and z appear strictly in the body of the type, they are implicit.

Variable X : Type.
X is declared

Definition Relation := X -> X —-> Prop.
Relation is defined

Definition Transitivity (R:Relation) := forall x y:X, R x y —> forall z:X, Ry z —> R.
X Z.

Transitivity is defined

Variables (R : Relation) (p : Transitivity R).
R is declared
p is declared

Arguments p : default implicits.
Print p.
*** [p : Transitivity R]

Expanded type for implicit arguments
p : forall xy : X, Rxy —> forall z : X, Ry z > R x z

Arguments x, y, z are implicit

Print Implicit p.
p : forall xy : X, Rxy —> forall z : X, Ry z > R x z

Arguments x, y, z are implicit

Variables (a b ¢ : X) (rl : R a b) (r2 : R b c).
a is declared
b is declared
c is declared
rl is declared
r2 is declared

Check (p rl r2).
p rl r2
: Rac

Mode for automatic declaration of implicit arguments
Flag: Implicit Arguments
This option (off by default) allows to systematically declare implicit the arguments detectable as such. Auto-

detection of implicit arguments is governed by options controlling whether strict and contextual implicit arguments
have to be considered or not.

Controlling strict implicit arguments

Flag: Strict Implicit
When the mode for automatic declaration of implicit arguments is on, the default is to automatically set implicit

72 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

only the strict implicit arguments plus, for historical reasons, a small subset of the non-strict implicit arguments.
To relax this constraint and to set implicit all non strict implicit arguments by default, you can turn this option off.

Flag: Strongly Strict Implicit

Use this option (off by default) to capture exactly the strict implicit arguments and no more than the strict implicit
arguments.

Controlling contextual implicit arguments

Flag: Contextual Implicit
By default, Coq does not automatically set implicit the contextual implicit arguments. You can turn this option on
to tell Coq to also infer contextual implicit argument.

Controlling reversible-pattern implicit arguments

Flag: Reversible Pattern Implicit
By default, Coq does not automatically set implicit the reversible-pattern implicit arguments. You can turn this
option on to tell Coq to also infer reversible-pattern implicit argument.

Controlling the insertion of implicit arguments not followed by explicit arguments

Flag: Maximal Implicit Insertion
Assuming the implicit argument mode is on, this option (off by default) declares implicit arguments to be automat-
ically inserted when a function is partially applied and the next argument of the function is an implicit one.

Explicit applications

In presence of non-strict or contextual argument, or in presence of partial applications, the synthesis of implicit arguments
may fail, so one may have to give explicitly certain implicit arguments of an application. The syntax for this is (ident
:= term) where ident is the name of the implicit argument and term is its corresponding explicit term. Alternatively,

. .1 + .
one can locally deactivate the hiding of implicit arguments of a function by using the notation qualid | term | . This
syntax extension is given in the following grammar:

term = @ gqualid term .. term

| @ qualid

| qualid argument .. argument
argument = term

| (ident := term)

Syntax for explicitly giving implicit arguments

Example: (continued)

Check (p rl (z:=c)).
p rl (z:=c)
Rbc->Rac

Check (p (x:=a) (y:=b) rl (z:=c) r2).
p rl r2
: Rac

3.2. Extensions of Gallina 73

The Coq Reference Manual, Release 8.9.1

Renaming implicit arguments

*
Command: Arguments qualid |[name ¢ rename

This command is used to redefine the names of implicit arguments.

With the assert flag, Argument s can be used to assert that a given object has the expected number of arguments and
that these arguments are named as expected.

Example: (continued)

Arguments p [s t] _ [u] _: rename.
Check (p rl (u:=c)).
p rl (u:=c)
Rbc->Rac

Check (p (s:=a) (t:=b) rl (u:=c) r2).
p rl r2
R ac

Fail Arguments p [s t] _ [w] _ : assert.
The command has indeed failed with message:
Flag "rename" expected to rename u into w.

Displaying what the implicit arguments are

Command: Print Implicit qualid
Use this command to display the implicit arguments associated to an object, and to know if each of them is to be
used maximally or not.

Explicit displaying of implicit arguments for pretty-printing

Flag: Printing Implicit
By default, the basic pretty-printing rules hide the inferable implicit arguments of an application. Turn this option
on to force printing all implicit arguments.

Flag: Printing Implicit Defensive
By default, the basic pretty-printing rules display the implicit arguments that are not detected as strict implicit
arguments. This “defensive” mode can quickly make the display cumbersome so this can be deactivated by turning
this option off.

See also:

Printing All.
Interaction with subtyping
When an implicit argument can be inferred from the type of more than one of the other arguments, then only the type of

the first of these arguments is taken into account, and not an upper type of all of them. As a consequence, the inference
of the implicit argument of “=" fails in

74 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Fail Check nat = Prop.
The command has indeed failed with message:
The term "Prop" has type "Type" while it is expected to have type
"Set" (universe inconsistency) .

but succeeds in

Check Prop = nat.
Prop = nat
Prop

Deactivation of implicit arguments for parsing

Flag: Parsing Explicit
Turning this option on (it is off by default) deactivates the use of implicit arguments.

In this case, all arguments of constants, inductive types, constructors, etc, including the arguments declared as
implicit, have to be given as if no arguments were implicit. By symmetry, this also affects printing.

Canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve unification problems involving a
projection applied to an unknown structure instance (an implicit argument) and a value. The complete documentation of
canonical structures can be found in Canonical Structures; here only a simple example is given.

Command: Canonical Structure qualid
This command declares qua11id as a canonical structure.

Assume that qualid denotes an object (Build_struct c; ... ¢,) in the structure st ruct of which the
fields are x;, ..., x,,. Then, each time an equation of the form (x; _) =gs, ¢, has to be solved during the type
checking process, qualid is used as a solution. Otherwise said, gualid is canonically used to extend the field
c, into a complete structure built on c;.

Canonical structures are particularly useful when mixed with coercions and strict implicit arguments.

Example

Here is an example.

Require Import Relations.
Require Import EgNat.
Set Implicit Arguments.
Unset Strict Implicit.
Structure Setoid : Type := {Carrier :> Set; Equal : relation Carrier;
Prf_equiv : equivalence Carrier Equal}.
Setoid is defined
Carrier is defined
Equal is defined
Prf_equiv is defined

Definition is_law (A B:Setoid) (f:A -> B) := forall x y:A, Equal x y —> Equal (f_
-x) (f y).
is_law is defined

Axiom eqg_nat_equiv : equivalence nat eqg_nat.
(continues on next page)

3.2. Extensions of Gallina 75

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

eq_nat_equiv is declared

Definition nat_setoid : Setoid := Build_Setoid eg_nat_equiv.
nat_setoid is defined

Canonical Structure nat_setoid.

Thanks to nat_setoid declared as canonical, the implicit arguments A and B can be synthesized in the next
statement.

Lemma is_law_S : is_law S.
1 subgoal

is_law (A:=nat_setoid) (B:=nat_setoid) S

Note: If a same field occurs in several canonical structures, then only the structure declared first as canonical is

considered.
. ?
Variant: Canonical Structure ident : type 1= term
This is equivalent to a regular definition of ident followed by the declaration Canonical Structure
ident.

Command: Print Canonical Projections
This displays the list of global names that are components of some canonical structure. For each of them, the
canonical structure of which it is a projection is indicated.

Example

For instance, the above example gives the following output:

Print Canonical Projections.
nat <- Carrier (nat_setoid)
eq_nat <- Equal (nat_setoid)
eq_nat_equiv <- Prf_equiv (nat_setoid)

Implicit types of variables

It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be convenient to bind
the names n or m to the type nat of natural numbers).

Command: Implicit Types ident T : type
The effect of the command is to automatically set the type of bound variables starting with i dent (either ident
itself or i dent followed by one or more single quotes, underscore or digits) to be t ype (unless the bound variable
is already declared with an explicit type in which case, this latter type is considered).

Example

76 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Require Import List.
Implicit Types m n : nat.

Lemma cons_inj_nat : forallmn 1, n :: 1 = m :: 1 -> n = m.
1 subgoal
forall (m n : nat) (1 : list nat), n :: 1 = m :: 1 -—> n =m
Proof.
intros m n.
1 subgoal
m, n nat
forall 1 : list nat, n :: 1 = m :: 1 -> n =m
Abort.
Lemma cons_inj_bool : forall (m n:bool) 1, n :: 1 =m 1 -—> n = m.
1 subgoal
forall (m n : bool) (1 : list bool), n :: 1 =m :: 1 -> n =m
Abort.

Variant: Implicit Type ident : type
This is useful for declaring the implicit type of a single variable.

+

+
Variant: Implicit Types | (ident : type)
Adds blocks of implicit types with different specifications.

Implicit generalization

Implicit generalization is an automatic elaboration of a statement with free variables into a closed statement where these
variables are quantified explicitly. Implicit generalization is done inside binders starting with a ‘ and terms delimited
by ‘{ } and ‘(), always introducing maximally inserted implicit arguments for the generalized variables. Inside implicit
generalization delimiters, free variables in the current context are automatically quantified using a product or a lambda
abstraction to generate a closed term. In the following statement for example, the variables n and m are automatically
generalized and become explicit arguments of the lemma as we are using ‘():

Generalizable All Variables.
Lemma nat_comm : (n = n + 0).
1 subgoal

One can control the set of generalizable identifiers with the Generalizable vernacular command to avoid unex-
pected generalizations when mistyping identifiers. There are several commands that specify which variables should be
generalizable.

Command: Generalizable All Variables
All variables are candidate for generalization if they appear free in the context under a generalization delimiter. This

3.2. Extensions of Gallina 77

The Coq Reference Manual, Release 8.9.1

may result in confusing errors in case of typos. In such cases, the context will probably contain some unexpected
generalized variable.

Command: Generalizable No Variables
Disable implicit generalization entirely. This is the default behavior.

Command: Generalizable (Variable | Variables) ident
Allow generalization of the given identifiers only. Calling this command multiple times adds to the allowed identi-
fiers.

Command: Global Generalizable
Allows exporting the choice of generalizable variables.

One can also use implicit generalization for binders, in which case the generalized variables are added as binders and set
maximally implicit.

Definition id " (x : A) : A := x.
id is defined

Print id.
id = fun (A : Type) (x : A) => X
forall A : Type, A —> A

Argument A is implicit and maximally inserted
Argument scopes are [type_scope _]

The generalizing binders ‘{ } and ‘() work similarly to their explicit counterparts, only binding the generalized variables
implicitly, as maximally-inserted arguments. In these binders, the binding name for the bound object is optional, whereas
the type is mandatory, dually to regular binders.

3.2.8 Coercions

Coercions can be used to implicitly inject terms from one class in which they reside into another one. A class is either a
sort (denoted by the keyword Sortclass), a product type (denoted by the keyword Funclass), or a type constructor
(denoted by its name), e.g. an inductive type or any constant with a type of the form forall (x;:2;)... (x,:34,),
s where s is a sort.

Then the user is able to apply an object that is not a function, but can be coerced to a function, and more generally to
consider that a term of type A is of type B provided that there is a declared coercion between A and B.

More details and examples, and a description of the commands related to coercions are provided in Implicit Coercions.

3.2.9 Printing constructions in full

Flag: Printing All

Coercions, implicit arguments, the type of pattern matching, but also notations (see Syntax extensions and interpre-
tation scopes) can obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms
are sensitive to the implicit arguments). Turning this option on deactivates all high-level printing features such as
coercions, implicit arguments, returned type of pattern matching, notations and various syntactic sugar for pattern
matching or record projections. Otherwise said, Printing AI11 includes the effects of the options Printing
Implicit, Printing Coercions, Printing Synth, Printing Projections,and Printing
Notations. To reactivate the high-level printing features, use the command Unset Printing All.

78 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

3.2.10 Printing universes

Flag: Printing Universes
Turn this option on to activate the display of the actual level of each occurrence of Type. See Sorts for details.
This wizard option, in combination with Printing A1l can help to diagnose failures to unify terms apparently
identical but internally different in the Calculus of Inductive Constructions.
?
Command: Print Sorted | Universes
This command can be used to print the constraints on the internal level of the occurrences of Type (see Sorts).

If the optional Sorted option is given, each universe will be made equivalent to a numbered label reflecting its
level (with a linear ordering) in the universe hierarchy.
?
Variant: Print Sorted | Universes string
This variant accepts an optional output filename.

If stringendsin .dot or .gv, the constraints are printed in the DOT language, and can be processed by
Graphviz tools. The format is unspecified if st ring doesn’t end in . dot or . gv.

3.2.11 Existential variables

Coq terms can include existential variables which represents unknown subterms to eventually be replaced by actual sub-
terms.

@ »

Existential variables are generated in place of unsolvable implicit arguments or “_" placeholders when using commands
such as Check (see Section Requests to the environment) or when using tactics such as refine, as well as in place of
unsolvable instances when using tactics such that eapply. An existential variable is defined in a context, which is the
context of variables of the placeholder which generated the existential variable, and a type, which is the expected type of
the placeholder.

As a consequence of typing constraints, existential variables can be duplicated in such a way that they possibly appear in
different contexts than their defining context. Thus, any occurrence of a given existential variable comes with an instance
of its original context. In the simple case, when an existential variable denotes the placeholder which generated it, or is
used in the same context as the one in which it was generated, the context is not displayed and the existential variable is
represented by “?” followed by an identifier.

Parameter identity : forall (X:Set), X -> X.
identity is declared

Check identity
identity ?y ?x

2500 {x:=?x}
where
?y ¢+ [|- forall x : 7S, 7?S0]
25 ¢ [|- Set]
2?50 : [x : ?S |- Set]
?x o [|- ?8]
Check identity _ (fun x => _).

identity ?y (fun x : 2?50 => ?y0)
?S@{x:=fun x : ?S0 => ?y0}

where

?y :+ [|- forall x : forall x : 2?50, ?S1, 7S]
2?5 o [x forall x : 250, ?S1 |- Set]

250 [|- Set]

2?31 : [x : 2?50 |- Set]

?y0 [x ?S0 |- ?S1]

3.2. Extensions of Gallina 79

The Coq Reference Manual, Release 8.9.1

In the general case, when an existential variable ? i dent appears outside of its context of definition, its instance, written
*

under the form { |ident := term [} isappending to its name, indicating how the variables of its defining context

are instantiated. The variables of the context of the existential variables which are instantiated by themselves are not

written, unless the flag Printing Existential Instances ison (see Section Explicit displaying of existential

instances for pretty-printing), and this is why an existential variable used in the same context as its context of definition is

written with no instance.

Check (fun x y => _) 0 1.
(fun x y : nat => ?y) 0 1
?Te{x:=0; y:=1}

where
?T : [x : nat y : nat |- Type]
?y ¢ [x @ nat vy : nat |- ?T]

Set Printing Existential Instances.
Check (fun x y => _) 0 1.
(fun x y : nat => ?y@{x:=x; y:=y}) 0 1
?T@{x:=0; y:=1}

where
?T : [x : nat y : nat |- Type]
?y ¢ [x @ nat vy : nat |- ?T@{x:=x; y:=y}]

Existential variables can be named by the user upon creation using the syntax ? [ident]. This is useful when the
existential variable needs to be explicitly handled later in the script (e.g. with a named-goal selector, see Goal selectors).

Explicit displaying of existential instances for pretty-printing

Flag: Printing Existential Instances
This option (off by default) activates the full display of how the context of an existential variable is instantiated at
each of the occurrences of the existential variable.

Solving existential variables using tactics

Instead of letting the unification engine try to solve an existential variable by itself, one can also provide an explicit
hole together with a tactic to solve it. Using the syntax 1tac: (tacexpr), the user can put a tactic anywhere a term
is expected. The order of resolution is not specified and is implementation-dependent. The inner tactic may use any
variable defined in its scope, including repeated alternations between variables introduced by term binding as well as
those introduced by tactic binding. The expression tacexpr can be any tactic expression as described in The factic
language.

Definition foo (x : nat) : nat := ltac: (exact x).
identity is declared
foo is defined

This construction is useful when one wants to define complicated terms using highly automated tactics without resorting
to writing the proof-term by means of the interactive proof engine.

This mechanism is comparable to the Declare Implicit Tactic command defined at Setting implicit automation
tactics, except that the used tactic is local to each hole instead of being declared globally.

3.3 The Coq library

The Coq library is structured into two parts:

80 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

 The initial library: it contains elementary logical notions and data-types. It constitutes the basic state of the system
directly available when running Coq;

* The standard library: general-purpose libraries containing various developments of Coq axiomatizations about
sets, lists, sorting, arithmetic, etc. This library comes with the system and its modules are directly accessible through
the Require command (see Section Compiled files);

In addition, user-provided libraries or developments are provided by Coq users’ community. These libraries and develop-
ments are available for download at http://coq.inria.fr (see Section Users’ contributions).

This chapter briefly reviews the Coq libraries whose contents can also be browsed at http://coq.inria.fr/stdlib.

3.3.1 The basic library

This section lists the basic notions and results which are directly available in the standard Coq system. Most of these
constructions are defined in the Pre 1ude module in directory theories/Init at the Coqroot directory; this includes
the modules Notations, Logic, Datatypes, Specif, Peano, Wf and Tactics. Module Logic_Type also
makes it in the initial state.

Notations

This module defines the parsing and pretty-printing of many symbols (infixes, prefixes, etc.). However, it does not assign
a meaning to these notations. The purpose of this is to define and fix once for all the precedence and associativity of very
common notations. The main notations fixed in the initial state are :

Notation Precedence | Associativity
- > _ 99 right
_ <> _ 95 no
_ \/ _ 85 right
_ /\ _ 80 right
~ _ 75 right
_ = _ 70 no
= = _ 70 no
= _ > _ 70 no
<> 70 no
_ <> _ > _ |70 no
< 70 no
> 70 no
<= _ 70 no
_o>= 70 no
< < 70 no
<<= _ 70 no
<= _ < _ 70 no
<= _ <= _ |10 no
_t+ _ 50 left
1 50 left
_ - _ 50 left
_x 40 left
_ 40 left
_/ _ 40 left
- _ 35 right
/ _ 35 right
_ N 30 right

3.3. The Coq library 81

http://coq.inria.fr
http://coq.inria.fr/stdlib

The Coq Reference Manual, Release 8.9.1

Logic

The basic library of Coq comes with the definitions of standard (intuitionistic) logical connectives (they are defined as
inductive constructions). They are equipped with an appealing syntax enriching the subclass form of the syntactic class

term. The syntax of form is shown below:

form = True (True)

| False (False)

| ~ form (not)

| form /\ form (and)

| form \/ form (or)

| form —> form (primitive implication)
| form <-> form (1ff)

|
|
|
|
|

forall ident : type, form (primitive for all)
exists ident [: specif], form (ex)

exists2 ident [: specif], form & form (ex2)
term = term (eq)

term = term :> specif (eq)

Note: Implication is not defined but primitive (it is a non-dependent product of a proposition over another proposition).
There is also a primitive universal quantification (it is a dependent product over a proposition). The primitive universal

quantification allows both first-order and higher-order quantification.

Propositional Connectives

First, we find propositional calculus connectives:

Inductive True : Prop := I.

Inductive False : Prop :=

Definition not (A: Prop) := A —> False.

Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).

Section Projections.
Variables A B : Prop.
Theorem projl : A /\ B —> A.
Theorem proj2 : A /\ B -> B.

End Projections.

Inductive or (A B:Prop) : Prop :=

| or_introl (_:A)

| or_intror (_:B).

Definition iff (P Q:Prop) := (P -> Q) /\ (Q —> P).
Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R.
Quantifiers

Then we find first-order quantifiers:

Definition all (A:Set) (P:A —-> Prop) := forall x:A, P x.
Inductive ex (A: Set) (P:A -> Prop) : Prop :=
ex_intro (x:A) (_:P x).

(continues on next page)

82 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

(continued from previous page)
Inductive ex2 (A:Set) (P Q:A —-> Prop) : Prop :=
ex_intro2 (x:A) (_:P x) (_:Q x).

The following abbreviations are allowed:

exists x:A, P ex A (fun x:A => P)

exists x, P ex _ (fun x => P)

exists?2 x:A, P & Q | ex2 A (fun x:A => P) (fun x:A => Q)
exists2 x, P & Q ex?2 _ (fun x => P) (fun x => Q)

The type annotation : A can be omitted when A can be synthesized by the system.

Equality

Then, we find equality, defined as an inductive relation. That is, given a type A and an x of type A, the predicate (eq A
x) is the smallest one which contains x. This definition, due to Christine Paulin-Mohring, is equivalent to define eq as
the smallest reflexive relation, and it is also equivalent to Leibniz’ equality.

Inductive eq (A:Type) (x:A) : A —> Prop :=
eq_refl : eqg A x X.

Lemmas

Finally, a few easy lemmas are provided.

Theorem absurd : forall A C:Prop, A —> ~ A —> C.
Section equality.
Variables A B : Type.
Variable £ : A —> B.
Variables x y z : A.
Theorem eg_sym : X =y —> y = X.

Theorem eqg_trans : x = >

Theorem f_equal : x =y —> f x = f y.

Theorem not_eg_sym : X <>y —-> y <> X.
End equality.
Definition eq_ind_r

forall (A:Type) (x:A) (P:A->Prop), P x —> forall y:A, y = x —> P y.
Definition eq_rec_r

forall (A:Type) (x:A) (P:A->Set), P x —> forall y:A, v = x —> P y.
Definition eqg_rect_r

forall (A:Type) (x:A) (P:A->Type), P x —> forall y:A, y = x —> P y.
Hint Immediate eq_sym not_eqg_sym : core.

Yy = 2z —> X = Z.

<

The theorem f_equal is extended to functions with two to five arguments. The theorem are names f_equal?2,
f_equal3, f_equald and f_equalb. Forinstance f_equal3 is defined the following way.

Theorem f_equal3
forall (A1 A2 A3 B:Type) (f:Al1 -> A2 -> A3 —-> B)
(x1 y1:Al1) (x2 y2:A2) (x3 y3:A3),
x1l =yl —> x2 = y2 —> x3 = y3 —> f x1 x2 x3 = £ yl y2 y3.

3.3. The Coq library 83

The Coq Reference Manual, Release 8.9.1

Datatypes

In the basic library, we find in Dat at ypes . v the definition of the basic data-types of programming, defined as inductive
constructions over the sort Set. Some of them come with a special syntax shown below (this syntax table is common
with the next section Specification):

specif = specif * specif (prod)

| specif + specif (sum)

| specif + { specif } (sumor)

| { specif } + { specif } (sumbool)

| { ident : specif | form } (siqg)

| { ident : specif | form & form } (sig2)

| { ident : specif & specif } (sigT)

| { ident : specif & specif & specif } (sigT2)
term n= (term, term) (pair)

Programming

Inductive unit : Set := tt.

Inductive bool : Set := true | false.

Inductive nat : Set := O | S (n:nat).

Inductive option (A:Set) : Set := Some (_:A) | None.
Inductive identity (A:Type) (a:A) : A —> Type :=

refl_identity : identity A a a.

Note that zero is the letter O, and not the numeral O.

The predicate identity is logically equivalent to equality but it lives in sort Type. It is mainly maintained for com-
patibility.

We then define the disjoint sum of A+B of two sets A and B, and their product A*B.

Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B).

Inductive prod (A B:Set) : Set := pair (_:A) (_:B).

Section projections.
Variables A B : Set.

Definition fst (H: prod A B) := match H with
| pair = _ x y => x
end.

Definition snd (H: prod A B) := match H with
| pair = _ xy => vy
end.

End projections.

Some operations on boo1 are also provided: andb (with infix notation & &), orb (with infix notation | |), xorb, implb
and negb.

Specification

The following notions defined in module Specif . v allow to build new data-types and specifications. They are available
with the syntax shown in the previous section Datatypes.

84 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

For instance, given A: Type and P:A->Prop, the construct {x:A | P x} (in abstract syntax (sig A P))isa
Type. We may build elements of this setas (exist x p) whenever we have a witness x : A with its justification p : P
X.

From such a (exist x p) we may in turn extract its witness x : A (using an elimination construct such as match)
but not its justification, which stays hidden, like in an abstract data-type. In technical terms, one says that sig is a weak
(dependent) sum. A variant sig2 with two predicates is also provided.

Inductive sig (A:Set) (P:A —-> Prop) : Set := exist (x:A) (_:P x).
Inductive sig2 (A:Set) (P Q:A —-> Prop) : Set :=
exist?2 (x:A) (_:P x) (_:Q x).

A strong (dependent) sum {x:A & P x} may be also defined, when the predicate P is now defined as a constructor of
types in Type.

Inductive sigT (A:Type) (P:A —> Type) : Type := existT (x:A) (_:P x).
Section Projections2.
Variable A : Type.
Variable P : A —> Type.
Definition projTl (H:sigT A P) := let (x, h) := H in x.
Definition projT2 (H:sigT A P) :=
match H return P (projTl H) with

existT = x h =>nh
end.
End Projections2.
Inductive sigT2 (A: Type) (P Q:A -> Type) : Type :=
existT2 (x:A) (_:P x) (_:Q x).

A related non-dependent construct is the constructive sum {A}+{B} of two propositions A and B.

Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).

This sumbool construct may be used as a kind of indexed boolean data-type. An intermediate between sumbool and
sum is the mixed sumor which combines A : Set and B: Prop in the construction A+{B} in Set.

Inductive sumor (A:Set) (B:Prop) : Set :=
| inleft (_:A)
| inright (_:B).

‘We may define variants of the axiom of choice, like in Martin-L6f’s Intuitionistic Type Theory.

Lemma Choice
forall (S S':Set) (R:S -> S' —-> Prop),
(forall x:S, {y : S'" | Rx y}) —>
{f : S > 8" | forall z:S, R z (f z)}.
Lemma Choice2
forall (S S':Set) (R:S -> S' -> Set),
(forall x:S, {y : S' & R x y}) —>
{f : S > 8' & forall z:S, Rz (f z)}.
Lemma bool_choice
forall (S:Set) (R1 R2:S -> Prop),
(forall x:S, {R1 x} + {R2 x}) —>
{f : S —> bool |
forall x:3, £ x = true /\ R1 x \/ £ x = false /\ R2 x}.

The next construct builds a sum between a data-type A : Type and an exceptional value encoding errors:

3.3. The Coq library 85

The Coq Reference Manual, Release 8.9.1

Definition Exc := option.
Definition value := Some.
Definition error := None.

This module ends with theorems, relating the sorts Set or Type and Prop in a way which is consistent with the realiz-
ability interpretation.

Definition except := False_rec.

Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.
Theorem and_rect?2

forall (A B:Prop) (P:Type), (A -—> B —> P) -> A /\ B —> P.

Basic Arithmetics

The basic library includes a few elementary properties of natural numbers, together with the definitions of predecessor,
addition and multiplication, in module Peano . v. It also provides a scope nat__scope gathering standard notations for
common operations (+, *) and a decimal notation for numbers, allowing for instance to write 3 for S (S (S 0))).
This also works on the left hand side of a mat ch expression (see for example section refine). This scope is opened
by default.

Example
The following example is not part of the standard library, but it shows the usage of the notations:

Fixpoint even (n:nat) : bool :=
match n with

| 0 => true

| 1 => false

[S (S n) => even n

end.

Now comes the content of module Peano:

Theorem eq_S : forall x y:nat, x =y -> S x =S vy.

Definition pred (n:nat) : nat :=

match n with

| 0 =>20

| S u =>u

end.
Theorem pred_Sn : forall m:nat, m = pred (S m).
Theorem eg_add_S : forall n m:nat, S n =S m —>n = m.
Hint Immediate eq_add_S : core.
Theorem not_eqg_S : forall n m:nat, n <> m -> S n <> S m.
Definition IsSucc (n:nat) : Prop :=

match n with
| 0 => False
| S p => True

end.
Theorem O_S : forall n:nat, 0 <> S n.
Theorem n_Sn : forall n:nat, n <> S n.
Fixpoint plus (n m:nat) {struct n} : nat :=
match n with

| 0 =>m

| Sp=>5 (p +m
(continues on next page)

86 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

end
where "n + m" := (plus n m) : nat_scope.
Lemma plus_n_O : forall n:nat, n = n + 0.
Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Fixpoint mult (n m:nat) {struct n} : nat :=

match n with

| 0 =>0

| Sp=>m+p *m

end
where "n * m" := (mult n m) : nat_scope.
Lemma mult_n_O : forall n:nat, 0 = n * 0.
Lemma mult_n_Sm : forall n m:nat, n * m + n = n * (S m).

Finally, it gives the definition of the usual orderings 1e, 1t, ge and gt.

Inductive le (n:nat) : nat —-> Prop :=

| leen : le nn

| le_S : forall m:nat, n <=m -> n <= (S m)
where "n <= m" := (le n m) : nat_scope.
Definition 1t (n m:nat) := S n <= m.
Definition ge (n m:nat) := m <= n.
Definition gt (n m:nat) :=m < n.

Properties of these relations are not initially known, but may be required by the user from modules Le and Lt. Finally,
Peano gives some lemmas allowing pattern matching, and a double induction principle.

Theorem nat_case

forall (n:nat) (P:nat -> Prop),

P 0O —> (forall m:nat, P (S m)) —-> P n.
Theorem nat_double_ind

forall R:nat -> nat —-> Prop,

(forall n:nat, R 0 n) —>
(forall n:nat, R (S n) 0) —>
(forall n m:nat, Rnm -> R (S n) (S m)) —> forall n m:nat, R n m.

Well-founded recursion

The basic library contains the basics of well-founded recursion and well-founded induction, in module Wf . v.

Section Well_founded.
Variable A : Type.
Variable R : A -> A —> Prop.

Inductive Acc (x:A) : Prop :=

Acc_intro : (forall y:A, Ry x -> Acc y) —-> Acc X.
Lemma Acc_inv x : Acc x —> forall y:A, Ry x —> Acc y.
Definition well_founded := forall a:A, Acc a.

Hypothesis Rwf : well_founded.
Theorem well_ founded_induction
forall P:A —-> Set,
(forall x:A, (forall y:A, Ry x —> P y) —> P x) —> forall a:A, P a.
Theorem well_ founded_ind
forall P:A —> Prop,
(forall x:A, (forall y:A, Ry x —> P y) —> P x) —> forall a:A, P a.

The automatically generated scheme Acc_rect can be used to define functions by fixpoints using well-founded relations
to justify termination. Assuming extensionality of the functional used for the recursive call, the fixpoint equation can be

3.3. The Coq library 87

The Coq Reference Manual, Release 8.9.1

proved.

Section FixPoint.
Variable P : A —> Type.
Variable F : forall x:A, (forall y:A, Ry x —> P y) -> P x.

Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
F x (fun (y:A) (p:R vy x) => Fix F vy (Acc_inv x r y p)).
Definition Fix (x:A) := Fix_ F x (Rwf x).

Hypothesis F_ext
forall (x:A) (f g:forall y:A, Ry x —> P vy),
(forall (y:A) (p:Ry x), fyp=gyp) —>Fxf=Fzxg.
Lemma Fix_F_eqg
forall (x:A) (r:Acc x),

F x (fun (y:A) (p:Ry x) => Fix F y (Acc_inv x r vy p)) = Fix F x r.
Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix F x r = Fix_F x s.
Lemma fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R vy x) => Fix vy).
End FixPoint.

End Well_founded.

Accessing the Type level

The standard library includes Type level definitions of counterparts of some logic concepts and basic lemmas about them.
The module Datatypes defines identity, which is the Type level counterpart of equality:
Inductive identity (A:Type) (a:A) : A —> Type :=
identity_refl : identity A a a.
Some properties of identity are proved in the module Logic_Type, which also provides the definition of Type

level negation:

Definition notT (A:Type) := A —> False.

Tactics

A few tactics defined at the user level are provided in the initial state, in module Tactics.v. They are listed at http:
/[coq.inria.fr/stdlib, in paragraph Init, link Tactics.

3.3.2 The standard library

Survey

The rest of the standard library is structured into the following subdirectories:
¢ Logic : Classical logic and dependent equality
* Arith : Basic Peano arithmetic
* PArith : Basic positive integer arithmetic
* NArith : Basic binary natural number arithmetic
e ZArith : Basic relative integer arithmetic

e Numbers : Various approaches to natural, integer and cyclic numbers (currently axiomatically and on top of 2”31
binary words)

88 Chapter 3. The language

http://coq.inria.fr/stdlib
http://coq.inria.fr/stdlib

The Coq Reference Manual, Release 8.9.1

¢ Bool : Booleans (basic functions and results)

¢ Lists : Monomorphic and polymorphic lists (basic functions and results), Streams (infinite sequences defined with
co-inductive types)

¢ Sets : Sets (classical, constructive, finite, infinite, power set, etc.)
* FSets : Specification and implementations of finite sets and finite maps (by lists and by AVL trees)

* Reals : Axiomatization of real numbers (classical, basic functions, integer part, fractional part, limit, derivative,
Cauchy series, power series and results,...)

¢ Relations : Relations (definitions and basic results)

* Sorting : Sorted list (basic definitions and heapsort correctness)
* Strings : 8-bits characters and strings

¢ Wellfounded : Well-founded relations (basic results)

These directories belong to the initial load path of the system, and the modules they provide are compiled at installation
time. So they are directly accessible with the command Require (see Section Compiled files).

The different modules of the Coq standard library are documented online at http://coq.inria.fr/stdlib.

Peano’s arithmetic (nat)

While in the initial state, many operations and predicates of Peano’s arithmetic are defined, further operations and results
belong to other modules. For instance, the decidability of the basic predicates are defined here. This is provided by
requiring the module Arith.

The following table describes the notations available in scope nat_scope :

Notation Interpretation

_ < _ 1t

_ <= _ le

- > _ gt

_ >= _ ge

X <y < z x <y /\y < z
x <y <=z x <y /\y <=z
X <=y < z x <=y /\y < z
X <=y <=2z |x <=y /\y <=2z
o+ plus

-~ minus

_* _ mult

Notations for integer arithmetics

The following table describes the syntax of expressions for integer arithmetics. It is provided by requiring and opening the
module ZArith and opening scope Z_scope. It specifies how notations are interpreted and, when not already reserved,
the precedence and associativity.

3.3. The Coq library 89

http://coq.inria.fr/stdlib

The Coq Reference Manual, Release 8.9.1

Notation Interpretation Precedence | Associativity
< Z.1t
<= _ Z.le
> Z.gt
_o>= Z.ge
x <y < z x <y /\y <z
X <y <=z x <y /\Ny <=z
X <=y < z x <=y /\y < z
X <=y <=2z |x <=y /\y <=2z
2= Z.compare 70 no
_ t Z.add
- Z.sub
_ _ Z.mul
— _ Z.div
_ mod _ Z.modulo 40 no
- _ Z .opp
_ " Z .pow
Example
Require Import ZArith.

[Loading ML file quote_plugin.cmxs ... done]

[Loading ML file newring_plugin.cmxs ... done]

[Loading ML file omega_plugin.cmxs ... done]

Check (2 + 3)%Z.
(2 + 3)%Z

N

Open Scope Z_scope.
Check 2 + 3.
2+ 3

Real numbers library

Notations for real numbers

This is provided by requiring and opening the module Reals and opening scope R_scope. This set of notations is very
similar to the notation for integer arithmetics. The inverse function was added.

920 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Notation Interpretation
_ < _ R1t
_ <= _ Rle
_ > _ Rgt
_o>= Rge
x <y < z x <y /\Ny <z
X <y <=z x <y /\y <=z
X <=y < z x <=y /\y < z
x <=y <=z |x<=y /\y <=2z
I Rplus
_ T _ Rminus
_ _ Rmult
_ _ Rdiv
- Ropp
/ _ Rinv
_ " pow

Example

Require Import Reals.

[Loading ML file r_syntax_plugin.cmxs ... done]
[Loading ML file micromega_plugin.cmxs ... done]

Check (2 + 3)%R.
(2 + 3)%R
R

Open Scope R_scope.
Check 2 + 3.

2 + 3

: R

Some tactics for real numbers

In addition to the powerful ring, field and 1ra tactics (see Chapter Tuctics), there are also:

discrR
Proves that two real integer constants are different.

Example

Require Import DiscrR.
Open Scope R_scope.
Goal 5 <> 0.

1 subgoal

discrR.

3.3. The Coq library 91

The Coq Reference Manual, Release 8.9.1

split_Rabs
Allows unfolding the Rabs constant and splits corresponding conjunctions.

Example

Require Import Reals.

Open Scope R_scope.

Goal forall x:R, x <= Rabs x.
1 subgoal

forall x : R, x <= Rabs x

intro; split_Rabs.
2 subgoals

subgoal 2 is:
X <= X

split_Rmult
Splits a condition that a product is non null into subgoals corresponding to the condition on each operand of the
product.

Example

Require Import Reals.

Open Scope R_scope.

Goal forall x y z:R, x * y * z <> 0.
1 subgoal

forall x y z : R, x *y * z <> 0

intros; split_Rmult.
3 subgoals

subgoal 2 is:
y <> 0

subgoal 3 is:
z <> 0

These tactics has been written with the tactic language L, described in Chapter The tactic language.

92 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

List library

Some elementary operations on polymorphic lists are defined here. They can be accessed by requiring module List.
It defines the following notions:

¢ length

¢ head : first element (with default)

* tail : all but first element

* app : concatenation

* rev:reverse

e nth : accessing n-th element (with default)

* map : applying a function

e flat_map : applying a function returning lists

e fold_left : iterator (from head to tail)

e fold_right : iterator (from tail to head)

The following table shows notations available when opening scope 1ist_scope.

Notation | Interpretation | Precedence | Associativity
_ +t+ _ | app 60 right
cons 60 right

3.3.3 Users’ contributions

Numerous users’ contributions have been collected and are available at URL http://coq.inria.fr/opam/www/. On this web
page, you have a list of all contributions with informations (author, institution, quick description, etc.) and the possibility
to download them one by one. You will also find informations on how to submit a new contribution.

3.4 Calculus of Inductive Constructions

The underlying formal language of Coq is a Calculus of Inductive Constructions (Cic) whose inference rules are presented
in this chapter. The history of this formalism as well as pointers to related work are provided in a separate chapter; see
Credits.

3.4.1 The terms

The expressions of the Cic are ferms and all terms have a fype. There are types for functions (or programs), there are
atomic types (especially datatypes)... but also types for proofs and types for the types themselves. Especially, any object
handled in the formalism must belong to a type. For instance, universal quantification is relative to a type and takes the
form “for all x of type T', P”. The expression “z of type T is written “x : T”. Informally, “z : T can be thought as “x
belongs to T”.

The types of types are sorts. Types and sorts are themselves terms so that terms, types and sorts are all components of a
common syntactic language of terms which is described in Section 7erms but, first, we describe sorts.

3.4. Calculus of Inductive Constructions 93

http://coq.inria.fr/opam/www/

The Coq Reference Manual, Release 8.9.1

Sorts

All sorts have a type and there is an infinite well-founded typing hierarchy of sorts whose base sorts are Prop and Set.

The sort Prop intends to be the type of logical propositions. If M is a logical proposition then it denotes the class of
terms representing proofs of M. An object m belonging to M witnesses the fact that M is provable. An object of type
Prop is called a proposition.

The sort Set intends to be the type of small sets. This includes data types such as booleans and naturals, but also products,
subsets, and function types over these data types.

Prop and Set themselves can be manipulated as ordinary terms. Consequently they also have a type. Because assuming
simply that Set has type Set leads to an inconsistent theory [Coq86], the language of Cic has infinitely many sorts. There
are, in addition to Set and Prop a hierarchy of universes Type(:) for any integer i > 1.

Like Set, all of the sorts Type(4) contain small sets such as booleans, natural numbers, as well as products, subsets and
function types over small sets. But, unlike Set, they also contain large sets, namely the sorts Set and Type(j) for j < 4,
and all products, subsets and function types over these sorts.

Formally, we call § the set of sorts which is defined by:
8§ = {Prop, Set, Type(i) | i € N}

Their properties, such as: Prop : Type(1), Set : Type(1), and Type(s) : Type(i + 1), are defined in Section Subtyping
rules.

The user does not have to mention explicitly the index ¢ when referring to the universe Type(i). One only writes Type.
The system itself generates for each instance of Type a new index for the universe and checks that the constraints between
these indexes can be solved. From the user point of view we consequently have Type : Type. We shall make precise in
the typing rules the constraints between the indices.

Implementation issues In practice, the Type hierarchy is implemented using algebraic universes. An algebraic universe
u is either a variable (a qualified identifier with a number) or a successor of an algebraic universe (an expression u + 1),
or an upper bound of algebraic universes (an expression max(t, ..., u,,)), or the base universe (the expression 0) which
corresponds, in the arity of template polymorphic inductive types (see Section Well-formed inductive definitions), to the
predicative sort Set. A graph of constraints between the universe variables is maintained globally. To ensure the existence
of a mapping of the universes to the positive integers, the graph of constraints must remain acyclic. Typing expressions
that violate the acyclicity of the graph of constraints results in a Universe inconsistency error.

See also:

Section Printing universes.

Terms

Terms are built from sorts, variables, constants, abstractions, applications, local definitions, and products. From a syntactic
point of view, types cannot be distinguished from terms, except that they cannot start by an abstraction or a constructor.
More precisely the language of the Calculus of Inductive Constructions is built from the following rules.

1. the sorts Set, Prop, Type(i) are terms.

2. variables, hereafter ranged over by letters x, y, etc., are terms
3. constants, hereafter ranged over by letters c, d, etc., are terms.
4

. if x is a variable and 7', U are terms then Vx : T', U (forall x:T, U in Coq concrete syntax) is a term. If
x occurs in U, Vx : T, U reads as “for all x of type T', U”. As U depends on z, one says that Vz : T', U is a
dependent product. If x does not occur in U then Vz : T', U reads as “if T then U”. A non dependent product can
be written: 7" — U.

94 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

5. if z is a variable and T, u are terms then Az : T'. uw (fun x:T => u in Coq concrete syntax) is a term. This is
a notation for the A-abstraction of A-calculus [Bar81]. The term Az : T. u is a function which maps elements of T’
to the expression .

6. if t and u are terms then (¢ u) is a term (t u in Coq concrete syntax). The term (¢ u) reads as “¢ applied to u”.

7. if x is a variable, and ¢, T and u are terms then let z := ¢ : T in w is a term which denotes the term © where the
variable x is locally bound to ¢ of type T'. This stands for the common “let-in” construction of functional programs
such as ML or Scheme.

Free variables. The notion of free variables is defined as usual. In the expressions Az : 7. U and Vx : T, U the
occurrences of « in U are bound.

Substitution. The notion of substituting a term ¢ to free occurrences of a variable x in a term wu is defined as usual. The
resulting term is written u{x/t}.

The logical vs programming readings. The constructions of the Cic can be used to express both logical and program-
ming notions, accordingly to the Curry-Howard correspondence between proofs and programs, and between propositions
and types [CFC58][How80][dB72].

For instance, let us assume that nat is the type of natural numbers with zero element written O and that True is the always
true proposition. Then — is used both to denote nat — nat which is the type of functions from nat to nat, to denote
True—True which is an implicative proposition, to denote nat — Prop which is the type of unary predicates over the
natural numbers, etc.

Let us assume that mult is a function of type nat — nat — nat and egnat a predicate of type nat — nat — Prop.
The A-abstraction can serve to build “ordinary” functions as in Az : nat. (mult z «) (i.e. fun x:nat => mult x
x in Coq notation) but may build also predicates over the natural numbers. For instance Az : nat. (egnat z 0) (i.e. fun
x:nat => egnat x 0 in Coq notation) will represent the predicate of one variable which asserts the equality of
2 with 0. This predicate has type nat — Prop and it can be applied to any expression of type nat, say ¢, to give an object
P t of type Prop, namely a proposition.

Furthermore forall x:nat, P x will represent the type of functions which associate to each natural number n an
object of type (P n) and consequently represent the type of proofs of the formula “Vz. P(x)”.

3.4.2 Typing rules

As objects of type theory, terms are subjected to type discipline. The well typing of a term depends on a global environment
and a local context.

Local context. A local context is an ordered list of local declarations of names which we call variables. The declaration
of some variable x is either a local assumption, written x : T' (T is a type) or a local definition, written x : =1t : T. We
use brackets to write local contexts. A typical example is [z : T'; y := u : U; z : V]. Notice that the variables declared
in a local context must be distinct. If I" is a local context that declares some z, we write = € I'. By writing (z: T') € T’
we mean that either x : 7" is an assumption in I or that there exists some ¢ such that x := ¢ : T is a definition in I". If
T defines some z := ¢ : T, we also write (x :=t : T') € T'. For the rest of the chapter, " :: (y : T') denotes the local
context I enriched with the local assumption y : 7. Similarly, I" :: (y := ¢ : T') denotes the local context I" enriched
with the local definition (y := ¢ : T'). The notation [] denotes the empty local context. By I';; I'; we mean concatenation
of the local context I'; and the local context I';.

Global environment. A global environment is an ordered list of global declarations. Global declarations are either global
assumptions or global definitions, but also declarations of inductive objects. Inductive objects themselves declare both
inductive or coinductive types and constructors (see Section Inductive Definitions).

A global assumption will be represented in the global environment as (¢ : ') which assumes the name ¢ to be of some
type T'. A global definition will be represented in the global environment as ¢ := ¢ : T" which defines the name c to have
value ¢ and type 1. We shall call such names constants. For the rest of the chapter, the F; ¢ : T denotes the global

3.4. Calculus of Inductive Constructions 95

The Coq Reference Manual, Release 8.9.1

environment F enriched with the global assumption ¢ : T'. Similarly, E; ¢ := t : T denotes the global environment F
enriched with the global definition (¢ :=t : T).

The rules for inductive definitions (see Section Inductive Definitions) have to be considered as assumption rules to which
the following definitions apply: if the name c is declared in E, we write c € F and if ¢ : T or ¢ :=t : T is declared in
E,wewrite (c: T) € E.

Typing rules. In the following, we define simultaneously two judgments. The first one E[T'] F ¢ : T' means the term ¢
is well-typed and has type T in the global environment E and local context I'. The second judgment W.F (E)[I'] means
that the global environment E is well-formed and the local context I is a valid local context in this global environment.

A term ¢ is well typed in a global environment E iff there exists a local context I" and a term 7" such that the judgment
E[T]) F t: T can be derived from the following rules.

W-Empty
w7 (D]

W-Local-Assum

ElFT:s sES x¢l
W BT = (2 T)]

W-Local-Def

E[Ft:T z¢T
WFE)L :: (x:=1t:T)]

W-Global-Assum

E+-T:s ses c¢ E
W (B; ¢)]
W-Global-Def
Elrt:T c¢ E

WF(E; c:=1t:T)]

Ax-Prop
W (E)[T]
E[T] + Prop : Type(1)
Ax-Set
WF (E)[I]
E[l'| - Set: Type(1)
Ax-Type
WF (E)[T]
E[I'| F Type(i) : Type(i + 1)
Var
WF (E)[T) (x:T)eT or (x:=t:T) €T forsomet
ElkFa:T

96 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Const
WF (E)[T (¢c:T)eFE or (c:=t:T) € Eforsomet
ElFc:T
Prod-Prop
El|FT:s seS El: (z:T)FU:Prop
E[|F Va:T, U: Prop
Prod-Set
El|-T:s s € {Prop, Set} El: (z:T)FU: Set
E[l|-Va:T, U : Set
Prod-Type
E[T|+T : Type(i) El' = (z:T)FU:Type(i)
E[T]F Va: T, U : Type(i)
Lam
ElFVYz:T,U:s El:=(z:T)Ft:U
ElflFXe:T.t:Ve: T, U
App
ElFt:Va:U, T ElFu:U
El)F (tu): T{z/u}
Let

ElkFt:T El:(z:=t:T)Fu:U
ElkFlete:=¢t:Tinu:U{z/t}

Note: Prod-Prop and Prod-Set typing-rules make sense if we consider the semantic difference between Prop and Set:
* All values of a type that has a sort Set are extractable.

 No values of a type that has a sort Prop are extractable.

Note: We may have let « := ¢ : T in u well-typed without having ((Az : T. u) t) well-typed (where T is a type of ¢).
This is because the value ¢ associated to z may be used in a conversion rule (see Section Conversion rules).

3.4.3 Conversion rules

In Cic, there is an internal reduction mechanism. In particular, it can decide if two programs are intentionally equal (one
says convertible). Convertibility is described in this section.

3.4. Calculus of Inductive Constructions 97

The Coq Reference Manual, Release 8.9.1

B-reduction

We want to be able to identify some terms as we can identify the application of a function to a given argument with its
result. For instance the identity function over a given type 7" can be written Az : 7. z. In any global environment £ and
local context I', we want to identify any object a (of type T') with the application ((Az : T. x) a). We define for this a
reduction (or a conversion) rule we call 3:

E[N]F (Mx: T t)u) >y tH{a/u}

We say that ¢t{x/u} is the S-contraction of ((Ax : T. t) u) and, conversely, that (A : T'. ¢) u) is the S-expansion of
According to B-reduction, terms of the Calculus of Inductive Constructions enjoy some fundamental properties such as

confluence, strong normalization, subject reduction. These results are theoretically of great importance but we will not
detail them here and refer the interested reader to [Coq85].

t-reduction

A specific conversion rule is associated to the inductive objects in the global environment. We shall give later on (see
Section Well-formed inductive definitions) the precise rules but it just says that a destructor applied to an object built from
a constructor behaves as expected. This reduction is called t-reduction and is more precisely studied in [PM93][Wer94].

O-reduction

We may have variables defined in local contexts or constants defined in the global environment. It is legal to identify such
a reference with its value, that is to expand (or unfold) it into its value. This reduction is called 8-reduction and shows as
follows.

Delta-Local

WF (E)[T) (x:=t:T)eTl
EMFz DA ¢

Delta-Global

WF(E)[T) (c:=t:T)eFE
ET|Fc >y t

C-reduction

Coq allows also to remove local definitions occurring in terms by replacing the defined variable by its value. The declaration
being destroyed, this reduction differs from d-reduction. It is called C-reduction and shows as follows.

Zeta

WF(E)[T] ElFu:U El = (x:=u:U)|Ft:T
EllFletr:=u:Uint >, t{z/u}

n-expansion

Another important concept is 1)-expansion. It is legal to identify any term ¢ of functional type Vz : T'; U with its so-called
1N-expansion

Az T. (tx)

98 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

for x an arbitrary variable name fresh in ¢.

Note: We deliberately do not define n-reduction:
Ar:T. (tx) b, t

This is because, in general, the type of ¢ need not to be convertible to the type of Az : T. (¢ x). E.g., if we take f such
that:

f: Vo Type(2), Type(l)
then
Az : Type(l). (fz) : Va: Type(l), Type(l)
We could not allow
Az : Type(l). (f) D>, f

because the type of the reduced term Vz : Type(2), Type(1) would not be convertible to the type of the original term
Vo : Type(1), Type(1).

Convertibility

Let us write E[I'] F ¢ [> u for the contextual closure of the relation ¢ reduces to u in the global environment F and local
context I" with one of the previous reductions f3, d, v or L.

We say that two terms ¢, and ¢ are Sdn-convertible, or simply convertible, or equivalent, in the global environment E
and local context I iff there exist terms u; and u, such that E[T'] - ¢, [>...[>uy and E[T'] - t5 > ... [> u, and either u,
and u,, are identical, or they are convertible up to n-expansion, i.e. u; is Az : T'. u] and uqx is recursively convertible to
uf, or, symmetrically, u, is Az : T'. u and u, is recursively convertible to uy. We then write E[T'] = ¢, =45, ta-

Apart from this we consider two instances of polymorphic and cumulative (see Chapter Polymorphic Universes) inductive
types (see below) convertible

B Ftwy.w, =gs,cp t w)ew
if we have subtypings (see below) in both directions, i.e.,

B+t wy..w, <gsc,tw)..w
and

B[] =t wy..wp, <gs,cp t wy...w

Furthermore, we consider

convertible if
E[F] + U; =Bty /U;

and we have that ¢ and ¢’ are the same constructors of different instances of the same inductive types (differing only in
universe levels) such that

ElF cvy.ov,, s twy..w

m

3.4. Calculus of Inductive Constructions 99

The Coq Reference Manual, Release 8.9.1

and

E[l)F ¢ vy..v), : t" wy..w),

and we have

/
m*

E[F] ¢ wy... Wy, :Bébcn t w’l...w

The convertibility relation allows introducing a new typing rule which says that two convertible well-formed types have
the same inhabitants.

3.4.4 Subtyping rules

At the moment, we did not take into account one rule between universes which says that any term in a universe of index
1 is also a term in the universe of index ¢ + 1 (this is the cumulativity rule of Cic). This property extends the equivalence
relation of convertibility into a subtyping relation inductively defined by:

1. if B[T] F ¢ =g5,c, w then E[T] F t <g5,0 ts

2. if i < jthen E[I'] - Type(i) <gs,c,, TYPE())s

3. forany i, E[I'] - Set <g;,, Type(i),

4. E[I'] = Prop <gs,¢,, Set, hence, by transitivity, E[I'] - Prop <g;,, Type(i), for any i

5. if B[] T =p5,0y Uand BT st (2 :)| F T’ <0y U’ then E[T) - Va : T, T <gsyey Vo : U, U
6

. if Ind [p] (T'; := T') is a universe polymorphic and cumulative (see Chapter Polymorphic Universes) inductive
type (see below) and (¢ : VI'p, VI'y,(;),S) € Ipand (' : VI'p, VI,), S7) € I'; are two different instances of
the same inductive type (differing only in universe levels) with constructors

[ey s VT p, VT 1Ty B0y 1Vt ooy € 2 VT, VT g T 0 g0]
and
. ’ / / 7 ’. . . ’ / / ’ ’
[cq : VIp, VI 1 T s U 0] 10 s oy €t VI, VT T, 8 Vg 1oV)

respectively then

/
m

B[] Ftwy..w,, <gsc,t w)..w
(notice that ¢ and ¢’ are both fully applied, i.e., they have a sort as a type) if
E[F] F w; =Bty w;
for 1 <7 < m and we have
E-T, <gsucn Ti/,j
and
3 g,@&(n A;
where I'y,,.y) = [aq = Ay; .o; a; + Aj] and I‘;W(t) =lay: A5 .5 ap: A
The conversion rule up to subtyping is now exactly:

Conv
ElFU:s ElFt:T E[N)FT <gsey U
El|Ft:U

100 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Normal form. A term which cannot be any more reduced is said to be in normal form. There are several ways (or
strategies) to apply the reduction rules. Among them, we have to mention the head reduction which will play an important
role (see Chapter Tactics). Any term ¢ can be written as Az : T}. ... Az, : T} (¢, t...t,,) where ¢, is not an application.
We say then that ¢, is the head of t. If we assume that ¢, is Az : T". u, then one step of $-head reduction of ¢ is:

Aoy Ty Ay, Ty Az s Toug ty.ty,) D Moy 2 Th) . (xy 2 1) (ug{z/ty)ty 1))

Iterating the process of head reduction until the head of the reduced term is no more an abstraction leads to the 3-head
normal form of t:

t> .. Axy Ty Az T (vug..u,,)

where v is not an abstraction (nor an application). Note that the head normal form must not be confused with the normal
form since some u,; can be reducible. Similar notions of head-normal forms involving d, t and T reductions or any
combination of those can also be defined.

3.4.5 Inductive Definitions

Formally, we can represent any inductive definition as Ind [p] (I'; := T'») where:
* T'; determines the names and types of inductive types;
* T' determines the names and types of constructors of these inductive types;
¢ p determines the number of parameters of these inductive types.

These inductive definitions, together with global assumptions and global definitions, then form the global environment.
Additionally, for any p there always exists I'p = [a; : Ay; ...; @, : A] such thateach T'in (¢ : T') € I'; UT';, can be
written as: VI'p, T” where I , is called the context of parameters. Furthermore, we must have thateach T'in (¢ : T') € T';
can be written as: VI'p, VI, 4y, S where Iy, is called the Arity of the inductive type ¢ and S is called the sort of the

inductive type t (not to be confused with § which is the set of sorts).

Example
The declaration for parameterized lists is:

Ind [1] <[|iSt=Set—>Set} — nil : VA:Set, list A D

cons : VA:Set, A—listA—listA

which corresponds to the result of the Coq declaration:

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A —> list A —> list A.

Example

The declaration for a mutual inductive definition of tree and forest is:

tree : Set node : forest— tree
Ind [0] { ' } = | emptyf : forest

forest : Set consf : tree — forest — forest

which corresponds to the result of the Coq declaration:

3.4. Calculus of Inductive Constructions 101

The Coq Reference Manual, Release 8.9.1

Inductive tree : Set :=

| node : forest —-> tree

with forest : Set :=

| emptyf : forest

| consf : tree —-> forest —-> forest.

Example

The declaration for a mutual inductive definition of even and odd is:
even : nat— Pro eveng : even o
Ind [0] { odd) nat Prop } = | eveng : Vn, oddn — even (Sn)
' P oddg : Vn, evenn — odd (Sn)
which corresponds to the result of the Coq declaration:

Inductive even : nat -> Prop :=
| even_O : even 0O

| even_S : forall n, odd n -> even (S n)
with odd : nat —-> Prop :=
| odd_S : forall n, even n -> odd (S n).

Types of inductive objects

We have to give the type of constants in a global environment £ which contains an inductive definition.

Ind

WF (E)[T) Ind [p](T'; :=T) €EE (a: A)eTy
ElkFa:A
Constr
WF(E)[T) Ind[p] (T'; :=Ty) €E (c: C) el
ElkFec:C
Example

Provided that our environment £ contains inductive definitions we showed before, these two inference rules above enable
us to conclude that:

E[I'l + even : nat — Prop

E[T'] + odd : nat — Prop

E[l']+ eveng : even O

E[l') - eveng : Vn : nat, odd n — even (Sn)
E[I'lF oddg : Vn : nat, even n — odd (S n)

Well-formed inductive definitions

We cannot accept any inductive definition because some of them lead to inconsistent systems. We restrict ourselves to
definitions which satisfy a syntactic criterion of positivity. Before giving the formal rules, we need a few definitions:

102 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Arity of a given sort

A type T is an arity of sort s if it converts to the sort s or to a product Vo : T, U with U an arity of sort s.

Example

A — Set is an arity of sort Set. VA : Prop, A — Prop is an arity of sort Prop.

Arity

A type T is an arity if there is a s € & such that 1" is an arity of sort s.

Example

A — Setand VA : Prop, A — Prop are arities.

Type of constructor

We say that T is a type of constructor of I in one of the following two cases:
e Tis(Ity...t,)

e TisVx: U, T’ where T" is also a type of constructor of [

Example

nat and nat — nat are types of constructor of nat. VA : Type, list Aand VA : Type, A — list A — list A are types
of constructor of list.

Positivity Condition

The type of constructor 1" will be said to satisfy the positivity condition for a constant X in the following cases:
e T =(Xt..1,) and X does not occur free in any ¢;

e T'=Vz:U, Vand X occurs only strictly positively in U and the type V' satisfies the positivity condition for X.

Strict positivity

The constant X occurs strictly positively in T' in the following cases:
e X does not occur in T’
T converts to (X t;...t,,) and X does not occur in any of ¢,
e T converts to Vz : U, V and X does not occur in type U but occurs strictly positively in type V'

* T converts to (I a;...a,, t;...t,) where I is the name of an inductive definition of the form

Ind[m|(l:A :=c¢ :Vpy:P,..Vp,: P, Cy; ..;¢,:Vp,: P,..Vp,:P,, C,)

3.4. Calculus of Inductive Constructions 103

The Coq Reference Manual, Release 8.9.1

(in particular, it is not mutually defined and it has m parameters) and X does not occur in any of the ¢;, and the
(instantiated) types of constructor C;{p;/a;} of T satisfy the nested positivity condition for X

j=l..m

Nested Positivity

The type of constructor 1" of I satisfies the nested positivity condition for a constant X in the following cases:
* T'=(Iby...b,, uy...u,), I is an inductive type with m parameters and X does not occur in any u,

e T'=Vz:U, Vand X occurs only strictly positively in U and the type V satisfies the nested positivity condition
for X

Example

For instance, if one considers the following variant of a tree type branching over the natural numbers:

Inductive nattree (A:Type) : Type :=
| leaf : nattree A
| natnode : A -> (nat —-> nattree A) —> nattree A.

Then every instantiated constructor of nattree A satisfies the nested positivity condition for nattree:

e Type nattree A of constructor leaf satisfies the positivity condition for nattree because nattree does
not appear in any (real) arguments of the type of that constructor (primarily because natt ree does not have any
(real) arguments) ... (bullet 1)

* TypeA — (nat — nattree A) — nattree A of constructor natnode satisfies the positivity condi-
tion for natt ree because:

— nattree occurs only strictly positively in A ... (bullet 1)
— nattree occurs only strictly positively in nat — nattree A ... (bullet3 +2)

— nattree satisfies the positivity condition for nattree A ... (bullet 1)

Correctness rules

We shall now describe the rules allowing the introduction of a new inductive definition.

Let F be a global environment and I'p, ', '~ be contexts such that I'; is [I; : VI'p, A;; ..; I, : VI'p, Ay], and T~ 18
[cq : VI'p,Cy; .. ¢, : VT'p, C,]. Then
W-Ind

WF (E)[Lp] (B Tpl - Ctsy)

i

WF(E; Ind [p] (T := T¢))]]

i=1l..n

provided that the following side conditions hold:
e k> 0and all of Ij and ¢, are distinct names for j = 1...kand i = 1...n,
* p is the number of parameters of Ind [p] (I'; := ') and I'p is the context of parameters,
* for j = 1...k we have that A; is an arity of sort s, and I, ¢ F,

e for s = 1...n we have that C; is a type of constructor of I, which satisfies the positivity condition for /;...J;, and
c;, ¢ E.

104 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

One can remark that there is a constraint between the sort of the arity of the inductive type and the sort of the type of its
constructors which will always be satisfied for the impredicative sort Prop but may fail to define inductive type on sort
Set and generate constraints between universes for inductive types in the Type hierarchy.

Example

It is well known that the existential quantifier can be encoded as an inductive definition. The following declaration intro-
duces the second-order existential quantifier 3X.P(X).

Inductive exProp (P:Prop-—>Prop) : Prop :=
| exP_intro : forall X:Prop, P X —> exProp P.

The same definition on Set is not allowed and fails:

Fail Inductive exSet (P:Set->Prop) : Set :=
exS_intro : forall X:Set, P X —> exSet P.
The command has indeed failed with message:
Large non-propositional inductive types must be in Type.

It is possible to declare the same inductive definition in the universe Type. The exType inductive definition has type
(Type(i) — Prop) — Type(j) with the constraint that the parameter X of exT;y, has type Type(k) with k& < j and
k <i.

Inductive exType (P:Type->Prop) : Type :=
exT_intro : forall X:Type, P X -> exType P.
exType is defined
exType_rect is defined
exType_ind is defined
exType_rec is defined

Template polymorphism

Inductive types declared in Type are polymorphic over their arguments in Type. If A is an arity of some sort and s is a
sort, we write A, for the arity obtained from A by replacing its sort with s. Especially, if A is well-typed in some global
environment and local context, then A /s 18 typable by typability of all products in the Calculus of Inductive Constructions.
The following typing rule is added to the theory.

Let Ind [p] (T'; := T'¢) be an inductive definition. Let 'y = [p; : Py; ...; p, : P,] be its context of parameters,
I; =[I; : VI'p,Aq; .. I, : VD p, A,] its context of definitions and 'y = [¢; : VI p,Cy; .o ¢, = VI'p,C,]
its context of constructors, with ¢; a constructor of /, . Let m < p be the length of the longest prefix of parameters
such that the m first arguments of all occurrences of all I; in all C); (even the occurrences in the hypotheses of C';) are
exactly applied to p;...p,,, (m is the number of recursively uniform parameters and the p — m remaining parameters are
the recursively non-uniform parameters). Let qq, ..., q,, with 0 < r < m, be a (possibly) partial instantiation of the

recursively uniform parameters of I' . We have:

Ind-Family

Ind[p](T'; :==Tx) €FE

(EllFq: P)i,

(E[] F Pl/ gﬂ&(n]Dl{pu/QU}uzl...l—l)l:l...r
1<j<k

EH t Ij qi---qy ¢ v[pr+1 : Pr+1; e pp : Pp]v (Aj>/s

J

provided that the following side conditions hold:

3.4. Calculus of Inductive Constructions 105

The Coq Reference Manual, Release 8.9.1

» I'p is the context obtained from I', by replacing each P, that is an arity with P/ for 1 < [< r (notice that P,
arity implies P/ arity since E[] - P/ <gsucn PAp./0} uer 1-1)5

» there are sorts s;, for 1 < ¢ < k such that, for I'yy = [I} : VDp/, (Ay) 55 o I+ VD pr, (Ay)),] We have
(B[Pp]=Cyes,)

i /1=1..n >

« the sorts s, are such that all eliminations, to Prop, Set and Type(y), are allowed (see Section Destructors).

Notice that if I; ¢;...q, is typable using the rules Ind-Const and App, then it is typable using the rule Ind-Family.
Conversely, the extended theory is not stronger than the theory without Ind-Family. We get an equiconsistency result
by mapping each Ind [p] (I'; := T') occurring into a given derivation into as many different inductive types and con-
structors as the number of different (partial) replacements of sorts, needed for this derivation, in the parameters that are
arities (this is possible because Ind [p] (I'; := TI';) well-formed implies that Ind [p] (I';; := I'cv) is well-formed and
has the same allowed eliminations, where T';, is defined as above and I' v = [¢; : VI'p/, Cy; ... ¢, 2 VT pr, C,]). That
is, the changes in the types of each partial instance g; ...q,. can be characterized by the ordered sets of arity sorts among
the types of parameters, and to each signature is associated a new inductive definition with fresh names. Conversion
is preserved as any (partial) instance I; ¢y ...q, or C; g;...q, is mapped to the names chosen in the specific instance of

Ind [p] (T'; = T¢).

In practice, the rule Ind-Family is used by Coq only when all the inductive types of the inductive definition are declared
with an arity whose sort is in the Type hierarchy. Then, the polymorphism is over the parameters whose type is an arity
of sort in the Type hierarchy. The sorts s; are chosen canonically so that each s; is minimal with respect to the hierarchy
Prop C Set, C Type where Set,, is predicative Set. More precisely, an empty or small singleton inductive definition
(i.e. an inductive definition of which all inductive types are singleton — see Section Destructors) is set in Prop, a small
non-singleton inductive type is set in Set (even in case Set is impredicative — see Section The-Calculus-of-Inductive-

Construction-with-impredicative-Set), and otherwise in the Type hierarchy.

Note that the side-condition about allowed elimination sorts in the rule Ind-Family is just to avoid to recompute the
allowed elimination sorts at each instance of a pattern matching (see Section Destructors). As an example, let us consider
the following definition:

Example

Inductive option (A:Type) : Type :=
| None : option A
| Some : A —-> option A.

As the definition is set in the Type hierarchy, it is used polymorphically over its parameters whose types are arities of a
sort in the Type hierarchy. Here, the parameter A has this property, hence, if option is applied to a type in Set, the
result is in Set. Note that if option is applied to a type in Prop, then, the result is not set in Prop but in Set still. This
is because opt ion is not a singleton type (see Section Destructors) and it would lose the elimination to Set and Type if
set in Prop.

Example

Check (fun A:Set => option A).
fun A : Set => option A
Set > Set

Check (fun A:Prop => option A).
fun A : Prop => option A
: Prop —> Set

Here is another example.

106 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Example

Inductive prod (A B:Type) : Type := pair : A —> B -> prod A B.

As prod is a singleton type, it will be in Prop if applied twice to propositions, in Set if applied twice to at least one type
in Set and none in Type, and in Type otherwise. In all cases, the three kind of eliminations schemes are allowed.

Example

Check (fun A:Set => prod A).
fun A : Set => prod A
Set -> Type —> Type

Check (fun A:Prop => prod A A).
fun A : Prop => prod A A
Prop —> Prop

Check (fun (A:Prop) (B:Set) => prod A B).
fun (A : Prop) (B : Set) => prod A B
Prop —> Set —> Set

Check (fun (A:Type) (B:Prop) => prod A B).
fun (A : Type) (B : Prop) => prod A B
Type —> Prop —> Type

Note: Template polymorphism used to be called “sort-polymorphism of inductive types” before universe polymorphism
(see Chapter Polymorphic Universes) was introduced.

Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still have to say how to use
an object in an inductive type.

This problem is rather delicate. There are actually several different ways to do that. Some of them are logically equivalent
but not always equivalent from the computational point of view or from the user point of view.

From the computational point of view, we want to be able to define a function whose domain is an inductively defined
type by using a combination of case analysis over the possible constructors of the object and recursion.

Because we need to keep a consistent theory and also we prefer to keep a strongly normalizing reduction, we cannot
accept any sort of recursion (even terminating). So the basic idea is to restrict ourselves to primitive recursive functions
and functionals.

For instance, assuming a parameter A : Set exists in the local context, we want to build a function length of type list A —
nat which computes the length of the list, such that (length (nil A)) = O and (length (cons A a 1)) = (S (length 1)).
We want these equalities to be recognized implicitly and taken into account in the conversion rule.

From the logical point of view, we have built a type family by giving a set of constructors. We want to capture the fact
that we do not have any other way to build an object in this type. So when trying to prove a property about an object m
in an inductive type it is enough to enumerate all the cases where m starts with a different constructor.

In case the inductive definition is effectively a recursive one, we want to capture the extra property that we have built
the smallest fixed point of this recursive equation. This says that we are only manipulating finite objects. This analysis

3.4. Calculus of Inductive Constructions 107

The Coq Reference Manual, Release 8.9.1

provides induction principles. For instance, in order to prove VI : list A, (has_length A [(length [)) it is enough to
prove:

* (has_length A (nil A) (length (nil A)))

* Va: A, Vi:list A, (has_length Al (lengthl)) — (has_length A (cons A al) (length (cons A al)))
which given the conversion equalities satisfied by length is the same as proving:

« (has_length A (nil A) O)

* Va: A, Vi:list A, (has_length Al (lengthl)) — (has_length A (cons A al) (S (lengthl)))

One conceptually simple way to do that, following the basic scheme proposed by Martin-Lof in his Intuitionistic Type
Theory, is to introduce for each inductive definition an elimination operator. At the logical level it is a proof of the usual
induction principle and at the computational level it implements a generic operator for doing primitive recursion over the
structure.

But this operator is rather tedious to implement and use. We choose in this version of Coq to factorize the operator for
primitive recursion into two more primitive operations as was first suggested by Th. Coquand in [Coq92]. One is the
definition by pattern matching. The second one is a definition by guarded fixpoints.

The match ... with ... end construction

The basic idea of this operator is that we have an object m in an inductive type I and we want to prove a property which
possibly depends on m. For this, it is enough to prove the property for m = (c; u, um) for each constructor of 1. The
Coq term for this proof will be written:

match m with (¢; zyy...2q,,) = fil-..|(c, Tpy-x = f,end

npn)
In this expression, if m eventually happens to evaluate to (c; u;...u,,) then the expression will behave as specified in its
i-th branch and it will reduce to f; where the x;;...z;, are replaced by the u;...u,, according to the i-reduction.
Actually, for type checking a match...with...end expression we also need to know the predicate P to be proved by
case analysis. In the general case where [is an inductively defined n-ary relation, P is a predicate over n + 1 argu-
ments: the n first ones correspond to the arguments of I (parameters excluded), and the last one corresponds to object
m. Coq can sometimes infer this predicate but sometimes not. The concrete syntax for describing this predicate uses
the as...in...return construction. For instance, let us assume that I is an unary predicate with one parameter and one
argument. The predicate is made explicit using the syntax:

match m as xin I _areturn P with (¢; zy...21,,) = fi..|(c, 21w = f, end

npn,)
The as part can be omitted if either the result type does not depend on m (non-dependent elimination) or 1 is a variable
(in this case, m can occur in P where it is considered a bound variable). The in part can be omitted if the result type
does not depend on the arguments of /. Note that the arguments of I corresponding to parameters must be _, because
the result type is not generalized to all possible values of the parameters. The other arguments of I (sometimes called
indices in the literature) have to be variables (a above) and these variables can occur in P. The expression after in must
be seen as an inductive type pattern. Notice that expansion of implicit arguments and notations apply to this pattern. For
the purpose of presenting the inference rules, we use a more compact notation:

case(m, (\az.P), Axyy..yy, - f1 || ATpyyy - fr)

Allowed elimination sorts. An important question for building the typing rule for match is what can be the type of
Aax. P with respect to the type of m. If m : I and I : A and Aaz.P : B then by [: A|B] we mean that one can use
Aazx.P with m in the above match-construct.

Notations. The [I : A|B] is defined as the smallest relation satisfying the following rules: We write [|B] for [I : A|B]
where A is the type of .

108 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

The case of inductive types in sorts Set or Type is simple. There is no restriction on the sort of the predicate to be
eliminated.

Prod
(I z): A'|B]
[I:Vx:A, A|Vx: A, B

Set & Type

s, € {Set, Type(j)} S5 €S
[T : 8|1 — s5]

The case of Inductive definitions of sort Prop is a bit more complicated, because of our interpretation of this sort. The
only harmless allowed elimination, is the one when predicate P is also of sort Prop.

Prop

[I : Prop|I — Prop]

Prop is the type of logical propositions, the proofs of properties P in Prop could not be used for computation and are
consequently ignored by the extraction mechanism. Assume A and B are two propositions, and the logical disjunction
AV B is defined inductively by:

Example
Inductive or (A B:Prop) : Prop :=
or_introl : A -> or A B | or_intror : B -> or A B.

The following definition which computes a boolean value by case over the proof of or A B is not accepted:

Example

Fail Definition choice (A B: Prop) (x:or A B) :=

match x with or_introl = _ a => true | or_intror _ _ b => false end.
The command has indeed failed with message:
Incorrect elimination of "x" in the inductive type "or":
the return type has sort "Set" while it should be "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort Set
because proofs can be eliminated only to build proofs.

From the computational point of view, the structure of the proof of (or A B) in this term is needed for computing the
boolean value.

In general, if I has type Prop then P cannot have type I — Set, because it will mean to build an informative proof of
type (P m) doing a case analysis over a non-computational object that will disappear in the extracted program. But the
other way is safe with respect to our interpretation we can have I a computational object and P a non-computational one,
it just corresponds to proving a logical property of a computational object.

In the same spirit, elimination on P of type I — Type cannot be allowed because it trivially implies the elimination on
P of type I — Set by cumulativity. It also implies that there are two proofs of the same property which are provably
different, contradicting the proof-irrelevance property which is sometimes a useful axiom:

Example

3.4. Calculus of Inductive Constructions 109

The Coq Reference Manual, Release 8.9.1

Axiom proof_irrelevance : forall (P : Prop) (x vy : P), x=y.
proof_irrelevance is declared

The elimination of an inductive type of sort Prop on a predicate P of type I — Type leads to a paradox when applied
to impredicative inductive definition like the second-order existential quantifier exP rop defined above, because it gives
access to the two projections on this type.

Empty and singleton elimination. There are special inductive definitions in Prop for which more eliminations are
allowed.

Prop-extended

I is an empty or singleton definition seSs
[I : Prop|I — s]

A singleton definition has only one constructor and all the arguments of this constructor have type Prop. In that case, there
is a canonical way to interpret the informative extraction on an object in that type, such that the elimination on any sort s
is legal. Typical examples are the conjunction of non-informative propositions and the equality. If there is a hypothesis
h : a = b in the local context, it can be used for rewriting not only in logical propositions but also in any type.

Example

Print eq_rec.
eq_rec =
fun (A : Type) (x : A) (P : A —> Set) => eq_rect x P
forall (A : Type) (x : A) (P : A —-> Set),
P x —> forall y : A, x =y —> Py

Argument A is implicit
Argument scopes are [type_scope _ function_scope _ _ _]

Require Extraction.
[Loading ML file extraction_plugin.cmxs ... done]

Extraction eq_rec.
(** val eq_rec : 'al -> 'az -> 'al -> 'a2 *%)

let eq_rec _ f _ =
f

An empty definition has no constructors, in that case also, elimination on any sort is allowed.

Type of branches. Let ¢ be a term of type C, we assume C' is a type of constructor for an inductive type /. Let P
be a term that represents the property to be proved. We assume 7 is the number of parameters and s is the number of
arguments.

We define a new type {c : C'}¥ which represents the type of the branch corresponding to the ¢ : C' constructor.

{c:(Iq...qpt; .t)} =(Pt,..t,c)
{c:Vx:T, O}F Vo: T, {(cx): C}F

We write {c}* for {c : C}¥ with C the type of c.

Example

The following term in concrete syntax:

110 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

match t as 1 return P' with

| nil _ => t1
| cons _ hd tl => t2
end

can be represented in abstract syntax as

Case(t,P, f1|f2)

where
P = M. P
fi = 6
fo = A(hd:nat). A(tl : list nat). ¢,
According to the definition:
{(nil nat)}¥ = {(nil nat) : (list nat)}* = (P (nil nat))

{(cons nat)}* = {(cons nat) : (nat — list nat — list nat)}*
= Vn : nat, {(cons natn) : (list nat — list nat)}*
= Vn :nat, VI : list nat, {(cons natn) : (list nat)}”
= Vn:nat, Vi:listnat, (P (consnatnl)).

Given some P then {(nil nat)}* represents the expected type of f;, and {(cons nat)}*" represents the expected type of

fo-

Typing rule. Our very general destructor for inductive definition enjoys the following typing rule

match
El)Fc:(Iqq...q t;...t,)
E[l+-P:B
(U 4118)
(E[F] + fz : {(Cp,i qur)})i:ln.l
E[T) + case(e, P, fy|...|f;) : (P ty...t, c)
provided [is an inductive type in a definition Ind [r] (I'; := I'¢) withI'c. = [¢; : Cy; .5 ¢, : C] and ¢, ...c,, are

the only constructors of I.

Example
Below is a typing rule for the term shown in the previous example:

list example

E[T] -t : (list nat)

El-P:B

[(list nat)| B]

E[T)F £, : {(nil nat)}?

E[T]F fy : {(cons nat)}*
EIF case(t, P, f1|fs) : (Pt)

Definition of -reduction. We still have to define the 1-reduction in the general case.

3.4. Calculus of Inductive Constructions 111

The Coq Reference Manual, Release 8.9.1

An -redex is a term of the following form:

case((cpi GGy Q1 ---Qp)s Py 1l f)
with ¢, the i-th constructor of the inductive type I with r parameters.

The 1-contraction of this term is (f; a;...a,,) leading to the general reduction rule:

Case((cpi qy---qy al"'anL)a Pv fl||fl) l>1, (fz a’l"'am)

Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutually recursive definitions.
The basic concrete syntax for a recursive set of mutually recursive declarations is (with I'; contexts):

fix f1(I'y) = Ay :=t; with...with f,(T",)) : A,, :=¢

n n

The terms are obtained by projections from this set of declarations and are written
fix f1(T'y) : A; :=t; with..with f,(T,,) : 4,, := ¢, for f;
In the inference rules, we represent such a term by
Fix fy{fy ¢ A =t fy s Al = 1))
with ¢/ (resp. A) representing the term ¢, abstracted (resp. generalized) with respect to the bindings in the context I';,

namely t; = A\I';.t; and A = VI';, A;.

Typing rule

The typing rule is the expected one for a fixpoint.
Fix
(BT F A 8i)im1m (B[f1: Ay o ot Al E i Ay
ETEFix fi{fy: Ay =ty ft Ay =1} 2 A

Any fixpoint definition cannot be accepted because non-normalizing terms allow proofs of absurdity. The basic scheme
of recursion that should be allowed is the one needed for defining primitive recursive functionals. In that case the fixpoint
enjoys a special syntactic restriction, namely one of the arguments belongs to an inductive type, the function starts with a
case analysis and recursive calls are done on variables coming from patterns and representing subterms. For instance in
the case of natural numbers, a proof of the induction principle of type

VP :nat — Prop, (PO) = (Vn:nat, (Pn) — (P (Sn))) — Vn:nat, (Pn)

can be represented by the term:

AP :nat — Prop. Af : (PO). Ag: (Vn:nat, (Pn)— (P (Sn))).
Fix h{h : Vn:nat, (P n):= An:nat. case(n, P, fl]Ap: nat. (g p (hp)))}

Before accepting a fixpoint definition as being correctly typed, we check that the definition is “guarded”. A precise analysis
of this notion can be found in [Gimenez94]. The first stage is to precise on which argument the fixpoint will be decreasing.
The type of this argument should be an inductive type. For doing this, the syntax of fixpoints is extended and becomes

Fix fz{fl/kl :Al = tlfn/kn : An = tn}

112 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

where k; are positive integers. Each k, represents the index of parameter of f;, on which f; is decreasing. Each A; should
be a type (reducible to a term) starting with at least k; products Yy, : By, VY, By, Al and B %, an inductive type.

Now in the definition ¢;, if f; occurs then it should be applied to at least k; arguments and the k;-th argument should be
syntactically recognized as structurally smaller than y k-

The definition of being structurally smaller is a bit technical. One needs first to define the notion of recursive arguments
of a constructor. For an inductive definition Ind [r] (T'; := T'y), if the type of a constructor ¢ has the form Vp, :

Py, .Vp,: P, Voy : Ty, Nz, : T, (I; py..p, t;...L,), then the recursive arguments will correspond to 7} in
which one of the I; occurs.

The main rules for being structurally smaller are the following. Given a variable y of an inductively defined type in a
declaration Ind [r] (I'; := T'p) where I'; is [I; = Ay; .5 I, + Ag],and T is [¢; = Cy; .. ¢, : C,], the terms
structurally smaller than y are:

* (tw)and \x : U. t when ¢ is structurally smaller than y.

 case(c, P, fi...f,,) when each f; is structurally smaller than y. If ¢ is y or is structurally smaller than y, its type is
an inductive type /, part of the inductive definition corresponding to y. Each f; corresponds to a type of constructor
C,=Vp : P, .,Vp, : P, Yy, : By, .Yy, + B, (I, py..p, t;...t;) and can consequently be written
Ay + By Ay, + By, g;. (B is obtained from B, by substituting parameters for variables) the variables y;
occurring in g; corresponding to recursive arguments B; (the ones in which one of the I; occurs) are structurally
smaller than y.

The following definitions are correct, we enter them using the i xpoint command and show the internal representation.

Example

Fixpoint plus (n m:nat) {struct n} : nat
match n with
| O =>m
| S p=>9S (plus p m)
end.
plus is defined
plus is recursively defined (decreasing on 1lst argument)

Print plus.

plus =

fix plus (n m : nat) {struct n} : nat :=
match n with
| 0 =>m
| S p =>S (plus p m)
end

nat -> nat -> nat

Argument scopes are [nat_scope nat_scope]

Fixpoint lgth (A:Set) (l:1ist A) {struct 1} : nat
match 1 with

[nil => 0O
| cons _ a 1' => S (lgth A 1")
end.

lgth is defined
lgth is recursively defined (decreasing on 2nd argument)

Print lgth.
lgth =
fix 1lgth (A : Set) (1 : list A) {struct 1} : nat :=

(continues on next page)

3.4. Calculus of Inductive Constructions 113

The Coq Reference Manual, Release 8.9.1

(continued from previous page)
match 1 with

| nil => 0
| cons _ _ 1" => S (lgth A 1")
end

forall A : Set, list A -> nat
Argument scopes are [type_scope _]

Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f)
with sizef (f:forest) : nat :=
match f with
| emptyf => O
| consf t f => plus (sizet t) (sizef f)
end.
sizet is defined
sizef is defined
sizet, sizef are recursively defined (decreasing respectively on 1st,
1st arguments)

Print sizet.

sizet =
fix sizet (t : tree) : nat := let (f) := t in S (sizef f)
with sizef (f : forest) : nat :=

match f with
| emptyf => 0
| consf t f0 => plus (sizet t) (sizef £0)
end
for sizet
tree —-> nat

Reduction rule

Let F be the set of declarations: f;/ky : A; :=ty...f,,/k,, : A,, :=t,. The reduction for fixpoints is:
(Fix f{F} ay..ay,) B>, t{fi/FIX fild F}}ica g a0y,

when a;,starts with a constructor. This last restriction is needed in order to keep strong normalization and corresponds
to the reduction for primitive recursive operators. The following reductions are now possible:

plus (S(SO))(SO) D, S(plus(SO)(SO))
>, S(S(plusO(S0O)))
>, S(S(S0))

Mutual induction

The principles of mutual induction can be automatically generated using the Scheme command described in Section
Generation of induction principles with Scheme.

3.4.6 Admissible rules for global environments

From the original rules of the type system, one can show the admissibility of rules which change the local context of defi-
nition of objects in the global environment. We show here the admissible rules that are used in the discharge mechanism
at the end of a section.

114 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

Abstraction. One can modify a global declaration by generalizing it over a previously assumed constant c¢. For doing
that, we need to modify the reference to the global declaration in the subsequent global environment and local context by
explicitly applying this constant to the constant c.

Below, if T' is a context of the form [y, : Ay .5y, = A,], we write Vo : U, I'{c/x} to mean
[y, = VYo : U, A{c/z}; .5y, + Yo = U, A,{c/x}] and E{|T'|/|T'|c} to mean the parallel substitution
Edy1/ (1)} Ayn/ (Y ©)}-

First abstracting property:

WF(E; ¢c:U; E'; ¢/ :=1:T; E")[T]
WF(E; ¢c:U; E'; ¢ ==X x:U.t{c/x} : Ve : U, T{c/x}; E"{c’/(c')}[T{c'/(c' ¢)}]

WF(E; ¢c:U; E'; ¢/ : T; E”)[T
W (B; ¢ Us E; ¢ = Va - U, T{c/ay; E'{¢ /(¢ oD/ o)}]
W (B; ¢+ U; E's Ind [p) (T, := T¢); BT
WF (E; ¢:U; B Ind [p+ 1] (Vo : U, T'j{c/a} := Vo : U, T{c/z}); E"{IT;Tcl/IT1T¢lc})
[M{ITrTel/ITp Tele}]
One can similarly modify a global declaration by generalizing it over a previously defined constant c. Below, if I' is a
context of the form [y, : Ay; ...; v, : 4,,], we write I'{c/u} to mean [y, : A;{c/u}; ...; y,, : A, {c/u}].

Second abstracting property:

WF(E; ci=u:U; E'; ¢/ :==t:T; E")[I]
W‘?(E, C:uU, _E‘/7 c = (Iet[l? =u:U1In t{C/J}}) . T{C/’LL}, E”)[F]

WF(E; c:=u:U; E'; ¢ :T; E")[I]
WF(E; c:=u:U; E'; ¢ : T{c/u}; E")[T]
WF (E; c:=u:U; E'; Ind [p] (') := I'c); E”)[L]
W (E; c+=u: U; B Ind [p] (T, {c/u} = Tele/u)); BT
Pruning the local context. If one abstracts or substitutes constants with the above rules then it may happen that some

declared or defined constant does not occur any more in the subsequent global environment and in the local context. One
can consequently derive the following property.

First pruning property:

WF(E; c:U; E')[I] ¢ does not occur in E” and T’
W7 (E; E')[T]
Second pruning property:
WF(E; c:=u:U; B[] ¢ does not occur in E and T’
WF(E; E")[I]

3.4.7 Co-inductive types

The implementation contains also co-inductive definitions, which are types inhabited by infinite objects. More information
on co-inductive definitions can be found in [Gimenez95][Gimenez98][GimenezCasteran(05].

3.4. Calculus of Inductive Constructions 115

The Coq Reference Manual, Release 8.9.1

3.4.8 The Calculus of Inductive Constructions with impredicative Set

Coq can be used as a type checker for the Calculus of Inductive Constructions with an impredicative sort Set by using
the compiler option ~impredicative-set. For example, using the ordinary cogt op command, the following is
rejected,

Example

Fail Definition id: Set := forall X:Set, X—>X.
The command has indeed failed with message:
The term "forall X : Set, X —-> X" has type "Type"
while it is expected to have type "Set" (universe inconsistency) .

while it will type check, if one uses instead the cogtop —impredicative—-set option..

The major change in the theory concerns the rule for product formation in the sort Set, which is extended to a domain in
any sort:

ProdImp

EFT:s ses El':(x:T)|FU: Set
EQ|FVa:T, U Set

This extension has consequences on the inductive definitions which are allowed. In the impredicative system, one can
build so-called large inductive definitions like the example of second-order existential quantifier (exSet).

There should be restrictions on the eliminations which can be performed on such definitions. The elimination rules in the
impredicative system for sort Set become:

Setl
s € {Prop, Set}
[I: Set|] — s]
Set2
I is a small inductive definition s € {Type(i)}
[I:Set|] — s

3.5 The Module System

The module system extends the Calculus of Inductive Constructions providing a convenient way to structure large devel-
opments as well as a means of massive abstraction.

3.5.1 Modules and module types
Access path. An access path is denoted by p and can be either a module variable X or, if p’ is an access path and id an
identifier, then p’.id is an access path.

Structure element. A structure element is denoted by e and is either a definition of a constant, an assumption, a definition
of an inductive, a definition of a module, an alias of a module or a module type abbreviation.

Structure expression. A structure expression is denoted by .S and can be:

* an access path p

116 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

* a plain structure Struct e; ...; e End
« a functor Functor(X : S) S, where X is a module variable, S and S’ are structure expressions
* an application S p, where S is a structure expression and p an access path

« arefined structure S with p := p” or S with p := ¢ : T where S is a structure expression, p and p’ are access paths,
tis aterm and T is the type of t.

Module definition. A module definition is written Mod(X : S [:= S’]) and consists of a module variable X, a module
type .S which can be any structure expression and optionally a module implementation S” which can be any structure
expression except a refined structure.

Module alias. A module alias is written MOdA(X == p) and consists of a module variable X and a module path p.

Module type abbreviation. A module type abbreviation is written ModType(Y := S), where Y is an identifier and S
is any structure expression .

3.5.2 Typing Modules

In order to introduce the typing system we first slightly extend the syntactic class of terms and environments given in
section The terms. The environments, apart from definitions of constants and inductive types now also hold any other
structure elements. Terms, apart from variables, constants and complex terms, include also access paths.

We also need additional typing judgments:

F p: S, denoting that the module pointed by p has type S in environment F.

b = &

[
[
[FS— S, denoting that a structure S is evaluated to a structure S in weak head normal form.
[|F Sy <: S, , denoting that a structure .S, is a subtype of a structure S,.

[

The rules for forming structures are the following:
WF-STR

W (E; E')]]
E[] - W (Struct E’ End)

WF-FUN

E;Mod(X : S)[] F WF(F)
E[] - W7 (Functor(X : S) ")

Evaluation of structures to weak head normal form:

WEVAL-APP
E[JF S — Functor(X : S;) S, E[FS, — 5,

E[lFp:S; E[FS; <5
E[] - Sp — SQ{p/thl/pl'Cla "'atn/pn'cn}

In the last rule, {¢,/p;.c1, ..., t,,/Dy-C,, } is the resulting substitution from the inlining mechanism. We substitute in S
the inlined fields p;.c; from Mod(X : S) by the corresponding delta- reduced term ¢, in p.

3.5. The Module System 117

The Coq Reference Manual, Release 8.9.1

WEVAL-WITH-MOD
E[|F- S — Structe;;...;e;;Mod(X = S));€;,5;...; €, End

Eiep;..ie[]F S — S E[lFp: S,
Eiep;.pef]F Sy < 8)
E[JF Swithz :=p —
Structe;;...;e;; ModA(X == p);e,; o{p/X};...;e,{p/X} End

WEVAL-WITH-MOD-REC
E[| =S — Structe;;...;e;;Mod(X : Sy); ;4955 €, End
Eiey;..;e[| Sy withp :=p;, — S,
B F Swith X;.p:=p, —
Structey;...;e;;Mod(X : Sy);5e,,0{p1 /X, .0}; .5 e, {p1 /X, .0} End

WEVAL-WITH-DEF
E[l|FS — Structe;;...;e;; Assum()(c : 1)); €;,0; ... €, End
E;eq;..;e;[]F Def()(c:=1:T) <: Assum()(c: 1)
E[JFSwithc:=¢:T —
Structe;;...;e;;Def()(c:=1t:T);e;,0;...;¢, End

WEVAL-WITH-DEF-REC
E[] =S — Structe;;...;e;;Mod(X : Sy)5 ;4955 €, End

e
E;eq;..;e;[| F Sy withp :=p; — S,
ElFSwithX,p:=t:T —

Struct e;;...;e;;Mod(X = S5); €;40; ... €, End

-5 €45

WEVAL-PATH-MOD1
EfJFp— Structey;...;e;;Mod(X = S [:= Si]); €495 .5 €, End
E;eq;..;e[]FS— S
EFpX — S

WEVAL-PATH-MOD2
WF (E)|] Mod(X : S[:=S,]) € E EJFS— S

WEVAL-PATH-ALIAS1
Ef|Fp— Structey;...;e;; ModA(X == py);e; 95 6, End
E;eq;..5e[]Fpp — S
E[FpX — S

WEVAL-PATH-ALIAS2

WF (E)[] ModA(X ==p,) € E ElFp, — S
EJFX — S

WEVAL-PATH-TYPE1
Ef|Fp— Structey;...;e;;ModType(Y := S);e;,9;...; €, End
E;eq;..;e[]FS— S
EJFpY — S

118 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

WEVAL-PATH-TYPE2

WF(E)] ModType(Y := S) € F E|-S—S
EFY — S
Rules for typing module:
MT-EVAL
ElFp—S
ElFp:S
MT-STR
EllFp: S
Ellkp:S/p

The last rule, called strengthening is used to make all module fields manifestly equal to themselves. The notation .S /p has
the following meaning:

» if S — Structe,;...;e, Endthen S/p = Structe, /p;...;e,,/p End where e/p is defined as follows (note that
opaque definitions are processed as assumptions):

- Def()(c:=t:T)/p=Def()(c:=t:T)
Assum()(c: U)/p = Def()(c :=p.c: U)

Mod(X : S)/p = ModA(X == p.X)

ModA(X ==p’)/p = ModA(X == p’)
Ind[l'p](C¢ :=T)/p = Ind,O[U'p](Pc :=T)
Ind,, O[Tp](T'e :==T;)/p=Ind, O[I'p](Tc:=T)
e if S — Functor(X : S”) S” then S/p = S

The notation Ind,,()[T"p](I'c := T';) denotes an inductive definition that is definitionally equal to the inductive defi-
nition in the module denoted by the path p. All rules which have Ind[T'p)(T' := I';) as premises are also valid for
Ind,()[T'p)(T'c == I'y). We give the formation rule for Ind,()[I's](I'c := I';) below as well as the equality rules on
inductive types and constructors.

The module subtyping rules:

MSUB-STR
Eiegs.ge,[] Feyq < ejfori=1.m
o:{l..m} — {1...n} injective
E[] F Structey;...;e,, End <: Structef;...; e/, End
MSUB-FUN

E[FS] <5 E;Mod(X:S)[F5, <5
E[] + Functor(X : 5,)S, <: Functor(X : 57])S%

Structure element subtyping rules:
ASSUM-ASSUM

Bl FT <gsicn To
E[] - Assum()(c: T}) <: Assum()(c : Ty)

3.5. The Module System 119

The Coq Reference Manual, Release 8.9.1

DEF-ASSUM
EH t Tl gﬁ&(n T2
E[| - Def()(c:=t:T;) <: Assum()(c : Ty)
ASSUM-DEF
EH F Tl Sﬁ&(n T2 E[] Fe =B6uCn t2
E[] - Assum()(c: T}) <: Def()(c :=1ty : T})
DEF-DEF
E[[FT) <gsien Ts E[l =ty =gscn ta
E[| - Def()(c:=t; : Ty) <: Def()(c :=ty : Ty)
IND-IND
E[lFTp =Bsun s Elp| T =BsuCn I't Elp;TelHTy =B5uCn Iy
B[FInd[[,] (Te = T;) <:Ind [(T, = T7)
INDP-IND
E[lFTp =Bouln FQD El'p] T =Béuln F/c Elp; Tl F Ty =Bsutn F/I
E[lFInd,()[Tp)(T¢ :==T;) <: Ind] (TG = I'7)
INDP-INDP
EllFTp =BsuCn 'y El'p]FT¢ =BsuCn I'c
Elp;To]F Ty =Bsuln F/I Ellp =Bsuin 2
B FInd, ([T p](Tc =) <: Ind,,) [T5](T5 =)
MOD-MOD
EH l_ Sl < 52
E[JFMod(X : S;) <: Mod(X : S,)
ALIAS-MOD
EllFp:S; E|F S, <: S,
E[] - ModA(X == p) <: Mod(X : S,)
MOD-ALIAS

E[]l_pSQ E[]l_Sl <:SQ E[]l_X:B(SL{np
E[F Mod(X : 5,) <: ModA(X == p)

ALIAS-ALIAS

E[l - py =Bsu¢n P2
E[] - ModA(X == p,) <: ModA(X == p,)

MODTYPE-MODTYPE

E[JF S <: S, E[JF S, <: S,
E[] F ModType(Y := S,) <: ModType(Y := S,)

120 Chapter 3. The language

The Coq Reference Manual, Release 8.9.1

New environment formation rules

WF-MOD1
WF(E)|] E[| - WF(S)
WE(E;Mod(X : 9))[]
WF-MOD2
E[JF S, <: 5 WF(E)[] E[| - WF(S;) E[| - WF(S,)
W (E;Mod(X : Sy [:= S,]))]]
WF-ALIAS
W (E)] ElFp:S
W (E, ModA(X == p))]]
WF-MODTYPE
W (E)]] E[| F WF(S)

WF(E,ModType(Y :=9))][]

WF-IND

WF(E;Ind [Up] (Ue == Tp))[]
E[|Fp: Structey;...;e,;Ind [I'p] (T == T');... End

E[J*FInd [[] (T, =) <: Ind [[] (T, = T,)
W7 (E;Ind,()[L'p](Le :=T))]]

Component access rules
ACC-TYPE1
E[l)F p: Structey;...;e;; Assum()(c: T);... End

-5 €45

E[Fpc: T

ACC-TYPE2
El|Fp: Structey;...;e;; Def()(c:=t:T);... End

<5645

E[Fpc: T

Notice that the following rule extends the delta rule defined in section Conversion rules
ACC-DELTA

E[l]+p: Structey;...;e;; Def()(c:=t: U);... End
ETTF pcDyt

In the rules below we assume I'p is [p; : Py;..;p, = P, Tyis [I; : Ay I, s Ay],and T is [e : C; e ¢, 2 C)-
ACC-IND1
E[l)Fp: Structey;...;e;;Ind [T'p] (T := Ty);... End

<5645

ElEpd;:(py: Py).(pp: P

ACC-IND2
E[l)Fp: Structey;...;e;;Ind [T'p] (T := Ty);... End

<5645

E[F] '_pcm : (pl : Pl)(pr : Pr)Cij(Ig pl"‘pr)jzlmk

3.5. The Module System 121

The Coq Reference Manual, Release 8.9.1

ACC-INDP1
E[JFp: Structe;...;e;5Ind, O[T p](Fe :=T'); ... End

23

E[lFpI >sp' 1

ACC-INDP2
EfJFp: Structey;...;e;5Ind, ()[T'p](I'¢ :=T'p); ... End
E[lFpe;Dsp'c

122 Chapter 3. The language

CHAPTER
FOUR

THE PROOF ENGINE

4.1 Vernacular commands

4.1.1 Displaying

Command: Print qualid
This command displays on the screen information about the declared or defined object referred by qualid.

Error messages:

Error: qualid not a defined object.

Error: Universe instance should have length num.
Error: This object does not support universe names.

Variant: Print Term qualid
This is a synonym of Print qualidwhen qualid denotes a global constant.

?
Variant: Print Term qualid@name
This locally renames the polymorphic universes of gualid. An underscore means the raw universe is
printed.
Command: About qualid

This displays various information about the object denoted by qua1id: its kind (module, constant, assumption,

inductive, constructor, abbreviation, ...), long name, type, implicit arguments and argument scopes. It does not
print the body of definitions or proofs.

Variant: About qualid@name

This locally renames the polymorphic universes of qgualid. An underscore means the raw universe is
printed.

Command: Print All
This command displays information about the current state of the environment, including sections and modules.

Variant: Inspect num
This command displays the num last objects of the current environment, including sections and modules.

Variant: Print Section ident

The name ident should correspond to a currently open section, this command displays the objects defined
since the beginning of this section.

4.1.2 Flags, Options and Tables

Coq has many settings to control its behavior. Setting types include flags, options and tables:

123

The Coq Reference Manual, Release 8.9.1

¢ A flag has a boolean value, such as Asymmetric Patterns.

* An option generally has a numeric or string value, such as Firstorder Depth.

* A table contains a set of strings or qualids.

¢ In addition, some commands provide settings, such as Ext raction Language.
Flags, options and tables are identified by a series of identifiers, each with an initial capital letter.

2
Command: Local | Global | Export Set flag
Sets £1ag on. Scoping qualifiers are described /ere.

?
Command: Local | Global | Export Unset flag
Sets f1ag off. Scoping qualifiers are described /ere.

Command: Test flag
Prints the current value of r1ag.

?
Command: Local | Global | Export Set option (num | string)

Sets opt ion to the specified value. Scoping qualifiers are described /ere.

?
Command: Local | Global | Export Unset option

Sets option toits default value. Scoping qualifiers are described /Zere.

Command: Test option
Prints the current value of option.

Command: Print Options
Prints the current value of all flags and options, and the names of all tables.

Command: Add table (string | qualid)
Adds the specified value to table.

Command: Remove table (string | qualid)
Removes the specified value from table.

Command: Test table for (string | qualid)
Reports whether t ab1e contains the specified value.

Command: Print Table table
Prints the values in table.

Command: Test table
A synonym for Print Table @table.

Command: Print Tables
A synonym for Print Options.

Scope qualifiers for set and Unset

?
Local | Global | Export

Flag and option settings can be global in scope or local to nested scopes created by Module and Sect ion commands.
There are four alternatives:

* no qualifier: the original setting is not restored at the end of the current module or section.

¢ Local: the setting is applied within the current scope. The original value of the option or flag is restored at the end
of the current module or section.

124 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

¢ Global: similar to no qualifier, the original setting is not restored at the end of the current module or section. In
addition, if the value is set in a file, then Requ i re-ing the file sets the option.

» Export: similar to Local, the original value of the option or flag is restored at the end of the current module or
section. In addition, if the value is set in a file, then Tmport-ing the file sets the option.

Newly opened scopes inherit the current settings.

4.1.3 Requests to the environment

Command: Check term
This command displays the type of term. When called in proof mode, the term is checked in the local context of
the current subgoal.

Variant: selector: Check term
This variant specifies on which subgoal to perform typing (see Section Invocation of tactics).

Command: Eval convtactic in term
This command performs the specified reduction on term, and displays the resulting term with its type. The term
to be reduced may depend on hypothesis introduced in the first subgoal (if a proof is in progress).

See also:
Section Performing computations.

Command: Compute term
This command performs a call-by-value evaluation of term by using the bytecode-based virtual machine. It is a
shortcut for Eval vm_compute in term.

See also:
Section Performing computations.

Command: Print Assumptions qualid
This commands display all the assumptions (axioms, parameters and variables) a theorem or definition depends on.
Especially, it informs on the assumptions with respect to which the validity of a theorem relies.

Variant: Print Opaque Dependencies qualid
Displays the set of opaque constants gua 1 id relies on in addition to the assumptions.

Variant: Print Transparent Dependencies qualid
Displays the set of transparent constants gua 1 i d relies on in addition to the assumptions.

Variant: Print All Dependencies qualid
Displays all assumptions and constants gua 1 id relies on.

Command: Search qualid
This command displays the name and type of all objects (hypothesis of the current goal, theorems, axioms, etc) of
the current context whose statement contains gual id. This command is useful to remind the user of the name of
library lemmas.

Error: The reference qualid was not found in the current environment.
There is no constant in the environment named qualid.

Variant: Search string
If st ringis a valid identifier, this command displays the name and type of all objects (theorems, axioms,
etc) of the current context whose name contains string. If string is a notation’s string denoting some reference
qualid (referred to by its main symbol as in "+" or by its notation’s stringasin "_ + _"or"_ 'U’'
_", see Section Notations), the command works like Search qualid.

4.1. Vernacular commands 125

The Coq Reference Manual, Release 8.9.1

Variant: Search string%key
The string string must be a notation or the main symbol of a notation which is then interpreted in the scope
bound to the delimiting key key (see Section Local interpretation rules for notations).

Variant: Search term pattern
This searches for all statements or types of definition that contains a subterm that matches the pattern
term_pattern (holes of the pattern are either denoted by _ or by ?ident when non linear patterns
are expected).

Variant: Search { + [-]term pattern string }
where term_pattern_stringisa term_pattern, a string, or a string followed by a scope delimiting key
$key. This generalization of Search searches for all objects whose statement or type contains a subterm
matching term pattern (or gualidif stringisthe notation for a reference qualid) and whose name
contains all string of the request that correspond to valid identifiers. If a term_pattern or a string is prefixed
by —, the search excludes the objects that mention that term_pattern or that string.

Variant: Search term pattern_string .. term pattern_string inside qualid
This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: Search term pattern_string .. term pattern_string outside qualid
This restricts the search to constructions not defined in the modules named by the given qualid sequence.

Variant: selector: Search [-]term pattern string .. [-]term pattern string
This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Example

Require Import ZArith.

Search Z.mul Z.add "distr".

Z.mul_add_distr_1: forall nmp : Z, (n * (m + p))%Z = (n *m + n * p)%Z
Z.mul_add_distr_r: forall nmp : Z, ((n +m) * p)%Z = (n * p +m * p)3%Z
fast_Zmult_plus_distr_1:
forall (nmp : Z) (P : Z —> Prop),
P (n*p+m*p)%2 —>P ((n +m * p)%Z
Search "+"%$Z "*"%Z "distr" -positive -Prop.
Z.mul_add_distr_1l: forall nmp : Z, (n * (m + p))%Z = (n *m + n * p)3%Z
Z.mul_add_distr_r: forall nmp : Z, ((n +m) * p)%Z = (n * p + m * p)S%Z
Search (?x * _ + ?x * _)%7Z outside Omegalemmas.
Z.mul_add_distr_1: forall nmp : Z, (n * (m + p))%Z = (n *m + n * p)S%Z

Variant: SearchAbout
Deprecated since version 8.5.

Up to Coq version 8.4, Search had the behavior of current SearchHead and the behavior of cur-
rent Search was obtained with command SearchAbout. For compatibility, the deprecated name
SearchAbout can still be used as a synonym of Search. For compatibility, the list of objects to search
when using SearchAbout may also be enclosed by optional [] delimiters.

Command: SearchHead term
This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion has the form (term t1 .. tn). This command is useful to remind the
user of the name of library lemmas.

126 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Example

SearchHead le.
le_n: forall n : nat, n <= n
le_0_n: forall n : nat, 0 <= n
le_S: forall nm : nat, n <= m -> n <= S m
le_pred: forall n m : nat, n <= m —-> Nat.pred n <= Nat.pred m
le_n_S: forall nm : nat, n <= m -> S n <= S m
le_S_ n: forall nm : nat, S n <= S m > n <=m

SearchHead (leq bool).
andb_true_intro:

forall bl b2 : bool, bl = true /\ b2 = true -> (bl && b2)%bool

= true

+
Variant: SearchHead term inside qualid

This restricts the search to constructions defined in the modules named by the given qualid sequence.

+
Variant: SearchHead term outside qualid

This restricts the search to constructions not defined in the modules named by the given qualid sequence.

Error: Module/section qualid not found.
No module guaid has been required (see Section Compiled files).

Variant: selector: SearchHead term

This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st

goal is searched. This variant can be combined with other variants presented here.

Note: Up to Coq version 8.4, SearchHead was named Search.

Command: SearchPattern term

This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion or last hypothesis and conclusion matches the expressionterm where holes
in the latter are denoted by _. It is a variant of Search term pattern that does not look for subterms but
searches for statements whose conclusion has exactly the expected form, or whose statement finishes by the given

series of hypothesis/conclusion.

Example

Require Import Arith.

SearchPattern (_ + _ = _ + _).

Nat.add_comm: forall nm : nat, n + m = m + n
plus_Snm_nSm: forall nm : nat, Sn +m=n + S m
Nat.add_succ_comm: forall nm : nat, S n + m =
Nat.add_shuffle3: forall n m p : nat, n + (
plus_assoc_reverse: forall n m p : nat, n +
Nat.add_assoc: forall nmp : nat, n + (m+ p) = n + m + p
Nat.add_shuffleO: forall n m p : nat, n + m
f_equal2_plus:

forall x1 yl1 x2 y2 : nat, x1
Nat.add_shuffle2: forall n m p g : nat, n + m + (p + Qg)
Nat.add_shufflel: forall nm p g nat, n + m + (p + q)

1
58 |

yl —> x2 = y2 —> x1 + x2 =yl + y2
: + g+ (m + p)
tpt+ (m+ q)

(continues on next page)

4.1. Vernacular commands

127

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

SearchPattern (nat —-> bool).
Nat.odd: nat —-> bool
Init.Nat.odd: nat —-> bool
Nat.even: nat -> bool
Init.Nat.even: nat -> bool
Init.Nat.testbit: nat —-> nat -> bool
Nat.leb: nat -> nat —-> bool
Nat.egb: nat —-> nat —> bool
Init.Nat.egb: nat -> nat —-> bool
Nat.ltb: nat -> nat -> bool
Nat.testbit: nat -> nat -> bool
Init.Nat.leb: nat -> nat —-> bool
Init.Nat.ltb: nat -> nat —-> bool
BinNat.N.testbit_nat: BinNums.N —-> nat —-> bool
BinPosDef.Pos.testbit_nat: BinNums.positive —-> nat -> bool
BinPos.Pos.testbit_nat: BinNums.positive —-> nat -> bool
BinNatDef.N.testbit_nat: BinNums.N —-> nat —-> bool

SearchPattern (forall 1 : list _, _
List.incl_refl: forall (A : Type
List.lel_refl: forall (A : Type) (

11).
) (1 : list A), List.incl 1 1
1 list A), List.lel 1 1

Patterns need not be linear: you can express that the same expression must occur in two places by using pattern
variables ?ident.

Example
SearchPattern (?X1 + _ = _ + ?2X1).
Nat.add_comm: forall nm : nat, n + m = m + n

Variant: SearchPattern term inside qualid
This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: SearchPattern term outside qualid
This restricts the search to constructions not defined in the modules named by the given qualid sequence.

Variant: selector: SearchPattern term
This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Command: SearchRewrite term
This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion is an equality of which one side matches the expression term. Holes in term
are denoted by “_”

Example

Require Import Arith.

SearchRewrite (_ + _ + _).
Nat.add_shuffle0: forall nmp : nat, n + m+ p =n + p + m
plus_assoc_reverse: forall nmp : nat, n + m + p =n + (m + p)
(continues on next page)

128 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

Nat.add_assoc: forall nmp : nat, n + (m + p) = n + m + p
Nat.add_shufflel: forall nmp g : nat, n + m+ (p + g = n + p + (m + q)
Nat.add_shuffle2: forall nmp g : nat, n + m + (p + g) = n + g + (m + p)

Nat.add_carry_div2:
forall (a b : nat) (cO : bool),
(a + b + Nat.b2n c0) / 2 =
a/ 2+b/ 2+
Nat .b2n
(Nat.testbit a 0 && Nat.testbit b 0
[cO0 && (Nat.testbit a 0 || Nat.testbit b 0))

Variant: SearchRewrite term inside qualid
This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: SearchRewrite term outside qualid
This restricts the search to constructions not defined in the modules named by the given qualid sequence.

Variant: selector: SearchRewrite term
This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Note:

Table: Search Blacklist string
Specifies a set of strings used to exclude lemmas from the results of Search, SearchHead, SearchPattern
and SearchRewrite queries. A lemma whose fully-qualified name contains any of the strings will be excluded
from the search results. The default blacklisted substrings are _subterm, _subproof and Private_.

Use the Add @table and Remove @table commands to update the set of blacklisted strings.

Command: Locate qualid
This command displays the full name of objects whose name is a prefix of the qualified identifier gua 1 i d, and con-
sequently the Coq module in which they are defined. It searches for objects from the different qualified namespaces
of Coq: terms, modules, Ltac, etc.

Example

Locate nat.
Inductive Cog.Init.Datatypes.nat

Locate Datatypes.O.
Constructor Cog.Init.Datatypes.O
(shorter name to refer to it in current context is 0O)

Locate Init.Datatypes.O.
Constructor Cog.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Locate Cog.Init.Datatypes.O.
Constructor Coqg.Init.Datatypes.O
(shorter name to refer to it in current context is O)

Locate I.Dont.Exist.
No object of suffix I.Dont.Exist

4.1. Vernacular commands 129

The Coq Reference Manual, Release 8.9.1

Variant: Locate Term qualid
As Locate but restricted to terms.

Variant: Locate Module qualid
As Locate but restricted to modules.

Variant: Locate Ltac qualid
As Locate but restricted to tactics.

See also:

Section Locating notations

4.1.4 Loading files

Coq offers the possibility of loading different parts of a whole development stored in separate files. Their contents will be
loaded as if they were entered from the keyboard. This means that the loaded files are ASCII files containing sequences
of commands for Coq’s toplevel. This kind of file is called a script for Coq. The standard (and default) extension of Coq’s
script files is .v.

Command: Load ident

This command loads the file named ident.v, searching successively in each of the directories specified in the
loadpath. (see Section Libraries and filesysten)

Files loaded this way cannot leave proofs open, and the Load command cannot be used inside a proof either.

Variant: Load string
Loads the file denoted by the string st ring, where string is any complete filename. Then the ~ and ..
abbreviations are allowed as well as shell variables. If no extension is specified, Coq will use the default
extension . v.

Variant: Load Verbose ident
Variant: Load Verbose string
Display, while loading, the answers of Coq to each command (including tactics) contained in the loaded file.

See also:

Section Controlling display.
Error: Can’t find file ident on loadpath.
Error: Load is not supported inside proofs.

Error: Files processed by Load cannot leave open proofs.

4.1.5 Compiled files

This section describes the commands used to load compiled files (see Chapter The Coq commands for documentation on
how to compile a file). A compiled file is a particular case of module called library file.

Command: Require qualid

This command looks in the loadpath for a file containing module gualid and adds the corresponding module
to the environment of Coq. As library files have dependencies in other library files, the command Require
qua1idrecursively requires all library files the module qualid depends on and adds the corresponding modules to
the environment of Coq too. Coq assumes that the compiled files have been produced by a valid Coq compiler and
their contents are then not replayed nor rechecked.

130

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

To locate the file in the file system, gua I i dis decomposed under the form dirpath. ident and thefile i dent.
vo is searched in the physical directory of the file system that is mapped in Coq loadpath to the logical path dirpath
(see Section Libraries and filesystem). The mapping between physical directories and logical names at the time of
requiring the file must be consistent with the mapping used to compile the file. If several files match, one of them
is picked in an unspecified fashion.

Variant: Require Import qualid
This loads and declares the module gua 11d and its dependencies then imports the contents of qualid as
described here. It does not import the modules on which qualid depends unless these modules were themselves
required in module qua1idusing Require Export,asdescribed below, or recursively required through
a sequence of Require Export. If the module required has already been loaded, Require Import
qualid simply imports it, as Tmport qualid would.

Variant: Require Export qualid
This command acts as Require Import qualid, butif a further module, say A, contains a command
Require Export B, then the command Require Import A alsoimports the module B.

Variant: Require [Import | Export] qualid T
This loads the modules named by the qualid sequence and their recursive dependencies. If Import or
Export is given, it also imports these modules and all the recursive dependencies that were marked or
transitively marked as Export.

Variant: From dirpath Require qualid
This command acts as Require, but picks any library whose absolute name is of the form dirpath.
dirpath’.qualidfor some dirpath’. This is useful to ensure that the qualid library comes from
a given package by making explicit its absolute root.

Error: Cannot load qualid: no physical path bound to dirpath.

Error: Cannot find library foo in loadpath.
The command did not find the file foo.vo. Either foo.v exists but is not compiled or foo.vo is in a directory
which is not in your LoadPath (see Section Libraries and filesystem).

Error: Compiled library ident.vo makes inconsistent assumptions over library qualid.
The command tried to load library file i dent.vo that depends on some specific version of library qualid
which is not the one already loaded in the current Coq session. Probably i dent . v was not properly recom-
piled with the last version of the file containing module qualid.

Error: Bad magic number.
The file ident.vo was found but either it is not a Coq compiled module, or it was compiled with an
incompatible version of Coq.

Error: The file :n: ident.vo contains library dirpath and not library dirpath’.
The library file dirpath’ is indirectly required by the Require command but it is bound in the current
loadpath to the file i dent .vo which was bound to a different library name dirpath at the time it was
compiled.

Error: Require is not allowed inside a module or a module type.
This command is not allowed inside a module or a module type being defined. It is meant to describe a
dependency between compilation units. Note however that the commands Import and Export alone can
be used inside modules (see Section /mport).

See also:
Chapter The Coq commands

Command: Print Libraries
This command displays the list of library files loaded in the current Coq session. For each of these libraries, it also
tells if it is imported.

4.1. Vernacular commands 131

The Coq Reference Manual, Release 8.9.1

+
Command: Declare ML Module string

This commands loads the OCaml compiled files with names given by the st ring sequence (dynamic link). It is
mainly used to load tactics dynamically. The files are searched into the current OCaml loadpath (see the command
Add ML Path). Loading of OCaml files is only possible under the bytecode version of cogtop (i.e. cogtop
called with option ~byte, see chapter 7The Cog commands), or when Coq has been compiled with a version of
OCaml that supports native Dynlink (= 3.11).

+
Variant: Local Declare ML Module string

This variant is not exported to the modules that import the module where they occur, even if outside a section.
Error: File not found on loadpath: string.
Error: Loading of ML object file forbidden in a native Coq.

Command: Print ML Modules
This prints the name of all OCaml modules loaded with Declare ML Module. To know from where these
module were loaded, the user should use the command Locate File.

4.1.6 Loadpath

Loadpaths are preferably managed using Coq command line options (see Section 1ibraries-and-filesystem)
but there remain vernacular commands to manage them for practical purposes. Such commands are only meant to be
issued in the toplevel, and using them in source files is discouraged.

Command: Pwd
This command displays the current working directory.

Command: Cd string
This command changes the current directory according to st ring which can be any valid path.

Variant: Cd
Is equivalent to Pwd.

Command: Add LoadPath string as dirpath
This command is equivalent to the command line option -Q string dirpath. It adds the physical directory
string to the current Coq loadpath and maps it to the logical directory dirpath.

Variant: Add LoadPath string
Performs as Add LoadPath string dirpath butfor the empty directory path.

Command: Add Rec LoadPath string as dirpath
This command is equivalent to the command line option -R string dirpath. It adds the physical directory
string and all its subdirectories to the current Coq loadpath.

Variant: Add Rec LoadPath string
Works as Add Rec LoadPath string as dirpath butfor the empty logical directory path.

Command: Remove LoadPath string
This command removes the path st ring from the current Coq loadpath.

Command: Print LoadPath
This command displays the current Coq loadpath.

Variant: Print LoadPath dirpath
Works as Print LoadPath but displays only the paths that extend the di rpath prefix.

Command: Add ML Path string
This command adds the path string to the current OCaml loadpath (see the command Declare ML
Module" in Section Compiled files).

132 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Command: Add Rec ML Path string
This command adds the directory st ring and all its subdirectories to the current OCaml loadpath (see the com-
mand Declare ML Module).

Command: Print ML Path string
This command displays the current OCaml loadpath. This command makes sense only under the bytecode version
of cogtop, i.e. using option —byte (see the command Declare ML Module in Section Compiled files).

Command: Locate File string
This command displays the location of file string in the current loadpath. Typically, stringisa .cmo or . vo or .v
file.

Command: Locate Library dirpath
This command gives the status of the Coq module dirpath. It tells if the module is loaded and if not searches in the
load path for a module of logical name dirpath.

4.1.7 Backtracking

The backtracking commands described in this section can only be used interactively, they cannot be part of a vernacular
file loaded via Load or compiled by coqgc.

Command: Reset ident
This command removes all the objects in the environment since i dent was introduced, including i dent. ident
may be the name of a defined or declared object as well as the name of a section. One cannot reset over the name
of a module or of an object inside a module.

Error: ident: no such entry.

Variant: Reset Initial
Goes back to the initial state, just after the start of the interactive session.

Command: Back
This command undoes all the effects of the last vernacular command. Commands read from a vernacular file via a
Load are considered as a single command. Proof management commands are also handled by this command (see
Chapter Proof handling). For that, Back may have to undo more than one command in order to reach a state where
the proof management information is available. For instance, when the last command is a Oed, the management
information about the closed proof has been discarded. In this case, Back will then undo all the proof steps up to
the statement of this proof.

Variant: Back num
Undo num vernacular commands. As for Back, some extra commands may be undone in order to reach an
adequate state. For instance Back num will not re-enter a closed proof, but rather go just before that proof.

Error: Invalid backtrack.
The user wants to undo more commands than available in the history.

Command: BackTo num
This command brings back the system to the state labeled num, forgetting the effect of all commands executed after
this state. The state label is an integer which grows after each successful command. It is displayed in the prompt
when in -emacs mode. Just as Back (see above), the Back To command now handles proof states. For that, it
may have to undo some extra commands and end on a state num’ < num if necessary.

Variant: Backtrack num num num
Deprecated since version 8.4.

Backtrack is a deprecated form of Back To which allows explicitly manipulating the proof environment.
The three numbers represent the following:

* first number : State label to reach, as for BackTo.

4.1. Vernacular commands 133

The Coq Reference Manual, Release 8.9.1

e second number : Proof state number to unbury once aborts have been done. Coq will compute the number
of Undo to perform (see Chapter Proof handling).

* third number : Number of Abort to perform, i.e. the number of currently opened nested proofs that
must be canceled (see Chapter Proof handling).

Error: Invalid backtrack.
The destination state label is unknown.

4.1.8 Quitting and debugging

Command: Quit
This command permits to quit Coq.

Command: Drop
This is used mostly as a debug facility by Coq’s implementers and does not concern the casual user. This command
permits to leave Coq temporarily and enter the OCaml toplevel. The OCaml command:

#use "include";;

adds the right loadpaths and loads some toplevel printers for all abstract types of Coq- section_path, identifiers,
terms, judgments, You can also use the file base_include instead, that loads only the pretty-printers for sec-
tion_paths and identifiers. You can return back to Coq with the command:

go ()i
Warning:
1. It only works with the bytecode version of Coq (i.e. cogtop.byte, see Section

interactive-use).

2. You must have compiled Coq from the source package and set the environment variable COQTOP to the
root of your copy of the sources (see Section customization-by-environment-variables).

Command: Time command
This command executes the vernacular command command and displays the time needed to execute it.

Command: Redirect string command
This command executes the vernacular command command, redirecting its output to ” st ring.out”.

Command: Timeout num command
This command executes the vernacular command command. If the command has not terminated after the time
specified by the num (time expressed in seconds), then it is interrupted and an error message is displayed.

Option: Default Timeout num
This option controls a default timeout for subsequent commands, as if they were passed to a Timeout
command. Commands already starting by a Timeout are unaffected.

Command: Fail command
For debugging scripts, sometimes it is desirable to know whether a command or a tactic fails. If the given command
fails, the Fail statement succeeds, without changing the proof state, and in interactive mode, the system prints a
message confirming the failure. If the given command succeeds, the statement is an error, and it prints a message
indicating that the failure did not occur.

Error: The command has not failed!

134 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

4.1.9 Controlling display

Flag: Silent
This option controls the normal displaying.

+
o

Option: Warnings " | (- | +) | ident "

This option configures the display of warnings. It is experimental, and expects, between quotes, a comma-separated
list of warning names or categories. Adding - in front of a warning or category disables it, adding + makes it an error.
It is possible to use the special categories all and default, the latter containing the warnings enabled by default. The
flags are interpreted from left to right, so in case of an overlap, the flags on the right have higher priority, meaning
that A, —A is equivalent to —A.

Flag: Search Output Name Only
This option restricts the output of search commands to identifier names; turning it on causes invocations of Search,
SearchHead, SearchPattern, SearchRewrite etc. to omit types from their output, printing only iden-
tifiers.

Option: Printing Width num
This command sets which left-aligned part of the width of the screen is used for display. At the time of writing
this documentation, the default value is 78.

Option: Printing Depth num
This option controls the nesting depth of the formatter used for pretty- printing. Beyond this depth, display of
subterms is replaced by dots. At the time of writing this documentation, the default value is 50.

Flag: Printing Compact Contexts
This option controls the compact display mode for goals contexts. When on, the printer tries to reduce the vertical
size of goals contexts by putting several variables (even if of different types) on the same line provided it does not
exceed the printing width (see Printing Width). Atthe time of writing this documentation, it is off by default.

Flag: Printing Unfocused
This option controls whether unfocused goals are displayed. Such goals are created by focusing other goals with
bullets (see Bullets or curly braces). It is off by default.

Flag: Printing Dependent Evars Line
This option controls the printing of the “(dependent evars: ...)” line when —emacs is passed.

4.1.10 Controlling the reduction strategies and the conversion algorithm

Coq provides reduction strategies that the tactics can invoke and two different algorithms to check the convertibility of
types. The first conversion algorithm lazily compares applicative terms while the other is a brute-force but efficient algo-
rithm that first normalizes the terms before comparing them. The second algorithm is based on a bytecode representation
of terms similar to the bytecode representation used in the ZINC virtual machine [Ler90]. It is especially useful for
intensive computation of algebraic values, such as numbers, and for reflection-based tactics. The commands to fine- tune
the reduction strategies and the lazy conversion algorithm are described first.

Command: Opaque qualid ¥
This command has an effect on unfoldable constants, i.e. on constants defined by Definition or Let (with an
explicit body), or by a command assimilated to a definition such as Fixpoint, Program Definition, etc,
or by a proof ended by Defined. The command tells not to unfold the constants in the qgualid sequence in
tactics using d-conversion (unfolding a constant is replacing it by its definition).

Opague has also an effect on the conversion algorithm of Coq, telling it to delay the unfolding of a constant as
much as possible when Coq has to check the conversion (see Section Conversion rules) of two distinct applied
constants.

4.1. Vernacular commands 135

The Coq Reference Manual, Release 8.9.1

+
Variant: Global Opaque qualid
The scope of Opague is limited to the current section, or current file, unless the variant G1obal Opaque
is used.

See also:
Sections Performing computations, Automating, Switching on/off the proof editing mode

Error: The reference qualid was not found in the current environment.
There is no constant referred by gua 11 d in the environment. Nevertheless, if you asked Opaque foo bar
and if bar does not exist, foo is set opaque.

+
Command: Transparent qualid
This command is the converse of Opague and it applies on unfoldable constants to restore their unfoldability after
an Opaque command.

Note in particular that constants defined by a proof ended by Qed are not unfoldable and Transparent has no effect
on them. This is to keep with the usual mathematical practice of proof irrelevance: what matters in a mathematical
development is the sequence of lemma statements, not their actual proofs. This distinguishes lemmas from the
usual defined constants, whose actual values are of course relevant in general.

Variant: Global Transparent qualid
The scope of Transparent is limited to the current section, or current file, unless the variant G1obal
Transparent is used.

Error: The reference qualid was not found in the current environment.
There is no constant referred by gua 1 id in the environment.

See also:

Sections Performing computations, Automating, Switching on/off the proof editing mode

Command: Strategy level [gualid ¥]
This command generalizes the behavior of Opaque and Transparent commands. It is used to fine-tune the strategy
for unfolding constants, both at the tactic level and at the kernel level. This command associates a level to the
qualified names in the qua I 1 d sequence. Whenever two expressions with two distinct head constants are compared
(for instance, this comparison can be triggered by a type cast), the one with lower level is expanded first. In case
of a tie, the second one (appearing in the cast type) is expanded.

Levels can be one of the following (higher to lower):

e opaque : level of opaque constants. They cannot be expanded by tactics (behaves like +00, see
next item).

* num : levels indexed by an integer. Level O corresponds to the default behavior, which corre-
sponds to transparent constants. This level can also be referred to as transparent. Negative levels
correspond to constants to be expanded before normal transparent constants, while positive levels
correspond to constants to be expanded after normal transparent constants.

* expand : level of constants that should be expanded first (behaves like —c0)

Variant: Local Strategy level [qualid ¥ 1
These directives survive section and module closure, unless the command is prefixed by Local. In
the latter case, the behavior regarding sections and modules is the same as for the Transparent
and Opaqgue commands.

Command: Print Strategy qualid
This command prints the strategy currently associated to qua 1 1 d. Itfails if gua 11 disnot an unfoldable reference,
that is, neither a variable nor a constant.

136 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Error: The reference is not unfoldable.

Variant: Print Strategies
Print all the currently non-transparent strategies.

Command: Declare Reduction ident := convtactic
This command allows giving a short name to a reduction expression, for instance lazy beta delta [foo bar]. This
short name can then be usedin Eval ident inoreval directives. This command accepts the Local modifier,
for discarding this reduction name at the end of the file or module. For the moment the name cannot be qualified.
In particular declaring the same name in several modules or in several functor applications will be refused if these
declarations are not local. The name ident cannot be used directly as an Ltac tactic, but nothing prevents the
user to also perform a Ltac ident := convtactic.

See also:

Performing computations

4.1.11 Controlling the locality of commands

Command: Local command

Command: Global command
Some commands support a Local or Global prefix modifier to control the scope of their effect. There are four kinds
of commands:

* Commands whose default is to extend their effect both outside the section and the module or library file they
occur in. For these commands, the Local modifier limits the effect of the command to the current section or
module it occurs in. As an example, the Coercionand St rategy commands belong to this category.

» Commands whose default behavior is to stop their effect at the end of the section they occur in but to extend
their effect outside the module or library file they occur in. For these commands, the Local modifier limits
the effect of the command to the current module if the command does not occur in a section and the Global
modifier extends the effect outside the current sections and current module if the command occurs in a section.
As an example, the Arguments, Ltac or Notation commands belong to this category. Notice that a
subclass of these commands do not support extension of their scope outside sections at all and the Global
modifier is not applicable to them.

¢ Commands whose default behavior is to stop their effect at the end of the section or module they occur in.
For these commands, the G1obal modifier extends their effect outside the sections and modules they occur
in. The Transparent and Opaque (see Section Controlling the reduction strategies and the conversion
algorithm) commands belong to this category.

¢ Commands whose default behavior is to extend their effect outside sections but not outside modules when they
occur in a section and to extend their effect outside the module or library file they occur in when no section
contains them.For these commands, the Local modifier limits the effect to the current section or module while
the Global modifier extends the effect outside the module even when the command occurs in a section. The
Set and Unset commands belong to this category.

4.2 Proof handling

In Coq’s proof editing mode all top-level commands documented in Chapter Vernacular commands remain available and
the user has access to specialized commands dealing with proof development pragmas documented in this section. They
can also use some other specialized commands called factics. They are the very tools allowing the user to deal with logical
reasoning. They are documented in Chapter Tactics.

4.2. Proof handling 137

The Coq Reference Manual, Release 8.9.1

Coq user interfaces usually have a way of marking whether the user has switched to proof editing mode. For instance,
in coqtop the prompt Cog < is changed into ident < where ident is the declared name of the theorem currently
edited.

At each stage of a proof development, one has a list of goals to prove. Initially, the list consists only in the theorem itself.
After having applied some tactics, the list of goals contains the subgoals generated by the tactics.

To each subgoal is associated a number of hypotheses called the local context of the goal. Initially, the local context
contains the local variables and hypotheses of the current section (see Section Assumptions) and the local variables and
hypotheses of the theorem statement. It is enriched by the use of certain tactics (see e.g. intro).

When a proof is completed, the message Proof completed is displayed. One can then register this proof as a defined
constant in the environment. Because there exists a correspondence between proofs and terms of A-calculus, known as
the Curry-Howard isomorphism [How80][Bar8 1][GLT89][Hue89], Coq stores proofs as terms of Cic. Those terms are
called proof terms.

Error: No focused proof.
Coq raises this error message when one attempts to use a proof editing command out of the proof editing mode.

4.2.1 Switching on/off the proof editing mode

The proof editing mode is entered by asserting a statement, which typically is the assertion of a theorem using an assertion
command like Theorem. The list of assertion commands is given in Assertions and proofs. The command Goal can
also be used.

Command: Goal form
This is intended for quick assertion of statements, without knowing in advance which name to give to the assertion,
typically for quick testing of the provability of a statement. If the proof of the statement is eventually completed
and validated, the statement is then bound to the name Unnamed_thm (or a variant of this name not already used
for another statement).

Command: Qed
This command is available in interactive editing proof mode when the proof is completed. Then Oed extracts
a proof term from the proof script, switches back to Coq top-level and attaches the extracted proof term to the
declared name of the original goal. This name is added to the environment as an opaque constant.

Error: Attempt to save an incomplete proof.

Note: Sometimes an error occurs when building the proof term, because tactics do not enforce completely the
term construction constraints.

The user should also be aware of the fact that since the proof term is completely rechecked at this point, one may
have to wait a while when the proof is large. In some exceptional cases one may even incur a memory overflow.

Variant: Defined
Same as Oed but the proof is then declared transparent, which means that its content can be explicitly used
for type checking and that it can be unfolded in conversion tactics (see Performing computations, Opaque,
Transparent).

Variant: Save ident
Forces the name of the original goal to be ident. This command (and the following ones) can only be used
if the original goal has been opened using the Goal command.

Command: Admitted
This command is available in interactive editing mode to give up the current proof and declare the initial goal as
an axiom.

138 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Command: Abort
This command cancels the current proof development, switching back to the previous proof development, or to the
Coq toplevel if no other proof was edited.

Error: No focused proof (No proof-editing in progress).

Variant: Abort ident
Aborts the editing of the proof named ident (in case you have nested proofs).

See also:
Nested Proofs Allowed

Variant: Abort All
Aborts all current goals.

Command: Proof term
This command applies in proof editing mode. It is equivalent to exact term. Qed. Thatis, you have to give
the full proof in one gulp, as a proof term (see Section Applying theorems).

Command: Proof
Is a no-op which is useful to delimit the sequence of tactic commands which start a proof, after a Theorem
command. It is a good practice to use Proof as an opening parenthesis, closed in the script with a closing Oed.

See also:

Proof with

Command: Proof using |ident
This command applies in proof editing mode. It declares the set of section variables (see Assumptions) used by the
proof. At Oed time, the system will assert that the set of section variables actually used in the proof is a subset of
the declared one.

The set of declared variables is closed under type dependency. For example, if T is a variable and a is a variable
of type T, then the commands Proof using aand Proof using T a are equivalent.

+
Variant: Proof using ident with tactic
Combines in a single line Proof withand Proof using.

See also:
Setting implicit automation tactics

Variant: Proof using All
Use all section variables.

?
Variant: Proof using Type

Use only section variables occurring in the statement.

Variant: Proof using Type*
The * operator computes the forward transitive closure. E.g. if the variable Hhastypep < 5thenHisinp*
since p occurs in the type of H. Type* is the forward transitive closure of the entire set of section variables
occurring in the statement.

+
Variant: Proof using - (ident |)
Use all section variables except the list of ident.

Variant: Proof using collectionl + collection2
Use section variables from the union of both collections. See Name a set of section hypotheses for Proof using
to know how to form a named collection.

4.2. Proof handling 139

The Coq Reference Manual, Release 8.9.1

Variant: Proof using collectionl - collection2
Use section variables which are in the first collection but not in the second one.

+
Variant: Proof using collection — (ident |)
Use section variables which are in the first collection but not in the list of ident.

Variant: Proof using collection *
Use section variables in the forward transitive closure of the collection. The * operator binds stronger than +
and -.

Proof using options

The following options modify the behavior of Proof using.

Option: Default Proof Using "expression"
Use expression as the default Proof using value. E.g. Set Default Proof Using "a b" will
complete all Proof commands not followed by a using part with using a b.

Flag: Suggest Proof Using
When Oed is performed, suggest a us ing annotation if the user did not provide one.

Name a set of section hypotheses for Proof using

Command: Collection ident := expression
This can be used to name a set of section hypotheses, with the purpose of making Proof using annotations
more compact.

Example

Define the collection named Some containing x, y and z:

Collection Some := x y z.

Define the collection named Fewer containing only x and y:

Collection Fewer := Some - z

Define the collection named Many containing the set union or set difference of Fewer and Some:

Collection Many := Fewer + Some
Collection Many := Fewer - Some

Define the collection named Many containing the set difference of Fewer and the unnamed collection x y:

Collection Many := Fewer - (x y)

Command: Existential num := term
This command instantiates an existential variable. num is an index in the list of uninstantiated existential variables
displayed by Show Existentials.

This command is intended to be used to instantiate existential variables when the proof is completed but some
uninstantiated existential variables remain. To instantiate existential variables during proof edition, you should use
the tactic instantiate.

140 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Command: Grab Existential Variables
This command can be run when a proof has no more goal to be solved but has remaining uninstantiated existential
variables. It takes every uninstantiated existential variable and turns it into a goal.

4.2.2 Navigation in the proof tree

Command: Undo
This command cancels the effect of the last command. Thus, it backtracks one step.

Variant: Undo num
Repeats Undo num times.

Variant: Restart
This command restores the proof editing process to the original goal.

Error: No focused proof to restart.

Command: Focus
This focuses the attention on the first subgoal to prove and the printing of the other subgoals is suspended until the
focused subgoal is solved or unfocused. This is useful when there are many current subgoals which clutter your
screen.

Deprecated since version 8.8: Prefer the use of bullets or focusing brackets (see below).

Variant: Focus num
This focuses the attention on the num th subgoal to prove.

Deprecated since version 8.8: Prefer the use of focusing brackets with a goal selector (see below).

Command: Unfocus
This command restores to focus the goal that were suspended by the last Focus command.

Deprecated since version 8.8.

Command: Unfocused
Succeeds if the proof is fully unfocused, fails if there are some goals out of focus.

Command: { | }

The command { (without a terminating period) focuses on the first goal, much like Focus does, how-
ever, the subproof can only be unfocused when it has been fully solved (i.e. when there is no focused
goal left). Unfocusing is then handled by } (again, without a terminating period). See also an example
in the next section.

Note that when a focused goal is proved a message is displayed together with a suggestion about the
right bullet or } to unfocus it or focus the next one.

Variant: num: {
This focuses on the num-th subgoal to prove.

Variant: [ident]: {
This focuses on the named goal ident.

Note: Goals are just existential variables and existential variables do not get a name by default.
You can give a name to a goal by using refine ?[ident].

See also:

Existential variables

4.2. Proof handling 141

The Coq Reference Manual, Release 8.9.1

Example

This can also be a way of focusing on a shelved goal, for instance:

Goal exists n : nat, n = n.
1 subgoal

eexists ?[x].
1 focused subgoal
(shelved: 1)

reflexivity.
All the remaining goals are on the shelf.

1 subgoal

subgoal 1 is:
nat

[x]: exact O.
No more subgoals.

Qed.
Unnamed_thm is defined

Error: This proof is focused, but cannot be unfocused this way.
You are trying to use } but the current subproof has not been fully solved.

Error: No such goal (num).
Error: No such goal (ident).

Error: Brackets do not support multi-goal selectors.
Brackets are used to focus on a single goal given either by its position or by its name if it has one.

See also:

The error messages about bullets below.

Bullets

Alternatively to { and }, proofs can be structured with bullets. The use of a bullet b for the first time focuses on the first
goal g, the same bullet cannot be used again until the proof of g is completed, then it is mandatory to focus the next goal
with b. The consequence is that g and all goals present when g was focused are focused with the same bullet b. See the
example below.

Different bullets can be used to nest levels. The scope of bullet does not go beyond enclosing { and }, so bullets can be
reused as further nesting levels provided they are delimited by these. Bullets are made of repeated —, + or * symbols:

¥ + +
bullet ::= |- |+ | | *

142 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Note again that when a focused goal is proved a message is displayed together with a suggestion about the right bullet or
} to unfocus it or focus the next one.

Note: In Proof General (Emacs interface to Coq), you must use bullets with the priority ordering shown above to have
a correct indentation. For example — must be the outer bullet and * * the inner one in the example below.

The following example script illustrates all these features:

Example
Goal (((True /\ True) /\ True) /\ True) /\ True.
1 subgoal
(((True /\ True) /\ True) /\ True) /\ True
Proof.
split.
2 subgoals

((True /\ True) /\ True) /\ True

subgoal 2 is:
True

- split.
1 subgoal

((True /\ True) /\ True) /\ True

2 subgoals

(True /\ True) /\ True

subgoal 2 is:
True

+ split.
1 subgoal

(True /\ True) /\ True

2 subgoals

True /\ True

subgoal 2 is:
True

** { split.
1 subgoal
(continues on next page)

4.2. Proof handling 143

The Coq Reference Manual, Release 8.9.1

subgoal 2 is:
True

- trivial.

1 subgoal

This subproof is complete,

Focus next goal with bullet -.

4 subgoals

subgoal 1 is:
True
subgoal 2 is:
True

subgoal 3 is:
True

subgoal 4 is:
True

- trivial.

}

1 subgoal

This subproof is complete,

Try unfocusing with "}".

3 subgoals

subgoal 1 is:
True
subgoal 2 is:
True
subgoal 3 is:
True

** trivial.

but there are some unfocused goals.

but there are some unfocused goals.

(continued from previous page)

(continues on next page)

144

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet **.

3 subgoals

subgoal 1 is:
True
subgoal 2 is:
True
subgoal 3 is:
True

1 subgoal

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet +.

2 subgoals

subgoal 1 is:
True
subgoal 2 is:
True

+ trivial.
1 subgoal

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet -.

1 subgoal

subgoal 1 is:
True

- assert True.
1 subgoal

subgoal 2 is:
True

{ trivial.
1 subgoal
(continues on next page)

4.2. Proof handling 145

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

This subproof is complete, but there are some unfocused goals.
Try unfocusing with "}".

1 subgoal

subgoal 1 is:
True

}
assumption.
1 subgoal

No more subgoals.

Qed.
Unnamed_thmO is defined

Error: Wrong bullet bullet,: Current bullet bullet, is not finished.
Before using bullet bullet, again, you should first finish proving the current focused goal. Note that bullet,
and bullet, may be the same.

Error: Wrong bullet bullet;: Bullet bullet, is mandatory here.
You must put bullet, to focus on the next goal. No other bullet is allowed here.

Error: No such goal. Focus next goal with bullet bullet.
You tried to apply a tactic but no goals were under focus. Using bullet is mandatory here.

Error: No such goal. Try unfocusing with }.
You just finished a goal focused by {, you must unfocus it with }.

Set Bullet Behavior
Option: Bullet Behavior ("None" | "Strict Subproofs")
This option controls the bullet behavior and can take two possible values:
¢ ”None”: this makes bullets inactive.

 "Strict Subproofs”: this makes bullets active (this is the default behavior).

4.2.3 Requesting information
Command: Show
This command displays the current goals.
Error: No focused proof.

Variant: Show num
Displays only the num-th subgoal.

146 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Error: No such goal.

Variant: Show ident
Displays the named goal ident. This is useful in particular to display a shelved goal but only works if the
corresponding existential variable has been named by the user (see Existential variables) as in the following

example.
Example
Goal exists n, n = 0.
1 subgoal
exists n nat, n = 0

eexists ?[n].
1 focused subgoal
(shelved: 1)

Show n.

Variant: Show Script
Displays the whole list of tactics applied from the beginning of the current proof. This tactics script may
contain some holes (subgoals not yet proved). They are printed under the form

<Your Tactic Text here>.

Variant: Show Proof
It displays the proof term generated by the tactics that have been applied. If the proof is not completed, this
term contain holes, which correspond to the sub-terms which are still to be constructed. These holes appear
as a question mark indexed by an integer, and applied to the list of variables in the context, since it may
depend on them. The types obtained by abstracting away the context from the type of each placeholder are
also printed.

Variant: Show Conjectures
It prints the list of the names of all the theorems that are currently being proved. As it is possible to start
proving a previous lemma during the proof of a theorem, this list may contain several names.

Variant: Show Intro
If the current goal begins by at least one product, this command prints the name of the first product, as it would
be generated by an anonymous int ro. The aim of this command is to ease the writing of more robust scripts.
For example, with an appropriate Proof General macro, it is possible to transform any anonymous intro
into a qualified one such as intro y13. In the case of a non-product goal, it prints nothing.

Variant: Show Intros
This command is similar to the previous one, it simulates the naming process of an intros.

Variant: Show Existentials
It displays the set of all uninstantiated existential variables in the current proof tree, along with the type and
the context of each variable.

4.2.

Proof handling 147

The Coq Reference Manual, Release 8.9.1

Variant: Show Match ident
This variant displays a template of the Gallina match construct with a branch for each constructor of the
type ident

Example

Show Match nat.
match # with
| O =>
| S x =>
end

Error: Unknown inductive type.

Variant: Show Universes
It displays the set of all universe constraints and its normalized form at the current stage of the proof, useful
for debugging universe inconsistencies.

Command: Guarded
Some tactics (e.g. refine)allow to build proofs using fixpoint or co-fixpoint constructions. Due to the incremental
nature of interactive proof construction, the check of the termination (or guardedness) of the recursive calls in the
fixpoint or cofixpoint constructions is postponed to the time of the completion of the proof.

The command Guarded allows checking if the guard condition for fixpoint and cofixpoint is violated at some
time of the construction of the proof without having to wait the completion of the proof.

4.2.4 Showing differences between proof steps

Coq can automatically highlight the differences between successive proof steps. For example, the following screenshots of
CoqIDE and coqtop show the application of the same int ros tactic. The tactic creates two new hypotheses, highlighted
in green. The conclusion is entirely in pale green because although it’s changed, no tokens were added to it. The second
screenshot uses the "removed” option, so it shows the conclusion a second time with the old text, with deletions marked
in red. Also, since the hypotheses are new, no line of old text is shown for them.

1 subgoal
n : nat
E:evn

(1/1)

exists k : nat, n = double k

1 subgoal
n : nat
E:evn

(1/1)

Es=s3: =t mas, ev = > exists k : nat, n = double k
exists k : nat, n = double k

How to enable diffs

Option: Diffs ("on" | "off" | "removed")
The “on” option highlights added tokens in green, while the “removed” option additionally reprints items with
removed tokens in red. Unchanged tokens in modified items are shown with pale green or red. (Colors are user-
configurable.)

148 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

For coqtop, showing diffs can be enabled when starting coqtop with the —~diffs on|off | removed command-line
option or by setting the Di £ fs option within Coq. You will need to provide the —color on|auto command-line
option when you start coqtop in either case.

Colors for coqtop can be configured by setting the COQ_COLORS environment variable. See section By environment
variables. Diffs use the tags diff.added, diff.added.bg,diff.removedand diff.removed.bg.

In CoqIDE, diffs should be enabled from the View menu. Don’t use the Set Diffs command in CoqIDE. You
can change the background colors shown for diffs from the Edit | Preferences | Tags panel by changing the
settings for the diff.added, diff.added.bg,diff.removedand diff.removed.bg tags. This panel also
lets you control other attributes of the highlights, such as the foreground color, bold, italic, underline and strikeout.

Note: As of this writing (August 2018), Proof General will need minor changes to be able to show diffs correctly. We
hope it will support this feature soon. See https://github.com/Proof General/PG/issues/381 for the current status.

How diffs are calculated

Diffs are calculated as follows:

1. Select the old proof state to compare to, which is the proof state before the last tactic that changed the proof.
Changes that only affect the view of the proof, suchas all: swap 1 2, areignored.

2. For each goal in the new proof state, determine what old goal to compare it to—the one it is derived from or is the
same as. Match the hypotheses by name (order is ignored), handling compacted items specially.

3. For each hypothesis and conclusion (the “items”) in each goal, pass them as strings to the lexer to break them into
tokens. Then apply the Myers diff algorithm [Mye86] on the tokens and add appropriate highlighting.

Notes:
* Aside from the highlights, output for the “on” option should be identical to the undiffed output.
* Goals completed in the last proof step will not be shown even with the “removed” setting.

This screen shot shows the result of applying a sp1it tactic that replaces one goal with 2 goals. Notice that the goal P
1 is not highlighted at all after the split because it has not changed.

3 subgoals
(1/3)

P1
(2/3)

P2
(3/3)

P 3

This is how diffs may appear after applying a i nt ro tactic that results in compacted hypotheses:

1 subgoal
n, m : nat

(1/1)

n+m=m+n

4.2.5 Controlling the effect of proof editing commands

Option: Hyps Limit num
This option controls the maximum number of hypotheses displayed in goals after the application of a tactic. All
the hypotheses remain usable in the proof development. When unset, it goes back to the default mode which is to
print all available hypotheses.

Flag: Automatic Introduction

This option controls the way binders are handled in assertion commands such as Theorem ident
binders : term. When the option is on, which is the default, binders are automatically put in the local

context of the goal to prove.

4.2. Proof handling 149

https://github.com/ProofGeneral/PG/issues/381

The Coq Reference Manual, Release 8.9.1

When the option is off, binders are discharged on the statement to be proved and a tactic such as intro (see
Section Managing the local context) has to be used to move the assumptions to the local context.

Flag: Nested Proofs Allowed
When turned on (it is off by default), this option enables support for nested proofs: a new assertion command can be
inserted before the current proof is finished, in which case Coq will temporarily switch to the proof of this nested
lemma. When the proof of the nested lemma is finished (with Oed or Defined), its statement will be made
available (as if it had been proved before starting the previous proof) and Coq will switch back to the proof of the
previous assertion.

4.2.6 Controlling memory usage

When experiencing high memory usage the following commands can be used to force Coq to optimize some of its internal
data structures.

Command: Optimize Proof
This command forces Coq to shrink the data structure used to represent the ongoing proof.

Command: Optimize Heap
This command forces the OCaml runtime to perform a heap compaction. This is in general an expensive operation.
See: OCaml Gc’ There is also an analogous tactic opt imize_heap.

4.3 Tactics

A deduction rule is a link between some (unique) formula, that we call the conclusion and (several) formulas that we call
the premises. A deduction rule can be read in two ways. The first one says: “if I know this and this then I can deduce
this”. For instance, if [have a proof of A and a proof of B then I have a proof of A A B. This is forward reasoning from
premises to conclusion. The other way says: “to prove this I have to prove this and this”. For instance, to prove A A
B, I have to prove A and I have to prove B. This is backward reasoning from conclusion to premises. We say that the
conclusion is the goal to prove and premises are the subgoals. The tactics implement backward reasoning. When applied
to a goal, a tactic replaces this goal with the subgoals it generates. We say that a tactic reduces a goal to its subgoal(s).

Each (sub)goal is denoted with a number. The current goal is numbered 1. By default, a tactic is applied to the current
goal, but one can address a particular goal in the list by writing n:tactic which means “apply tactic tactic to goal number
n”. We can show the list of subgoals by typing Show (see Section Requesting information).

Since not every rule applies to a given statement, not every tactic can be used to reduce a given goal. In other words,
before applying a tactic to a given goal, the system checks that some preconditions are satisfied. If it is not the case, the
tactic raises an error message.

Tactics are built from atomic tactics and tactic expressions (which extends the folklore notion of tactical) to combine
those atomic tactics. This chapter is devoted to atomic tactics. The tactic language will be described in Chapter The factic
language.

4.3.1 Invocation of tactics

A tactic is applied as an ordinary command. It may be preceded by a goal selector (see Section Semantics). If no selector
is specified, the default selector is used.

tactic_invocation = toplevel_selector : tactic.
|[tactic

7 http://caml.inria.fr/pub/docs/manual-ocaml/libref/Ge.html#VALcompact

150 Chapter 4. The proof engine

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Gc.html#VALcompact

The Coq Reference Manual, Release 8.9.1

Option: Default Goal Selector "toplevel_ selector"
This option controls the default selector, used when no selector is specified when applying a tactic. The initial value
is 1, hence the tactics are, by default, applied to the first goal.

Using value a1l will make it so that tactics are, by default, applied to every goal simultaneously. Then, to apply a
tactic tac to the first goal only, you can write 1 : tac.

Using value ! enforces that all tactics are used either on a single focused goal or with a local selector (’strict focusing
mode”).

Although more selectors are available, only all, ! or a single natural number are valid default goal selectors.

Bindings list

Tactics that take a term as argument may also support a bindings list, so as to instantiate some parameters of the term by
name or position. The general form of a term equipped with a bindings listis term with bindings_1list where
bindings_1list may be of two different forms:

bindings_list = (ref := term) ... (ref := term)
term ... term
. . . * . .
* In a bindings list of the form | (ref:= term) |, ref iseither an ident or a num. The references are deter-

mined according to the type of term. If ref is an identifier, this identifier has to be bound in the type of term
and the binding provides the tactic with an instance for the parameter of this name. If re f is some number n, this
number denotes the n-th non dependent premise of the term, as determined by the type of term.

Error: No such binder.

*
* A bindings list can also be a simple list of terms term | . In that case the references to which these terms

correspond are determined by the tactic. In case of induction, destruct, elim and case, the terms
have to provide instances for all the dependent products in the type of term while in the case of apply, or of
constructor and its variants, only instances for the dependent products that are not bound in the conclusion of
the type are required.

Error: Not the right number of missing arguments.

Occurrence sets and occurrence clauses

An occurrence clause is a modifier to some tactics that obeys the following syntax:

occurrence_clause = in goal_occurrences

goal_occurrences n= [ident [at_occurrences], ... , ident [at_occurrences]
| * |- [* [at_occurrences]]
‘ *

at_occurrences = at occurrences

occurrences = [-] num ... num

The role of an occurrence clause is to select a set of occurrences of a term in a goal. In the first case, the ident
?
* . . .
at |num parts indicate that occurrences have to be selected in the hypotheses named i dent. If no numbers are
given for hypothesis i dent, then all the occurrences of term in the hypothesis are selected. If numbers are given, they
refer to occurrences of term when the term is printed using option Printing AlI, counting from left to right. In

4.3. Tactics 151

(1=

[*

lat_

(

The Coq Reference Manual, Release 8.9.1

particular, occurrences of term in implicit arguments (see Implicit arguments) or coercions (see Coercions) are counted.

If a minus sign is given between at and the list of occurrences, it negates the condition so that the clause denotes all the
occurrences except the ones explicitly mentioned after the minus sign.

As an exception to the left-to-right order, the occurrences in the return subexpression of a match are considered before
the occurrences in the matched term.

In the second case, the * on the left of | — means that all occurrences of term are selected in every hypothesis.

In the first and second case, if * is mentioned on the right of | —, the occurrences of the conclusion of the goal have to
be selected. If some numbers are given, then only the occurrences denoted by these numbers are selected. If no numbers
are given, all occurrences of term in the goal are selected.

Finally, the last notation is an abbreviation for * |- *. Note also that | — is optional in the first case when no * is given.
Here are some tactics that understand occurrence clauses: set, remember, induction, destruct.
See also:

Managing the local context, Case analysis and induction, Printing constructions in full.

4.3.2 Applying theorems

exact term
This tactic applies to any goal. It gives directly the exact proof term of the goal. Let T be our goal, let p be a term
of type U then exact p succeeds iff T and U are convertible (see Conversion rules).

Error: Not an exact proof.

Variant: eexact term.
This tactic behaves like exact but is able to handle terms and goals with existential variables.

assumption
This tactic looks in the local context for a hypothesis whose type is convertible to the goal. If it is the case, the
subgoal is proved. Otherwise, it fails.

Error: No such assumption.

Variant: eassumption
This tactic behaves like assumpt ion but is able to handle goals with existential variables.

refine term
This tactic applies to any goal. It behaves like exact with a big difference: the user can leave some holes (denoted
by _or (_ : type)) in the term. refine will generate as many subgoals as there are holes in the term.
The type of holes must be either synthesized by the system or declared by an explicit cast like (_ : nat ->
Prop). Any subgoal that occurs in other subgoals is automatically shelved, as if calling shelve_unifiable.
This low-level tactic can be useful to advanced users.

Example

Inductive Option : Set :=

| Fail : Option

| Ok : bool -> Option.
Option is defined
Option_rect is defined
Option_ind is defined
Option_rec is defined

Definition get : forall x:0Option, x <> Fail -> bool.
(continues on next page)

152 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

1 subgoal

forall x : Option, x <> Fail -> bool

refine
(fun x:0ption =>
match x return x <> Fail -> bool with

| Fail => _
| Ok b => fun _ => b
end) .

1 subgoal

Fail <> Fail -> bool

intros; absurd (Fail = Fail); trivial.
No more subgoals.

Defined.
get is defined

Error: Invalid argument.
The tactic refine does not know what to do with the term you gave.

Error: Refine passed ill-formed term.
The term you gave is not a valid proof (not easy to debug in general). This message may also occur in higher-
level tactics that call re £ine internally.

Error: Cannot infer a term for this placeholder.
There is a hole in the term you gave whose type cannot be inferred. Put a cast around it.

Variant: simple refine term
This tactic behaves like refine, but it does not shelve any subgoal. It does not perform any beta-reduction
either.

Variant: notypeclasses refine term
This tactic behaves like re £ ine except it performs type checking without resolution of typeclasses.

Variant: simple notypeclasses refine term
This tactic behaves like simple refine except it performs type checking without resolution of type-
classes.

apply term
This tactic applies to any goal. The argument term is a term well-formed in the local context. The tactic apply
tries to match the current goal against the conclusion of the type of term. If it succeeds, then the tactic returns as
many subgoals as the number of non-dependent premises of the type of term. If the conclusion of the type of term
does not match the goal and the conclusion is an inductive type isomorphic to a tuple type, then each component
of the tuple is recursively matched to the goal in the left-to-right order.

The tactic app 1y relies on first-order unification with dependent types unless the conclusion of the type of term
isof the foorm P (t, ... t,) with P to be instantiated. In the latter case, the behavior depends on the form
of the goal. If the goal is of the form (fun x => Q) wu; ... u,andthet, and u; unify, then P is taken to
be (fun x => Q). Otherwise, apply tries to define P by abstractingover t_1 ... t__n inthe goal. See
pattern to transform the goal so that it gets the form (fun x => Q) u; ... u,.

4.3. Tactics 153

The Coq Reference Manual, Release 8.9.1

Error: Unable to unify term with term.
The app 1y tactic failed to match the conclusion of t¢erm and the current goal. You can help the apply
tactic by transforming your goal with the change or pattern tactics.

Error: Unable to find an instance for the variables ident
This occurs when some instantiations of the premises of term are not deducible from the unification. This
is the case, for instance, when you want to apply a transitivity property. In this case, you have to use one of
the variants below:

+
Variant: apply term with |term
Provides apply with explicit instantiations for all dependent premises of the type of term that do not occur in

. +
the conclusion and consequently cannot be found by unification. Notice that the collection term | must be
given according to the order of these dependent premises of the type of term.

Error: Not the right number of missing arguments.

Variant: apply term with bindings_list
This also provides apply with values for instantiating premises. Here, variables are referred by names and
non-dependent products by increasing numbers (see bindings list).

+
Variant: apply term

This is a shortcut for apply term,; [.. | ... ; [.. | apply term.] ... 1,1ie. for
the successive applications of term,,, on the last subgoal generated by apply term, , starting from the
application of term,.

Variant: eapply term
The tactic eapp 1y behaves like app 1y but it does not fail when no instantiations are deducible for some
variables in the premises. Rather, it turns these variables into existential variables which are variables still to
instantiate (see Existential variables). The instantiation is intended to be found later in the proof.

Variant: simple apply term.
This behaves like apply but it reasons modulo conversion only on subterms that contain no variables to
instantiate. For instance, the following example does not succeed because it would require the conversion of
id ?fooandO.

Example

Definition id (x : nat) := x.
id is defined

Parameter H : forall y, idy = vy.
H is declared

Goal O = O.
1 subgoal

Fail simple apply H.
The command has indeed failed with message:
Unable to unify "id ?M160 = ?M160" with "0 = 0".

Because it reasons modulo a limited amount of conversion, simple apply fails quicker than apply and
it is then well-suited for uses in user-defined tactics that backtrack often. Moreover, it does not traverse tuples
as apply does.

154

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

+
? ?
Variant: simple apply term with bindings_list

? ?
Variant: simple | eapply term with bindings_list

This summarizes the different syntaxes for apply and eapply.

Variant: lapply term
This tactic applies to any goal, say G. The argument term has to be well-formed in the current context, its type
being reducible to a non-dependent product 2 —> B with B possibly containing products. Then it generates
two subgoals B—>G and A. Applying Lapply H (where H has type 2—>B and B does not start with a product)
does the same as giving the sequence cut B. 2:apply H. where cut is described below.

Warning: When term contains more than one non dependent product the tactic lapply on

Example

Assume we have a transitive relation R on nat:

Variable R : nat —-> nat -> Prop.

Hypothesis Rtrans : forall x y z:nat, Rxy > Ry z —> R X z.
Variables n m p : nat.

Hypothesis Rnm : R n m.

Hypothesis Rmp : R m p.

Consider the goal (R n p) provable using the transitivity of R:

Goal R n p.

The direct application of Rt rans with apply fails because no value for y in Rt rans is found by apply:
Fail apply Rtrans.

The command has indeed failed with message:
Unable to find an instance for the variable y.

A solution is to apply (Rtrans n m p) or (Rtrans n m).

apply (Rtrans n m p).
2 subgoals

subgoal 2 is:
Rmp

Note that n can be inferred from the goal, so the following would work too.

apply (Rtrans _ m).

More elegantly, apply Rtrans with (y:=m) allows only mentioning the unknown m:

apply Rtrans with (y := m).

Another solution is to mention the proof of (R x y) in Rtrans

4.3. Tactics 155

The Coq Reference Manual, Release 8.9.1

apply Rtrans with (1 := Rnm).
1 subgoal

... or the proof of (R v z).

apply Rtrans with (2 := Rmp) .
1 subgoal

On the opposite, one can use eapply which postpones the problem of finding m. Then one can apply the hypotheses
Rnm and Rmp. This instantiates the existential variable and completes the proof.

eapply Rtrans.
2 focused subgoals
(shelved: 1)

subgoal 2 is:
R ?y p

apply Rnm.
1 subgoal

apply Rmp.
No more subgoals.

Note: When the conclusion of the type of the term to apply is an inductive type isomorphic to a tuple type and
apply looks recursively whether a component of the tuple matches the goal, it excludes components whose statement
would result in applying an universal lemma of the form forall A, ... —> A.Excluding this kind of lemma can
be avoided by setting the following option:

Flag: Universal Lemma Under Conjunction
This option, which preserves compatibility with versions of Coq prior to 8.4 is also available for apply term
in ident (see apply ... in).

apply term in ident
This tactic applies to any goal. The argument term is a term well-formed in the local context and the argument
ident is an hypothesis of the context. The tactic apply term in ident tries to match the conclusion of
the type of ident against a non-dependent premise of the type of term, trying them from right to left. If it
succeeds, the statement of hypothesis ident is replaced by the conclusion of the type of term. The tactic also
returns as many subgoals as the number of other non-dependent premises in the type of term and of the non-
dependent premises of the type of ident. If the conclusion of the type of ¢ erm does not match the goal and the
conclusion is an inductive type isomorphic to a tuple type, then the tuple is (recursively) decomposed and the first
component of the tuple of which a non-dependent premise matches the conclusion of the type of ident. Tuples

156 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

are decomposed in a width-first left-to-right order (for instance if the type of H1 is & <—> B and the type of H2
is A then apply H1 in H2 transforms the type of H2 into B). The tactic app 1y relies on first-order pattern
matching with dependent types.

Error: Statement without assumptions.
This happens if the type of term has no non-dependent premise.

Error: Unable to apply.
This happens if the conclusion of ident does not match any of the non-dependent premises of the type of
term.

+
Variant: apply |term . in ident

This applies each term in sequence in ident.

+
Variant: apply term with bindings list in ident

14

This does the same but uses the bindings in each (ident := term) to instantiate the parameters of the
corresponding type of term (see bindings list).

+
?

Variant: eapply term with bindings_list | in ident
This works as apply ... in but turns unresolved bindings into existential variables, if any, instead of
failing.

+
?

Variant: apply term with bindings list I in ident as intro_pattern

’

This works as apply ... 1in then appliesthe intro_pattern to the hypothesis ident.

Variant: simple apply term in ident
This behaves like apply ... 1in butitreasons modulo conversion only on subterms that contain no vari-
ables to instantiate. For instance, if id := fun x:nat => xandH: forall y, idy =y —>
True and HO : O = O then simple apply H in HO does not succeed because it would require
the conversion of 1d ?x and O where ?x is an existential variable to instantiate. Tactic simple apply
term in ident does not either traverse tuples as apply term in ident does.

+
? ? ?
Variant: simple apply term with bindings_list in ident |as intro_pattern

’

+
? ? ?

Variant: simple | eapply term with bindings list | in ident |as intro_pattern |

’

This summarizes the different syntactic variants of apply term in ident and eapply term in
ident.

constructor num
This tactic applies to a goal such that its conclusion is an inductive type (say I). The argument num must be less
or equal to the numbers of constructor(s) of I. Let c; be the i-th constructor of I, then constructor i is
equivalent to intros; apply c;.

Error: Not an inductive product.
Error: Not enough constructors.

Variant: constructor
This tries constructor 1 then constructor 2, .., then constructor n where n is the number
of constructors of the head of the goal.

Variant: constructor num with bindings list
Let ¢ be the i-th constructor of I, then constructor i with bindings_1list is equivalent to

4.3. Tactics 157

The Coq Reference Manual, Release 8.9.1

intros; apply c with bindings_1list.

Warning: The terms inthe bindings_11ist are checked in the context where constructor is executed
and not in the context where app 1y is executed (the introductions are not taken into account).

?
Variant: split with bindings_list

This applies only if I has a single constructor. It is then equivalent to constructor 1
? . . Lo
with bindings list | .lItis typically used in the case of a conjunction A A B.

Variant: exists bindings_list
This applies only if T has a single constructor. It is then equivalent to intros; constructor 1
with bindings_1ist. Itis typically used in the case of an existential quantification 3z, P(x).

Variant: exists bindings_list

4

This iteratively applies exists bindings_1list.

Error: Not an inductive goal with 1 constructor.

?
Variant: left with bindings list

?
Variant: right with bindings_list

These tactics apply only if I has two constructors, for instance in the case of a disjunction A V B. Then, they
?
are respectively equivalent to constructor 1 |with bindings Ilist | and constructor 2

?
with bindings_list

Error: Not an inductive goal with 2 constructors.

Variant: econstructor

Variant: eexists

Variant: esplit

Variant: eleft

Variant: eright
These tactics and their variants behave like constructor, exists, split, left, right and their
variants but they introduce existential variables instead of failing when the instantiation of a variable cannot
be found (cf. eapply and apply).

4.3.3 Managing the local context

intro
This tactic applies to a goal that is either a product or starts with a let-binder. If the goal is a product, the tactic
implements the “Lam” rule given in Typing rules'. If the goal starts with a let-binder, then the tactic implements a
mix of the "Let” and "Conv”.

If the current goal is a dependent product forall x:T, U (resp let x:=t in U)then introputs x:T
(resp x : =t) in the local context. The new subgoal is U.

If the goal is a non-dependent product 7' — U, then it puts in the local context either Hn: T (if T is of type Set
or Prop) or Xn: T (if the type of T is Type). The optional index n is such that Hn or Xn is a fresh identifier. In
both cases, the new subgoal is U.

If the goal is an existential variable, i nt ro forces the resolution of the existential variable into a dependent product
V x:?X, ?Y,puts x:?X in the local context and leaves ?Y as a new subgoal allowed to depend on x.

! Actually, only the second subgoal will be generated since the other one can be automatically checked.

158 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

The tactic int ro applies the tactic hnf until int ro can be applied or the goal is not head-reducible.
Error: No product even after head-reduction.

Variant: intro ident
This applies int ro but forces i dent to be the name of the introduced hypothesis.

Error: ident is already used.

Note: If a name used by intro hides the base name of a global constant then the latter can still be referred to by a
qualified name (see Qualified names).

Variant: intros
This repeats int ro until it meets the head-constant. It never reduces head-constants and it never fails.

Variant: intros ident
This is equivalent to the composed tactic intro ident; ... ; intro ident.

Variant: intros until ident
This repeats intro until it meets a premise of the goal having the form (ident : type) and discharges
the variable named ident of the current goal.

Error: No such hypothesis in current goal.

Variant: intros until num
This repeats int ro until the num-th non-dependent product.

Example

Onthesubgoal forall x y : nat, x = y -> y = xthetacticintros until 1 isequivalent
tointros x y Hyasx = y —-> y = xis the first non-dependent product.

On the subgoal forall x y z : nat, x = y —-> y = xthetactic intros until 1 isequiv-
alentto intros x y z asthe product on z can be rewritten as a non-dependent product: forall x y
: nat, nat > x =y -> y = X.

Error: No such hypothesis in current goal.
This happens when num is O or is greater than the number of non-dependent products of the goal.
?
Variant: intro ident, after ident,

©
Variant: intro |ident; before ident,

?
Variant: intro ident, at top

7
Variant: intro |ident; at bottom

?
These tactics apply intro ' ident, | and move the freshly introduced hypothesis respectively after the

hypothesis ident ., before the hypothesis ident ., at the top of the local context, or at the bottom of
the local context. All hypotheses on which the new hypothesis depends are moved too so as to respect the

? .
order of dependencies between hypotheses. Itis equivalentto intro | ident, | followed by the appropri-
ate call to move ... after ...,move ... before ...,move ... at top,or move
at bottom.

Note: intro at bottomisasynonym for intro with no argument.

4.3. Tactics 159

The Coq Reference Manual, Release 8.9.1

Error: No such hypothesis: ident.

intros intro_pattern_ list

This extension of the tactic intros allows to apply tactics on the fly on the variables or hypotheses which have
been introduced. An infroduction pattern list int ro_pattern_1ist is a list of introduction patterns possibly
containing the filling introduction patterns * and * *. An introduction pattern is either:

* a naming introduction pattern, i.e. either one of:
— the pattern ?
— the pattern ?ident
— an identifier
* an action introduction pattern which itself classifies into:
— a disjunctive/conjunctive introduction pattern, i.e. either one of

) disjunction of lists of patterns [intro_pattern_list |
intro_pattern_list]

* a conjunction of patterns: (|p +)

. + . e
« a list of patterns ('p) for sequence of right-associative binary constructs
&

— an equality introduction pattern, i.e. either one of:

» a pattern for decomposing an equality: [= [p ¥ 1

« the rewriting orientations: —> or <—
.. +
— the on-the-fly application of lemmas: p $term | where p itself is not a pattern for on-the-fly application
of lemmas (note: syntax is in experimental stage)
¢ the wildcard:

Assuming a goal of type O — P (non-dependent product), or of type forall x:T, P (dependent product),
the behavior of intros p is defined inductively over the structure of the introduction pattern p:

Introduction on ? performs the introduction, and lets Coq choose a fresh name for the variable;

Introduction on ? i dent performs the introduction, and lets Coq choose a fresh name for the variable based on
ident;

Introduction on ident behaves as described in intro

Introduction over a disjunction of list of patterns [intro_pattern_list | ... |

intro_pattern_list] expects the product to be over an inductive type whose number of construc-
tors is n (or more generally over a type of conclusion an inductive type built from n constructors, e.g. C —>

A\ /B with n=2 since A\/B has 2 constructors): it destructs the introduced hypothesis as destruct (see
destruct) would and applies on each generated subgoal the corresponding tactic;

The introduction patterns in intro_pattern_1list are expected to consume no more than the number of
arguments of the i-th constructor. If it consumes less, then Coq completes the pattern so that all the arguments of
the constructors of the inductive type are introduced (for instance, the list of patterns [|] H applied on goal
forall x:nat, x=0 —> 0=x behaves the same as the list of patterns [| ?] H);

Introduction over a conjunction of patterns (|p b) expects the goal to be a product over an inductive type I with a

single constructor that itself has at least n arguments: It performs a case analysis over the hypothesis, as dest ruct

160

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

would, and applies the patterns [p * o the arguments of the constructor of I (observe that ([p +) is an alternative

notation for [[p T 1);

Introduction via ([p L2) is a shortcut for introductionvia (p, (... , (..., P) ...));itexpectsthe
&

hypothesis to be a sequence of right-associative binary inductive constructors such as conj or ex_intro; for
instance, a hypothesis with type 2 /\ (exists x, B /\ C /\ D) can be introduced via pattern (a & x
& b & c & d),;

If the product is over an equality type, then a pattern of the form [= [p ¥] applies either injection or
discriminate instead of destruct; if injection is applicable, the patterns [p * are used on the hy-

potheses generated by inject ion;if the number of patterns is smaller than the number of hypotheses generated,
the pattern ? is used to complete the list.

Introduction over —> (respectively over <—) expects the hypothesis to be an equality and the right-hand-side (re-
spectively the left-hand-side) is replaced by the left-hand-side (respectively the right-hand-side) in the conclusion
of the goal; the hypothesis itself is erased; if the term to substitute is a variable, it is substituted also in the context
of goal and the variable is removed too.

. + . + . . .
Introduction over a pattern p $term | first applies term | on the hypothesis to be introduced (as in apply

+ . L . .
term) prior to the application of the introduction pattern p;

Introduction on the wildcard depends on whether the product is dependent or not: in the non-dependent case, it
erases the corresponding hypothesis (i.e. it behaves as an int ro followed by a cIear) while in the dependent
case, it succeeds and erases the variable only if the wildcard is part of a more complex list of introduction patterns
that also erases the hypotheses depending on this variable;

Introduction over * introduces all forthcoming quantified variables appearing in a row; introduction over * * in-
troduces all forthcoming quantified variables or hypotheses until the goal is not any more a quantification or an
implication.

Example

Goal forall A B C:Prop, A \/ B /\ C -—> (A -> C) —> C.
1 subgoal

forall A B C : Prop, A \/ B /N C -> (A > C) -> C

intros * [a | (_,c)] f.
2 subgoals

a A
f A —> C
C

subgoal 2 is:
c

Note: intros [p *is not equivalentto intros p; ... ; intros p for the following reason: If one of the p
is a wildcard pattern, it might succeed in the first case because the further hypotheses it depends on are eventually erased

4.3. Tactics 161

The Coq Reference Manual, Release 8.9.1

too while it might fail in the second case because of dependencies in hypotheses which are not yet introduced (and a
fortiori not yet erased).

Note: In intros intro_pattern_list, if the last introduction pattern is a disjunctive or conjunctive pattern
+

[intro_pattern_list |], the completion of intro_pattern_1ist so that all the arguments of the i-th

constructors of the corresponding inductive type are introduced can be controlled with the following option:

Flag: Bracketing Last Introduction Pattern
Force completion, if needed, when the last introduction pattern is a disjunctive or conjunctive pattern (on by default).

clear ident
This tactic erases the hypothesis named i dent in the local context of the current goal. As a consequence, ident
is no more displayed and no more usable in the proof development.

Error: No such hypothesis.
Error: ident is used in the conclusion.
Error: ident is used in the hypothesis ident.
Variant: clear ident

This is equivalent to clear ident. ... clear ident.
Variant: clear - ident

+
This variant clears all the hypotheses except the ones depending in the hypotheses named | i dent | and in
the goal.

Variant: clear
This variants clears all the hypotheses except the ones the goal depends on.

Variant: clear dependent ident
This clears the hypothesis i dent and all the hypotheses that depend on it.
Variant: clearbody ident

This tactic expects | ident | to be local definitions and clears their respective bodies. In other words, it
turns the given definitions into assumptions.

Error: ident is not a local definition.

revert | ident

+
This applies to any goal with variables | ident | . It moves the hypotheses (possibly defined) to the goal, if this
respects dependencies. This tactic is the inverse of int ro.

Error: No such hypothesis.
Error: ident; is used in the hypothesis ident,.

Variant: revert dependent ident
This moves to the goal the hypothesis i dent and all the hypotheses that depend on it.

move ident; after ident,
This moves the hypothesis named i dent , in the local context after the hypothesis named ident ,, where “after”
is in reference to the direction of the move. The proof term is not changed.

162 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

If ident, comes before ident , in the order of dependencies, then all the hypotheses between ident, and
ident , that (possibly indirectly) depend on i dent , are moved too, and all of them are thus moved after i dent
in the order of dependencies.

If ident, comes after ident, in the order of dependencies, then all the hypotheses between ident, and
ident, that (possibly indirectly) occur in the type of ident, are moved too, and all of them are thus moved
before ident, in the order of dependencies.

Variant: move ident,; before ident,
This moves ident , towards and just before the hypothesis named ident .. As for move ... after
. . ., dependencies over ident, (when ident , comes before i dent . in the order of dependencies) or in
the type of ident, (when ident, comes after ident , in the order of dependencies) are moved too.

Variant: move ident at top
This moves ident at the top of the local context (at the beginning of the context).

Variant: move ident at bottom
This moves ident at the bottom of the local context (at the end of the context).

Error: No such hypothesis.
Error: Cannot move ident; after ident,: it occurs in the type of ident,.

Error: Cannot move ident,; after ident,: it depends on ident,.

Example

Goal forall x :nat, x = 0 -> forall z y:nat, y=y-> 0=x.
1 subgoal

forall x : nat, x = 0 -> nat —> forall y : nat, vy =y > 0 = x

intros x H z y HO.

1 subgoal
x nat
H x =0
z, Yy : nat
HO : y =y
0 =x

move x after HO.

1 subgoal
z, Yy : nat
HO y =V
x nat
H x =0
0 =x

Undo.

1 subgoal
X nat
H x =0
z, VY nat

(continues on next page)

4.3. Tactics 163

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

move x before HO.

1 subgoal
z, V, X nat
H x = 0
HO y =Yy
0 = x

Undo.

1 subgoal
X nat
H x = 0
z, Yy : nat
HO y =y
0 = x

move HO after H.
1 subgoal

H x =0
z nat
0 = x
Undo.

1 subgoal
X nat
H x =0
z, y : nat
HO : y =y
0 = x

move HO before H.

1 subgoal
X nat
H x = 0
v nat
HO :y =y
z nat
0 = x

rename ident; into ident,
This renames hypothesis ident, into ident , in the current context. The name of the hypothesis in the proof-

164 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

term, however, is left unchanged.

Variant: rename ident; into ident;

This renames the variables i dent ; into ident ; in parallel. In particular, the target identifiers may contain
identifiers that exist in the source context, as long as the latter are also renamed by the same tactic.

Error: No such hypothesis.
Error: ident is already used.

set (ident := term)
This replaces t ermby ident in the conclusion of the current goal and adds the new definition i dent := term
to the local context.

[Tt}

If termhasholes (i.e. subexpressions of the form “_"), the tactic first checks that all subterms matching the pattern
are compatible before doing the replacement using the leftmost subterm matching the pattern.

Error: The variable ident is already defined.

Variant: set (ident := term) in goal_ occurrences
This notation allows specifying which occurrences of term have to be substituted in the context. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior are described in goal

occurrences.
?
Variant: set (ident binders := term) |in goal_occurrences
5
This is equivalent to set (ident := fun binders => term) |in goal occurrences

?
Variant: set term in goal occurrences

? .
This behaves as set (ident := term) |in goal occurrences | but ident is generated by
Coq.
? ?
Variant: eset (ident binders := term) |in goal_occurrences

Variant: eset term in goal_ occurrences z
While the different variants of set expect that no existential variables are generated by the tactic, eset
removes this constraint. In practice, this is relevant only when eset is used as a synonym of epose, i.e.
when the term does not occur in the goal.
?
remember term as ident; |eqn:ident,
This behaves as set (ident, := term) in *, using a logical (Leibniz’s) equality instead of a local defi-
nition. If ident , is provided, it will be the name of the new equation.
2
Variant: remember term as ident; eqn:ident, in goal_occurrences
This is a more general form of remembe r that remembers the occurrences of term specified by an occur-
rence set.

? ?
Variant: eremember term as ident, eqn:ident, in goal occurrences

While the different variants of remembe r expect that no existential variables are generated by the tactic,
eremember removes this constraint.

pose (ident := term)
This adds the local definition 1 dent := termto the current context without performing any replacement in the
goal or in the hypotheses. It is equivalent to set (ident := term) in |-.

Variant: pose (ident binders := term)
This is equivalent to pose (ident := fun binders => term).

4.3. Tactics 165

The Coq Reference Manual, Release 8.9.1

Variant: pose term
This behaves as pose (ident := term) but ident is generated by Coq.
?
Variant: epose (ident binders := term)
Variant: epose term
While the different variants of pose expect that no existential variables are generated by the tactic, epose
removes this constraint.

+
decompose [gualid |] term
This tactic recursively decomposes a complex proposition in order to obtain atomic ones.

Example

Goal forall A B C:Prop, A /\ B /N C \/ B /\NC\/ C /\ A —> C.
1 subgoal

forall AB C : Prop, A /\ B /\NC \/ B /\NC\/ C/\ A ->C

intros A B C H; decompose [and or] H.
3 subgoals

A, B, C : Prop
H:A/\NB/\NC\/B/\NC\/C/\A

H1 A
HO B
H3 : C
C

subgoal 2 is:
c
subgoal 3 is:
c

all: assumption.
No more subgoals.

Qed.
Unnamed_thm is defined

Note: decompose does not work on right-hand sides of implications or products.

Variant: decompose sum term
This decomposes sum types (like or).

Variant: decompose record term
This decomposes record types (inductive types with one constructor, like and and exi st s and those defined
with the Record command.

166 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

4.3.4 Controlling the proof flow

assert (ident : type)
This tactic applies to any goal. assert (H : U) adds a new hypothesis of name H asserting U to the current
goal and opens a new subgoal U”. The subgoal U comes first in the list of subgoals remaining to prove.

Error: Not a proposition or a type.
Arises when the argument ¢ ype is neither of type Prop, Set nor Type.

Variant: assert type
This behaves as assert (ident : type) but ident is generated by Coq.

Variant: assert type by tactic
This tactic behaves like assert but applies tactic to solve the subgoals generated by assert.

Error: Proof is not complete.

Variant: assert type as intro_pattern
If intro_pattern is a naming introduction pattern (see int ro), the hypothesis is named after this intro-
duction pattern (in particular, if intro_pattern is ident, the tactic behaves like assert (ident
type)). If intro_pattern is an action introduction pattern, the tactic behaves like assert type
followed by the action done by this introduction pattern.

Variant: assert type as intro_pattern by tactic
This combines the two previous variants of assert.

Variant: assert (ident := term)
Thisbehavesas assert (ident : type) by exact termwhere typeisthetypeof term. This
is equivalent to using pose proof. If the head of term is i dent, the tactic behaves as specialize.

Error: Variable ident is already declared.

Variant: eassert type as intro_pattern by tactic
While the different variants of assert expect that no existential variables are generated by the tactic, eassert
removes this constraint. This allows not to specify the asserted statement completeley before starting to prove it.
?
Variant: pose proof term as intro_pattern

?
This tactic behaves like assert type as intro_pattern by exact term where type is the

type of term. In particular, pose proof term as ident behaves as assert (ident := term)
and pose proof term as intro_patternisthe same as applying the intro_patternto term.
?
Variant: epose proof term as intro_pattern
While pose proof expects that no existential variables are generated by the tactic, epose proof removes
this constraint.

Variant: enough (ident : type)
This adds a new hypothesis of name ident asserting t ype to the goal the tactic enough is applied to. A new
subgoal stating t ype is inserted after the initial goal rather than before it as assert would do.

Variant: enough type
This behaves like enough (ident : type) with the name ident of the hypothesis generated by Coq.

Variant: enough type as intro_pattern
This behaves like enough ¢ ype using intro_pattern to name or destruct the new hypothesis.

Variant: enough (ident : type) by tactic
?

Variant: enough type |as intro pattern | by tactic
This behaves as above but with tactic expected to solve the initial goal after the extra assumption t ype is

2 This corresponds to the cut rule of sequent calculus.

4.3. Tactics 167

The Coq Reference Manual, Release 8.9.1

added and possibly destructed. If the as intro_pattern clause generates more than one subgoal, tactic
is applied to all of them.
2 ?
Variant: eenough type as intro_pattern by tactic

?
Variant: eenough (ident : type) by tactic

While the different variants of enough expect that no existential variables are generated by the tactic, eenough
removes this constraint.

Variant: cut type
This tactic applies to any goal. It implements the non-dependent case of the “App” rule given in Typing rules. (This
is Modus Ponens inference rule.) cut U transforms the current goal T into the two following subgoals: U —> T
and U. The subgoal U —> T comes first in the list of remaining subgoal to prove.
* ?
Variant: specialize (ident term |) as intro_pattern

?
Variant: specialize ident with bindings_list as intro_ pattern

This tactic works on local hypothesis i dent. The premises of this hypothesis (either universal quantifications or
*
non-dependent implications) are instantiated by concrete terms coming either from arguments | term | or from a
*
bindings list. In the first form the application to | term | can be partial. The first form is equivalent to assert
*

(ident := ident |term |). Inthe second form, instantiation elements can also be partial. In this case the
uninstantiated arguments are inferred by unification if possible or left quantified in the hypothesis otherwise. With
the as clause, the local hypothesis ident is left unchanged and instead, the modified hypothesis is introduced
as specified by the intro_pattern. The name ident can also refer to a global lemma or hypothesis. In this
case, for compatibility reasons, the behavior of specialize is close to that of generalize: the instantiated
statement becomes an additional premise of the goal. The as clause is especially useful in this case to immediately
introduce the instantiated statement as a local hypothesis.

Error: ident is used in hypothesis ident.
Error: ident is used in conclusion.

generalize term
This tactic applies to any goal. It generalizes the conclusion with respect to some term.

Example

Show.
1 subgoal

generalize (x + y + Vy).
1 subgoal

If the goal is G and t is a subterm of type T in the goal, then generalize t replacesthe goal by forall (x:T),
G’ where G’ is obtained from G by replacing all occurrences of t by x. The name of the variable (here n) is chosen
based on T.

168 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

. - +
Variant: generalize term

This is equivalent to generalize term; ... ; generalize term. Note that the sequence of term ;
’s are processed from n to 1.

Variant: generalize term at |[num *
This is equivalentto generalize termbutitgeneralizesonly over the specified occurrences of ¢ erm (counting
from left to right on the expression printed using option Printing All).

Variant: generalize term as ident
This is equivalent to generalize termbutituses ident to name the generalized hypothesis.

+
. . + .
Variant: generalize term at num as ident

I4

This is the most general form of generalize that combines the previous behaviors.

Variant: generalize dependent term
This generalizes term but also all hypotheses that depend on e rm. It clears the generalized hypotheses.

evar (ident : term)
The evar tactic creates a new local definition named ident with type term in the context. The body of this
binding is a fresh existential variable.

instantiate (ident := term)
The instantiate tactic refines (see refine) an existential variable i dent with the term term. It is equivalent to
only [ident]: refine term (preferred alternative).

Note: To be able to refer to an existential variable by name, the user must have given the name explicitly (see
EXxistential variables).

Note: When you are referring to hypotheses which you did not name explicitly, be aware that Coq may make a
different decision on how to name the variable in the current goal and in the context of the existential variable. This
can lead to surprising behaviors.

Variant: instantiate (num := term)
This variant allows to refer to an existential variable which was not named by the user. The num argument is the
position of the existential variable from right to left in the goal. Because this variant is not robust to slight changes
in the goal, its use is strongly discouraged.

Variant: instantiate (num := term) in ident

Variant: instantiate (num term) in (Value of ident)

Variant: instantiate (num := term) in (Type of ident)
These allow to refer respectively to existential variables occurring in a hypothesis or in the body or the type of a
local definition.

Variant: instantiate
Without argument, the instantiate tactic tries to solve as many existential variables as possible, using information
gathered from other tactics in the same tactical. This is automatically done after each complete tactic (i.e. after a
dot in proof mode), but not, for example, between each tactic when they are sequenced by semicolons.

admit
This tactic allows temporarily skipping a subgoal so as to progress further in the rest of the proof. A proof containing
admitted goals cannot be closed with Oed but only with Admitted.

Variant: give_up
Synonym of admit.

4.3. Tactics 169

The Coq Reference Manual, Release 8.9.1

absurd term
This tactic applies to any goal. The argument term is any proposition P of type Prop. This tactic applies False
elimination, that is it deduces the current goal from False, and generates as subgoals ~P and P. It is very useful in
proofs by cases, where some cases are impossible. In most cases, P or ~P is one of the hypotheses of the local
context.

contradiction
This tactic applies to any goal. The contradiction tactic attempts to find in the current context (after all intros) a
hypothesis that is equivalent to an empty inductive type (e.g. False), to the negation of a singleton inductive type
(e.g. True or x=x), or two contradictory hypotheses.

Error: No such assumption.

Variant: contradiction ident
The proof of False is searched in the hypothesis named ident.

contradict ident
This tactic allows manipulating negated hypothesis and goals. The name i dent should correspond to a hypothesis.
With contradict H, the current goal and context is transformed in the following way:

e H:-A - B becomes — A
e H:=A I -Bbecomes H: B— A

H: A - B becomes — -A
e H: A+ —-B becomes H: B — A

exfalso
This tactic implements the “ex falso quodlibet” logical principle: an elimination of False is performed on the current
goal, and the user is then required to prove that False is indeed provable in the current context. This tactic is a macro
forelimtype False.

4.3.5 Case analysis and induction

The tactics presented in this section implement induction or case analysis on inductive or co-inductive objects (see Inductive
Definitions).

destruct term
This tactic applies to any goal. The argument term must be of inductive or co-inductive type and the tactic
generates subgoals, one for each possible form of term, i.e. one for each constructor of the inductive or co-
inductive type. Unlike induct ion, no induction hypothesis is generated by destruct.

Variant: destruct ident
If ident denotes a quantified variable of the conclusion of the goal, then destruct ident behaves as
intros until ident; destruct ident. If ident is not anymore dependent in the goal after
application of destruct, it is erased (to avoid erasure, use parentheses, as in destruct (ident)).

If ident is a hypothesis of the context, and i dent is not anymore dependent in the goal after application
of destruct, itis erased (to avoid erasure, use parentheses, as in destruct (ident)).

Variant: destruct num

destruct numbehaves as intros until num followed by destruct applied to the last in-
troduced hypothesis.

Note: For destruction of a numeral, use syntax destruct (num) (not very interesting anyway).

170 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Variant: destruct pattern
The argument of destruct can also be a pattern of which holes are denoted by “_”. In this case, the
tactic checks that all subterms matching the pattern in the conclusion and the hypotheses are compatible and
performs case analysis using this subterm.

@

+
Variant: destruct [term -

This is a shortcut for destruct term; ...; destruct term.

Variant: destruct term as disj _conj_intro_pattern

This behaves as destruct term but uses the names in disj_conj_intro_pattern to name the
variables introduced in the context. The disj_conj_intro_pattern must have the form [p11

pln | ... | pml ... pmn] with m being the number of constructors of the type of term. Each
variable introduced by de st ruct in the context of the i-th goal gets its name from the listpil ... pin
in order. If there are not enough names, de st ruct invents names for the remaining variables to introduce.
More generally, the pi j can be any introduction pattern (see int ros). This provides a concise notation for
chaining destruction of a hypothesis.

Variant: destruct term eqn:naming intro_pattern
This behaves as destruct termbutadds an equation between ¢ e rm and the value that it takes in each of
the possible cases. The name of the equation is specified by naming_intro_pattern (see intros),
in particular ? can be used to let Coq generate a fresh name.

Variant: destruct term with bindings list
This behaves like destruct term providing explicit instances for the dependent premises of the type of
term.

Variant: edestruct term
This tactic behaves like destruct termexcept that it does not fail if the instance of a dependent premises
of the type of term is not inferable. Instead, the unresolved instances are left as existential variables to be
inferred later, in the same way as eapp 1y does.
?
Variant: destruct term using term with bindings_list
?
This is synonym of induction term using term with bindings_ list
Variant: destruct term in goal occurrences
This syntax is used for selecting which occurrences of term the case analysis has to be done on. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior is described in occurrences
sers.

2 ?
Variant: destruct term with bindings_list as disj_conj_intro pattern eqn:naming_int:

? ?
Variant: edestruct term with bindings list as disj_conj_intro pattern eqn:naming_ini
These are the general forms of destruct and edestruct. They combine the effects of the with, as,
eqgn:, using, and in clauses.

case term
The tactic case is a more basic tactic to perform case analysis without recursion. It behaves as elim term but
using a case-analysis elimination principle and not a recursive one.

Variant: case term with bindings_list
Analogous to elim term with bindings_1ist above.
?
Variant: ecase term with bindings list
In case the type of term has dependent premises, or dependent premises whose values are not inferable from the
with bindings_1ist clause, ecase turns them into existential variables to be resolved later on.

4.3. Tactics 171

The Coq Reference Manual, Release 8.9.1

Variant: simple destruct ident
This tactic behaves as intros until ident; case ident when ident is a quantified variable of the
goal.

Variant: simple destruct num
This tactic behaves as intros until num; case ident where ident is the name given by intros
until numto the num -th non-dependent premise of the goal.

Variant: case_eq term
The tactic case_eq is a variant of the case tactic that allows to perform case analysis on a term without com-
pletely forgetting its original form. This is done by generating equalities between the original form of the term and
the outcomes of the case analysis.

induction term
This tactic applies to any goal. The argument t e rm must be of inductive type and the tactic induct ion generates
subgoals, one for each possible form of term, i.e. one for each constructor of the inductive type.

If the argument is dependent in either the conclusion or some hypotheses of the goal, the argument is replaced by
the appropriate constructor form in each of the resulting subgoals and induction hypotheses are added to the local
context using names whose prefix is TH.

There are particular cases:

 If term is an identifier i dent denoting a quantified variable of the conclusion of the goal, then inductionident
behavesas intros until ident; induction ident.If ident isnotanymore dependent in the
goal after application of induction, it is erased (to avoid erasure, use parentheses, as in induction
(ident)).

e If termisa num, then induction numbehaves as intros until num followed by induction
applied to the last introduced hypothesis.

Note: For simple induction on a numeral, use syntax induction (num) (not very interesting anyway).

¢ In case term is a hypothesis i dent of the context, and ident is not anymore dependent in the goal after
application of induction, itis erased (to avoid erasure, use parentheses, as in induction (ident)).

* The argument term can also be a pattern of which holes are denoted by “_". In this case, the tactic checks
that all subterms matching the pattern in the conclusion and the hypotheses are compatible and performs
induction using this subterm.

Example
Lemma induction_test : forall n:nat, n = n -> n <= n.
1 subgoal
forall n nat, n = n -> n <= n

intros n H.
1 subgoal

induction n.

(continues on next page)

172 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

2 subgoals

subgoal 2 is:
S n <= S n

Error: Not an inductive product.

Error: Unable to find an instance for the variables ident ... ident.
Use in this case the variant el im ... with below.

Variant: induction term as disj_conj_intro_pattern

This behaves as induction but uses the names in disj_conj_intro_pattern to name the variables
introduced in the context. The disj conj_intro_pattern must typically be of theform [p, ... p
m ! ++«« | Ppy +-- Pmp) With m being the number of constructors of the type of term. Each variable
introduced by induction in the context of the i-th goal gets its name from the list p;; . . . p;, in order. If there are
not enough names, induction invents names for the remaining variables to introduce. More generally, the p;; can
be any disjunctive/conjunctive introduction pattern (see intros . ..). For instance, for an inductive type with
one constructor, the pattern notation (p; , ... , p,) canbeusedinsteadof [p; ... p,].

Variant: induction term with bindings_list
This behaves like induction providing explicit instances for the premises of the type of term (see bindings
list).

Variant: einduction term
This tactic behaves like i nduction except that it does not fail if some dependent premise of the type of term
is not inferable. Instead, the unresolved premises are posed as existential variables to be inferred later, in the same
way as eapply does.

Variant: induction term using term
This behaves as i nduct ion but using t erm as induction scheme. It does not expect the conclusion of the type
of the first £ e rm to be inductive.

Variant: induction term using term with bindings list
This behaves as induction ... using ... butalso providing instances for the premises of the type of the
second term.

+
Variant: induction term ' using gqualid

This syntax is used for the case qua 1 id denotes an induction principle with complex predicates as the induction
principles generated by Function or Functional Scheme may be.

Variant: induction term in goal_occurrences
This syntax is used for selecting which occurrences of term the induction has to be carried on. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior is described in occurrences
sets. If variables or hypotheses not mentioning t e rm in their type are listed in goal occurrences, those are
generalized as well in the statement to prove.

Example

Lemma comm X y : X + y =y + X.
1 subgoal

(continues on next page)

4.3. Tactics 173

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

induction y in x |- *,
2 subgoals

subgoal 2 is:
X+ Sy =8y +x

Show 2.
subgoal 2 is:

X, Yy : nat

Variant: induction term with bindings_list as disj conj_intro_pattern using term with binding
Variant: einduction term with bindings list as disj_conj_intro_pattern using term with bindin
These are the most general forms of induction and einduction. It combines the effects of the with, as,
using, and in clauses.

Variant: elim term

This is a more basic induction tactic. Again, the type of the argument term must be an inductive type. Then,
according to the type of the goal, the tactic e1im chooses the appropriate destructor and applies it as the tactic
apply would do. For instance, if the proof context contains n: nat and the current goal is T of type Prop, then
elim nisequivalent to apply nat_ind with (n:=n). The tactic elim does not modify the context of
the goal, neither introduces the induction loading into the context of hypotheses. More generally, elim term
also works when the type of term is a statement with premises and whose conclusion is inductive. In that case
the tactic performs induction on the conclusion of the type of ¢ erm and leaves the non-dependent premises of the
type as subgoals. In the case of dependent products, the tactic tries to find an instance for which the elimination
lemma applies and fails otherwise.

Variant: elim term with bindings_ list
Allows to give explicit instances to the premises of the type of term (see bindings list).

Variant: eelim term
In case the type of termhas dependent premises, this turns them into existential variables to be resolved later on.

Variant: elim term using term

Variant: elim term using term with bindings_list
Allows the user to give explicitly an induction principle term that is not the standard one for the underlying
inductive type of term. The bindings_11ist clause allows instantiating premises of the type of term.

Variant: elim term with bindings_list using term with bindings_list

Variant: eelim term with bindings list using term with bindings_list
These are the most general forms of e1imand eelim. It combines the effects of the using clause and of the
two uses of the with clause.

Variant: elimtype type
The argument ¢t ype must be inductively defined. elimtype I isequivalenttocut I. intro Hn; elim

174 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Hn; clear Hn. Therefore the hypothesis Hn will not appear in the context(s) of the subgoal(s). Conversely, if
t is a term of (inductive) type I that does not occur in the goal, then e1lim t is equivalentto elimtype I;
2:exact t.

Variant: simple induction ident

This tactic behaves as intros until ident; elim ident when ident is a quantified variable of the
goal.

Variant: simple induction num
This tactic behaves as intros until num; elim ident where ident is the name given by intros
until numto the num-th non-dependent premise of the goal.

double induction ident ident
This tactic is deprecated and should be replaced by induction ident; induction ident (or
induction ident ; destruct ident depending on the exact needs).

Variant: double induction numl num2

This tactic is deprecated and should be replaced by induction numl; induction num3 where num3 is
the result of num2 - numl

dependent induction ident
The experimental tactic dependent induction performs induction- inversion on an instantiated inductive predicate.
One needs to first require the Coq.Program.Equality module to use this tactic. The tactic is based on the BasicElim
tactic by Conor McBride [McB00] and the work of Cristina Cornes around inversion [CT95]. From an instantiated
inductive predicate and a goal, it generates an equivalent goal where the hypothesis has been generalized over its
indexes which are then constrained by equalities to be the right instances. This permits to state lemmas without
resorting to manually adding these equalities and still get enough information in the proofs.

Example
Lemma le_minus : forall n:nat, n < 1 -> n = 0.
1 subgoal
forall n : nat, n <1 -> n = 0

intros n H ; induction H.

2 subgoals
n nat
n =0

subgoal 2 is:
n =20

Here we did not get any information on the indexes to help fulfill this proof. The problem is that, when we use the
induction tactic, we lose information on the hypothesis instance, notably that the second argument is 1 here. Depen-
dent induction solves this problem by adding the corresponding equality to the context.

Require Import Cog.Program.Equality.

Lemma le_minus : forall n:nat, n < 1 -> n = 0.
1 subgoal
forall n nat, n <1 -—> n = 0

intros n H ; dependent induction H.
(continues on next page)

4.3. Tactics 175

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

2 subgoals

subgoal 2 is:
n =0

The subgoal is cleaned up as the tactic tries to automatically simplify the subgoals with respect to the generated equalities.
In this enriched context, it becomes possible to solve this subgoal.

reflexivity.
1 subgoal

Now we are in a contradictory context and the proof can be solved.

inversion H.
No more subgoals.

This technique works with any inductive predicate. In fact, the dependent induction tactic is just a wrapper
around the induction tactic. One can make its own variant by just writing a new tactic based on the definition found
in Coq.Program.Equality.

Variant: dependent induction ident generalizing |ident
This performs dependent induction on the hypothesis i dent but first generalizes the goal by the given variables
so that they are universally quantified in the goal. This is generally what one wants to do with the variables that are
inside some constructors in the induction hypothesis. The other ones need not be further generalized.

Variant: dependent destruction ident
This performs the generalization of the instance ident but uses destruct instead of induction on the general-
ized hypothesis. This gives results equivalent to inversion or dependent inversion if the hypothesis is
dependent.

See also the larger example of dependent induction and an explanation of the underlying technique.

function induction (qualid term T)
The tactic functional induction performs case analysis and induction following the definition of a function. It makes
use of a principle generated by Function (see Advanced recursive functions) or Functional Scheme (see
Generation of induction principles with Functional Scheme). Note that this tactic is only available after a Require
Import FunInd.

Example

Require Import FunInd.

[Loading ML file extraction_plugin.cmxs ... done]
[Loading ML file recdef_plugin.cmxs ... done]
Functional Scheme minus_ind := Induction for minus Sort Prop.

(continues on next page)

176 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

sub_equation is defined
minus_ind is defined

Check minus_ind.
minus_ind
forall P : nat —-> nat —-> nat —-> Prop,
(forall nm : nat, n =0 -—> P 0 m n) —>
(forall n mk : nat, n =S k -—>m =0 ->P (S k) 0 n) —>
(forall n m k : nat,
n=3Sk —>
forall 1 : nat, m =S 1 ->P k1 (k - 1) —>P (Sk) (S1) (k —-1)) —>
forall nm : nat, P nm (n - m)

Lemma le _minus (n m:nat) : n — m <= n.
1 subgoal

functional induction (minus n m) using minus_ind; simpl; auto.
No more subgoals.

Qed.
le_minus is defined

+ L
Note: (qualid |[term |) must be a correct full application of qualid. In particular, the rules for implicit argu-
ments are the same as usual. For example use qua 11 d if you want to write implicit arguments explicitly.

+ .
Note: Parentheses around qualid term | are not mandatory and can be skipped.

Note: functional induction (f x1 x2 x3) isactually a wrapper for induction x1, x2, x3, (f
x1 x2 x3) using qualid followed by a cleaning phase, where qual1id is the induction principle registered for
f (by the Function (see Advanced recursive functions) or Functional Scheme (see Generation of induction prin-
ciples with Functional Scheme) command) corresponding to the sort of the goal. Therefore functional induction
may fail if the induction scheme gualid is not defined. See also Advanced recursive functions for the function terms
accepted by Function.

Note: There is a difference between obtaining an induction scheme for a function by using Function (see Advanced
recursive functions) and by using Functional Scheme after a normal definition using Fixpoint orDefinition.
See Advanced recursive functions for details.

See also:
Advanced recursive functions, Generation of induction principles with Functional Scheme and inversion
Error: Cannot find induction information on qualid.

Error: Not the right number of induction arguments.

4.3. Tactics 177

The Coq Reference Manual, Release 8.9.1

Variant: functional induction (qualid term T) as disj_conj_intro pattern using term with bind
Similarly to induction and elim, this allows giving explicitly the name of the introduced variables, the induc-
tion principle, and the values of dependent premises of the elimination scheme, including predicates for mutual
induction when qua 11d is part of a mutually recursive definition.

discriminate term
This tactic proves any goal from an assumption stating that two structurally different ¢ e rms of an inductive set are
equal. For example, from (S (S 0))=(S 0O) we can derive by absurdity any proposition.

The argument term is assumed to be a proof of a statement of conclusion term = term with the two terms
being elements of an inductive set. To build the proof, the tactic traverses the normal forms® of the terms looking
for a couple of subterms u and w (u subterm of the normal form of ¢erm and w subterm of the normal form of
term), placed at the same positions and whose head symbols are two different constructors. If such a couple of
subterms exists, then the proof of the current goal is completed, otherwise the tactic fails.

Note: The syntax discriminate ident can be used to refer to a hypothesis quantified in the goal. In this case,
the quantified hypothesis whose name is i dent is first introduced in the local context using intros until ident.

Error: No primitive equality found.
Error: Not a discriminable equality.

Variant: discriminate num
This does the same thing as intros until numfollowed by discriminate ident where ident isthe
identifier for the last introduced hypothesis.

Variant: discriminate term with bindings_list
This does the same thing as discriminate term but using the given bindings to instantiate parameters or
hypotheses of term.

Variant: ediscriminate num
?

Variant: ediscriminate term 'with bindings list |
This works the same as discriminate but if the type of term, or the type of the hypothesis referred to by
num, has uninstantiated parameters, these parameters are left as existential variables.

Variant: discriminate
This behaves like discriminate ident if identis the name of an hypothesis to which discriminate isap-
plicable; if the current goal is of the form term <> term,thisbehavesas intro ident; discriminate
ident.

Error: No discriminable equalities.

injection term
The injection tactic exploits the property that constructors of inductive types are injective, i.e. that if c is a con-
structor of an inductive type and ¢ t; and ¢ t, are equal then t, and t, are equal too.

If termis a proof of a statement of conclusion term = term, then injection applies the injectivity of
constructors as deep as possible to derive the equality of all the subterms of term and term at positions where
the terms start to differ. For example, from (S p, S n) = (g, S (S m)) wemayderive S p = gand
n = S m. For this tactic to work, the terms should be typed with an inductive type and they should be neither
convertible, nor having a different head constructor. If these conditions are satisfied, the tactic derives the equality
of all the subterms at positions where they differ and adds them as antecedents to the conclusion of the current goal.

Example

Consider the following goal:

3 Reminder: opaque constants will not be expanded by & reductions.

178 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Inductive list : Set :=
| nil : list

| cons : nat -> list -> list.
Parameter P : list —-> Prop.
Goal forall 1 n, P nil -> cons n 1 = cons 0 nil -> P 1.
intros.
1 subgoal

1 : list

n : nat

H : P nil

HO : cons n 1 = cons 0 nil

P 1

injection HO.

1 subgoal
1 : list
n : nat
H P nil
HO cons n 1 = cons 0 nil

Beware that injection yields an equality in a sigma type whenever the injected object has a dependent type P with
its two instances in different types (P t; ... t,) and (P u; ... u,). If t; and u; are the same and have for
type an inductive type for which a decidable equality has been declared using the command Scheme Equality
(see Generation of induction principles with Scheme), the use of a sigma type is avoided.

Note: If some quantified hypothesis of the goal is named i dent, then injection ident firstintroduces the
hypothesis in the local context using intros until ident.

Error: Not a projectable equality but a discriminable one.

Error: Nothing to do, it is an equality between convertible terms.
Error: Not a primitive equality.

Error: Nothing to inject.

Variant: injection num
This does the same thing as intros until num followed by injection ident where ident is
the identifier for the last introduced hypothesis.

Variant: injection term with bindings_list
This does the same as injection termbutusing the given bindings to instantiate parameters or hypothe-
ses of term.

Variant: einjection num
=

Variant: einjection term with bindings list |
This works the same as injection but if the type of term, or the type of the hypothesis referred to by
num, has uninstantiated parameters, these parameters are left as existential variables.

4.3. Tactics 179

The Coq Reference Manual, Release 8.9.1

Variant: injection
If the current goal is of the form term <> term, this behaves as intro ident; injection
ident.

Error: goal does not satisfy the expected preconditions.

?
Variant: injection term with bindings_list as |intro_pattern

Variant: injection num as intro_pattern

Variant: injection as intro_pattern

?
Variant: einjection term with bindings_list as intro_pattern

Variant: einjection num as intro_pattern
+
Variant: einjection as intro_pattern

These variants apply intros | intro _pattern T after the call to injectionor einjection so
that all equalities generated are moved in the context of hypotheses. The number of intro_pattern must
not exceed the number of equalities newly generated. If it is smaller, fresh names are automatically generated
to adjust the list of intro_pattern to the number of new equalities. The original equality is erased if it
corresponds to a hypothesis.

Flag: Structural Injection
This option ensure that injection termerases the original hypothesis and leaves the generated equalities
in the context rather than putting them as antecedents of the current goal, as if giving injection term
as (with an empty list of names). This option is off by default.

Flag: Keep Proof Equalities
By default, injection only creates new equalities between terms whose type is in sort Type or Set,
thus implementing a special behavior for objects that are proofs of a statement in Prop. This option controls
this behavior.

inversion ident
Let the type of ident in the local context be (I t), where I is a (co)inductive predicate. Then, inversion
applied to ident derives for each possible constructor ¢ i of (I t), all the necessary conditions that should
hold for the instance (I t) to be proved by ¢ 1i.

Note: If ident does not denote a hypothesis in the local context but refers to a hypothesis quantified in the goal, then
the latter is first introduced in the local context using intros until ident.

Note: As inversion proofs may be large in size, we recommend the user to stock the lemmas whenever the same
instance needs to be inverted several times. See Generation of inversion principles with Derive Inversion.

Note: Part of the behavior of the inversion tactic is to generate equalities between expressions that appeared in the
hypothesis that is being processed. By default, no equalities are generated if they relate two proofs (i.e. equalities between
terms whose type is in sort Prop). This behavior can be turned off by using the option :flag'Keep Proof Equalities’.

Variant: inversion num
This does the same thing as intros until numthen inversion ident where ident is the identifier
for the last introduced hypothesis.

Variant: inversion_clear ident
This behaves as inversion and then erases ident from the context.

180 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Variant: inversion ident as intro_pattern
This generally behaves as inversion but using names in intro_pattern for naming hypotheses. The
intro_pattern must have the form [p;; ... Py | «-+ | Py --- Pmy) With m being the number
of constructors of the type of ident. Be careful that the list must be of length m even if inversion discards
some cases (which is precisely one of its roles): for the discarded cases, just use an empty list (i.e. n = 0).The
arguments of the i-th constructor and the equalities that inversion introduces in the context of the goal corre-
sponding to the i-th constructor, if it exists, get their names from the list p;; ... p;, in order. If there are not
enough names, inversion invents names for the remaining variables to introduce. In case an equation splits into
several equations (because inversion applies injection on the equalities it generates), the corresponding

name py in the list must be replaced by a sublist of the form [py; ... pj, 1 (or, equivalently, (pj , ...,
Pijq)) Where q is the number of subequalities obtained from splitting the original equation. Here is an example.
The inversion ... as variant of inversion generally behaves in a slightly more expectable way than
inversion (no artificial duplication of some hypotheses referring to other hypotheses). To take benefit of these
improvements, it is enough to use inversion ... as [], letting the names being finally chosen by Coq.
Example

Inductive containsO : list nat -> Prop :=

| in_hd : forall 1, containsO (0 :: 1)

| in_tl : forall 1 b, containsO 1 -> contains0O (b :: 1).

containsO0 is defined
contains0_ind is defined

Goal forall 1l:1ist nat, containsO (1 :: 1) —-> containsO 1.
1 subgoal
forall 1 : list nat, containsO (1 :: 1) —-> containsO 1
intros 1 H; inversion H as [| 1' p Hl1' [Heqgp Heqgl']].
1 subgoal

1 : list nat

H : containsO (1 :: 1)
1' : list nat

p : nat

H1' : containsO 1
Hegp : p =1

Heqgl' 1" =1

containsO 1

Variant: inversion num as intro_pattern
This allows naming the hypotheses introduced by inversion numin the context.

Variant: inversion_clear ident as intro_pattern
This allows naming the hypotheses introduced by inversion_clear in the context. Notice that hypothesis
names can be provided as if inversion were called, even though the inversion_clear will eventually
erase the hypotheses.

Variant: inversion ident in | ident

+ +
Let | ident | be identifiers in the local context. This tactic behaves as generalizing ident |, and then per-
forming inversion.

Variant: inversion ident as intro pattern in | ident

4.3. Tactics 181

The Coq Reference Manual, Release 8.9.1

+
This allows naming the hypotheses introduced in the context by inversion ident in |ident

Variant: inversion_clear ident in |ident

+ +
Let | ident | be identifiers in the local context. This tactic behaves as generalizing ident |, and then per-
forming inversion_clear.

Variant: inversion_clear ident as intro_pattern in ident
+

This allows naming the hypotheses introduced in the context by inversion_clear ident in |ident
Variant: dependent inversion ident

That must be used when i dent appears in the current goal. It acts like inversion and then substitutes i dent

for the corresponding @t e rm in the goal.

Variant: dependent inversion ident as intro_pattern
This allows naming the hypotheses introduced in the context by dependent inversion ident.

Variant: dependent inversion_clear ident
Like dependent inversion, exceptthat i dent is cleared from the local context.

Variant: dependent inversion_clear ident as intro_pattern
This allows naming the hypotheses introduced in the context by dependent inversion_clear ident.

Variant: dependent inversion ident with term
This variant allows you to specify the generalization of the goal. It is useful when the system fails to generalize the
goal automatically. If ident hastype (I t) and I hastype forall (x:T), s,then termmustbe of type
I:forall (x:T), I x —> s' wheres' isthe type of the goal.

Variant: dependent inversion ident as intro_pattern with term
This allows naming the hypotheses introduced in the context by dependent inversion ident with
term.

Variant: dependent inversion_clear ident with term
Like dependent inversion ... with ... withbutclears ident from the local context.

Variant: dependent inversion_clear ident as intro_pattern with term
This allows naming the hypotheses introduced in the context by dependent inversion_clear ident
with term.

Variant: simple inversion ident
It is a very primitive inversion tactic that derives all the necessary equalities but it does not simplify the constraints
as inversion does.

Variant: simple inversion ident as intro_pattern
This allows naming the hypotheses introduced in the context by simple inversion.

Variant: inversion ident using ident
Let ident havetype (I t) (I aninductive predicate) in the local context, and i dent be a (dependent) inversion
lemma. Then, this tactic refines the current goal with the specified lemma.

Variant: inversion ident using ident in ident
This tactic behaves as generalizing | i dent |, then doing inversion ident using ident.

Variant: inversion_sigma
This tactic turns equalities of dependent pairs (e.g., existT P x p = existT P y g, frequently left over
by inversion on a dependent type family) into pairs of equalities (e.g., a hypothesis H : x = y and a hypoth-
esis of type rew H in p = q); these hypotheses can subsequently be simplified using subst, without ever
invoking any kind of axiom asserting uniqueness of identity proofs. If you want to explicitly specify the hypoth-
esis to be inverted, or name the generated hypotheses, you can invoke induction H as [H1 H2] using

182 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

eq_sigT_rect. This tactic also works for sig, sigT2, and sig2, and there are similareq_sig ***_rect
induction lemmas.

Example
Non-dependent inversion.

Let us consider the relation Le over natural numbers:

Inductive Le : nat -> nat —-> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le nm —> Le (S n) (S m).

Let us consider the following goal:

1 subgoal
P : nat -> nat -> Prop
Q : forall nm : nat, Le n m —> Prop
n, m : nat

To prove the goal, we may need to reason by cases on H and to derive that m is necessarily of the form (S m0) for certain
m0 and that (Le n mO). Deriving these conditions corresponds to proving that the only possible constructor of (Le
(S n) m) is LeS and that we can invert the arrow in the type of LeS. This inversion is possible because Le is the
smallest set closed by the constructors LeO and LeS.

inversion_clear H.

1 subgoal
P : nat -> nat -> Prop
Q : forall nm : nat, Le n m —> Prop
n, m, mO : nat

Note that m has been substituted in the goal for (S m0) and that the hypothesis (Le n mO) has been added to the
context.

Sometimes it is interesting to have the equality m = (S mO0) in the context to use it after. In that case we can use
inversion that does not clear the equalities:

inversion H.

1 subgoal
P : nat -> nat —-> Prop
Q : forall nm : nat, Le n m —> Prop
n, m : nat
H: Le (S n)m
n0, mO : nat

4.3. Tactics 183

The Coq Reference Manual, Release 8.9.1

Example
Dependent inversion.

Let us consider the following goal:

1 subgoal
P : nat -> nat -> Prop
Q : forall nm : nat, Le n m —> Prop
n, m : nat

As H occurs in the goal, we may want to reason by cases on its structure and so, we would like inversion tactics to
substitute H by the corresponding @term in constructor form. Neither inversionnor inversion_clear do such
a substitution. To have such a behavior we use the dependent inversion tactics:

dependent inversion_clear H.

1 subgoal
P : nat —-> nat -> Prop
Q : forall nm : nat, Le n m —> Prop
n, m, mO : nat

1 : Le n mO

Q (S n) (SmO) (LeS nmO 1)

Note that H has been substituted by (LeS n m0 1) andmby (S mO0).

Example
Using inversion_sigma.
Let us consider the following inductive type of length-indexed lists, and a lemma about inverting equality of cons:

Require Import Cog.Logic.Egdep_dec.
Inductive vec A : nat -> Type :=
| nil : vec A O
| cons {n} (x : A) (Xs : vec A n) : vec A (S n).
vec is defined
vec_rect is defined
vec_ind is defined
vec_rec is defined

Lemma invert_cons : forall A n x Xs y VS,
@cons A n x xs = @cons A n vy ysS
-> Xs = ys.
1 subgoal

forall (A : Type) (n : nat) (x : A) (xs : vec A n) (y : A) (ys : vec A n),
cons A X XS = cons Ay ys —> Xs = yS

(continues on next page)

184 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Proof.
intros A n x xs y ys H.
1 subgoal
A : Type
n nat
X A
Xs : vec A n
% A
ys : vec A n
H cons A X Xs = cons Ay ys
Xs = ys

After performing inversion, we are left with an equality of existTs:

inversion H.

1 subgoal
A : Type
n : nat
x : A
Xs : vec A n
y @ A
ys : vec A n
H : cons A x Xxs = cons Ay ys
Hl : x =y
H2 : existT (fun n : nat => vec A n) n xs =

existT (fun n : nat => vec A n) n ys

We can turn this equality into a usable form with inversion_sigma:

inversion_sigma.

1 subgoal
A : Type
n : nat
x © A
Xs : vec A n
y A
ys : vec A n
H : cons A X xs = cons Ay ys
H1 X =Yy
HO n =n
H3 : eq_rect n (fun a : nat => vec A a) xs n HO = ys
XS = ys

(continued from previous page)

To finish cleaning up the proof, we will need to use the fact that that all proofs of n = n for n a nat are eq_refl:

let H := match goal with H : n =n |- _ => H end in
pose proof (Eqgdep_dec.UIP_refl nat _ H); subst H.
1 subgoal
A : Type

(continues on next page)

4.3. Tactics

185

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

n nat

X A

xXs : vec A n

v A

ys : vec A n

H : cons A x xs = cons A y ys

H1 : x =y

H3 : eg_rect n (fun a : nat => vec A a) xs n eqg_refl = ys
Xs = yS

simpl in *

A Type

n nat

X A

Xs : vec A n

v A

ys : vec A n

H cons A X Xxs = cons Ay ys
H1 X =y

Finally, we can finish the proof:

assumption.

Qed.

No more subgoals.

invert_cons is defined

fix ident num

This tactic is a primitive tactic to start a proof by induction. In general, it is easier to rely on higher-level induction
tactics such as the ones described in induction.

In the syntax of the tactic, the identifier 1 dent is the name given to the induction hypothesis. The natural number
num tells on which premise of the current goal the induction acts, starting from 1, counting both dependent and
non dependent products, but skipping local definitions. Especially, the current lemma must be composed of at least
num products.

Like in a fix expression, the induction hypotheses have to be used on structurally smaller arguments. The verification
that inductive proof arguments are correct is done only at the time of registering the lemma in the environment. To
know if the use of induction hypotheses is correct at some time of the interactive development of a proof, use the
command Guarded (see Section Requesting information).

+
Variant: £ix ident num with | (ident binder [{struct ident}] : type)

This starts a proof by mutual induction. The statements to be simultaneously proved are respectively forall
binder ... binder, type. The identifiers ident are the names of the induction hypotheses. The iden-
tifiers i dent are the respective names of the premises on which the induction is performed in the statements to
be simultaneously proved (if not given, the system tries to guess itself what they are).

cofix ident

186

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

This tactic starts a proof by coinduction. The identifier i dent is the name given to the coinduction hypothesis.
Like in a cofix expression, the use of induction hypotheses have to guarded by a constructor. The verification that
the use of co-inductive hypotheses is correct is done only at the time of registering the lemma in the environment.
To know if the use of coinduction hypotheses is correct at some time of the interactive development of a proof, use
the command Guarded (see Section Requesting information).

+
Variant: cofix ident with (ident binder : type)
This starts a proof by mutual coinduction. The statements to be simultaneously proved are respectively forall
binder ... binder, type The identifiers ident are the names of the coinduction hypotheses.

4.3.6 Rewriting expressions

These tactics use the equality eq: forall A:Type, A->A->Prop defined in file Logic.v (see Logic). The no-
tation for eq T t uis simply t=u dropping the implicit type of t and u.

rewrite term
This tactic applies to any goal. The type of term must have the form
forall (x;:A;) ... (x,:A,). egq term term, .
where eq is the Leibniz equality or a registered setoid equality.

Then rewrite term finds the first subterm matching term,; in the goal, resulting in instances term;” and
term,’ and then replaces every occurrence of term;’ by term,’. Hence, some of the variables x; are solved by
unification, and some of the types 2,, ..., A, become new subgoals.

Error: The term provided does not end with an equation.
Error: Tactic generated a subgoal identical to the original goal. This happens if term d

Variant: rewrite —> term
Is equivalent to rewrite term

Variant: rewrite <- term
Uses the equality term; = term, from right to left

Variant: rewrite term in clause
Analogous to rewrite termbutrewriting is done following clause (similarly to performing computations).
For instance:

e rewrite H in H; will rewrite H in the hypothesis H, instead of the current goal.

* rewrite H in Hyat 1, Hyat - 2 |- *means rewrite H; rewrite H in H; at
1; rewrite H in H, at - 2. In particular a failure will happen if any of these three simpler
tactics fails.

e rewrite H in * |-willdorewrite H in H;forall hypotheses H; different from H. A success
will happen as soon as at least one of these simpler tactics succeeds.

e rewrite H in *isacombination of rewrite Hand rewrite H in * |- that succeeds if
at least one of these two tactics succeeds.

Orientation —> or <— can be inserted before the t erm to rewrite.

Variant: rewrite term at occurrences
Rewrite only the given occurrences of term. Occurrences are specified from left to right as for pattern
(pattern). The rewrite is always performed using setoid rewriting, even for Leibniz’s equality, so one has
to Import Setoid to use this variant.

4.3. Tactics 187

The Coq Reference Manual, Release 8.9.1

Variant: rewrite term by tactic
Use tactic to completely solve the side-conditions arising from the rewrite.

. . +
Variant: rewrite term
’

. . . , + .
Is equivalent to the n successive tactics rewrite term ., each one working on the first subgoal generated

by the previous one. Orientation —> or <— can be inserted before each term to rewrite. One unique clause
can be added at the end after the keyword in; it will then affect all rewrite operations.

In all forms of rewrite described above, a t erm to rewrite can be immediately prefixed by one of the following
modifiers:

e 2 : the tactic rewrite ?term performs the rewrite of term as many times as possible (perhaps zero
time). This form never fails.

e num? : works similarly, except that it will do at most num rewrites.
e ! : works as ?, except that at least one rewrite should succeed, otherwise the tactic fails.

e num! (or simply num) : precisely numrewrites of termwill be done, leading to failure if these num rewrites
are not possible.

Variant: erewrite term
This tactic works as rewrite term but turning unresolved bindings into existential variables, if any, in-
stead of failing. It has the same variants as rewrite has.

replace term with term’
This tactic applies to any goal. It replaces all free occurrences of term in the current goal with term’ and
generates an equality term = term’ as a subgoal. This equality is automatically solved if it occurs among
the assumptions, or if its symmetric form occurs. It is equivalent to cut term = term’; [intro H, ;
rewrite <- H,; clear H,|| assumption || symmetry; try assumption].

Error: Terms do not have convertible types.

Variant: replace term with term’ by tactic
This actsas replace term with term’ butapplies tactic tosolve the generated subgoal term =
term’.

Variant: replace term
Replaces t ermwith term’ using the first assumption whose type has the form term = term’ or term’
= term.

Variant: replace -> term
Replaces t erm with term’ using the first assumption whose type has the form term = term’

Variant: replace <- term
Replaces t erm with term’ using the first assumption whose type has the form term’ = term
? ?
Variant: replace term with term in clause by tactic
Variant: replace -> term in clause
Variant: replace <- term in clause
Acts as before but the replacements take place in the specified clause (see Performing computations) and not
only in the conclusion of the goal. The clause argument must not contain any type of nor value of.

Variant: cutrewrite <- (term = term’)
This tactic is deprecated. It can be replaced by enough (term

term’) as <-.

Variant: cutrewrite -> (term = term’)
This tactic is deprecated. It can be replaced by enough (term = term’) as ->.

188 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

subst ident
This tactic applies to a goal that has i dent in its context and (at least) one hypothesis, say H, of type ident =
tort = ident with ident not occurring in t. Then it replaces i dent by t everywhere in the goal (in the
hypotheses and in the conclusion) and clears i dent and H from the context.

If ident is alocal definition of the form ident := t, itis also unfolded and cleared.
Note:
* When several hypotheses have the form ident = tort = ident, the first one is used.

 If His itself dependent in the goal, it is replaced by the proof of reflexivity of equality.

+
Variant: subst | ident
This is equivalent to subst ident;; ...; subst ident,.

Variant: subst
This applies subst repeatedly from top to bottom to all identifiers of the context for which an equality of the
form ident = tort = identor ident := t exists, with ident notoccurringin t.

Flag: Regular Subst Tactic
This option controls the behavior of subst. When it is activated (it is by default), subst also deals with
the following corner cases:

* A context with ordered hypotheses ident, = ident,and ident,= t,ort’ = ident,witht’
not a variable, and no other hypotheses of the form ident, = uoru = ident,;without the option,
a second call to subst would be necessary to replace ident, by t or t’ respectively.

» The presence of a recursive equation which without the option would be a cause of failure of subst.

* A context with cyclic dependencies as with hypotheses ident, = £ ident, and ident, = g
1ident; which without the option would be a cause of failure of subst.

Additionally, it prevents a local definition such as ident := t to be unfolded which otherwise it would
exceptionally unfold in configurations containing hypotheses of the form ident = u,oru’ = ident
with u’ not a variable. Finally, it preserves the initial order of hypotheses, which without the option it may
break. default.

stepl term
This tactic is for chaining rewriting steps. It assumes a goal of the form R term termwhere R is a binary relation
and relies on a database of lemmas of the form forall x y z, R x y -> eq x z —> R z y where
eq is typically a setoid equality. The application of stepl termthen replacesthe goalby R term termand
adds a new goal stating eq term term.

Command: Declare Left Step term
Adds term to the database used by stepl.

This tactic is especially useful for parametric setoids which are not accepted as regular setoids for rewrite and
setoid_replace (see Generalized rewriting).

Variant: stepl term by tactic
This applies stepl termthen applies tactic to the second goal.

Variant: stepr term stepr term by tactic
This behaves as step1 but on the right-hand-side of the binary relation. Lemmas are expected to be of the
form forall x vy z, Rxy -> eqy z —> R x z.

Command: Declare Right Step term
Adds termto the database used by stepr.

4.3. Tactics 189

The Coq Reference Manual, Release 8.9.1

change term
This tactic applies to any goal. It implements the rule Conv given in Subtyping rules. change U replaces the
current goal T with U providing that U is well-formed and that T and U are convertible.

Error: Not convertible.

Variant: change term with term’
This replaces the occurrences of termby term’ in the current goal. The term termand term’ must be
convertible.

Variant: change term at [num * with term’

. + .
This replaces the occurrences numbered | num | of termby term’ in the current goal. The terms term
and term’ must be convertible.

Error: Too few occurrences.

Variant: change term at |num * with term in ident

This applies the change tactic not to the goal but to the hypothesis i dent.

Variant: now_show term
This is a synonym of change term. It can be used to make some proof steps explicit when refactoring a
proof script to make it readable.

See also:

Performing computations

4.3.7 Performing computations

This set of tactics implements different specialized usages of the tactic change.

All conversion tactics (including change) can be parameterized by the parts of the goal where the conversion can occur.
This is done using goal clauses which consists in a list of hypotheses and, optionally, of a reference to the conclusion of
the goal. For defined hypothesis it is possible to specify if the conversion should occur on the type part, the body part or
both (default).

Goal clauses are written after a conversion tactic (tactics set, rewrite, replace and autorewrite also use goal
clauses) and are introduced by the keyword in. If no goal clause is provided, the default is to perform the conversion
only in the conclusion.

The syntax and description of the various goal clauses is the following:
+ .
e in |ident | — only in hypotheses | ident

e in |ident ¥ | = * in hypotheses ident ¥ and in the conclusion

e in * |- in every hypothesis

e in * (equivalenttoin * |- *)everywhere

e in (type of ident) (value of ident) ... |- in type part of ident, in the value part of

ident, etc.

+
For backward compeatibility, the notation in | ident | performs the conversion in hypotheses | 1 dent

*

cbv flag

190 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

*

lazy flag
These parameterized reduction tactics apply to any goal and perform the normalization of the goal according to the
specified flags. In correspondence with the kinds of reduction considered in Coq namely 3 (reduction of functional
application), § (unfolding of transparent constants, see Controlling the reduction strategies and the conversion algo-
rithm), ¢ (reduction of pattern matching over a constructed term, and unfolding of £ix and cofix expressions)
and ¢ (contraction of local definitions), the flags are either beta, delta, match, fix, cofix, iota or zeta.
The iota flag is a shorthand for match, fix and cofix. The delta flag itself can be refined into delta

qualid T ordelta - qualid T , restricting in the first case the constants to unfold to the constants listed,
and restricting in the second case the constant to unfold to all but the ones explicitly mentioned. Notice that the
delta flag does not apply to variables bound by a let-in construction inside the term itself (use here the zeta
flag). In any cases, opaque constants are not unfolded (see Controlling the reduction strategies and the conversion
algorithm).

Normalization according to the flags is done by first evaluating the head of the expression into a weak-head normal
form, i.e. until the evaluation is blocked by a variable (or an opaque constant, or an axiom), as e.g. in x ul
un,ormatch x with ... end,or (fix f x {struct x} := ...) x,orisa constructed form
(a A-expression, a constructor, a cofixpoint, an inductive type, a product type, a sort), or is a redex that the flags
prevent to reduce. Once a weak-head normal form is obtained, subterms are recursively reduced using the same
strategy.

Reduction to weak-head normal form can be done using two strategies: lazy (1azy tactic), or call-by-value (cbv
tactic). The lazy strategy is a call-by-need strategy, with sharing of reductions: the arguments of a function call are
weakly evaluated only when necessary, and if an argument is used several times then it is weakly computed only
once. This reduction is efficient for reducing expressions with dead code. For instance, the proofs of a proposition
exists x. P (x) reduce to a pair of a witness t, and a proof that t satisfies the predicate P. Most of the time,
t may be computed without computing the proof of P (t), thanks to the lazy strategy.

The call-by-value strategy is the one used in ML languages: the arguments of a function call are systematically
weakly evaluated first. Despite the lazy strategy always performs fewer reductions than the call-by-value strategy,
the latter is generally more efficient for evaluating purely computational expressions (i.e. with little dead code).

Variant: compute
Variant: cbv
These are synonyms for cbv beta delta iota zeta.

Variant: lazy
This is a synonym for lazy beta delta iota =zeta.

+
Variant: compute gqualid
Variant: cbv qualid

+
These are synonyms of cbv beta delta qualid iota zeta.

Variant: compute - gqualid
+
Variant: cbv - qualid

+
These are synonyms of cbv beta delta —|qualid iota zeta.

+
Variant: lazy qualid
+
Variant: lazy - qualid
+
These are respectively synonyms of lazy beta delta qualid iota zeta and lazy beta

+
delta —|qualid iota zeta.

4.3. Tactics 191

The Coq Reference Manual, Release 8.9.1

Variant: vim_compute

This tactic evaluates the goal using the optimized call-by-value evaluation bytecode-based virtual machine described
in [GregoireL02]. This algorithm is dramatically more efficient than the algorithm used for the cbv tactic, but it
cannot be fine-tuned. It is specially interesting for full evaluation of algebraic objects. This includes the case of
reflection-based tactics.

Variant: native_compute

Flag:

red

This tactic evaluates the goal by compilation to Objective Caml as described in [BDenesGregoirel1]. If Coq is
running in native code, it can be typically two to five times faster than vm_compute. Note however that the
compilation cost is higher, so it is worth using only for intensive computations.

Flag: NativeCompute Profiling
On Linux, if you have the per £ profiler installed, this option makes it possible to profile nat ive_compute
evaluations.

Option: NativeCompute Profile Filename string
This option specifies the profile output; the default is native_compute_profile.data. The actual
filename used will contain extra characters to avoid overwriting an existing file; that filename is reported to
the user. That means you can individually profile multiple uses of nat ive_compute in a script. From the
Linux command line, run perf report on the profile file to see the results. Consult the per f documen-
tation for more details.

Debug Cbv
This option makes cbv (and its derivative comput e) print information about the constants it encounters and the
unfolding decisions it makes.

This tactic applies to a goal that has the form:

forall (x:T1) ... (xk:Tk), T
with T Si(-reducingto ¢ t, ... t,and c a constant. If c is transparent then it replaces c with its definition
(say t) and then reduces (t t; ... t,) according to Si(-reduction rules.

Error: Not reducible.

Error: No head constant to reduce.

hnf

This tactic applies to any goal. It replaces the current goal with its head normal form according to the 5d:(-reduction
rules, i.e. it reduces the head of the goal until it becomes a product or an irreducible term. All inner S¢-redexes
are also reduced.

Example: The term fun n : nat => S n + S nisnotreduced by hnf.

Note:

The 6 rule only applies to transparent constants (see Controlling the reduction strategies and the conversion algorithm

on transparency and opacity).

cbn

simpl

These tactics apply to any goal. They try to reduce a term to something still readable instead of fully normalizing
it. They perform a sort of strong normalization with two key differences:

¢ They unfold a constant if and only if it leads to a ¢-reduction, i.e. reducing a match or unfolding a fixpoint.

* While reducing a constant unfolding to (co)fixpoints, the tactics use the name of the constant the (co)fixpoint
comes from instead of the (co)fixpoint definition in recursive calls.

The cbn tactic is claimed to be a more principled, faster and more predictable replacement for simpl.

192

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

The cbn tactic accepts the same flags as cbv and 1azy. The behavior of both simpl and cbn can be tuned
using the Arguments vernacular command as follows:

* A constant can be marked to be never unfolded by cbn or simpl:

Example

Arguments minus n m : simpl never.

After that command an expression like (minus (S x) y) is left untouched by the tactics cbn and
simpl.

* A constant can be marked to be unfolded only if applied to enough arguments. The number of arguments
required can be specified using the / symbol in the argument list of the Argument s vernacular command.

Example

Definition fcomp A B C f (g : A —> B) (x : A) : C := f (g x).
fcomp is defined

Arguments fcomp {A B C} £ g x /.
Notation "f \o g" := (fcomp f g) (at level 50).

After that command the expression (f \o g) is left untouched by simpl while ((f \o g) t) is
reducedto (£ (g t)). Thesame mechanism can be used to make a constant volatile, i.e. always unfolded.

Example

Definition volatile := fun x : nat => x.
volatile is defined

Arguments volatile / x.

* A constant can be marked to be unfolded only if an entire set of arguments evaluates to a constructor. The !
symbol can be used to mark such arguments.

Example

Arguments minus !n !m.

After that command, the expression (minus (S x) vy) isleftuntouched by simpl, while (minus (S
x) (S y)) isreduced to (minus x y).

* A special heuristic to determine if a constant has to be unfolded can be activated with the following command:

Example

Arguments minus n m : simpl nomatch.

4.3. Tactics 193

The Coq Reference Manual, Release 8.9.1

The heuristic avoids to perform a simplification step that would expose a match construct in head position.
For example the expression (minus (S (S x)) (S y)) issimplified to (minus (S x) y) even
if an extra simplification is possible.

In detail, the tactic simpl first applies Se-reduction. Then, it expands transparent constants and tries to reduce
further using B¢~ reduction. But, when no ¢ rule is applied after unfolding then §-reductions are not applied. For
instance trying to use simpl on (plus n O) = n changes nothing.

Notice that only transparent constants whose name can be reused in the recursive calls are possibly unfolded by
simpl. For instance a constant defined by plus' := plus is possibly unfolded and reused in the recursive
calls, but a constant such as succ := plus (S 0) is never unfolded. This is the main difference between
simpl and cbn. The tactic cbn reduces whenever it will be able to reuse it or not: succ t isreducedto S t.

+
Variant: cbn qualid

Variant: cbn - qualid

+
These are respectively synonyms of cbn beta delta qualid iota zetaand cbn beta delta

+
-lqualid iota zeta (see chn).

Variant: simpl pattern

This applies simpl only to the subterms matching pat tern in the current goal.

Variant: simpl pattern at |[num +

This applies simpl only to the [num ' occurrences of the subterms matching pattern in the current goal.

Error: Too few occurrences.

Variant: simpl qualid
Variant: simpl string

This applies simp1 only to the applicative subterms whose head occurrence is the unfoldable constant qualid
(the constant can be referred to by its notation using st ring if such a notation exists).

Variant: simpl qualid at |[num ¥

Variant: simpl string at |[num +

This applies simpl only to the [num + applicative subterms whose head occurrence is qualid (or string).

Flag: Debug RAKAM

This option makes cbn print various debugging information. RAKAM is the Refolding Algebraic Krivine Abstract
Machine.

unfold qualid

This tactic applies to any goal. The argument qualid must denote a defined transparent constant or local definition
(see Definitions and Controlling the reduction strategies and the conversion algorithm). The tactic unfold applies
the d rule to each occurrence of the constant to which gua 1 1 d refers in the current goal and then replaces it with
its Se-normal form.

Error: qgualid does not denote an evaluable constant.

Variant: unfold qualid in ident

Replaces qualid in hypothesis i dent with its definition and replaces the hypothesis with its 5¢ normal form.

+
Variant: unfold qualid

+
Replaces simultaneously qualid | with their definitions and replaces the current goal with its S¢ normal form.

194

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Variant: unfold gqualid at numf

4

The lists [num '," specify the occurrences of gualid to be unfolded. Occurrences are located from left to right.

Error: Bad occurrence number of qualid.
Error: qualid does not occur.

Variant: unfold string
If st ringdenotes the discriminating symbol of a notation (e.g. ”+”) or an expression defining a notation (e.g. " _
+ _™"), and this notation refers to an unfoldable constant, then the tactic unfolds it.

Variant: unfold string%key
This is variant of unfold stringwhere string gets its interpretation from the scope bound to the delimiting
key key instead of its default interpretation (see Local interpretation rules for notations).

+
Variant: unfold qualid_or_string at num',"

This is the most general form, where qualid_or_string is either a qualidor a string referring to a
notation.

fold term
This tactic applies to any goal. The term term is reduced using the red tactic. Every occurrence of the resulting
termin the goal is then replaced by ¢ exrm. This tactic is particularly useful when a fixpoint definition has been
wrongfully unfolded, making the goal very hard to read. On the other hand, when an unfolded function applied to
its argument has been reduced, the fo1d tactic won’t do anything.

Example

Goal ~0=0.
1 subgoal

unfold not.
1 subgoal

0 =0 —-> False

Fail progress fold not.
The command has indeed failed with message:
Failed to progress.

pattern (0 = 0).
1 subgoal

fold not.
1 subgoal

4.3. Tactics 195

The Coq Reference Manual, Release 8.9.1

+
Variant: fold term
Equivalent to fold term ; ... ; fold term.

pattern term
This command applies to any goal. The argument ¢ e rm must be a free subterm of the current goal. The command
pattern performs [3-expansion (the inverse of 3-reduction) of the current goal (say T) by

* replacing all occurrences of termin T with a fresh variable
e abstracting this variable
* applying the abstracted goal to term

For instance, if the current goal T is expressible as ¢ (t) where the notation captures all the instances of t in
@ (t), then pattern t transforms itinto (fun x:A => ¢ (x)) t. This tactic can be used, for instance,
when the tactic apply fails on matching.
. +
Variant: pattern term at |num

Only the occurrences | num * of ¢ ermare considered for [-expansion. Occurrences are located from left to right.

Variant: pattern term at - [num +

. + . .
All occurrences except the occurrences of indexes [num | of term are considered for S-expansion. Occurrences
are located from left to right.

+

Variant: pattern term |
Starting from a goal ¢ (t,; ... t,),thetacticpattern t,, ..., t,, generatesthe equivalent goal (fun
(x1:R1) oo (Xy tAy) =>@ (X ... Xy)) ty ... ty. Ift;occurs in one of the generated types A;

these occurrences will also be considered and possibly abstracted.

+

Variant: pattern term at |num *

r
. . + .
This behaves as above but processing only the occurrences | num ' | of term starting from term.
+

?

Variant: pattern term at - ? [num.T

14

r

This is the most general syntax that combines the different variants.
Conversion tactics applied to hypotheses

+
conv_tactic in ident L

Applies the conversion tactic conv_tactic to the hypotheses ident | . The tactic conv_tactic is any of
the conversion tactics listed in this section.

If ident is a local definition, then i dent can be replaced by (type of ident) to address not the body but the
type of the local definition.

Example: unfold not in (type of H1) (type of H3).

Error: No such hypothesis: ident.

196 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

4.3.8 Automation

auto
This tactic implements a Prolog-like resolution procedure to solve the current goal. It first tries to solve the goal
using the assumpt ion tactic, then it reduces the goal to an atomic one using i nt ros and introduces the newly
generated hypotheses as hints. Then it looks at the list of tactics associated to the head symbol of the goal and tries
to apply one of them (starting from the tactics with lower cost). This process is recursively applied to the generated
subgoals.

By default, aut o only uses the hypotheses of the current goal and the hints of the database named core.

Warning: auto uses a weaker version of apply thatis closer to simple apply so itis expected that
sometimes aut o will fail even if applying manually one of the hints would succeed.

Variant: auto num
Forces the search depth to be num. The maximal search depth is 5 by default.

+
Variant: auto with ident

+
Uses the hint databases | i dent | in addition to the database core.

Note: Use the fake database nocore if you want to not use the core database.

Variant: auto with *
Uses all existing hint databases. Using this variant is highly discouraged in finished scripts since it is both
slower and less robust than the variant where the required databases are explicitly listed.

See also:

The Hints Databases for auto and eauto for the list of pre-defined databases and the way to create or extend a
database.

+ +
Variant: auto using | ident; with ident
Uses lemmas i dent ; inaddition to hints. If 7 dent is an inductive type, it is the collection of its constructors
which are added as hints.

Note: The hints passed through the using clause are used in the same way as if they were passed through
a hint database. Consequently, they use a weaker version of apply and auto using ident may fail
where apply 1dent succeeds.

Given that this can be seen as counter-intuitive, it could be useful to have an option to use full-blown app 1y
for lemmas passed through the using clause. Contributions welcome!

Variant: info_auto
Behaves like auto but shows the tactics it uses to solve the goal. This variant is very useful for getting a
better understanding of automation, or to know what lemmas/assumptions were used.

Variant: debug auto
Behaves like aut o but shows the tactics it tries to solve the goal, including failing paths.
? ?
. : ? ? . + .]
Variant: info_ | auto [num using lemma with ident

This is the most general form, combining the various options.

4.3. Tactics 197

The Coq Reference Manual, Release 8.9.1

Variant: trivial
This tactic is a restriction of auto that is not recursive and tries only hints that cost 0. Typically it solves trivial
equalities like X=X.

Variant: trivial with | ident
Variant: trivial with *

+
Variant: trivial using | lemma
Variant: debug trivial
Variant: info_trivial
? ?
? +
Variant: info_ | trivial using Iemma with ident

Note: autoand trivial either solve completely the goal or else succeed without changing the goal. Use solve
[auto]and solve [trivial] if you would prefer these tactics to fail when they do not manage to solve the
goal.

Flag: Info Auto
Flag: Debug Auto
Flag: Info Trivial
Flag: Debug Trivial
These options enable printing of informative or debug information for the auto and t rivial tactics.

eauto
This tactic generalizes auto. While aut o does not try resolution hints which would leave existential variables in
the goal, eaut o does try them (informally speaking, it internally uses a tactic close to simple eapply instead
of a tactic close to simple apply inthe case of auto). As a consequence, eaut o can solve such a goal:

Example

Hint Resolve ex_intro : core.
The hint ex_intro will only be used by eauto, because applying ex_intro would
leave variable x as unresolved existential variable.

Goal forall P:nat -> Prop, P 0 —> exists n, P n.
1 subgoal

forall P : nat —> Prop, P 0 —> exists n : nat, P n

eauto.
No more subgoals.

Note that ex_int ro should be declared as a hint.

2 ? + +
Variant: info_ | eauto [num =~ using Ilemma with ident
The various options for eaut o are the same as for auto.
eauto also obeys the following options:

Flag: Info Eauto
Flag: Debug Eauto

See also:

198 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

The Hints Databases for auto and eauto

autounfold with ident
This tactic unfolds constants that were declared through a Hint Unfold in the given databases.

+
Variant: autounfold with ident in clause
Performs the unfolding in the given clause.

Variant: autounfold with *
Uses the unfold hints declared in all the hint databases.

autorewrite with ident
+

This tactic* carries out rewritings according to the rewriting rule bases ' ident
Each rewriting rule from the base i dent is applied to the main subgoal until it fails. Once all the rules have been
processed, if the main subgoal has progressed (e.g., if it is distinct from the initial main goal) then the rules of this
base are processed again. If the main subgoal has not progressed then the next base is processed. For the bases,
the behavior is exactly similar to the processing of the rewriting rules.

The rewriting rule bases are built with the #int Rewrite command.

Warning: This tactic may loop if you build non terminating rewriting systems.

+
Variant: autorewrite with ident using tactic

+
Performs, in the same way, all the rewritings of the bases | i dent | applying tactic to the main subgoal after each
rewriting step.

+
Variant: autorewrite with ident in qualid
Performs all the rewritings in hypothesis qualid.

+
Variant: autorewrite with ident in qualid using tactic
Performs all the rewritings in hypothesis gua 11 d applying t act i c to the main subgoal after each rewriting step.

+
Variant: autorewrite with ident in clause
Performs all the rewriting in the clause c 1 ause. The clause argument must not contain any t ype of nor value
of.

See also:

Hint-Rewrite for feeding the database of lemmas used by autorewrite and autorewrite for examples showing
the use of this tactic.

easy
This tactic tries to solve the current goal by a number of standard closing steps. In particular, it tries to close
the current goal using the closing tactics trivial, reflexivity, symmetry, contradiction and
inversion of hypothesis. If this fails, it tries introducing variables and splitting and-hypotheses, using the
closing tactics afterwards, and splitting the goal using sp1 it and recursing.

This tactic solves goals that belong to many common classes; in particular, many cases of unsatisfiable hypotheses,
and simple equality goals are usually solved by this tactic.

Variant: now tactic
Run tactic followed by easy. This is a notation for tactic; easy.

4 The behavior of this tactic has changed a lot compared to the versions available in the previous distributions (V6). This may cause significant
changes in your theories to obtain the same result. As a drawback of the re-engineering of the code, this tactic has also been completely revised to get
a very compact and readable version.

4.3. Tactics 199

The Coq Reference Manual, Release 8.9.1

4.3.9 Controlling automation
The hints databases for auto and eauto

The hints for auto and eauto are stored in databases. Each database maps head symbols to a list of hints.

Command: Print Hint ident
Use this command to display the hints associated to the head symbol i dent (see Print Hint). Each hint has a cost
that is a nonnegative integer, and an optional pattern. The hints with lower cost are tried first. A hint is tried by
auto when the conclusion of the current goal matches its pattern or when it has no pattern.

Creating Hint databases

One can optionally declare a hint database using the command Create HintDb. If a hint is added to an unknown
database, it will be automatically created.
2

Command: Create HintDb ident |discriminated
This command creates a new database named i dent. The database is implemented by a Discrimination Tree (DT)
that serves as an index of all the lemmas. The DT can use transparency information to decide if a constant should
be indexed or not (c.f. The hints databases for auto and eauto), making the retrieval more efficient. The legacy
implementation (the default one for new databases) uses the DT only on goals without existentials (i.e., aut o goals),
for non-Immediate hints and does not make use of transparency hints, putting more work on the unification that is
run after retrieval (it keeps a list of the lemmas in case the DT is not used). The new implementation enabled by
the discriminated option makes use of DTs in all cases and takes transparency information into account. However,
the order in which hints are retrieved from the DT may differ from the order in which they were inserted, making
this implementation observationally different from the legacy one.

+
The general command to add a hint to some databases | ident | is

Command: Hint hint_definition : |ident

Variant: Hint hint_definition
No database name is given: the hint is registered in the core database.

Variant: Local Hint hint_definition : |ident
This is used to declare hints that must not be exported to the other modules that require and import the
current module. Inside a section, the option Local is useless since hints do not survive anyway to the closure
of sections.

Variant: Local Hint hint_ definition
Idem for the core database.

Variant: Hint Resolve term | |num ? pattern z

This command adds simple apply term to the hint list with the head symbol of the type of term.
The cost of that hint is the number of subgoals generated by simple apply termor num if specified.
The associated pattern is inferred from the conclusion of the type of term or the given pattern if
specified. In case the inferred type of ¢erm does not start with a product the tactic added in the hint list is
exact term. Incase this type can however be reduced to a type starting with a product, the tactic simple
apply termisalso stored in the hints list. If the inferred type of t erm contains a dependent quantification
on a variable which occurs only in the premisses of the type and not in its conclusion, no instance could be
inferred for the variable by unification with the goal. In this case, the hint is added to the hint list of eauto
instead of the hint list of auto and a warning is printed. A typical example of a hint that is used only by
eauto is a transitivity lemma.

200 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Error: term cannot be used as a hint
The head symbol of the type of term is a bound variable such that this tactic cannot be associated to a
constant.

+
Variant: Hint Resolve term

Adds each Hint Resolve term.

Variant: Hint Resolve -> term
Adds the left-to-right implication of an equivalence as a hint (informally the hint will be used as apply <-
t erm, although as mentionned before, the tactic actually used is a restricted version of apply).

Variant: Resolve <- term
Adds the right-to-left implication of an equivalence as a hint.

Variant: Hint Immediate term
This command adds simple apply term; trivial to the hint list associated with the head symbol
of the type of ident in the given database. This tactic will fail if all the subgoals generated by simple
apply termare notsolved immediately by the t rivial tactic (which only tries tactics with cost 0).This
command is useful for theorems such as the symmetry of equality or n+1=m+1 —> n=m that we may like
to introduce with a limited use in order to avoid useless proof-search. The cost of this tactic (which never
generates subgoals) is always 1, so that it is not used by t rivial itself.

Error: term cannot be used as a hint

Variant: Immediate (term
Adds each Hint Immediate term.

Variant: Hint Constructors ident
If ident is an inductive type, this command adds all its constructors as hints of type Resolve. Then, when
the conclusion of current goal has the form (ident ...), auto will try to apply each constructor.

Error: ident is not an inductive type

+
Variant: Hint Constructors ident
Adds each Hint Constructors ident.

Variant: Hint Unfold qualid
This adds the tactic unfold qualid to the hint list that will only be used when the head constant of the
goal is ident. Its cost is 4.

+
Variant: Hint Unfold ident
Adds each Hint Unfold ident.

Variant: Hint Transparent qualid

Variant: Hint Opaque qualid ¥
This adds transparency hints to the database, making qgua 11 d transparent or opaque constants during reso-
lution. This information is used during unification of the goal with any lemma in the database and inside the
discrimination network to relax or constrain it in the case of discriminated databases.

Variant: Hint Variables (Transparent | Opaque)

Variant: Hint Constants (Transparent | Opaque)
This sets the transparency flag used during unification of hints in the database for all constants or all variables,
overwritting the existing settings of opacity. It is advised to use this just aftera Create HintDbcommand.

?
Variant: Hint Extern num pattern => tactic

This hint type is to extend auto with tactics other than apply and unfold. For that, we must specify a
cost, an optional patternanda tactic to execute.

4.3. Tactics 201

The Coq Reference Manual, Release 8.9.1

Example

Hint Extern 4 (~(_ = _)) => discriminate.

Now, when the head of the goal is a disequality, aut o will try discriminate if it does not manage to solve the
goal with hints with a cost less than 4.

One can even use some sub-patterns of the pattern in the tactic script. A sub-pattern is a question mark
followed by an identifier, like 2X1 or ?X2. Here is an example:

Example

Require Import List.
Hint Extern 5 ({?X1 = ?X2} + {?X1 <> ?X2}) => generalize X1, X2; decide.
—equality : eqgdec.
Goal forall a b:list (nat * nat), {a = b} + {a <> b}.
1 subgoal

forall a b : list (nat * nat), {a = b} + {a <> b}

Info 1 auto with eqgdec.
<ltac_plugin::auto@0> eqgdec
No more subgoals.

Variant: Hint Cut regexp

Warning: These hints currently only apply to typeclass proof search and the t ypeclasses eauto
tactic.

This command can be used to cut the proof-search tree according to a regular expression matching paths to
be cut. The grammar for regular expressions is the following. Beware, there is no operator precedence during
parsing, one can check with Print HintDb to verify the current cut expression:

= ident hint or instance identifier

| _ any hint

| e\le’ disjunction
| e e’ sequence

| e * Kleene star

| emp empty

| eps epsilon

I (e)

The emp regexp does not match any search path while eps matches the empty path. During proof search,
the path of successive successful hints on a search branch is recorded, as a list of identifiers for the hints (note
that Hint Extern’s do not have an associated identifier). Before applying any hint i dent the current path
p extended with i dent is matched against the current cut expression c associated to the hint database. If
matching succeeds, the hint is not applied. The semantics of Hint Cut e is to set the cut expression to ¢
e, the initial cut expression being emp.

202

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

*

Variant: Hint Mode qualid (+ | ! | =)
This sets an optional mode of use of the identifier gua 1 i d. When proof-search faces a goal that ends in an
application of qualidtoarguments term ... term,the mode tells if the hints associated to qualid

can be applied or not. A mode specification is a list of n +, ! or — items that specify if an argument of the
identifier is to be treated as an input (+), if its head only is an input (!) or an output (-) of the identifier. For
a mode to match a list of arguments, input terms and input heads must not contain existential variables or be
existential variables respectively, while outputs can be any term. Multiple modes can be declared for a single
identifier, in that case only one mode needs to match the arguments for the hints to be applied.The head of a
term is understood here as the applicative head, or the match or projection scrutinee’s head, recursively, casts
being ignored. Hint Mode is especially useful for typeclasses, when one does not want to support default
instances and avoid ambiguity in general. Setting a parameter of a class as an input forces proof-search to be
driven by that index of the class, with ! giving more flexibility by allowing existentials to still appear deeper
in the index but not at its head.

Note: One can use an Extern hint with no pattern to do pattern matching on hypotheses using match goal
with inside the tactic.

Hint databases defined in the Coq standard library

Several hint databases are defined in the Coq standard library. The actual content of a database is the collection of hints
declared to belong to this database in each of the various modules currently loaded. Especially, requiring new modules
may extend the database. At Coq startup, only the core database is nonempty and can be used.

core This special database is automatically used by aut o, except when pseudo-database nocore is given
to auto. The core database contains only basic lemmas about negation, conjunction, and so on. Most
of the hints in this database come from the Init and Logic directories.

arith This database contains all lemmas about Peano’s arithmetic proved in the directories Init and Arith.

zarith contains lemmas about binary signed integers from the directories theories/ZArith. When required,
the module Omega also extends the database zarith with a high-cost hint that calls omega on equations
and inequalities in nat or Z.

bool contains lemmas about booleans, mostly from directory theories/Bool.
datatypes is for lemmas about lists, streams and so on that are mainly proved in the Lists subdirectory.
sets contains lemmas about sets and relations from the directories Sets and Relations.

typeclass_instances contains all the typeclass instances declared in the environment, including those used
for setoid_rewrite, from the Classes directory.

You are advised not to put your own hints in the core database, but use one or several databases specific to your develop-
ment.

+
Command: Remove Hints term : |ident
+

. . . +.
This command removes the hints associated to terms | term | in databases | ident
Command: Print Hint
This command displays all hints that apply to the current goal. It fails if no proof is being edited, while the two
variants can be used at every moment.

Variants:

Command: Print Hint ident
This command displays only tactics associated with i dent in the hints list. This is independent of the goal being
edited, so this command will not fail if no goal is being edited.

4.3. Tactics 203

The Coq Reference Manual, Release 8.9.1

Command: Print Hint *
This command displays all declared hints.

Command: Print HintDb ident
This command displays all hints from database ident.
. . + :
Command: Hint Rewrite term : |ident
This vernacular command adds the terms |term | (their types must be equalities) in the rewriting bases

+
ident | with the default orientation (left to right). Notice that the rewriting bases are distinct from the auto
hint bases and thatauto does not take them into account.

This command is synchronous with the section mechanism (see Section mechanism): when closing a section,
all aliases created by Hint Rewrite in that section are lost. Conversely, when loading a module, all Hint
Rewrite declarations at the global level of that module are loaded.

Variants:
. . + :
Command: Hint Rewrite -> term : |ident
This is strictly equivalent to the command above (we only make explicit the orientation which otherwise defaults to
->).
= - + .
Command: Hint Rewrite <- term : |ident

. + . . . Lo ; +
Adds the rewriting rules | term | with a right-to-left orientation in the bases | i dent

+
Command: Hint Rewrite term using tactic : ident

+ +
When the rewriting rules | term | in ident | will be used, the tactic tact ic will be applied to the generated
subgoals, the main subgoal excluded.

Command: Print Rewrite HintDb ident
This command displays all rewrite hints contained in i dent.

Hint locality

Hints provided by the Hint commands are erased when closing a section. Conversely, all hints of a module A that are
not defined inside a section (and not defined with option Local) become available when the module A is imported (using
e.g. Require Import A.).

As of today, hints only have a binary behavior regarding locality, as described above: either they disappear at the end of a
section scope, or they remain global forever. This causes a scalability issue, because hints coming from an unrelated part
of the code may badly influence another development. It can be mitigated to some extent thanks to the Remove Hints
command, but this is a mere workaround and has some limitations (for instance, external hints cannot be removed).

A proper way to fix this issue is to bind the hints to their module scope, as for most of the other objects Coq uses. Hints
should only be made available when the module they are defined in is imported, not just required. It is very difficult to
change the historical behavior, as it would break a lot of scripts. We propose a smooth transitional path by providing the
Loose Hint Behavior option which accepts three flags allowing for a fine-grained handling of non-imported hints.

Option: Loose Hint Behavior ("Lax" | "Warn" | "Strict")
This option accepts three values, which control the behavior of hints w.r.t. Tmport:

e ”Lax”: this is the default, and corresponds to the historical behavior, that is, hints defined outside of a section
have a global scope.

204 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

* ”Warn”: outputs a warning when a non-imported hint is used. Note that this is an over-approximation, because
a hint may be triggered by a run that will eventually fail and backtrack, resulting in the hint not being actually
useful for the proof.

« "Strict”: changes the behavior of an unloaded hint to a immediate fail tactic, allowing to emulate an import-
scoped hint mechanism.

Setting implicit automation tactics

Command: Proof with tactic
This command may be used to start a proof. It defines a default tactic to be used each time a tactic command
tactic;isended by Inthis case the tactic command typed by the user is equivalentto tactic, ; tactic.

See also:
Proof in Switching on/off the proof editing mode.

Variant: Proof with tactic using ident
Combines in a single line Proof with and Proof using, see Switching on/off the proof editing mode

+
Variant: Proof using ident with tactic
Combines in a single line Proof with and Proof using, see Switching on/off the proof editing mode

Command: Declare Implicit Tactic tactic
This command declares a tactic to be used to solve implicit arguments that Coq does not know how to solve
by unification. It is used every time the term argument of a tactic has one of its holes not fully resolved.

Deprecated since version 8.9: This command is deprecated. Use typeclasses or tactics-in-terms instead.

Example

Parameter quo : nat —-> forall n:nat, n<>0 -> nat.
quo is declared

Notation "x // y" := (quo x y _) (at level 40).
Declare Implicit Tactic assumption.

Toplevel input, characters 0-35:

> Declare Implicit Tactic assumption.

S AAAAAAAAAAANANANAANNANNAANANANANNANNANN

Warning: Implicit tactics are deprecated

Goal forall nm, m<>0 -—> { gtnat & { r | g *m + r =n } }.
1 subgoal

forall nm : nat, m <> 0 —> {g : nat & {r : nat | g *m + r = n}}

intros.
1 subgoal

exists (n // m).
1 subgoal
(continues on next page)

4.3. Tactics 205

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

The tactic exists (n // m) did not fail. The hole was solved by assumpt ion so that it behaved as
exists (quo n m H).

4.3.10 Decision procedures

tauto
This tactic implements a decision procedure for intuitionistic propositional calculus based on the contraction-free
sequent calculi LJT* of Roy Dyckhoff [Dyc92]. Note that taut o succeeds on any instance of an intuitionistic
tautological proposition. taut o unfolds negations and logical equivalence but does not unfold any other definition.

Example
The following goal can be proved by t auto whereas aut o would fail:

Goal forall (x:nat) (P:nat -> Prop), x = 0 \/ P x -> x <> 0 -> P x.
1 subgoal

forall (x : nat) (P : nat -> Prop), x = 0 \/ P x —> x <> 0 —> P x

intros.
1 subgoal

X : nat
P : nat -> Prop
H: x=0\/P x

tauto.
No more subgoals.

Moreover, if it has nothing else to do, tauto performs introductions. Therefore, the use of intros in the previous
proof is unnecessary. tauto can for instance for:

Example
Goal forall (A:Prop) (P:nat -> Prop), A \/ (forall x:nat, ~ A -> P x) —> forall x:nat,

»o~ A —> P x.
1 subgoal

forall (A : Prop) (P : nat —-> Prop),
A \/ (forall x : nat, ~ A -> P x) -> forall x : nat, ~ A —> P x

(continues on next page)

206 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)
tauto.
No more subgoals.

Note: In contrast, tauto cannot solve the following goal Goal forall (A:Prop) (P:nat -> Prop),
A \/ (forall x:nat, ~ A -> P x) —-> forall x:nat, ~ ~ (A \/ P x). because (forall
x:nat, ~ A —-> P x) cannot be treated as atomic and an instantiation of x is necessary.

Variant: dtauto
While taut o recognizes inductively defined connectives isomorphic to the standard connectives and, prod, or,
sum, False, Empty_set, unit, True, dtauto also recognizes all inductive types with one constructor and
no indices, i.e. record-style connectives.

intuition tactic
The tactic intuition takes advantage of the search-tree built by the decision procedure involved in the tactic
tauto. It uses this information to generate a set of subgoals equivalent to the original one (but simpler than it)
and applies the tactic tact ic to them [Mun94]. If this tactic fails on some goals then intuition fails. In fact,
tautoissimply intuition fail.

Example

For instance, the tactic intuition auto applied to the goal:

(forall (x:nat), P x) /\ B —> (forall (y:nat), P y) /\P O\N/ B /\ PO

internally replaces it by the equivalent one:

(forall (x:nat), P x), B |- P O

and then uses aut o which completes the proof.

Originally due to César Mufloz, these tactics (tauto and intuition) have been completely re-engineered by David
Delahaye using mainly the tactic language (see The tactic language). The code is now much shorter and a significant
increase in performance has been noticed. The general behavior with respect to dependent types, unfolding and introduc-
tions has slightly changed to get clearer semantics. This may lead to some incompatibilities.

Variant: intuition
Is equivalent to intuition auto with *.

Variant: dintuition
While i ntuitionrecognizes inductively defined connectives isomorphic to the standard connectives and, prod,
or, sum, False, Empty_set, unit, True, dintuition also recognizes all inductive types with one con-
structor and no indices, i.e. record-style connectives.

Flag: Intuition Negation Unfolding
Controls whether intuition unfolds inner negations which do not need to be unfolded. This option is on by
default.

rtauto
The rtaut o tactic solves propositional tautologies similarly to what t aut o does. The main difference is that the
proof term is built using a reflection scheme applied to a sequent calculus proof of the goal. The search procedure
is also implemented using a different technique.

Users should be aware that this difference may result in faster proof-search but slower proof-checking, and rtauto
might not solve goals that t aut o would be able to solve (e.g. goals involving universal quantifiers).

4.3. Tactics 207

The Coq Reference Manual, Release 8.9.1

Note that this tactic is only available after a Require Import Rtauto.

firstorder
The tactic £1rstorder is an experimental extension of tauto to first- order reasoning, written by Pierre Cor-
bineau. It is not restricted to usual logical connectives but instead may reason about any first-order class inductive
definition.

Option: Firstorder Solver tactic
The default tactic used by £i rstorder whennorule appliesis auto with *,itcan be resetlocally or globally
using this option.

Command: Print Firstorder Solver
Prints the default tactic used by i rstorder when no rule applies.

Variant: firstorder tactic
Tries to solve the goal with tact i c when no logical rule may apply.

+
Variant: firstorder using qualid

+
Adds lemmas | gualid | to the proof-search environment. If qualid refers to an inductive type, it is the
collection of its constructors which are added to the proof-search environment.

+
Variant: firstorder with ident

. + .
Adds lemmas from auto hint bases | ident | to the proof-search environment.

+ +
Variant: firstorder tactic using qualid with |ident
This combines the effects of the different variants of £irstorder.

Option: Firstorder Depth num
This option controls the proof-search depth bound.

congruence
The tactic congruence, by Pierre Corbineau, implements the standard Nelson and Oppen congruence closure
algorithm, which is a decision procedure for ground equalities with uninterpreted symbols. It also includes con-
structor theory (see injectionand discriminate). If the goal is a non-quantified equality, congruence tries
to prove it with non-quantified equalities in the context. Otherwise it tries to infer a discriminable equality from
those in the context. Alternatively, congruence tries to prove that a hypothesis is equal to the goal or to the negation
of another hypothesis.

congruence is also able to take advantage of hypotheses stating quantified equalities, but you have to provide a
bound for the number of extra equalities generated that way. Please note that one of the sides of the equality must
contain all the quantified variables in order for congruence to match against it.

Example
Theorem T (A:Type) (f:A -> A) (g: A -> A —> A) a b: a=(f a) > (gb (f a))=(f (£ a)) —>
(g ab)=(f (g ba)) —> (g ab=a.
1 subgoal
A : Type
f : A > A
g : A ->A > A
a, b A
a=fa->gb (fa =f (fa -—>gab=1f (gba ->gab-=a
intros.

(continues on next page)

208 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

1 subgoal

A : Type
f : A -—>A

congruence.
No more subgoals.

Qed.
T is defined

Theorem inj (A:Type) (f:A -> A * A) (a c d: A) : f = pair a —> Some (f c) = Some (f_
~d) —-> c=d.
1 subgoal

f = pair a -> Some (f c) = Some (f d) -> c = d
intros.
1 subgoal
A : Type

f : A ->A * A

a, ¢, d : A

H: f = pair a

HO : Some (f c) = Some (f d)

congruence.
No more subgoals.

Qed.
inj is defined

Variant: congruence n
Tries to add at most n instances of hypotheses stating quantified equalities to the problem in order to solve it. A
bigger value of n does not make success slower, only failure. You might consider adding some lemmas as hypotheses
using assert in order for congruence to use them.

Variant: congruence with |term

+
Adds | term | to the pool of terms used by congruence. This helps in case you have partially applied con-
structors in your goal.

Error: I don’t know how to handle dependent equality.

4.3. Tactics 209

The Coq Reference Manual, Release 8.9.1

The decision procedure managed to find a proof of the goal or of a discriminable equality but this proof could not
be built in Coq because of dependently-typed functions.

Error: Goal is solvable by congruence but some arguments are missing. Try congruence with

The decision procedure could solve the goal with the provision that additional arguments are supplied for some
partially applied constructors. Any term of an appropriate type will allow the tactic to successfully solve the goal.
Those additional arguments can be given to congruence by filling in the holes in the terms given in the error message,
using the congruence with variant described above.

Flag: Congruence Verbose
This option makes congruence print debug information.

4.3.11 Checking properties of terms

Each of the following tactics acts as the identity if the check succeeds, and results in an error otherwise.

constr_eq term term
This tactic checks whether its arguments are equal modulo alpha conversion, casts and universe constraints. It may
unify universes.

Error: Not equal.
Error: Not equal (due to universes).

constr_eq_strict term term
This tactic checks whether its arguments are equal modulo alpha conversion, casts and universe constraints. It does
not add new constraints.

Error: Not equal.
Error: Not equal (due to universes).

unify term term
This tactic checks whether its arguments are unifiable, potentially instantiating existential variables.

Error: Unable to unify term with term.

Variant: unify term term with ident
Unification takes the transparency information defined in the hint database ident into account (see the hints
databases for auto and eauto).

is_evar term
This tactic checks whether its argument is a current existential variable. Existential variables are uninstantiated
variables generated by eapp 1y and some other tactics.

Error: Not an evar.

has_evar term
This tactic checks whether its argument has an existential variable as a subterm. Unlike context patterns combined
with is_evar, this tactic scans all subterms, including those under binders.

Error: No evars.

is_wvar term
This tactic checks whether its argument is a variable or hypothesis in the current goal context or in the opened
sections.

Error: Not a variable or hypothesis.

210 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

4.3.12 Equality

f_equal
This tactic applies to a goal of the form £ a; ... a,= f£’a’; ... a’,. Using £ _equal on such a goal
leads to subgoals f=f’ and a; =a’; andsoonup to a, = a’,. Amongst these subgoals, the simple ones (e.g.
provable by reflexivity or congruence) are automatically solved by £_equal.

reflexivity
This tactic applies to a goal that has the form t=u. It checks that t and u are convertible and then solves the goal.
It is equivalent to apply refl_equal.

Error: The conclusion is not a substitutive equation.

Error: Unable to unify ... with

symmetry
This tactic applies to a goal that has the form t=u and changes it into u=t.

Variant: symmetry in ident
If the statement of the hypothesis ident has the form t=u, the tactic changes it to u=t.

transitivity term
This tactic applies to a goal that has the form t=u and transforms it into the two subgoals t=termand term=u.

4.3.13 Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets or types. These tactics
use the equality eq: forall (A:Type), A->A->Prop,simply written with the infix symbol =.

decide equality
This tactic solves a goal of the form forall x v : R, {x = y} + {~ x = y},whereRisan inductive
type such that its constructors do not take proofs or functions as arguments, nor objects in dependent types. It solves
goals of the form {x = y} + {~ x = y} aswell

compare term term
This tactic compares two given objects t ermand t erm of an inductive datatype. If G is the current goal, it leaves
the sub- goals term =term —-> Gand ~ term = term —> G.The type of termand term must satisfy
the same restrictions as in the tactic decide equality.

simplify eq term
Let term be the proof of a statement of conclusion term = term. If term and term are structurally
different (in the sense described for the tactic discriminate), then the tactic simplify_eq behaves as
discriminate term,otherwise it behavesas injection term.

Note: If some quantified hypothesis of the goal is named ident, then simplify_eq ident first introduces the
hypothesis in the local context using intros until ident.

Variant: simplify eq num
This does the same thingas intros until numthen simplify_eq ident where ident isthe identifier
for the last introduced hypothesis.

Variant: simplify eq term with bindings_list
This does the same as simplify_eq termbutusing the given bindings to instantiate parameters or hypotheses
of term.

Variant: esimplify eq num

4.3. Tactics 211

The Coq Reference Manual, Release 8.9.1

?
Variant: esimplify_eq term with bindings_list

This works the same as simplify_eq butif the type of term, or the type of the hypothesis referred to by num,
has uninstantiated parameters, these parameters are left as existential variables.

Variant: simplify_eq
If the current goal has form t1 <> t2,itbehavesas intro ident; simplify_eq ident.
dependent rewrite -> ident
This tactic applies to any goal. If ident has type (existT B a b)=(existT B a' b') in the local
context (i.e. each term of the equality has a sigma type { a:A & (B a) }) this tactic rewrites a into a' and

b into b' in the current goal. This tactic works even if B is also a sigma type. This kind of equalities between
dependent pairs may be derived by the injectionand inversion tactics.

Variant: dependent rewrite <- ident
Analogous to dependent rewrite ->butuses the equality from right to left.

4.3.14 Inversion

functional inversion ident
functional inversion is a tactic that performs inversion on hypothesis ident of the form qualid

+ . + . : ;
term = termor term = qualid |term | where qualid must have been defined using Function
(see Advanced recursive functions). Note that this tactic is only available after a Require Import FunInd.

Error: Hypothesis ident must contain at least one Function.

Error: Cannot find inversion information for hypothesis ident.
This error may be raised when some inversion lemma failed to be generated by Function.

Variant: functional inversion num
This does the same thing as intros until num folowed by functional inversion ident
where ident is the identifier for the last introduced hypothesis.

Variant: functional inversion ident qualid
Variant: functional inversion num qualid

. + +
If the hypothesis ident (or num) has a type of the form qualid, term, = qualid, |term;

where qualid, and qualid, are valid candidates to functional inversion, this variant allows choosing
which qualid is inverted.

quote ident

This kind of inversion has nothing to do with the tactic i nversion above. This tactic does change (Q@ident t),
where t is a term built in order to ensure the convertibility. In other words, it does inversion of the function i dent. This
function must be a fixpoint on a simple recursive datatype: see guote for the full details.

Error: quote: not a simple fixpoint.
Happens when quote is not able to perform inversion properly.

*
Variant: quote ident ident

*
All terms that are built only with | i dent | will be considered by quote as constants rather than variables.

4.3.15 Classical tactics

In order to ease the proving process, when the Classical module is loaded. A few more tactics are available. Make sure
to load the module using the Require Import command.

classical_left

212 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

classical_right
These tactics are the analog of 1eft and right but using classical logic. They can only be used for disjunctions.
Use classical_left toprove the left part of the disjunction with the assumption that the negation of right part
holds. Use classical_right to prove the right part of the disjunction with the assumption that the negation
of left part holds.

4.3.16 Automating

btauto
The tactic bt aut o implements a reflexive solver for boolean tautologies. It solves goals of the form t = u where
t and u are constructed over the following grammar:

t = X
| true
| false
| orb tl t2
| andb t1 t2
| xorb tl t2
| negb t
|

if tl1 then t2 else t3

Whenever the formula supplied is not a tautology, it also provides a counter-example.
Internally, it uses a system very similar to the one of the ring tactic.
Note that this tactic is only available after a Require Import Btauto.

Error: Cannot recognize a boolean equality.
The goal is not of the form t = u. Especially note that bt aut o doesn’t introduce variables into the context

on its own.
omega
The tactic omega, due to Pierre Crégut, is an automatic decision procedure for Presburger arithmetic. It solves
quantifier-free formulas built with ~, /, />, * —> on top of equalities, inequalities and disequalities on both the

type nat of natural numbers and Z of binary integers. This tactic must be loaded by the command Require
Import Omega. See the additional documentation about omega (see Chapter Omega: a solver for quantifier-free
problems in Presburger Arithmetic).

ring
This tactic solves equations upon polynomial expressions of a ring (or semiring) structure. It proceeds by normal-
izing both hand sides of the equation (w.r.t. associativity, commutativity and distributivity, constant propagation)
and comparing syntactically the results.

*

ring_simplify | term
This tactic applies the normalization procedure described above to the given terms. The tactic then replaces all
occurrences of the terms given in the conclusion of the goal by their normal forms. If no term is given, then the
conclusion should be an equation and both hand sides are normalized.

See The ring and field tactic families for more information on the tactic and how to declare new ring structures. All
declared field structures can be printed with the Print Rings command.

field
*
field_simplify term
field_simplify_eq
The field tactic is built on the same ideas as ring: this is a reflexive tactic that solves or simplifies equations in a field

4.3. Tactics 213

The Coq Reference Manual, Release 8.9.1

structure. The main idea is to reduce a field expression (which is an extension of ring expressions with the inverse
and division operations) to a fraction made of two polynomial expressions.

. + .
Tactic field is used to solve subgoals, whereas field_simplify | term | replaces the provided terms by
their reduced fraction. field simplify_eq applies when the conclusion is an equation: it simplifies both
hand sides and multiplies so as to cancel denominators. So it produces an equation without division nor inverse.

All of these 3 tactics may generate a subgoal in order to prove that denominators are different from zero.

See The ring and field tactic families for more information on the tactic and how to declare new field structures. All
declared field structures can be printed with the Print Fields command.

Example

Require Import Reals.

[Loading ML file r_syntax_plugin.cmxs ... done]
[Loading ML file quote_plugin.cmxs ... done]
[Loading ML file newring_plugin.cmxs ... done]
[Loading ML file omega_plugin.cmxs ... done]
[Loading ML file micromega_plugin.cmxs ... done]

Goal forall x y:R,
(x * y > 0)%R —>

(x * (1 / x +x/ (x +y)))sR =
((- 1/ y) *y * (-—x* (x/ (x +vy)) — 1)) %R.
1 subgoal
forall x y : R,
(x * vy > 0)%SR —>
(x * (1 / x+x/ (x+y)))SR=(-1/y*y* (-—x* (x/ (x+y)) - 1))%R

intros; field.
1 subgoal

(x + y)%R <> 0%R /\ y <> 0%R /\ x <> 0%R

See also:

File plugins/setoid_ring/RealField.v for an example of instantiation, theory theories/Reals for many examples of use of
field.

4.3.17 Non-logical tactics

cycle num
This tactic puts the num first goals at the end of the list of goals. If num is negative, it will put the last |[num| goals
at the beginning of the list.

Example

Parameter P : nat —-> Prop.
P is declared
(continues on next page)

214 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

Goal P 1 /\P 2 /\P 3 /\P4/\PS5.
1 subgoal

P1 /NP2 /NP3 /NP4 /\PS5

repeat split.
5 subgoals

subgoal 2 is:
P 2
subgoal 3 is:
P 3
subgoal 4 is:
P 4
subgoal 5 is:
P 5

all: cycle 2.
5 subgoals

subgoal 2 is:
P 4
subgoal 3 is:
P 5
subgoal 4 is:
P 1
subgoal 5 is:
P 2

all: cycle -3.
5 subgoals

swap num num
This tactic switches the position of the goals of indices num and num. If either num or num is negative then goals
are counted from the end of the focused goal list. Goals are indexed from 1, there is no goal with position 0.

4.3. Tactics 215

The Coq Reference Manual, Release 8.9.1

Example

Parameter P

Goal P 1 /\ P2 /\P 3 /\P 4 /\PS5.

nat -> Prop.
P is declared

1 subgoal

P1/\NP2/\P3/\NP4/\P5

repeat split.
5 subgoals

subgoal
P 2
subgoal
P 3
subgoal
P 4
subgoal
P 5

all: swap 1

3.

5 subgoals

subgoal
P 2
subgoal
P 1
subgoal
P 4
subgoal
P 5

all: swap 1

-1.

5 subgoals

subgoal
P 2
subgoal
P 1
subgoal
P 4
subgoal
P 3

revgoals

216

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

This tactics reverses the list of the focused goals.

Example

Parameter P : nat -> Prop.
P is declared

Goal P 1 /NP 2 /\NP 3 /\P 4 /\PS5.
1 subgoal

P1/\NP2/\NP3/\P4/\P5

repeat split.
5 subgoals

subgoal 2 is:
P 2
subgoal 3 is:
P 3
subgoal 4 is:
P 4
subgoal 5 is:
P 5

all: revgoals.
5 subgoals

shelve
This tactic moves all goals under focus to a shelf. While on the shelf, goals will not be focused on. They can be
solved by unification, or they can be called back into focus with the command Unshelve.

Variant: shelve_unifiable
Shelves only the goals under focus that are mentioned in other goals. Goals that appear in the type of other
goals can be solved by unification.

Example

Goal exists n, n=0.
1 subgoal

(continues on next page)

4.3. Tactics 217

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

refine (ex_intro _ _ _).
1 focused subgoal
(shelved: 1)

all: shelve_unifiable.
reflexivity.
No more subgoals.

Command: Unshelve
This command moves all the goals on the shelf (see shelve) from the shelf into focus, by appending them to the
end of the current list of focused goals.

give_up
This tactic removes the focused goals from the proof. They are not solved, and cannot be solved later in the proof.
As the goals are not solved, the proof cannot be closed.

The give_up tactic can be used while editing a proof, to choose to write the proof script in a non-sequential
order.

4.3.18 Simple tactic macros

A simple example has more value than a long explanation:

Example

Ltac Solve := simpl; intros; auto.
Solve is defined

Ltac ElimBoolRewrite b H1 H2 :=
elim b; [intros; rewrite Hl; eauto | intros; rewrite H2; eauto].
ElimBoolRewrite is defined

The tactics macros are synchronous with the Coq section mechanism: a tactic definition is deleted from the current
environment when you close the section (see also Section mechanism) where it was defined. If you want that a tactic
macro defined in a module is usable in the modules that require it, you should put it outside of any section.

The tactic language gives examples of more complex user-defined tactics.

4.4 The tactic language

This chapter gives a compact documentation of L,,., the tactic language available in Coq. We start by giving the syntax,
and next, we present the informal semantics. If you want to know more regarding this language and especially about its
foundations, you can refer to [DelOO]. Chapter Detailed examples of tactics is devoted to giving small but nontrivial use
examples of this language.

218 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

4.4.1 Syntax

The syntax of the tactic language is given below. See Chapter The Gallina specification language for a description of
the BNF metasyntax used in these grammar rules. Various already defined entries will be used in this chapter: entries
natural, integer, ident, qualid, term, cpatternand atomic_tactic represent respectively the natural
and integer numbers, the authorized identificators and qualified names, Coq terms and patterns and all the atomic tactics
described in Chapter Tactics. The syntax of cpattern is the same as that of terms, but it is extended with pattern
matching metavariables. In cpattern, a pattern matching metavariable is represented with the syntax ? id where 1d is
an ident. The notation _ can also be used to denote metavariable whose instance is irrelevant. In the notation ?id, the
identifier allows us to keep instantiations and to make constraints whereas _ shows that we are not interested in what will
be matched. On the right hand side of pattern matching clauses, the named metavariables are used without the question
mark prefix. There is also a special notation for second-order pattern matching problems: in an applicative pattern of the
form@?id idl .. idn, the variable id matches any complex expression with (possible) dependencies in the variables
idl .. idn and returns a functional term of the form fun idl .. idn => term.

The main entry of the grammar is expr. This language is used in proof mode but it can also be used in toplevel definitions
as shown below.

Note:

¢ The infix tacticals ... || .., .. + ..,and .. ; .. are associative.

Example

If you want that tactic,; tactic, be fully run on the first subgoal generated by tact ic,, before running
on the other subgoals, then you should not write tactic,; (tactic,; tactic,) butrather tactic,;
[> tactic,; tacticy; ..].

e In tacarg, there is an overlap between qua 1 id as a direct tactic argument and qua 1 i d as a particular case of
term. The resolution is done by first looking for a reference of the tactic language and if it fails, for a reference
to a term. To force the resolution as a reference of the tactic language, use the form 1tac: (qualid). To force
the resolution as a reference to a term, use the syntax (qualid).

* Asshown by the figure, tactical ... | | .. binds more than the prefix tacticals t ry, repeat, doand abstract
which themselves bind more than the postfix tactical ... ; [..] which binds at the same level as ... ;
Example

. . . . + .
try repeat tactic; || tactic,; tacticy; [|tactic 1; tacticy

is understood as:

((try (repeat (tactic, || tactic,)); tacticy); [|tactic T 1); tacticy
expr = expr ; expr
| [> expr | ... | expr]
| expr ; [expr | ... | expr]
| tacexpr3
tacexpr3 = do (natural | ident) tacexpr3

| progress tacexpr3
repeat tacexpr3

4.4. The tactic language 219

The Coq Reference Manual, Release 8.9.1

tacexpr?2

tacexprl

atom

component
message_token
tacarg

let_clause
context_rule

try tacexpr3

once tacexpr3

exactly_once tacexpr3

timeout (natural | ident) tacexpr3
time [string] tacexpr3

only selector: tacexpr3

\

\

\

\

\

\

| tacexpr2

tacexprl || tacexpr3

| tacexprl + tacexpr3

| tryif tacexprl then tacexprl else tacexprl

| tacexprl

fun name name => atom

| let [rec] let_clause with with let_clause in atom
| match goal with context_rule | ... | context_rule end
| match reverse goal with context_rule | ... | context_rule end
| match expr with match_rule | ... | match_rule end

| lazymatch goal with context_rule | ... | context_rule end
| lazymatch reverse goal with context_rule | ... | context_rule er
| lazymatch expr with match_rule | ... | match_rule end
| multimatch goal with context_rule | ... | context_rule end
| multimatch reverse goal with context_rule | ... | context_rule ¢
| multimatch expr with match_rule | ... | match_rule end
| abstract atom

| abstract atom using ident

| first [expr | ... | expr]

| solve [expr | ... | expr]

| idtac [message_token message_token]

| fail [natural] [message_token message_token]

| fresh [component .. component]

| context ident [term]

| eval redexpr in term

| type of term

| constr term

| uconstr : term

| type_term term

| numgoals

| guard test

| assert_fails tacexpr3

| assert_succeeds tacexpr3

| atomic_tactic

| qualid tacarg tacarg

| atom

qualid

IO

| integer

| (expr)

string | qualid

string | ident | integer

qualid

IO

| ltac : atom

| term

ident [name name] := expr

context_hyp, ..., context_hyp |- cpattern => expr

220

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

cpattern => expr
|- cpattern => expr

\
\
\
context_hyp n= name : cpattern
\

_ => expr
name := cpattern [: cpattern]
match_rule i= cpattern => expr
| context [ident] [cpattern] => expr
| _ => expr
test n= integer = integer
| integer (< | <= | > | >=) integer
selector L= [ident]
| integer
| (integer | integer - integer), ..., (integer
toplevel_selector ::= selector
| all
| par
| !
top RES [Local] Ltac ltac_def with ... with Itac_def
ltac_def = ident [ident ... ident] := expr
| qualid [ident ... ident] ::= expr

4.4.2 Semantics

integer — intege.

Tactic expressions can only be applied in the context of a proof. The evaluation yields either a term, an integer or a tactic.
Intermediate results can be terms or integers but the final result must be a tactic which is then applied to the focused goals.

There is a special case for match goal expressions of which the clauses evaluate to tactics. Such expressions can only
be used as end result of a tactic expression (never as argument of a non-recursive local definition or of an application).

The rest of this section explains the semantics of every construction of L.

Sequence

A sequence is an expression of the following form:

expr; ; expr,

The expression expr, is evaluated to v, which must be a tactic value. The tactic v, is applied to the current goal,
possibly producing more goals. Then expr, is evaluated to produce v,, which must be a tactic value. The tactic

v, is applied to all the goals produced by the prior application. Sequence is associative.

Local application of tactics

Different tactics can be applied to the different goals using the following form:

[> [expE T]

The expressions expr; are evaluated to v,, fori=1, ..., n and all have to be tactics. The v, is applied to the i-th

goal, fori =1, ..., n. It fails if the number of focused goals is not exactly n.

4.4. The tactic language

221

The Coq Reference Manual, Release 8.9.1

Note: If no tactic is given for the i-th goal, it behaves as if the tactic idtac were given. For instance, [> | auto]
is a shortcut for [> idtac | auto].

* *
Variant: [> [expr; | | expr .. | [expr; 1]
I
In this variant, expr is used for each goal coming after those covered by the list of expr; but before those

covered by the list of expr ..

* *
Variant: [> [expr | | .. | [expr | 1
In this variant, idtac is used for the goals not covered by the two lists of expr.

Variant: [> expr ..]
In this variant, the tactic expr is applied independently to each of the goals, rather than globally. In particular,
if there are no goals, the tactic is not run at all. A tactic which expects multiple goals, such as swap, would
act as if a single goal is focused.

*
Variant: expr, ; [|expr; | 1

This variant of local tactic application is paired with a sequence. In this variant, there must be as many expr
as goals generated by the application of expr, to each of the individual goals independently. All the above
variants work in this form too. Formally, expr ; [...] isequivalentto [> expr ; [> ...]

].

Goal selectors

We can restrict the application of a tactic to a subset of the currently focused goals with:

toplevel_selector : expr
We can also use selectors as a tactical, which allows to use them nested in a tactic expression, by using the keyword
only:

Variant: only selector : expr
When selecting several goals, the tactic expr is applied globally to all selected goals.

Variant: [ident] : expr
In this variant, expr is applied locally to a goal previously named by the user (see Existential variables).

Variant: num : expr
In this variant, expr is applied locally to the num-th goal.

. +
Variant: | num—num - : expr
In this variant, expr is applied globally to the subset of goals described by the given ranges. You can write
a single n as a shortcut for n—n when specifying multiple ranges.

Variant: all: expr
In this variant, expr is applied to all focused goals. all: can only be used at the toplevel of a tactic
expression.

Variant: !: expr
In this variant, if exactly one goal is focused, expr is applied to it. Otherwise the tactic fails. ! : can only
be used at the toplevel of a tactic expression.

Variant: par: expr
In this variant, expr is applied to all focused goals in parallel. The number of workers can be controlled via
the command line option —~async-proofs—tac—7j taking as argument the desired number of workers.
Limitations: par: only works on goals containing no existential variables and expr must either solve the

222 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

goal completely or do nothing (i.e. it cannot make some progress). par : can only be used at the toplevel of
a tactic expression.

Error: No such goal.

For loop

There is a for loop that repeats a tactic num times:

do num expr
expr is evaluated to v which must be a tactic value. This tactic value v is applied num times. Supposing num
> 1, after the first application of v, v is applied, at least once, to the generated subgoals and so on. It fails if the
application of v fails before the num applications have been completed.

Repeat loop

We have a repeat loop with:

repeat expr
expr is evaluated to v. If v denotes a tactic, this tactic is applied to each focused goal independently. If the
application succeeds, the tactic is applied recursively to all the generated subgoals until it eventually fails. The
recursion stops in a subgoal when the tactic has failed fo make progress. The tactic repeat expr itself never
fails.

Error catching

We can catch the tactic errors with:

try expr
exprisevaluated to v which must be a tactic value. The tactic value v is applied to each focused goal independently.
If the application of v fails in a goal, it catches the error and leaves the goal unchanged. If the level of the exception
is positive, then the exception is re-raised with its level decremented.

Detecting progress

We can check if a tactic made progress with:

progress expr
expr is evaluated to v which must be a tactic value. The tactic value v is applied to each focued subgoal inde-
pendently. If the application of v to one of the focused subgoal produced subgoals equal to the initial goals (up to
syntactical equality), then an error of level O is raised.

Error: Failed to progress.

Backtracking branching

We can branch with the following structure:

expr; + expr,
expr, and expr, are evaluated respectively to v, and v, which must be tactic values. The tactic value v, is
applied to each focused goal independently and if it fails or a later tactic fails, then the proof backtracks to the
current goal and v, is applied.

4.4. The tactic language 223

The Coq Reference Manual, Release 8.9.1

Tactics can be seen as having several successes. When a tactic fails it asks for more successes of the prior tactics.
expr, + expr, has all the successes of v, followed by all the successes of v,. Algebraically, (expr, +
expr,); expr; = (expr,; expr;) + (expr,; expr;).

Branching is left-associative.

First tactic to work

Backtracking branching may be too expensive. In this case we may restrict to a local, left biased, branching and consider
the first tactic to work (i.e. which does not fail) among a panel of tactics:

first [|expr T 1

The expr, are evaluated to v, and v, must be tactic values fori=1, ..., n. Supposingn>1, first [expr; |

| expr,] applies v, in each focused goal independently and stops if it succeeds; otherwise it tries to apply
v, and so on. It fails when there is no applicable tactic. In other words, first [expr, | ... | expr,]
behaves, in each goal, as the first v, to have at least one success.

Error: No applicable tactic.

Variant: first expr
This is an L, alias that gives a primitive access to the first tactical as an L, definition without going through
a parsing rule. It expects to be given a list of tactics through a Tactic Notation, allowing to write
notations of the following form:

Example

Tactic Notation "foo" tactic_list (tacs) := first tacs.

Left-biased branching

Yet another way of branching without backtracking is the following structure:

expr; || expr,

expr, and expr, are evaluated respectively to v, and v, which must be tactic values. The tactic value v,
is applied in each subgoal independently and if it fails fo progress then v, is applied. expr, || expr, is
equivalent to first [progress expr, | expr,] (except thatif it fails, it fails like v,). Branching is
left-associative.

Generalized biased branching

The tactic

tryif expr, then expr, else expr;

is a generalization of the biased-branching tactics above. The expression expr, is evaluated to v,, which is then
applied to each subgoal independently. For each goal where v, succeeds at least once, expr, is evaluated to v,
which is then applied collectively to the generated subgoals. The v, tactic can trigger backtracking points in v, :
where v, succeeds at least once, tryif expr, then expr, else expr,isequivalentto v,; v,. In
each of the goals where v, does not succeed at least once, expr , is evaluated in v, which is is then applied to the
goal.

224

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Soft cut

Another way of restricting backtracking is to restrict a tactic to a single success a posteriori:

once expr
expr is evaluated to v which must be a tactic value. The tactic value v is applied but only its first success is used.
If v fails, once expr fails like v. If v has at least one success, once expr succeeds once, but cannot produce
more successes.

Checking the successes

Coq provides an experimental way to check that a tactic has exactly one success:

exactly_ once expr
expr is evaluated to v which must be a tactic value. The tactic value v is applied if it has at most one success. If
v fails, exactly_once expr fails like v. If v has a exactly one success, exactly_once expr succeeds
like v. If v has two or more successes, exactly_once expr fails.

Warning: The experimental status of this tactic pertains to the fact if v performs side effects, they may occur
in an unpredictable way. Indeed, normally v would only be executed up to the first success until backtracking is
needed, however exactly_once needs to look ahead to see whether a second success exists, and may run further
effects immediately.

Error: This tactic has more than one success.

Checking the failure

Coq provides a derived tactic to check that a tactic fails:

assert_fails expr
This behaves like tryif expr then fail 0 tac "succeeds" else idtac.

Checking the success

Coq provides a derived tactic to check that a tactic has at least one success:

assert_succeeds expr
This behaves like tryif (assert_fails tac) then fail 0 tac "fails" else idtac.

Solving

‘We may consider the first to solve (i.e. which generates no subgoal) among a panel of tactics:

*
solve [|expr | 1
The expr; are evaluated to v; and v, must be tactic values, fori =1, ..., n. Supposingn > 1, solve [expr,

| ... | expr,] applies v, to each goal independently and stops if it succeeds; otherwise it tries to apply v,
and so on. It fails if there is no solving tactic.

Error: Cannot solve the goal.

4.4. The tactic language 225

The Coq Reference Manual, Release 8.9.1

Variant: solve expr
This is an L, alias that gives a primitive access to the solve: tactical. See the first tactical for more
information.

Identity

The constant i dtac is the identity tactic: it leaves any goal unchanged but it appears in the proof script.

*
idtac message_token

This prints the given tokens. Strings and integers are printed literally. If a (term) variable is given, its contents are
printed.

Failing

fail
This is the always-failing tactic: it does not solve any goal. It is useful for defining other tacticals since it can be
caught by try, repeat, match goal, or the branching tacticals.

Variant: fail num
The number is the failure level. If no level is specified, it defaults to 0. The level is used by t ry, repeat,
match goal and the branching tacticals. If 0, it makes mat ch goal consider the next clause (backtrack-
ing). If nonzero, the current match goal block, try, repeat, or branching command is aborted and
the level is decremented. In the case of +, a nonzero level skips the first backtrack point, even if the call to
fail numis not enclosed in a + command, respecting the algebraic identity.
*
Variant: fail message_token
The given tokens are used for printing the failure message.
*
Variant: fail num message_token
This is a combination of the previous variants.

Variant: gfail
This variant fails even when used after ; and there are no goals left. Similarly, gfail fails even when used
after all: and there are no goals left. See the example for clarification.
*
Variant: gfail message_token

*
Variant: gfail num message_token

These variants fail with an error message or an error level even if there are no goals left. Be careful however
if Coq terms have to be printed as part of the failure: term construction always forces the tactic into the goals,
meaning that if there are no goals when it is evaluated, a tactic calllike let x := H in fail 0 xwill
succeed.

Error: Tactic Failure message (level num).

Error: No such goal.

Example

Goal True.
1 subgoal

(continues on next page)

226 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

Proof.

fail.
Toplevel input, characters 0-5:
> fail.

S AAAAA

Error: Tactic failure.

Abort.
Goal True.
1 subgoal

Proof.
trivial; fail.
No more subgoals.

Qed.
Unnamed_thm is defined

Goal True.
1 subgoal

Proof.
trivial.
No more subgoals.

fail.
Toplevel input, characters 0-5:
> fail.

S AAAAA

Error: No such goal.

Abort.
Goal True.
1 subgoal

Proof.
trivial.
No more subgoals.

all: fail.
Qed.
Unnamed_thm0O is defined

Goal True.
1 subgoal

(continues on next page)

4.4. The tactic language 227

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

True

Proof.

gfail.
Toplevel input, characters 0-6:
> gfail.

S AAAAAA

Error: Tactic failure.

Abort.
Goal True.
1 subgoal

Proof.

trivial; gfail.
Toplevel input, characters 0-15:
> trivial; gfail.

S AAAAAAAAAANANAAN

Error: Tactic failure.

Abort.
Goal True.
1 subgoal

Proof.
trivial.
No more subgoals.

gfail.
Toplevel input, characters 0-6:
> gfail.

S AAAAAA

Error: No such goal.

Abort.
Goal True.
1 subgoal

Proof.
trivial.
No more subgoals.

all: gfail.
Toplevel input, characters 0-11:
> all: gfail.

S AAAAAAAAAAA

Error: Tactic failure.

(continues on next page)

228 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)
Abort.

Timeout

We can force a tactic to stop if it has not finished after a certain amount of time:

timeout num expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied normally, except that it is
interrupted after num seconds if it is still running. In this case the outcome is a failure.

Warning: For the moment, timeout is based on elapsed time in seconds, which is very machine-dependent:
a script that works on a quick machine may fail on a slow one. The converse is even possible if you combine
a timeout with some other tacticals. This tactical is hence proposed only for convenience during debugging or
other development phases, we strongly advise you to not leave any timeout in final scripts. Note also that this
tactical isn’t available on the native Windows port of Coq.

Timing a tactic

A tactic execution can be timed:

time string expr
evaluates expr and displays the running time of the tactic expression, whether it fails or succeeds. In case of
several successes, the time for each successive run is displayed. Time is in seconds and is machine-dependent. The
st ringargument is optional. When provided, it is used to identify this particular occurrence of time.

Timing a tactic that evaluates to a term

Tactic expressions that produce terms can be timed with the experimental tactic

time_constr expr

which evaluates expr () and displays the time the tactic expression evaluated, assuming successful evaluation.
Time is in seconds and is machine-dependent.

This tactic currently does not support nesting, and will report times based on the innermost execution. This is due
to the fact that it is implemented using the following internal tactics:

restart_timer string
Reset a timer

?
finish_timing | (string) string
Display an optionally named timer. The parenthesized string argument is also optional, and determines the
label associated with the timer for printing.

By copying the definition of t ime_const r from the standard library, users can achive support for a fixed pattern

of nesting by passing different st ring parameters to restart_timer and finish_timing at each level
of nesting.

Example

4.4. The tactic language 229

The Coq Reference Manual, Release 8.9.1

Ltac time_constrl tac :=
let eval_early := match goal with _ => restart_timer " (depth 1)" end in
let ret := tac () in
let eval_early := match goal with _ => finish_timing ("Tactic evaluation")
" (depth 1)" end in
ret.
time_constrl is defined

Goal True.

1 subgoal
True
let v := time_constr
ltac: (fun _ =>
let x := time_constrl ltac: (fun _ => constr: (10 * 10)) in
let y := time_constrl ltac: (fun _ => eval compute in x) in
y) in
pose V.
Tactic evaluation (depth 1) ran for 0. secs (0.u,0.s)
Tactic evaluation (depth 1) ran for 0. secs (0.u,0.s)
)

Tactic evaluation ran for 0.001 secs (0.u,0.s
1 subgoal

Local definitions

Local definitions can be done as follows:

*
let ident; := expr, |with ident; := expr; in expr

each expr; is evaluated to v, then, expr is evaluated by substituting v; to each occurrence of ident ., fori=
1, ..., n. There are no dependencies between the expr, and the ident ;.

Local definitions can be made recursive by using let rec instead of let. In this latter case, the definitions are
evaluated lazily so that the rec keyword can be used also in non-recursive cases so as to avoid the eager evaluation
of local definitions.

Application

An application is an expression of the following form:
+

qualid |tacarg

The reference qualid must be bound to some defined tactic definition expecting at least as many arguments as
the provided tacarg. The expressions expr . are evaluated to v, fori=1, ..., n.

230 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Function construction
A parameterized tactic can be built anonymously (without resorting to local definitions) with:

+
fun ident => expr
Indeed, local definitions of functions are a syntactic sugar for binding a fun tactic to an identifier.

Pattern matching on terms

We can carry out pattern matching on terms with:

+
match expr with |cpattern; => expr; I end

The expression expr is evaluated and should yield a term which is matched against cpattern,. The matching is
non-linear: if a metavariable occurs more than once, it should match the same expression every time. It is first-order
except on the variables of the form @?1id that occur in head position of an application. For these variables, the
matching is second-order and returns a functional term.

Alternatively, when a metavariable of the form ?1id occurs under binders, say x,, .., x, and the expression
matches, the metavariable is instantiated by a term which can then be used in any context which also binds the
variables x,, .., x, withsame types. This provides with a primitive form of matching under context which does
not require manipulating a functional term.

If the matching with cpattern, succeeds, then expr, is evaluated into some value by substituting the pattern
matching instantiations to the metavariables. If expr, evaluates to a tactic and the match expression is in position
to be applied to a goal (e.g. it is not bound to a variable by a 1et in), then this tactic is applied. If the tactic
succeeds, the list of resulting subgoals is the result of the match expression. If expr, does not evaluate to a tactic
or if the match expression is not in position to be applied to a goal, then the result of the evaluation of expr, is
the result of the match expression.

If the matching with cpattern, fails, or if it succeeds but the evaluation of expr, fails, or if the evaluation
of expr, succeeds but returns a tactic in execution position whose execution fails, then cpattern, is used and
so on. The pattern _ matches any term and shadows all remaining patterns if any. If all clauses fail (in particular,
there is no pattern _) then a no-matching-clause error is raised.

Failures in subsequent tactics do not cause backtracking to select new branches or inside the right-hand side of the
selected branch even if it has backtracking points.

Error: No matching clauses for match.
No pattern can be used and, in particular, there is no __ pattern.

Error: Argument of match does not evaluate to a term.
This happens when expr does not denote a term.
+
Variant: multimatch expr with cpattern; => expr; ! end

Using multimatch instead of match will allow subsequent tactics to backtrack into a right-hand side tactic
which has backtracking points left and trigger the selection of a new matching branch when all the backtrack-
ing points of the right-hand side have been consumed.

The syntax match .. 1is, in fact, a shorthand for once multimatch ...

+
Variant: lazymatch expr with cpattern; => expr; ! end

Using lazymatch instead of match will perform the same pattern matching procedure but will commit to the
first matching branch rather than trying a new matching if the right-hand side fails. If the right-hand side of
the selected branch is a tactic with backtracking points, then subsequent failures cause this tactic to backtrack.

4.4. The tactic language 231

The Coq Reference Manual, Release 8.9.1

Variant: context ident [cpattern]
This special form of patterns matches any term with a subterm matching cpattern. If there is a match, the
optional i dent is assigned the “matched context”, i.e. the initial term where the matched subterm is replaced
by a hole. The example below will show how to use such term contexts.

If the evaluation of the right-hand-side of a valid match fails, the next matching subterm is tried. If no further
subterm matches, the next clause is tried. Matching subterms are considered top-bottom and from left to right
(with respect to the raw printing obtained by setting option Printing Al1).

Example

Ltac f x :=
match x with
context £ [S ?X] =>

idtac X; (* To display the evaluation order *)

assert (p := eq_refl 1 : X=1); (* To filter the case X=1 *)

let x:= context f£[0O] in assert (x=0) (* To observe the context *)
end.

f is defined

Goal True.
1 subgoal

Pattern matching on goals

We can perform pattern matching on goals using the following expression:
+

+
match goal with | hyp |- cpattern => expr | _ => expr end
I
If each hypothesis pattern hyp, ;, withi=1, ..., m; is matched (non-linear first-order unification) by a hypothesis

of the goal and if cpattern_1 is matched by the conclusion of the goal, then expr, is evaluated to v, by sub-
stituting the pattern matching to the metavariables and the real hypothesis names bound to the possible hypothesis
names occurring in the hypothesis patterns. If v, is a tactic value, then it is applied to the goal. If this application
fails, then another combination of hypotheses is tried with the same proof context pattern. If there is no other
combination of hypotheses then the second proof context pattern is tried and so on. If the next to last proof context
pattern fails then the last expr is evaluated to v and v is applied. Note also that matching against subterms (using
the context ident [cpattern 1)is available and is also subject to yielding several matchings.

Failures in subsequent tactics do not cause backtracking to select new branches or combinations of hypotheses, or

232 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

inside the right-hand side of the selected branch even if it has backtracking points.

Error: No matching clauses for match goal.
No clause succeeds, i.e. all matching patterns, if any, fail at the application of the right-hand-side.

Note: It is important to know that each hypothesis of the goal can be matched by at most one hypothesis pattern.
The order of matching is the following: hypothesis patterns are examined from right to left (i.e. hyp; ;- before
hyp; ;). For each hypothesis pattern, the goal hypotheses are matched in order (newest first), but it possible to
reverse this order (oldest first) with the match reverse goal with variant.

+

+
Variant: multimatch goal with hyp |- cpattern => expr | _ => expr end
I
Using multimatch instead of match will allow subsequent tactics to backtrack into a right-hand side

tactic which has backtracking points left and trigger the selection of a new matching branch or combination
of hypotheses when all the backtracking points of the right-hand side have been consumed.

The syntax match [reverse] goal .. is, in fact, a shorthand for once multimatch
[reverse] goal ...

+

+
Variant: lazymatch goal with hyp |- cpattern => expr | _ => expr end
|
Using lazymatch instead of match will perform the same pattern matching procedure but will commit to the

first matching branch with the first matching combination of hypotheses rather than trying a new matching
if the right-hand side fails. If the right-hand side of the selected branch is a tactic with backtracking points,
then subsequent failures cause this tactic to backtrack.

Filling a term context

The following expression is not a tactic in the sense that it does not produce subgoals but generates a term to be used in
tactic expressions:

context ident [expr]

ident must denote a context variable bound by a context pattern of a match expression. This expression evaluates
replaces the hole of the value of i dent by the value of expr.

Error: Not a context variable.

Error: Unbound context identifier ident.

Generating fresh hypothesis names

Tactics sometimes have to generate new names for hypothesis. Letting the system decide a name with the intro tactic is
not so good since it is very awkward to retrieve the name the system gave. The following expression returns an identifier:

*

fresh component

It evaluates to an identifier unbound in the goal. This fresh identifier is obtained by concatenating the value of the
components (each of them is, either a qua 1 id which has to refer to a (unqualified) name, or directly a name
denoted by a st ring).

If the resulting name is already used, it is padded with a number so that it becomes fresh. If no component is given,
the name is a fresh derivative of the name H.

4.4. The tactic language 233

The Coq Reference Manual, Release 8.9.1

Computing in a constr

Evaluation of a term can be performed with:

eval redexpr in term
where redexpr is a reduction tactic among red, hnf, compute, simpl, cbv, lazy, unfold, fold,
pattern.

Recovering the type of a term

type of term
This tactic returns the type of term.

Manipulating untyped terms

uconstr : term
The terms built in L, are well-typed by default. It may not be appropriate for building large terms using a recursive
L, function: the term has to be entirely type checked at each step, resulting in potentially very slow behavior. It
is possible to build untyped terms using L, with the uconstr : termsyntax.

type_term term
Anuntyped term, in L,,., can contain references to hypotheses or to L., variables containing typed or untyped terms.
An untyped term can be type checked using the function type_term whose argument is parsed as an untyped term
and returns a well-typed term which can be used in tactics.

Untyped terms built using uconstr : can also be used as arguments to the refine tactic. In that case the untyped
term is type checked against the conclusion of the goal, and the holes which are not solved by the typing procedure are
turned into new subgoals.

Counting the goals

numgoals
The number of goals under focus can be recovered using the numgoals function. Combined with the guard
command below, it can be used to branch over the number of goals produced by previous tactics.

Example

Ltac pr_numgoals := let n := numgoals in idtac "There are" n "goals".
Goal True /\ True /\ True.
split; [|split].

all:pr_numgoals.
There are 3 goals

Testing boolean expressions

guard test
The gua rd tactic tests a boolean expression, and fails if the expression evaluates to false. If the expression evaluates
to true, it succeeds without affecting the proof.

The accepted tests are simple integer comparisons.

234 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Example

Goal True /\ True /\ True.
split; [|split].

all:let n:= numgoals in guard n<4.

Fail all:let n:= numgoals in guard n=2.
The command has indeed failed with message:
Ltac call to "guard (test)" failed.
Condition not satisfied: 3=2

Error: Condition not satisfied.

Proving a subgoal as a separate lemma

abstract expr
From the outside, abstract expristhe same as solve expr. Internally it saves an auxiliary lemma called
ident_subproofn where ident is the name of the current goal and n is chosen so that this is a fresh name.
Such an auxiliary lemma is inlined in the final proof term.

This tactical is useful with tactics such as omega or discriminate that generate huge proof terms. With that
tool the user can avoid the explosion at time of the Save command without having to cut manually the proof in
smaller lemmas.

It may be useful to generate lemmas minimal w.r.t. the assumptions they depend on. This can be obtained thanks
to the option below.

Variant: abstract expr using ident
Give explicitly the name of the auxiliary lemma.

Warning: Use this feature at your own risk; explicitly named and reused subterms don’t play well with
asynchronous proofs.

Variant: transparent_abstract expr
Save the subproof in a transparent lemma rather than an opaque one.

Warning: Use this feature at your own risk; building computationally relevant terms with tactics is
fragile.

Variant: transparent_abstract expr using ident
Give explicitly the name of the auxiliary transparent lemma.

Warning: Use this feature at your own risk; building computationally relevant terms with tactics is
fragile, and explicitly named and reused subterms don’t play well with asynchronous proofs.

Error: Proof is not complete.

4.4.3 Tactic toplevel definitions

4.4. The tactic language 235

The Coq Reference Manual, Release 8.9.1

Defining L, functions

Basically, L

wac toplevel definitions are made as follows:

*

Command: Ltac ident ident := expr

This defines a new L. function that can be used in any tactic script or new L,,. toplevel definition.

tac tac

Note: The preceding definition can equivalently be written:

+
Ltac ident := fun |ident => expr

Recursive and mutual recursive function definitions are also possible with the syntax:

*
* *
Variant: Ltac ident |ident with ident |ident := expr

It is also possible to redefine an existing user-defined tactic using the syntax:
*
Variant: Ltac qualid ident 1:= expr
A previous definition of qualid must exist in the environment. The new definition will always be used instead
of the old one and it goes across module boundaries.

If preceded by the keyword Local the tactic definition will not be exported outside the current module.

Printing L., tactics

Command: Print Ltac qualid

Defined L,,. functions can be displayed using this command.

tac

Command: Print Ltac Signatures

This command displays a list of all user-defined tactics, with their arguments.

4.4.4 Debugging L., tactics

Info trace

Command: Info num expr

This command can be used to print the trace of the path eventually taken by an L, script. That is, the list of
executed tactics, discarding all the branches which have failed. To that end the 7nfo command can be used with
the following syntax.

The number num is the unfolding level of tactics in the trace. At level 0, the trace contains a sequence of tactics in
the actual script, at level 1, the trace will be the concatenation of the traces of these tactics, etc...

Example

Ltac t x := exists x; reflexivity.
Goal exists n, n=0.

Info O t 1]t O.
t <constr: (0)>
No more subgoals.

236

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Undo.

Info 1 t 1]t O.
exists with 0;reflexivity
No more subgoals.

The trace produced by Info tries its best to be a reparsable L
So some of the output traces will contain oddities.

wac SCript, but this goal is not achievable in all generality.

As an additional help for debugging, the trace produced by Info contains (in comments) the messages produced
by the idtac tactical at the right position in the script. In particular, the calls to idtac in branches which failed are
not printed.

Option: Info Level num
This option is an alternative to the Tnfo command.

This will automatically print the same trace as Info num at each tactic call. The unfolding level can be
overridden by a call to the Tnfo command.

Interactive debugger

Flag: Ltac Debug

This option governs the step-by-step debugger that comes with the L, interpreter

tac

When the debugger is activated, it stops at every step of the evaluation of the current L, expression and prints information
on what it is doing. The debugger stops, prompting for a command which can be one of the following:

simple newline: | go to the next step

h: get help

X: exit current evaluation

s: continue current evaluation without stopping
rn: advance n steps further

r string: advance up to the next call to “idtac string”

Error: Debug mode not available in the IDE
A non-interactive mode for the debugger is available via the option:

Flag: Ltac Batch Debug
This option has the effect of presenting a newline at every prompt, when the debugger is on. The debug log thus
created, which does not require user input to generate when this option is set, can then be run through external tools
such as diff.

Profiling L, tactics

It is possible to measure the time spent in invocations of primitive tactics as well as tactics defined in L, and their inner
invocations. The primary use is the development of complex tactics, which can sometimes be so slow as to impede
interactive usage. The reasons for the performence degradation can be intricate, like a slowly performing L, match or a
sub-tactic whose performance only degrades in certain situations. The profiler generates a call tree and indicates the time
spent in a tactic depending on its calling context. Thus it allows to locate the part of a tactic definition that contains the
performance issue.

Flag: Ltac Profiling
This option enables and disables the profiler.

4.4. The tactic language 237

The Coq Reference Manual, Release 8.9.1

Command: Show Ltac
Prints the profile

Profile

Variant: Show Ltac Profile string

Prints a profile

for all tactics that start with st ring. Append a period (.) to the string if you only want

exactly that name.

Command: Reset Ltac Profile
Resets the profile, that is, deletes all accumulated information.

Warning: Backtracking across a Reset Ltac Profile will not restore the information.

Require Import Cog.omega.Omega.

Ltac mytauto taut
Ltac tac intros;

Notation max x y
Goal forall x y z A

o.
repeat split; omega || mytauto.

(x + (y - x)) (only parsing).
BCDEFGHIJKLMNOPQRSTUVWIXY Z,

max X (max y z) = max (max x y) z /\ max x (max y z) = max (max x y) 2z
/\
(A /\B/\NC/\ND/NE/NF /\NG/\NH/NIT/NJ/\NK/\NL/\M/\
N/NO/\NP/NQ/NR/NS /NT /NU/NV/NW/\NX/NY /N Z
—>
Z/NY /NX/Nw/\NVv/NU/NT /NS /NR/NQ /NP /N O /NN /N
M/\NL /\NK/\NJ /NI /\NH/\NG/NF /NE/\ND/\NC/\B/\A.
Proof.
Set Ltac Profiling.
tac.
No more subgoals.
Show Ltac Profile.
total time: 2.060s
tactic local total calls max
\ \ \ \ |
—tac 0.1% 100.0% 1 2.060s
—<Coqg.Init.Tauto.with_uniform_flags> —-—- 0.0% 75.3% 26 0.143s
—<Cog.Init.Tauto.tauto_gen> —-—————---———- 0.0% 75.3% 26 0.143s
—<Cog.Init.Tauto.tauto_intuitionistic> - 0.0% 75.2% 26 0.143s
—t_tauto_intuit -~ 0.1% 75.1% 26 0.143s
—<Cog.Init.Tauto.simplif> ———--------——- 52.6% 71.6% 26 0.141s
—omega ——— - —————— 24.2% 24.2% 28 0.242s
—<Coqg.Init.Tauto.is_conj> ————————--———- 11.3% 11.3% 28756 0.017s
—elim id - —— 5.2% 5.2% 650 0.023s
—<Cog.Init.Tauto.axioms> ——————————————~ 3.0% 3.5% 0 0.029s
tactic local total calls max
| 1 | 1 |
-tac -~ 0.1% 100.0% 1 2.060s
F—<Coqg.Init.Tauto.with_uniform_flags> - 0.0% 75.3% 26 0.143s
| l<Coqg.Init.Tauto.tauto_gen> —————————— 0.0% 75.3% 26 0.143s
| l<Cog.Init.Tauto.tauto_intuitionistic> 0.0% 75.2% 26 0.143s
| Lt_tauto_intuit ————————————m——— - 0.1% 75.1% 26 0.143s
| F<Cog.Init.Tauto.simplif> —————————-— 52.6% 71.6% 26 0.141s
| | F<Cog.Init.Tauto.is_conj> ———————— 11.3% 11.3% 28756 0.017s
| | belim id —————————— 5.2% 5.2% 650 0.023s

(continues on next page)

238

Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

| L—<Cog.Init.Tauto.axioms> ——————————— 3.0% 3.5% 0 0.029s
I*omega 7777777777777777777777777777777 24.2% 24.2% 28 0.242s
Show Ltac Profile "omega".
total time: 2.060s
tactic local total calls max
L l l | |
—omega —— - - oo 24.2% 24.2% 28 0.242s
tactic local total calls max
Abort.

Unset Ltac Profiling.

start ltac profiling
This tactic behaves like i dtac but enables the profiler.

stop ltac profiling
Similarly to start Itac profiling, this tactic behaves like i dtac. Together, they allow you to exclude
parts of a proof script from profiling.

reset ltac profile
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

show ltac profile
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

show ltac profile string
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

You can also pass the —-profile-1tac command line option to cogc, which turns the Ltac Profiling option
on at the beginning of each document, and performs a Show Ltac Profile atthe end.

Warning: Note that the profiler currently does not handle backtracking into multi-success tactics, and issues a
warning to this effect in many cases when such backtracking occurs.

Run-time optimization tactic

optimize_heap
This tactic behaves like idtac, except that running it compacts the heap in the OCaml run-time system. It is
analogous to the Vernacular command Optimize Heap.

4.5 Detailed examples of tactics

This chapter presents detailed examples of certain tactics, to illustrate their behavior.

4.5. Detailed examples of tactics 239

The Coq Reference Manual, Release 8.9.1

4.5.1 dependent induction

The tactics dependent induction and dependent destruction are another solution for inverting induc-
tive predicate instances and potentially doing induction at the same time. It is based on the BasicE1lim tactic of Conor
McBride which works by abstracting each argument of an inductive instance by a variable and constraining it by equal-
ities afterwards. This way, the usual induction and destruct tactics can be applied to the abstracted instance and after
simplification of the equalities we get the expected goals.

The abstracting tactic is called generalize_eqs and it takes as argument a hypothesis to generalize. It uses the JMeq
datatype defined in Coq.Logic.JMeq, hence we need to require it before. For example, revisiting the first example of the
inversion documentation:

Require Import Cog.Logic.JMeq.
Inductive Le : nat —-> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le nm —> Le (S n) (S m).
Variable P : nat -> nat —-> Prop.
Goal forall n m:nat, Le (S n) m —> P n m.
intros n m H.

generalize_egs H.
1 subgoal

n, m, gen_x : nat
H : Le gen_x m

The index S n gets abstracted by a variable here, but a corresponding equality is added under the abstract instance so
that no information is actually lost. The goal is now almost amenable to do induction or case analysis. One should indeed
first move n into the goal to strengthen it before doing induction, or n will be fixed in the inductive hypotheses (this does
not matter for case analysis). As a rule of thumb, all the variables that appear inside constructors in the indices of the
hypothesis should be generalized. This is exactly what the generalize_eqgs_vars variant does:

generalize_eqgs_vars H.
induction H.
2 subgoals

0 =S n ->Pn no0

subgoal 2 is:
Snd =S n->Pn (S m

As the hypothesis itself did not appear in the goal, we did not need to use an heterogeneous equality to relate the new
hypothesis to the old one (which just disappeared here). However, the tactic works just as well in this case, e.g.:

Variable Q : forall (nm : nat), Le n m —> Prop.
Goal forall nm (p : Le (S n) m), Q (S n) mp.

intros n m p.
1 subgoal

(continues on next page)

240 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)

Q (S n) mp

generalize_eqgs_vars p.
1 subgoal

m, gen_x : nat
p : Le gen_x m

forall (n : nat) (pO : Le (S n) m),
gen_x = S n —> JMeg p pO0 —> Q (S n) m pO0

One drawback of this approach is that in the branches one will have to substitute the equalities back into the instance
to get the right assumptions. Sometimes injection of constructors will also be needed to recover the needed equalities.
Also, some subgoals should be directly solved because of inconsistent contexts arising from the constraints on indexes.
The nice thing is that we can make a tactic based on discriminate, injection and variants of substitution to automatically
do such simplifications (which may involve the axiom K). This is what the simplify_dep_elim tactic from Coqg.
Program.Equality does. For example, we might simplify the previous goals considerably:

Require Import Cog.Program.Equality.

induction p ; simplify_dep_elim.
1 subgoal
n, m : nat

p : Lenm
IHp : forall (nO : nat) (p0O : Le (S n0) m),
n=3Sn0->p ~=p0 ->0Q (S n0d) mpO

The higher-order tactic do_depind defined in Cog.Program.Equality takes a tactic and combines the building
blocks we have seen with it: generalizing by equalities calling the given tactic with the generalized induction hypothesis
as argument and cleaning the subgoals with respect to equalities. Its most important instantiations are dependent
inductionand dependent destruction thatdoinduction or simply case analysis on the generalized hypothesis.
For example we can redo what we’ve done manually with dependent destruction:

Lemma ex : forall n m:nat, Le (S n) m —> P n m.
intros n m H.

dependent destruction H.
1 subgoal

This gives essentially the same result as inversion. Now if the destructed hypothesis actually appeared in the goal, the
tactic would still be able to invert it, contrary to dependent inversion. Consider the following example on vectors:

Set Implicit Arguments.

Variable A : Set.

4.5. Detailed examples of tactics 241

The Coq Reference Manual, Release 8.9.1

Inductive vector : nat -> Type :=
| vnil : vector 0
| vcons : A -> forall n, vector n -> vector (S n).

Goal forall n, forall v : vector (S n),
exists v' : vector n, exists a : A, v = vcons a v'.

intros n v.

dependent destruction v.
1 subgoal

exists (v' : vector n) (a0 : A), vcons a v = vcons a0 v'

In this case, the v variable can be replaced in the goal by the generalized hypothesis only when it has a type of the form
vector (S n), thatis only in the second case of the destruct. The first one is dismissed because S n <> 0.

A larger example

Let’s see how the technique works with induction on inductive predicates on a real example. We will develop an example
application to the theory of simply-typed lambda-calculus formalized in a dependently-typed style:

Inductive type : Type :=
| base : type
| arrow : type —> type —> type.

Notation " ¢t ——> t' " := (arrow t t') (at level 20, t' at next level).

Inductive ctx : Type :=
| empty : ctx

| snoc : ctx —-> type —> ctx.
Notation " G , tau " := (snoc G tau) (at level 20, tau at next level).
Fixpoint conc (G D : ctx) : ctx :=

match D with

| empty => G

| snoc D' x => snoc (conc G D') x
end.

Notation " G ; D " := (conc G D) (at level 20).

Inductive term : ctx -> type —-> Type :=
| ax : forall G tau, term (G, tau) tau
| weak : forall G tau,
term G tau —> forall tau', term (G, tau') tau
| abs : forall G tau tau',

term (G , tau) tau' -> term G (tau —-> tau')
| app : forall G tau tau',
term G (tau ——> tau') -> term G tau -> term G tau'.

242 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

We have defined types and contexts which are snoc-lists of types. We also have a conc operation that concatenates two
contexts. The term datatype represents in fact the possible typing derivations of the calculus, which are isomorphic to
the well-typed terms, hence the name. A term is either an application of:

* the axiom rule to type a reference to the first variable in a context

« the weakening rule to type an object in a larger context

* the abstraction or lambda rule to type a function

* the application to type an application of a function to an argument
Once we have this datatype we want to do proofs on it, like weakening:
Lemma weakening : forall G D tau, term (G ; D) tau —>

forall tau', term (G , tau' ; D) tau.

The problem here is that we can’t just use induction on the typing derivation because it will forget about the G ; D
constraint appearing in the instance. A solution would be to rewrite the goal as:

Lemma weakening' : forall G' tau, term G' tau —>
forall G D, (G ; D) = G' —>
forall tau', term (G, tau' ; D) tau.

With this proper separation of the index from the instance and the right induction loading (putting G and D after the
inducted-on hypothesis), the proof will go through, but it is a very tedious process. One is also forced to make a wrapper
lemma to get back the more natural statement. The dependent induction tactic alleviates this trouble by doing all
of this plumbing of generalizing and substituting back automatically. Indeed we can simply write:

Require Import Cog.Program.Tactics.
Require Import Cog.Program.Equality.

Lemma weakening : forall G D tau, term (G ; D) tau —>

forall tau', term (G , tau' ; D) tau.
Proof with simpl in * ; simpl_depind ; auto.
intros G D tau H.
dependent induction H generalizing G D ; intros.

This call to dependent induction has an additional arguments which is a list of variables appearing in the instance that
should be generalized in the goal, so that they can vary in the induction hypotheses. By default, all variables appearing
inside constructors (except in a parameter position) of the instantiated hypothesis will be generalized automatically but
one can always give the list explicitly.

Show.
4 subgoals

GO : ctx

tau : type

G, D : ctx

X : GO, tau = G; D

subgoal 2 is:
term ((G, tau'O); D) tau
(continues on next page)

4.5. Detailed examples of tactics 243

The Coq Reference Manual, Release 8.9.1

(continued from previous page)
subgoal 3 is:
term ((G, tau'O); D) (tau ——> tau')
subgoal 4 is:
term ((G, tau'O); D) tau'

The simpl_depind tactic includes an automatic tactic that tries to simplify equalities appearing at the beginning of
induction hypotheses, generally using trivial applications of reflexivity. In cases where the equality is not between
constructor forms though, one must help the automation by giving some arguments, using the specialize tactic for
example.

destruct D... apply weak; apply ax.
apply ax.

destruct D...

Show.
4 subgoals

GO : ctx
tau : type
H : term GO tau

tau' : type
IHterm : forall G D : ctx,
GO = G; D —> forall tau' : type, term ((G, tau'); D) tau

subgoal 2 is:

term (((G, tau'0O); D), t) tau
subgoal 3 is:
term ((G, tau'O); D) (tau ——> tau')

subgoal 4 is:
term ((G, tau'O); D) tau'

specialize (IHterm GO empty eq_refl).
4 subgoals

GO : ctx

tau : type

H : term GO tau

tau' : type

IHterm : forall tau' : type, term ((GO, tau'); empty) tau
tau'0 : type

subgoal 2 is:

term (((G, tau'0O); D), t) tau
subgoal 3 is:
term ((G, tau'O); D) (tau ——-> tau')

subgoal 4 is:
term ((G, tau'O); D) tau'

Once the induction hypothesis has been narrowed to the right equality, it can be used directly.

244 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

apply weak, IHterm.
3 subgoals

tau : type
G, D : ctx
IHterm : forall GO DO : ctx,
G; D = GO; DO —-> forall tau' : type, term ((GO, tau'); DO) tau
H : term (G; D) tau
t, tau'0 : type

subgoal 2 is:

term ((G, tau'O); D) (tau ——> tau')
subgoal 3 is:

term ((G, tau'O); D) tau'

Now concluding this subgoal is easy.

constructor; apply IHterm; reflexivity.

See also:

The induction, case,and inversion tactics.

4.5.2 autorewrite

Here are two examples of autorewrite use. The first one (Ackermann function) shows actually a quite basic use
where there is no conditional rewriting. The second one (Mac Carthy function) involves conditional rewritings and shows
how to deal with them using the optional tactic of the Hint Rewrite command.

Example: Ackermann function

Require Import Arith.
Variable Ack : nat -> nat —-> nat.

Axiom AckO : forall m:nat, Ack O m = S m.
Axiom Ackl : forall n:nat, Ack (S n) 0 = Ack n 1.
Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m).

Hint Rewrite AckO Ackl Ack2 : baseO.

Lemma ResAckO : Ack 3 2 = 29.
1 subgoal

autorewrite with base0 using try reflexivity.
No more subgoals.

Example: MacCarthy function

4.5. Detailed examples of tactics 245

The Coq Reference Manual, Release 8.9.1

Require Import Omega.
Variable g : nat -> nat -> nat.

Axiom g0 : forall m:nat, g O m = m.
Axjiom gl : forall n m:nat, (n > 0) -> (m > 100) -> gnm= g (pred n) (m - 10).
Axiom g2 : forall n m:nat, (n > 0) -> (m <= 100) -> gnm=g (S n) (m + 11).

Hint Rewrite g0 gl g2 using omega : basel.
Lemma Resg0 : g 1 110 = 100.

1 subgoal

autorewrite with basel using reflexivity || simpl.
No more subgoals.

Lemma Resgl : g 1 95 = 91.
1 subgoal

autorewrite with basel using reflexivity || simpl.
No more subgoals.

4.5.3 quote

The tactic quote allows using Barendregt’s so-called 2-level approach without writing any ML code. Suppose you have
a language L of "abstract terms’ and a type A of ‘concrete terms’ and a function £ : L -> A.If L is a simple inductive
datatype and f a simple fixpoint, quote f will replace the head of current goal by a convertible term of the form (£
t). L must have a constructor of type: A —> L.

Here is an example:

Require Import Quote.
Parameters A B C : Prop.
A is declared

B is declared
C is declared

Inductive formula : Type :=

| f_and : formula -> formula -> formula (* binary constructor *)
| f_or : formula —-> formula -> formula

| f_not : formula -> formula (* unary constructor *)

| f_true : formula (* O-ary constructor *)

|

f_const : Prop —> formula (* constructor for constants *).

(continues on next page)

246 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

(continued from previous page)
formula is defined
formula_rect is defined
formula_ind is defined
formula_rec is defined

Fixpoint interp_f (f:formula) : Prop :=

match f with
| f_and f1 f2 => interp_f f1 /\ interp_f f2
| f_or f1 f2 => interp_f f1 \/ interp_f £f2
| f_not fl1 => ~ interp_f f1
| f_true => True
| f_const ¢ => c
end.

interp_f is defined

interp_f is recursively defined (decreasing on 1st argument)

Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A).
1 subgoal

interp_f£f
(f_and (f_const A)
(f_and (f_or (f_const A) f_true)
(f_and (f_not (f_const B)) (f_const (A <-> A)))))

The algorithm to perform this inversion is: try to match the term with right-hand sides expression of £. If there is a match,
apply the corresponding left-hand side and call yourself recursively on sub- terms. If there is no match, we are at a leaf:
return the corresponding constructor (here £__const) applied to the term.

When quote is not able to perform inversion properly, it will error out with quote: not a simple fixpoint.

Introducing variables map

The normal use of quote is to make proofs by reflection: one defines a function simplify : formula
-> formula and proves a theorem simplify_ok: (f:formula) (interp_f (simplify f)) ->
(interp_£f £). Then, one can simplify formulas by doing:

quote interp_f.
apply simplify_ok.
compute.

But there is a problem with leafs: in the example above one cannot write a function that implements, for example, the
logical simplifications A A A — A or A A =A — False. This is because Prop is impredicative.

It is better to use that type of formulas:

Require Import Quote.

4.5. Detailed examples of tactics 247

The Coq Reference Manual, Release 8.9.1

Parameters A B C : Prop.

Inductive formula : Set :=
f and : formula —-> formula —-> formula

|

| f_or : formula —-> formula -> formula
| f_not : formula -> formula

| f_true : formula

| f_atom : index —-> formula.

formula is defined
formula_rect is defined
formula_ind is defined
formula_rec is defined

index is defined in module Quote. Equality on that type is decidable so we are able to simplify A A A into A at the
abstract level.

When there are variables, there are bindings, and quote also provides a type (varmap A) of bindings from index to
any set A, and a function varmap_ find to search in such maps. The interpretation function also has another argument,
a variables map:

Fixpoint interp_f (vm:varmap Prop) (f:formula) {struct f} : Prop
match f with

f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2

f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2

f_not f1 => ~ interp_f vm f1

f_true => True

|
\
|
\
| f_atom i => varmap_find True i vm
end.
interp_f is defined
interp_f is recursively defined (decreasing on 2nd argument)

quote handles this second case properly:

Goal A /\ (B \/ A) /\ (A \/ ~ B).
1 subgoal

A /N (B N/ A) /N (AN ~B)

interp_f£f
(Node_vm B (Node_vm A (Empty_vm Prop) (Empty_vm Prop)) (Empty_vm Prop))
(f_and (f_atom (Left_idx End_idx))
(f_and (f_or (f_atom End_idx) (f_atom (Left_idx End_idx)))
(f_or (f_atom (Left_idx End_idx)) (f_not (f_atom End_idx)))))

It builds vm and t such that (£ vm t) is convertible with the conclusion of current goal.

Combining variables and constants

One can have both variables and constants in abstracts terms; for example, this is the case for the ring tactic. Then one
must provide to quote a list of constructors of constants. For example, if the listis [O S] then closed natural numbers
will be considered as constants and other terms as variables.

248 Chapter 4. The proof engine

The Coq Reference Manual, Release 8.9.1

Require Import Quote.

Parameters A B C : Prop.

Inductive formula : Type :=
f and : formula -> formula —-> formula

|
| f_or : formula -> formula -> formula
| f_not : formula -> formula
| f_true : formula
| f_const : Prop —> formula (* constructor for constants *)
| f_atom : index —-> formula.
Fixpoint interp_f (vm:varmap Prop) (f:formula) {struct f} : Prop :=

match f with
| f_and f1 f2 => interp_f vm f1 /\ interp_f vm £f2
| f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
| f_not f1 => ~ interp_f vm f1
| f_true => True
| f_const ¢ => ¢
| f_atom i => varmap_find True i vm

end.
Goal A /\ (A \/ True) /\ ~ B /\ (C <-> C).

quote interp_f [A B].
1 subgoal

interp_f (Node_vm (C <-> C) (Empty_vm Prop) (Empty_vm Prop))
(f_and (f_const A)
(f_and (f_or (f_const A) f_true)
(f_and (f_not (f_const B)) (f_atom End_idx))))

Undo.

A /\ (A \/ True) /\ ~ B /\ (C <-> Q)

quote interp_f [B C iff].
1 subgoal

interp_f (Node_vm A (Empty_vm Prop) (Empty_vm Prop))
(f_and (f_atom End_idx)
(f_and (f_or (f_atom End_idx) f_true)
(f_and (f_not (f_const B)) (f_const (C <-> C)))))

Warning: Since functional inversion is undecidable in the general case, don’t expect miracles from it!

Variant: quote ident in term using tactic
tactic must be a functional tactic (starting with fun x =>) and will be called with the quoted version of term
according to ident.

4.5. Detailed examples of tactics 249

The Coq Reference Manual, Release 8.9.1

+
Variant: quote ident [ident |] in term using tactic
Same as above, but will use the additional i dent list to chose which subterms are constants (see above).

See also:
Comments from the source file plugins/quote/quote.ml
See also:

The ring tactic.

4.5.4 Using the tactic language
About the cardinality of the set of natural numbers

The first example which shows how to use pattern matching over the proof context is a proof of the fact that natural
numbers have more than two elements. This can be done as follows:

Lemma card_nat

~ exists x : nat, exists y : nat, forall z:nat, x =z \/ y = z.
Proof.

red; intros (x, (y, Hy)).

elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;
match goal with
| _: ?a=72b, _ : ?a=7?c |- _ =>

cut (b = ¢); [discriminate | transitivity a; auto |
end.

Qed.

We can notice that all the (very similar) cases coming from the three eliminations (with three distinct natural numbers)
are successfully solved by a match goal structure and, in particular, with only one pattern (use of non-linear matching).

Permutations of lists

A more complex example is the problem of permutations of lists. The aim is to show that a list is a permutation of another
list.

Section Sort.
Variable A : Set.

Inductive perm : list A -> list A -> Prop :=
| perm_refl : forall 1, perm 1 1
| perm_cons : forall a 10 11, perm 10 11 -> perm (a :: 10) (a :: 11)
| perm_append : forall a 1, perm (a :: 1) (1 ++ a :: nil)
| perm_trans : forall 10 11 12, perm 10 11 -> perm 11 12 —-> perm 10 12.

End Sort.
