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CHAPTER

ONE

INTRODUCTION

This document is the Reference Manual of the Coq proof assistant. To start using Coq, it is advised to first read a
tutorial. Links to several tutorials can be found at https://coq.inria.fr/documentation and https://github.com/coq/coq/
wiki#coq-tutorials
The Coq system is designed to develop mathematical proofs, and especially to write formal specifications, programs and
to verify that programs are correct with respect to their specifications. It provides a specification language named Gallina.
Terms of Gallina can represent programs as well as properties of these programs and proofs of these properties. Using
the so-called Curry-Howard isomorphism, programs, properties and proofs are formalized in the same language called
Calculus of Inductive Constructions, that is a 𝜆-calculus with a rich type system. All logical judgments in Coq are typing
judgments. The very heart of the Coq system is the type checking algorithm that checks the correctness of proofs, in
other words that checks that a program complies to its specification. Coq also provides an interactive proof assistant to
build proofs using specific programs called tactics.
All services of the Coq proof assistant are accessible by interpretation of a command language called the vernacular.
Coq has an interactive mode in which commands are interpreted as the user types them in from the keyboard and a
compiled mode where commands are processed from a file.

• In interactive mode, users can develop their theories and proofs step by step, and query the system for available the-
orems and definitions. The interactive mode is generally run with the help of an IDE, such as CoqIDE, documented
in Coq Integrated Development Environment, Emacs with Proof-General [Asp00]5, or jsCoq to run Coq in your
browser (see https://github.com/ejgallego/jscoq). The coqtop read-eval-print-loop can also be used directly, for
debugging purposes.

• The compiled mode acts as a proof checker taking a file containing a whole development in order to ensure its
correctness. Moreover, Coq’s compiler provides an output file containing a compact representation of its input.
The compiled mode is run with the coqc command.

See also:
The Coq commands.

1.1 How to read this book

This is a Reference Manual, so it is not intended for continuous reading. We recommend using the various indexes to
quickly locate the documentation you are looking for. There is a global index, and a number of specific indexes for tactics,
vernacular commands, and error messages and warnings. Nonetheless, the manual has some structure that is explained
below.

• The first part describes the specification language, Gallina. Chapters The Gallina specification language
and Extensions of Gallina describe the concrete syntax as well as the meaning of programs, theorems and proofs

5 Proof-General is available at https://proofgeneral.github.io/. Optionally, you can enhance it with the minor mode Company-Coq [PCC16] (see
https://github.com/cpitclaudel/company-coq).
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in the Calculus of Inductive Constructions. Chapter The Coq library describes the standard library of Coq. Chap-
ter Calculus of Inductive Constructions is a mathematical description of the formalism. Chapter The Module System
describes the module system.

• The second part describes the proof engine. It is divided in six chapters. Chapter Vernacular commands presents all
commands (we call them vernacular commands) that are not directly related to interactive proving: requests to the
environment, complete or partial evaluation, loading and compiling files. How to start and stop proofs, do multiple
proofs in parallel is explained in Chapter Proof handling. In Chapter Tactics, all commands that realize one or more
steps of the proof are presented: we call them tactics. The language to combine these tactics into complex proof
strategies is given in Chapter The tactic language. Examples of tactics are described in Chapter Detailed examples
of tactics. Finally, the SSReflect proof language is presented in Chapter The SSReflect proof language.

• The third part describes how to extend the syntax of Coq in Chapter Syntax extensions and interpretation scopes
and how to define new induction principles in Chapter Proof schemes.

• In the fourth part more practical tools are documented. First in Chapter The Coq commands, the usage of coqc
(batch mode) and coqtop (interactive mode) with their options is described. Then, in Chapter Utilities, various
utilities that come with the Coq distribution are presented. Finally, Chapter Coq Integrated Development Environ-
ment describes CoqIDE.

• The fifth part documents a number of advanced features, including coercions, canonical structures, typeclasses,
program extraction, and specialized solvers and tactics. See the table of contents for a complete list.

1.2 List of additional documentation

This manual does not contain all the documentation the user may need about Coq. Various informations can be found in
the following documents:
Installation A text file INSTALL that comes with the sources explains how to install Coq.
The Coq standard library A commented version of sources of the Coq standard library (including only the specifica-

tions, the proofs are removed) is available at https://coq.inria.fr/stdlib/.

1.3 License

This material (the Coq Reference Manual) may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub).
Options A and B are not elected.

2 Chapter 1. Introduction
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CHAPTER

TWO

CREDITS

Coq is a proof assistant for higher-order logic, allowing the development of computer programs consistent with their
formal specification. It is the result of about ten years of research of the Coq project. We shall briefly survey here three
main aspects: the logical language in which we write our axiomatizations and specifications, the proof assistant which
allows the development of verified mathematical proofs, and the program extractor which synthesizes computer programs
obeying their formal specifications, written as logical assertions in the language.
The logical language used by Coq is a variety of type theory, called the Calculus of Inductive Constructions. Without
going back to Leibniz and Boole, we can date the creation of what is now called mathematical logic to the work of Frege
and Peano at the turn of the century. The discovery of antinomies in the free use of predicates or comprehension prin-
ciples prompted Russell to restrict predicate calculus with a stratification of types. This effort culminated with Principia
Mathematica, the first systematic attempt at a formal foundation of mathematics. A simplification of this system along
the lines of simply typed 𝜆-calculus occurred with Church’s Simple Theory of Types. The 𝜆-calculus notation, originally
used for expressing functionality, could also be used as an encoding of natural deduction proofs. This Curry-Howard
isomorphism was used by N. de Bruijn in the Automath project, the first full-scale attempt to develop and mechanically
verify mathematical proofs. This effort culminated with Jutting’s verification of Landau’s Grundlagen in the 1970’s. Ex-
ploiting this Curry-Howard isomorphism, notable achievements in proof theory saw the emergence of two type-theoretic
frameworks; the first one, Martin-Löf’s Intuitionistic Theory of Types, attempts a new foundation of mathematics on con-
structive principles. The second one, Girard’s polymorphic 𝜆-calculus 𝐹𝜔, is a very strong functional system in which we
may represent higher-order logic proof structures. Combining both systems in a higher-order extension of the Automath
language, T. Coquand presented in 1985 the first version of the Calculus of Constructions, CoC. This strong logical sys-
tem allowed powerful axiomatizations, but direct inductive definitions were not possible, and inductive notions had to be
defined indirectly through functional encodings, which introduced inefficiencies and awkwardness. The formalism was
extended in 1989 by T. Coquand and C. Paulin with primitive inductive definitions, leading to the current Calculus of
Inductive Constructions. This extended formalism is not rigorously defined here. Rather, numerous concrete examples
are discussed. We refer the interested reader to relevant research papers for more information about the formalism, its
meta-theoretic properties, and semantics. However, it should not be necessary to understand this theoretical material
in order to write specifications. It is possible to understand the Calculus of Inductive Constructions at a higher level,
as a mixture of predicate calculus, inductive predicate definitions presented as typed PROLOG, and recursive function
definitions close to the language ML.
Automated theorem-proving was pioneered in the 1960’s by Davis and Putnam in propositional calculus. A complete
mechanization (in the sense of a semidecision procedure) of classical first-order logic was proposed in 1965 by J.A.
Robinson, with a single uniform inference rule called resolution. Resolution relies on solving equations in free algebras
(i.e. term structures), using the unification algorithm. Many refinements of resolution were studied in the 1970’s, but
few convincing implementations were realized, except of course that PROLOG is in some sense issued from this effort.
A less ambitious approach to proof development is computer-aided proof-checking. The most notable proof-checkers
developed in the 1970’s were LCF, designed by R. Milner and his colleagues at U. Edinburgh, specialized in proving
properties about denotational semantics recursion equations, and the Boyer and Moore theorem-prover, an automation
of primitive recursion over inductive data types. While the Boyer-Moore theorem-prover attempted to synthesize proofs
by a combination of automated methods, LCF constructed its proofs through the programming of tactics, written in a
high-level functional meta-language, ML.

3
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The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer and Moore’s, is its possibility
to extract programs from the constructive contents of proofs. This computational interpretation of proof objects, in the
tradition of Bishop’s constructive mathematics, is based on a realizability interpretation, in the sense of Kleene, due to C.
Paulin. The user must just mark his intention by separating in the logical statements the assertions stating the existence
of a computational object from the logical assertions which specify its properties, but which may be considered as just
comments in the corresponding program. Given this information, the system automatically extracts a functional term
from a consistency proof of its specifications. This functional term may be in turn compiled into an actual computer
program. This methodology of extracting programs from proofs is a revolutionary paradigm for software engineering.
Program synthesis has long been a theme of research in artificial intelligence, pioneered by R. Waldinger. The Tablog
system of Z. Manna and R. Waldinger allows the deductive synthesis of functional programs from proofs in tableau form
of their specifications, written in a variety of first-order logic. Development of a systematic programming logic, based on
extensions of Martin-Löf’s type theory, was undertaken at Cornell U. by the Nuprl team, headed by R. Constable. The
first actual program extractor, PX, was designed and implemented around 1985 by S. Hayashi from Kyoto University.
It allows the extraction of a LISP program from a proof in a logical system inspired by the logical formalisms of S.
Feferman. Interest in this methodology is growing in the theoretical computer science community. We can foresee the
day when actual computer systems used in applications will contain certified modules, automatically generated from a
consistency proof of their formal specifications. We are however still far from being able to use this methodology in a
smooth interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time systems taking
advantage of special hardware, debuggers, and the like. We hope that Coq can be of use to researchers interested in
experimenting with this new methodology.
A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its implementation language was CAML,
a functional programming language from theML family designed at INRIA in Rocquencourt. The core of this system was
a proof-checker for CoC seen as a typed 𝜆-calculus, called the Constructive Engine. This engine was operated through a
high-level notation permitting the declaration of axioms and parameters, the definition of mathematical types and objects,
and the explicit construction of proof objects encoded as 𝜆-terms. A section mechanism, designed and implemented
by G. Dowek, allowed hierarchical developments of mathematical theories. This high-level language was called the
Mathematical Vernacular. Furthermore, an interactive Theorem Prover permitted the incremental construction of proof
trees in a top-down manner, subgoaling recursively and backtracking from dead-ends. The theorem prover executed
tactics written in CAML, in the LCF fashion. A basic set of tactics was predefined, which the user could extend by his
own specific tactics. This system (Version 4.10) was released in 1989. Then, the system was extended to deal with the new
calculus with inductive types by C. Paulin, with corresponding new tactics for proofs by induction. A new standard set
of tactics was streamlined, and the vernacular extended for tactics execution. A package to compile programs extracted
from proofs to actual computer programs in CAML or some other functional language was designed and implemented by
B. Werner. A new user-interface, relying on a CAML-X interface by D. de Rauglaudre, was designed and implemented
by A. Felty. It allowed operation of the theorem-prover through the manipulation of windows, menus, mouse-sensitive
buttons, and other widgets. This system (Version 5.6) was released in 1991.
Coq was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de Rauglaudre (Version 5.7) in
1992. A new version of Coq was then coordinated by C. Murthy, with new tools designed by C. Parent to prove properties
of ML programs (this methodology is dual to program extraction) and a new user-interaction loop. This system (Version
5.8) was released in May 1993. A Centaur interface CTCoq was then developed by Y. Bertot from the Croap project
from INRIA-Sophia-Antipolis.
In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general manipulation of existential
variables consistently with dependent types in an experimental version of Coq (V5.9).
The version V5.10 of Coq is based on a generic system for manipulating terms with binding operators due to Chet Murthy.
A new proof engine allows the parallel development of partial proofs for independent subgoals. The structure of these
proof trees is a mixed representation of derivation trees for the Calculus of Inductive Constructions with abstract syntax
trees for the tactics scripts, allowing the navigation in a proof at various levels of details. The proof engine allows generic
environment items managed in an object-oriented way. This new architecture, due to C. Murthy, supports several new
facilities which make the system easier to extend and to scale up:

• User-programmable tactics are allowed
• It is possible to separately verify development modules, and to load their compiled images without verifying them

4 Chapter 2. Credits
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again - a quick relocation process allows their fast loading
• A generic parsing scheme allows user-definable notations, with a symmetric table-driven pretty-printer
• Syntactic definitions allow convenient abbreviations
• A limited facility of meta-variables allows the automatic synthesis of certain type expressions, allowing generic
notations for e.g. equality, pairing, and existential quantification.

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and families by a new structure,
allowing the mutually recursive definitions. P. Manoury implemented a translation of recursive definitions into the primi-
tive recursive style imposed by the internal recursion operators, in the style of the ProPre system. C. Muñoz implemented
a decision procedure for intuitionistic propositional logic, based on results of R. Dyckhoff. J.C. Filliâtre implemented a
decision procedure for first-order logic without contraction, based on results of J. Ketonen and R. Weyhrauch. Finally C.
Murthy implemented a library of inversion tactics, relieving the user from tedious definitions of “inversion predicates”.

Rocquencourt, Feb. 1st 1995
Gérard Huet

2.1 Credits: addendum for version 6.1

The present version 6.1 of Coq is based on the V5.10 architecture. It was ported to the new language Objective Caml by
Bruno Barras. The underlying framework has slightly changed and allows more conversions between sorts.
The new version provides powerful tools for easier developments.
Cristina Cornes designed an extension of the Coq syntax to allow definition of terms using a powerful pattern matching
analysis in the style of ML programs.
Amokrane Saïbi wrote a mechanism to simulate inheritance between types families extending a proposal by Peter Aczel.
He also developed a mechanism to automatically compute which arguments of a constant may be inferred by the system
and consequently do not need to be explicitly written.
Yann Coscoy designed a command which explains a proof term using natural language. Pierre Crégut built a new tactic
which solves problems in quantifier-free Presburger Arithmetic. Both functionalities have been integrated to the Coq
system by Hugo Herbelin.
Samuel Boutin designed a tactic for simplification of commutative rings using a canonical set of rewriting rules and equality
modulo associativity and commutativity.
Finally the organisation of the Coq distribution has been supervised by Jean-Christophe Filliâtre with the help of Judicaël
Courant and Bruno Barras.

Lyon, Nov. 18th 1996
Christine Paulin

2.2 Credits: addendum for version 6.2

In version 6.2 of Coq, the parsing is done using camlp4, a preprocessor and pretty-printer for CAML designed by Daniel
de Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation of Coq for camlp4, this work was continued by

2.1. Credits: addendum for version 6.1 5
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Bruno Barras who also changed the structure of Coq abstract syntax trees and the primitives to manipulate them. The
result of these changes is a faster parsing procedure with greatly improved syntax-error messages. The user-interface to
introduce grammar or pretty-printing rules has also changed.
Eduardo Giménez redesigned the internal tactic libraries, giving uniform names to Caml functions corresponding to Coq
tactic names.
Bruno Barras wrote new, more efficient reduction functions.
Hugo Herbelin introduced more uniform notations in the Coq specification language: the definitions by fixpoints and
pattern matching have a more readable syntax. Patrick Loiseleur introduced user-friendly notations for arithmetic expres-
sions.
New tactics were introduced: Eduardo Giménez improved the mechanism to introduce macros for tactics, and designed
special tactics for (co)inductive definitions; Patrick Loiseleur designed a tactic to simplify polynomial expressions in
an arbitrary commutative ring which generalizes the previous tactic implemented by Samuel Boutin. Jean-Christophe
Filliâtre introduced a tactic for refining a goal, using a proof term with holes as a proof scheme.
David Delahaye designed the tool to search an object in the library given its type (up to isomorphism).
Henri Laulhère produced the Coq distribution for the Windows environment.
Finally, Hugo Herbelin was the main coordinator of the Coq documentation with principal contributions by Bruno Barras,
David Delahaye, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin and Patrick Loiseleur.

Orsay, May 4th 1998
Christine Paulin

2.3 Credits: addendum for version 6.3

The main changes in version V6.3 were the introduction of a few new tactics and the extension of the guard condition for
fixpoint definitions.
B. Barras extended the unification algorithm to complete partial terms and fixed various tricky bugs related to universes.
D. Delahaye developed the AutoRewrite tactic. He also designed the new behavior of Intro and provided the
tacticals First and Solve.
J.-C. Filliâtre developed the Correctness tactic.
E. Giménez extended the guard condition in fixpoints.
H. Herbelin designed the new syntax for definitions and extended the Induction tactic.
P. Loiseleur developed the Quote tactic and the new design of the Auto tactic, he also introduced the index of errors
in the documentation.
C. Paulin wrote the Focus command and introduced the reduction functions in definitions, this last feature was proposed
by J.-F. Monin from CNET Lannion.

Orsay, Dec. 1999
Christine Paulin
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2.4 Credits: versions 7

The version V7 is a new implementation started in September 1999 by Jean-Christophe Filliâtre. This is a major revision
with respect to the internal architecture of the system. The Coq version 7.0 was distributed in March 2001, version 7.1
in September 2001, version 7.2 in January 2002, version 7.3 in May 2002 and version 7.4 in February 2003.
Jean-Christophe Filliâtre designed the architecture of the new system. He introduced a new representation for environ-
ments and wrote a new kernel for type checking terms. His approach was to use functional data-structures in order to get
more sharing, to prepare the addition of modules and also to get closer to a certified kernel.
Hugo Herbelin introduced a new structure of terms with local definitions. He introduced “qualified” names, wrote a new
pattern matching compilation algorithm and designed a more compact algorithm for checking the logical consistency of
universes. He contributed to the simplification of Coq internal structures and the optimisation of the system. He added
basic tactics for forward reasoning and coercions in patterns.
David Delahaye introduced a new language for tactics. General tactics using pattern matching on goals and context can
directly be written from the Coq toplevel. He also provided primitives for the design of user-defined tactics in Caml.
Micaela Mayero contributed the library on real numbers. Olivier Desmettre extended this library with axiomatic trigono-
metric functions, square, square roots, finite sums, Chasles property and basic plane geometry.
Jean-Christophe Filliâtre and Pierre Letouzey redesigned a new extraction procedure from Coq terms to Caml or Haskell
programs. This new extraction procedure, unlike the one implemented in previous version of Coq is able to handle all
terms in the Calculus of Inductive Constructions, even involving universes and strong elimination. P. Letouzey adapted
user contributions to extract ML programs when it was sensible. Jean-Christophe Filliâtre wrote coqdoc, a documenta-
tion tool for Coq libraries usable from version 7.2.
Bruno Barras improved the efficiency of the reduction algorithm and the confidence level in the correctness of Coq critical
type checking algorithm.
Yves Bertot designed the SearchPattern and SearchRewrite tools and the support for the pcoq interface (http:
//www-sop.inria.fr/lemme/pcoq/).
Micaela Mayero and David Delahaye introduced Field, a decision tactic for commutative fields.
Christine Paulin changed the elimination rules for empty and singleton propositional inductive types.
Loïc Pottier developed Fourier, a tactic solving linear inequalities on real numbers.
Pierre Crégut developed a new, reflection-based version of the Omega decision procedure.
Claudio Sacerdoti Coen designed an XML output for the Coq modules to be used in the Hypertextual Electronic Library
of Mathematics (HELM cf http://www.cs.unibo.it/helm).
A library for efficient representation of finite maps using binary trees contributed by Jean Goubault was integrated in the
basic theories.
Pierre Courtieu developed a command and a tactic to reason on the inductive structure of recursively defined functions.
Jacek Chrząszcz designed and implemented the module system of Coq whose foundations are in Judicaël Courant’s PhD
thesis.
The development was coordinated by C. Paulin.
Many discussions within the Démons team and the LogiCal project influenced significantly the design of Coq especially
with J. Courant, J. Duprat, J. Goubault, A. Miquel, C. Marché, B. Monate and B. Werner.
Intensive users suggested improvements of the system : Y. Bertot, L. Pottier, L. Théry, P. Zimmerman from INRIA, C.
Alvarado, P. Crégut, J.-F. Monin from France Telecom R & D.

Orsay, May. 2002
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2.5 Credits: version 8.0

Coq version 8 is a major revision of the Coq proof assistant. First, the underlying logic is slightly different. The so-called
impredicativity of the sort Set has been dropped. The main reason is that it is inconsistent with the principle of description
which is quite a useful principle for formalizing mathematics within classical logic. Moreover, even in an constructive
setting, the impredicativity of Set does not add so much in practice and is even subject of criticism from a large part of the
intuitionistic mathematician community. Nevertheless, the impredicativity of Set remains optional for users interested in
investigating mathematical developments which rely on it.
Secondly, the concrete syntax of terms has been completely revised. The main motivations were

• a more uniform, purified style: all constructions are now lowercase, with a functional programming perfume (e.g.
abstraction is now written fun), and more directly accessible to the novice (e.g. dependent product is now written
forall and allows omission of types). Also, parentheses are no longer mandatory for function application.

• extensibility: some standard notations (e.g. “<” and “>”) were incompatible with the previous syntax. Now all
standard arithmetic notations (=, +, *, /, <, <=, ... and more) are directly part of the syntax.

Together with the revision of the concrete syntax, a new mechanism of interpretation scopes permits to reuse the same
symbols (typically +, -, *, /, <, <=) in various mathematical theories without any ambiguities for Coq, leading to a largely
improved readability of Coq scripts. New commands to easily add new symbols are also provided.
Coming with the new syntax of terms, a slight reform of the tactic language and of the language of commands has been
carried out. The purpose here is a better uniformity making the tactics and commands easier to use and to remember.
Thirdly, a restructuring and uniformization of the standard library of Coq has been performed. There is now just one
Leibniz equality usable for all the different kinds of Coq objects. Also, the set of real numbers now lies at the same level
as the sets of natural and integer numbers. Finally, the names of the standard properties of numbers now follow a standard
pattern and the symbolic notations for the standard definitions as well.
The fourth point is the release of CoqIDE, a new graphical gtk2-based interface fully integrated with Coq. Close in
style to the Proof General Emacs interface, it is faster and its integration with Coq makes interactive developments more
friendly. All mathematical Unicode symbols are usable within CoqIDE.
Finally, the module system of Coq completes the picture of Coq version 8.0. Though released with an experimental status
in the previous version 7.4, it should be considered as a salient feature of the new version.
Besides, Coq comes with its load of novelties and improvements: new or improved tactics (including a new tactic for
solving first-order statements), new management commands, extended libraries.
Bruno Barras and Hugo Herbelin have been the main contributors of the reflection and the implementation of the new
syntax. The smart automatic translator from old to new syntax released with Coq is also their work with contributions by
Olivier Desmettre.
Hugo Herbelin is the main designer and implementer of the notion of interpretation scopes and of the commands for
easily adding new notations.
Hugo Herbelin is the main implementer of the restructured standard library.
Pierre Corbineau is the main designer and implementer of the new tactic for solving first-order statements in presence of
inductive types. He is also the maintainer of the non-domain specific automation tactics.
Benjamin Monate is the developer of the CoqIDE graphical interface with contributions by Jean-Christophe Filliâtre,
Pierre Letouzey, Claude Marché and Bruno Barras.
Claude Marché coordinated the edition of the Reference Manual for Coq V8.0.
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Pierre Letouzey and Jacek Chrząszcz respectively maintained the extraction tool and module system of Coq.
Jean-Christophe Filliâtre, Pierre Letouzey, Hugo Herbelin and other contributors from Sophia-Antipolis and Nijmegen
participated in extending the library.
Julien Narboux built a NSIS-based automatic Coq installation tool for the Windows platform.
Hugo Herbelin and Christine Paulin coordinated the development which was under the responsibility of Christine Paulin.

Palaiseau & Orsay, Apr. 2004
Hugo Herbelin & Christine Paulin
(updated Apr. 2006)

2.6 Credits: version 8.1

Coq version 8.1 adds various new functionalities.
Benjamin Grégoire implemented an alternative algorithm to check the convertibility of terms in the Coq type checker.
This alternative algorithm works by compilation to an efficient bytecode that is interpreted in an abstract machine similar
to Xavier Leroy’s ZINCmachine. Convertibility is performed by comparing the normal forms. This alternative algorithm
is specifically interesting for proofs by reflection. More generally, it is convenient in case of intensive computations.
Christine Paulin implemented an extension of inductive types allowing recursively non uniform parameters. Hugo Her-
belin implemented sort-polymorphism for inductive types (now called template polymorphism).
Claudio Sacerdoti Coen improved the tactics for rewriting on arbitrary compatible equivalence relations. He also gener-
alized rewriting to arbitrary transition systems.
Claudio Sacerdoti Coen added new features to the module system.
Benjamin Grégoire, Assia Mahboubi and Bruno Barras developed a new, more efficient and more general simplification
algorithm for rings and semirings.
Laurent Théry and Bruno Barras developed a new, significantly more efficient simplification algorithm for fields.
Hugo Herbelin, Pierre Letouzey, Julien Forest, Julien Narboux and Claudio Sacerdoti Coen added new tactic features.
Hugo Herbelin implemented matching on disjunctive patterns.
New mechanisms made easier the communication between Coq and external provers. Nicolas Ayache and Jean-
Christophe Filliâtre implemented connections with the provers cvcl, Simplify and zenon. Hugo Herbelin implemented an
experimental protocol for calling external tools from the tactic language.
Matthieu Sozeau developed Russell, an experimental language to specify the behavior of programs with subtypes.
A mechanism to automatically use some specific tactic to solve unresolved implicit has been implemented by Hugo Her-
belin.
Laurent Théry’s contribution on strings and Pierre Letouzey and Jean-Christophe Filliâtre’s contribution on finite maps
have been integrated to the Coq standard library. Pierre Letouzey developed a library about finite sets “à la Objective
Caml”. With Jean-Marc Notin, he extended the library on lists. Pierre Letouzey’s contribution on rational numbers has
been integrated and extended.
Pierre Corbineau extended his tactic for solving first-order statements. He wrote a reflection-based intuitionistic tautology
solver.
Pierre Courtieu, Julien Forest and Yves Bertot added extra support to reason on the inductive structure of recursively
defined functions.
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Jean-Marc Notin significantly contributed to the general maintenance of the system. He also took care of coqdoc.
Pierre Castéran contributed to the documentation of (co-)inductive types and suggested improvements to the libraries.
Pierre Corbineau implemented a declarative mathematical proof language, usable in combination with the tactic-based
style of proof.
Finally, many users suggested improvements of the system through the Coq-Club mailing list and bug-tracker systems,
especially user groups from INRIA Rocquencourt, Radboud University, University of Pennsylvania and Yale University.

Palaiseau, July 2006
Hugo Herbelin

2.7 Credits: version 8.2

Coq version 8.2 adds new features, new libraries and improves on many various aspects.
Regarding the language of Coq, the main novelty is the introduction by Matthieu Sozeau of a package of commands
providing Haskell-style typeclasses. Typeclasses, which comewith a few convenient features such as type-based resolution
of implicit arguments, play a new landmark role in the architecture of Coqwith respect to automation. For instance, thanks
to typeclass support, Matthieu Sozeau could implement a new resolution-based version of the tactics dedicated to rewriting
on arbitrary transitive relations.
Another major improvement of Coq 8.2 is the evolution of the arithmetic libraries and of the tools associated to them.
Benjamin Grégoire and Laurent Théry contributed a modular library for building arbitrarily large integers from bounded
integers while Evgeny Makarov contributed a modular library of abstract natural and integer arithmetic together with a
few convenient tactics. On his side, Pierre Letouzey made numerous extensions to the arithmetic libraries on ℤ and ℚ,
including extra support for automation in presence of various number-theory concepts.
Frédéric Besson contributed a reflective tactic based on Krivine-Stengle Positivstellensatz (the easy way) for validating
provability of systems of inequalities. The platform is flexible enough to support the validation of any algorithm able to
produce a “certificate” for the Positivstellensatz and this covers the case of Fourier-Motzkin (for linear systems in ℚ and
ℝ), Fourier-Motzkin with cutting planes (for linear systems in ℤ) and sum-of-squares (for non-linear systems). Evgeny
Makarov made the platform generic over arbitrary ordered rings.
Arnaud Spiwack developed a library of 31-bits machine integers and, relying on Benjamin Grégoire and Laurent Théry’s
library, delivered a library of unbounded integers in base 231. As importantly, he developed a notion of “retro-knowledge”
so as to safely extend the kernel-located bytecode-based efficient evaluation algorithm of Coq version 8.1 to use 31-bits
machine arithmetic for efficiently computing with the library of integers he developed.
Beside the libraries, various improvements were contributed to provide a more comfortable end-user language and more
expressive tactic language. Hugo Herbelin and Matthieu Sozeau improved the pattern matching compilation algorithm
(detection of impossible clauses in pattern matching, automatic inference of the return type). Hugo Herbelin, Pierre
Letouzey and Matthieu Sozeau contributed various new convenient syntactic constructs and new tactics or tactic features:
more inference of redundant information, better unification, better support for proof or definition by fixpoint, more
expressive rewriting tactics, better support for meta-variables, more convenient notations...
Élie Soubiran improved the module system, adding new features (such as an “include” command) and making it more
flexible and more general. He and Pierre Letouzey improved the support for modules in the extraction mechanism.
Matthieu Sozeau extended the Russell language, ending in an convenient way to write programs of given specifications,
Pierre Corbineau extended theMathematical Proof Language and the automation tools that accompany it, Pierre Letouzey
supervised and extended various parts of the standard library, Stéphane Glondu contributed a few tactics and improve-
ments, Jean-Marc Notin provided help in debugging, general maintenance and coqdoc support, Vincent Siles contributed
extensions of the Scheme command and of injection.
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Bruno Barras implemented the coqchk tool: this is a stand-alone type checker that can be used to certify .vo files.
Especially, as this verifier runs in a separate process, it is granted not to be “hijacked” by virtually malicious extensions
added to Coq.
Yves Bertot, Jean-Christophe Filliâtre, Pierre Courtieu and Julien Forest acted as maintainers of features they imple-
mented in previous versions of Coq.
Julien Narboux contributed to CoqIDE. Nicolas Tabareau made the adaptation of the interface of the old “setoid rewrite”
tactic to the new version. Lionel Mamane worked on the interaction between Coq and its external interfaces. With Samuel
Mimram, he also helped making Coq compatible with recent software tools. Russell O’Connor, Cezary Kaliszyk, Milad
Niqui contributed to improve the libraries of integers, rational, and real numbers. We also thank many users and partners
for suggestions and feedback, in particular Pierre Castéran and Arthur Charguéraud, the INRIA Marelle team, Georges
Gonthier and the INRIA-Microsoft Mathematical Components team, the Foundations group at Radboud university in
Nijmegen, reporters of bugs and participants to the Coq-Club mailing list.

Palaiseau, June 2008
Hugo Herbelin

2.8 Credits: version 8.3

Coq version 8.3 is before all a transition version with refinements or extensions of the existing features and libraries and
a new tactic nsatz based on Hilbert’s Nullstellensatz for deciding systems of equations over rings.
With respect to libraries, the main evolutions are due to Pierre Letouzey with a rewriting of the library of finite sets FSets
and a new round of evolutions in the modular development of arithmetic (library Numbers). The reason for making
FSets evolve is that the computational and logical contents were quite intertwined in the original implementation, leading
in some cases to longer computations than expected and this problem is solved in the new MSets implementation. As
for the modular arithmetic library, it was only dealing with the basic arithmetic operators in the former version and its
current extension adds the standard theory of the division, min and max functions, all made available for free to any
implementation of ℕ, ℤ or ℤ/𝑛ℤ.
The main other evolutions of the library are due to Hugo Herbelin who made a revision of the sorting library (including
a certified merge-sort) and to Guillaume Melquiond who slightly revised and cleaned up the library of reals.
The module system evolved significantly. Besides the resolution of some efficiency issues and a more flexible construction
of module types, Élie Soubiran brought a new model of name equivalence, the Δ-equivalence, which respects as much as
possible the names given by the users. He also designed with Pierre Letouzey a new, convenient operator <+ for nesting
functor application that provides a light notation for inheriting the properties of cascading modules.
The new tactic nsatz is due to Loïc Pottier. It works by computing Gröbner bases. Regarding the existing tactics, various
improvements have been done by Matthieu Sozeau, Hugo Herbelin and Pierre Letouzey.
Matthieu Sozeau extended and refined the typeclasses and Program features (the Russell language). Pierre Letouzey
maintained and improved the extraction mechanism. Bruno Barras and Élie Soubiran maintained the Coq checker, Julien
Forest maintained the Function mechanism for reasoning over recursively defined functions. Matthieu Sozeau, Hugo
Herbelin and Jean-Marc Notin maintained coqdoc. Frédéric Besson maintained the Micromega platform for deciding
systems of inequalities. Pierre Courtieu maintained the support for the Proof General Emacs interface. Claude Marché
maintained the plugin for calling external provers (dp). Yves Bertot made some improvements to the libraries of lists and
integers. Matthias Puech improved the search functions. GuillaumeMelquiond usefully contributed here and there. Yann
Régis-Gianas grounded the support for Unicode on a more standard and more robust basis.
Though invisible from outside, Arnaud Spiwack improved the general process of management of existential variables.
Pierre Letouzey and Stéphane Glondu improved the compilation scheme of the Coq archive. Vincent Gross provided
support to CoqIDE. Jean-Marc Notin provided support for benchmarking and archiving.
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Many users helped by reporting problems, providing patches, suggesting improvements or making useful comments, either
on the bug tracker or on the Coq-Club mailing list. This includes but not exhaustively Cédric Auger, Arthur Charguéraud,
François Garillot, Georges Gonthier, Robin Green, Stéphane Lescuyer, Eelis van der Weegen, ...
Though not directly related to the implementation, special thanks are going to Yves Bertot, Pierre Castéran, Adam Chli-
pala, and Benjamin Pierce for the excellent teaching materials they provided.

Paris, April 2010
Hugo Herbelin

2.9 Credits: version 8.4

Coq version 8.4 contains the result of three long-term projects: a new modular library of arithmetic by Pierre Letouzey,
a new proof engine by Arnaud Spiwack and a new communication protocol for CoqIDE by Vincent Gross.
The new modular library of arithmetic extends, generalizes and unifies the existing libraries on Peano arithmetic (types
nat, N and BigN), positive arithmetic (type positive), integer arithmetic (Z and BigZ) and machine word arithmetic (type
Int31). It provides with unified notations (e.g. systematic use of add and mul for denoting the addition and multiplication
operators), systematic and generic development of operators and properties of these operators for all the types mentioned
above, including gcd, pcm, power, square root, base 2 logarithm, division, modulo, bitwise operations, logical shifts,
comparisons, iterators, ...
The most visible feature of the new proof engine is the support for structured scripts (bullets and proof brackets) but, even
if yet not user-available, the new engine also provides the basis for refining existential variables using tactics, for applying
tactics to several goals simultaneously, for reordering goals, all features which are planned for the next release. The new
proof engine forced Pierre Letouzey to reimplement info and Show Script differently.
Before version 8.4, CoqIDE was linked to Coq with the graphical interface living in a separate thread. From version
8.4, CoqIDE is a separate process communicating with Coq through a textual channel. This allows for a more robust
interfacing, the ability to interrupt Coq without interrupting the interface, and the ability to manage several sessions in
parallel. Relying on the infrastructure work made by Vincent Gross, Pierre Letouzey, Pierre Boutillier and Pierre-Marie
Pédrot contributed many various refinements of CoqIDE.
Coq 8.4 also comes with a bunch of various smaller-scale changes and improvements regarding the different components
of the system.
The underlying logic has been extended with 𝜂-conversion thanks to Hugo Herbelin, Stéphane Glondu and Benjamin
Grégoire. The addition of 𝜂-conversion is justified by the confidence that the formulation of the Calculus of Inductive
Constructions based on typed equality (such as the one considered in Lee and Werner to build a set-theoretic model of
CIC [LW11]) is applicable to the concrete implementation of Coq.
The underlying logic benefited also from a refinement of the guard condition for fixpoints by Pierre Boutillier, the point
being that it is safe to propagate the information about structurally smaller arguments through 𝛽-redexes that are blocked
by the “match” construction (blocked commutative cuts).
Relying on the added permissiveness of the guard condition, HugoHerbelin could extend the patternmatching compilation
algorithm so that matching over a sequence of terms involving dependencies of a term or of the indices of the type of a
term in the type of other terms is systematically supported.
Regarding the high-level specification language, Pierre Boutillier introduced the ability to give implicit arguments to
anonymous functions, Hugo Herbelin introduced the ability to define notations with several binders (e.g. exists x y
z, P), Matthieu Sozeau made the typeclass inference mechanism more robust and predictable, Enrico Tassi introduced
a command Arguments that generalizes Implicit Arguments and Arguments Scope for assigning various properties to
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arguments of constants. Various improvements in the type inference algorithm were provided by Matthieu Sozeau and
Hugo Herbelin with contributions from Enrico Tassi.
Regarding tactics, Hugo Herbelin introduced support for referring to expressions occurring in the goal by pattern in tactics
such as set or destruct. Hugo Herbelin also relied on ideas from Chung-Kil Hur’s Heq plugin to introduce automatic
computation of occurrences to generalize when using destruct and induction on types with indices. Stéphane Glondu
introduced new tactics constr_eq, is_evar, and has_evar, to be used when writing complex tactics. Enrico
Tassi added support to fine-tuning the behavior of simpl. Enrico Tassi added the ability to specify over which variables
of a section a lemma has to be exactly generalized. Pierre Letouzey added a tactic timeout and the interruptibility of
vm_compute. Bug fixes and miscellaneous improvements of the tactic language came from Hugo Herbelin, Pierre
Letouzey and Matthieu Sozeau.
Regarding decision tactics, Loïc Pottier maintained nsatz, moving in particular to a typeclass based reification of goals
while Frédéric Besson maintained Micromega, adding in particular support for division.
Regarding vernacular commands, Stéphane Glondu provided new commands to analyze the structure of type universes.
Regarding libraries, a new library about lists of a given length (called vectors) has been provided by Pierre Boutillier. A
new instance of finite sets based on Red-Black trees and provided by Andrew Appel has been adapted for the standard
library by Pierre Letouzey. In the library of real analysis, Yves Bertot changed the definition of 𝜋 and provided a proof
of the long-standing fact yet remaining unproved in this library, namely that 𝑠𝑖𝑛 𝜋

2 = 1.
Pierre Corbineau maintained the Mathematical Proof Language (C-zar).
Bruno Barras and Benjamin Grégoire maintained the call-by-value reduction machines.
The extraction mechanism benefited from several improvements provided by Pierre Letouzey.
Pierre Letouzey maintained the module system, with contributions from Élie Soubiran.
Julien Forest maintained the Function command.
Matthieu Sozeau maintained the setoid rewriting mechanism.
Coq related tools have been upgraded too. In particular, coq_makefile has been largely revised by Pierre Boutillier. Also,
patches from Adam Chlipala for coqdoc have been integrated by Pierre Boutillier.
Bruno Barras and Pierre Letouzey maintained the coqchk checker.
Pierre Courtieu and Arnaud Spiwack contributed new features for using Coq through Proof General.
The Dp plugin has been removed. Use the plugin provided with Why 3 instead (http://why3.lri.fr/).
Under the hood, the Coq architecture benefited from improvements in terms of efficiency and robustness, especially
regarding universes management and existential variables management, thanks to Pierre Letouzey and Yann Régis-Gianas
with contributions from Stéphane Glondu and Matthias Puech. The build system is maintained by Pierre Letouzey with
contributions from Stéphane Glondu and Pierre Boutillier.
A new backtracking mechanism simplifying the task of external interfaces has been designed by Pierre Letouzey.
The general maintenance was done by Pierre Letouzey, Hugo Herbelin, Pierre Boutillier, Matthieu Sozeau and Stéphane
Glondu with also specific contributions from Guillaume Melquiond, Julien Narboux and Pierre-Marie Pédrot.
Packaging tools were provided by Pierre Letouzey (Windows), Pierre Boutillier (MacOS), Stéphane Glondu (Debian).
Releasing, testing and benchmarking support was provided by Jean-Marc Notin.
Many suggestions for improvements were motivated by feedback from users, on either the bug tracker or the Coq-Club
mailing list. Special thanks are going to the users who contributed patches, starting with Tom Prince. Other patch
contributors include Cédric Auger, David Baelde, Dan Grayson, Paolo Herms, Robbert Krebbers, Marc Lasson, Hendrik
Tews and Eelis van der Weegen.

Paris, December 2011
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Hugo Herbelin

2.10 Credits: version 8.5

Coq version 8.5 contains the result of five specific long-term projects:
• A new asynchronous evaluation and compilation mode by Enrico Tassi with help from Bruno Barras and Carst
Tankink.

• Full integration of the new proof engine by Arnaud Spiwack helped by Pierre-Marie Pédrot,
• Addition of conversion and reduction based on native compilation by Maxime Dénès and Benjamin Grégoire.
• Full universe polymorphism for definitions and inductive types by Matthieu Sozeau.
• An implementation of primitive projections with 𝜂-conversion bringing significant performance improvements
when using records by Matthieu Sozeau.

The full integration of the proof engine, by Arnaud Spiwack and Pierre-Marie Pédrot, brings to primitive tactics and
the user level Ltac language dependent subgoals, deep backtracking and multiple goal handling, along with miscellaneous
features and an improved potential for future modifications. Dependent subgoals allow statements in a goal to mention the
proof of another. Proofs of unsolved subgoals appear as existential variables. Primitive backtracking makes it possible to
write a tactic with several possible outcomes which are tried successively when subsequent tactics fail. Primitives are also
available to control the backtracking behavior of tactics. Multiple goal handling paves the way for smarter automation
tactics. It is currently used for simple goal manipulation such as goal reordering.
The way Coq processes a document in batch and interactive mode has been redesigned by Enrico Tassi with help from
Bruno Barras. Opaque proofs, the text between Proof andQed, can be processed asynchronously, decoupling the checking
of definitions and statements from the checking of proofs. It improves the responsiveness of interactive development,
since proofs can be processed in the background. Similarly, compilation of a file can be split into two phases: the first one
checking only definitions and statements and the second one checking proofs. A file resulting from the first phase – with
the .vio extension – can be already Required. All .vio files can be turned into complete .vo files in parallel. The same
infrastructure also allows terminating tactics to be run in parallel on a set of goals via the par: goal selector.
CoqIDE was modified to cope with asynchronous checking of the document. Its source code was also made separate
from that of Coq, so that CoqIDE no longer has a special status among user interfaces, paving the way for decoupling its
release cycle from that of Coq in the future.
Carst Tankink developed a Coq back-end for user interfaces built on Makarius Wenzel’s Prover IDE framework (PIDE),
like PIDE/jEdit (with help from Makarius Wenzel) or PIDE/Coqoon (with help from Alexander Faithfull and Jesper
Bengtson). The development of such features was funded by the Paral-ITP French ANR project.
The full universe polymorphism extension was designed by Matthieu Sozeau. It conservatively extends the universes
system and core calculus with definitions and inductive declarations parameterized by universes and constraints. It is
based on a modification of the kernel architecture to handle constraint checking only, leaving the generation of constraints
to the refinement/type inference engine. Accordingly, tactics are now fully universe aware, resulting in more localized
error messages in case of inconsistencies and allowing higher-level algorithms like unification to be entirely type safe. The
internal representation of universes has been modified but this is invisible to the user.
The underlying logic has been extended with 𝜂-conversion for records defined with primitive projections by Matthieu
Sozeau. This additional form of 𝜂-conversion is justified using the same principle than the previously added 𝜂-conversion
for function types, based on formulations of the Calculus of Inductive Constructions with typed equality. Primitive
projections, which do not carry the parameters of the record and are rigid names (not defined as a pattern matching
construct), make working with nested records more manageable in terms of time and space consumption. This extension
and universe polymorphism were carried out partly while Matthieu Sozeau was working at the IAS in Princeton.
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The guard condition has been made compliant with extensional equality principles such as propositional extensionality
and univalence, thanks to Maxime Dénès and Bruno Barras. To ensure compatibility with the univalence axiom, a new
flag -indices-matter has been implemented, taking into account the universe levels of indices when computing the
levels of inductive types. This supports using Coq as a tool to explore the relations between homotopy theory and type
theory.
Maxime Dénès and Benjamin Grégoire developed an implementation of conversion test and normal form computation
using the OCaml native compiler. It complements the virtual machine conversion offering much faster computation for
expensive functions.
Coq 8.5 also comes with a bunch of many various smaller-scale changes and improvements regarding the different com-
ponents of the system. We shall only list a few of them.
Pierre Boutillier developed an improved tactic for simplification of expressions called cbn.
MaximeDénès maintained the bytecode-based reductionmachine. Pierre Letouzeymaintained the extraction mechanism.
Pierre-Marie Pédrot has extended the syntax of terms to, experimentally, allow holes in terms to be solved by a locally
specified tactic.
Existential variables are referred to by identifiers rather than mere numbers, thanks to Hugo Herbelin who also improved
the tactic language here and there.
Error messages for universe inconsistencies have been improved by Matthieu Sozeau. Error messages for unification and
type inference failures have been improved by Hugo Herbelin, Pierre-Marie Pédrot and Arnaud Spiwack.
Pierre Courtieu contributed new features for using Coq through Proof General and for better interactive experience
(bullets, Search, etc).
The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot.
A distribution channel for Coq packages using the OPAM tool has been initiated by Thomas Braibant and developed by
Guillaume Claret, with contributions by Enrico Tassi and feedback from Hugo Herbelin.
Packaging tools were provided by Pierre Letouzey and Enrico Tassi (Windows), Pierre Boutillier, Matthieu Sozeau and
Maxime Dénès (MacOS X). Maxime Dénès improved significantly the testing and benchmarking support.
Many power users helped to improve the design of the new features via the bug tracker, the coq development mailing list
or the Coq-Club mailing list. Special thanks are going to the users who contributed patches and intensive brain-storming,
starting with Jason Gross, Jonathan Leivent, Greg Malecha, Clément Pit-Claudel, Marc Lasson, Lionel Rieg. It would
however be impossible to mention with precision all names of people who to some extent influenced the development.
Version 8.5 is one of the most important releases of Coq. Its development spanned over about 3 years and a half with
about one year of beta-testing. General maintenance during part or whole of this period has been done by Pierre Boutillier,
Pierre Courtieu, Maxime Dénès, Hugo Herbelin, Pierre Letouzey, Guillaume Melquiond, Pierre-Marie Pédrot, Matthieu
Sozeau, Arnaud Spiwack, Enrico Tassi as well as Bruno Barras, Yves Bertot, Frédéric Besson, Xavier Clerc, Pierre
Corbineau, Jean-Christophe Filliâtre, Julien Forest, Sébastien Hinderer, Assia Mahboubi, Jean-Marc Notin, Yann Régis-
Gianas, François Ripault, Carst Tankink. Maxime Dénès coordinated the release process.

Paris, January 2015, revised December 2015,
Hugo Herbelin, Matthieu Sozeau and the Coq development team

2.11 Credits: version 8.6

Coq version 8.6 contains the result of refinements, stabilization of 8.5’s features and cleanups of the internals of the system.
Over the year of (now time-based) development, about 450 bugs were resolved and over 100 contributions integrated. The
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main user visible changes are:
• A new, faster state-of-the-art universe constraint checker, by Jacques-Henri Jourdan.
• In CoqIDE and other asynchronous interfaces, more fine-grained asynchronous processing and error reporting by
Enrico Tassi, making Coq capable of recovering from errors and continue processing the document.

• More access to the proof engine features from Ltac: goal management primitives, range selectors and a
typeclasses eauto engine handling multiple goals and multiple successes, by Cyprien Mangin, Matthieu
Sozeau and Arnaud Spiwack.

• Tactic behavior uniformization and specification, generalization of intro-patterns by Hugo Herbelin and others.
• A brand new warning system allowing to control warnings, turn them into errors or ignore them selectively by
Maxime Dénès, Guillaume Melquiond, Pierre-Marie Pédrot and others.

• Irrefutable patterns in abstractions, by Daniel de Rauglaudre.
• The ssreflect subterm selection algorithm by Georges Gonthier and Enrico Tassi is now accessible to tactic writers
through the ssrmatching plugin.

• Integration of LtacProf, a profiler for Ltac by Jason Gross, Paul Steckler, Enrico Tassi and Tobias Tebbi.
Coq 8.6 also comes with a bunch of smaller-scale changes and improvements regarding the different components of the
system. We shall only list a few of them.
The iota reduction flag is now a shorthand for match, fix and cofix flags controlling the corresponding reduction rules (by
Hugo Herbelin and Maxime Dénès).
Maxime Dénès maintained the native compilation machinery.
Pierre-Marie Pédrot separated the Ltac code from general purpose tactics, and generalized and rationalized the handling
of generic arguments, allowing to create new versions of Ltac more easily in the future.
In patterns and terms, @, abbreviations and notations are now interpreted the same way, by Hugo Herbelin.
Name handling for universes has been improved by Pierre-Marie Pédrot and Matthieu Sozeau. The minimization algo-
rithm has been improved by Matthieu Sozeau.
The unifier has been improved by Hugo Herbelin and Matthieu Sozeau, fixing some incompatibilities introduced in Coq
8.5. Unification constraints can now be left floating around and be seen by the user thanks to a new option. The Keyed
Unification mode has been improved by Matthieu Sozeau.
The typeclass resolution engine and associated proof-search tactic have been reimplemented on top of the proof-engine
monad, providing better integration in tactics, and new options have been introduced to control it, by Matthieu Sozeau
with help from Théo Zimmermann.
The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot,
Maxime Dénès and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.
Standard library improvements by Jason Gross, Sébastien Hinderer, Pierre Letouzey and others.
Emilio Jesús Gallego Arias contributed many cleanups and refactorings of the pretty-printing and user interface commu-
nication components.
Frédéric Besson maintained the micromega tactic.
The OPAM repository for Coq packages has been maintained by Guillaume Claret, Guillaume Melquiond, Matthieu
Sozeau, Enrico Tassi and others. A list of packages is now available at https://coq.inria.fr/opam/www/.
Packaging tools and software development kits were prepared by Michael Soegtrop with the help of Maxime Dénès and
Enrico Tassi for Windows, and Maxime Dénès and Matthieu Sozeau for MacOS X. Packages are now regularly built on
the continuous integration server. Coq now comes with a META file usable with ocamlfind, contributed by Emilio Jesús
Gallego Arias, Gregory Malecha, and Matthieu Sozeau.
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Matej Košík maintained and greatly improved the continuous integration setup and the testing of Coq contributions. He
also contributed many API improvements and code cleanups throughout the system.
The contributors for this version are Bruno Barras, C.J. Bell, Yves Bertot, Frédéric Besson, Pierre Boutillier, Tej Cha-
jed, Guillaume Claret, Xavier Clerc, Pierre Corbineau, Pierre Courtieu, Maxime Dénès, Ricky Elrod, Emilio Jesús
Gallego Arias, Jason Gross, Hugo Herbelin, Sébastien Hinderer, Jacques-Henri Jourdan, Matej Košík, Xavier Leroy,
Pierre Letouzey, Gregory Malecha, Cyprien Mangin, Erik Martin-Dorel, Guillaume Melquiond, Clément Pit–Claudel,
Pierre-Marie Pédrot, Daniel de Rauglaudre, Lionel Rieg, Gabriel Scherer, Thomas Sibut-Pinote, Matthieu Sozeau, Ar-
naud Spiwack, Paul Steckler, Enrico Tassi, Laurent Théry, Nickolai Zeldovich and Théo Zimmermann. The development
process was coordinated by Hugo Herbelin and Matthieu Sozeau with the help of Maxime Dénès, who was also in charge
of the release process.
Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the Coq-Club mailing list. Special thanks to the users who contributed patches and intensive
brain-storming and code reviews, starting with Cyril Cohen, Jason Gross, Robbert Krebbers, Jonathan Leivent, Xavier
Leroy, Gregory Malecha, Clément Pit–Claudel, Gabriel Scherer and Beta Ziliani. It would however be impossible to
mention exhaustively the names of everybody who to some extent influenced the development.
Version 8.6 is the first release of Coq developed on a time-based development cycle. Its development spanned 10 months
from the release of Coq 8.5 and was based on a public roadmap. To date, it contains more external contributions than
any previous Coq system. Code reviews were systematically done before integration of new features, with an important
focus given to compatibility and performance issues, resulting in a hopefully more robust release than Coq 8.5.
Coq Enhancement Proposals (CEPs for short) were introduced by Enrico Tassi to provide more visibility and a discussion
period on new features, they are publicly available https://github.com/coq/ceps.
Started during this period, an effort is led by Yves Bertot and Maxime Dénès to put together a Coq consortium.

Paris, November 2016,
Matthieu Sozeau and the Coq development team

2.12 Credits: version 8.7

Coq version 8.7 contains the result of refinements, stabilization of features and cleanups of the internals of the system
along with a few new features. The main user visible changes are:

• New tactics: variants of tactics supporting existential variables eassert, eenough, etc... by Hugo Herbelin.
Tactics extensionality in H and inversion_sigma by Jason Gross, specialize with ... ac-
cepting partial bindings by Pierre Courtieu.

• Cumulative Polymorphic Inductive types, allowing cumulativity of universes to go through applied
inductive types, by Amin Timany and Matthieu Sozeau.

• Integration of the SSReflect plugin and its documentation in the reference manual, by Enrico Tassi, AssiaMahboubi
and Maxime Dénès.

• The coq_makefile tool was completely redesigned to improve its maintainability and the extensibility of gen-
erated Makefiles, and to make _CoqProject files more palatable to IDEs by Enrico Tassi.

Coq 8.7 involved a large amount of work on cleaning and speeding up the code base, notably the work of Pierre-Marie
Pédrot on making the tactic-level system insensitive to existential variable expansion, providing a safer API to plugin
writers and making the code more robust. The dev/doc/changes.txt file documents the numerous changes to the
implementation and improvements of interfaces. An effort to provide an official, streamlined API to plugin writers is in
progress, thanks to the work of Matej Košík.
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Version 8.7 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. We shall only list a few of them.
The efficiency of the whole system has been significantly improved thanks to contributions from Pierre-Marie Pédrot,
Maxime Dénès and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.
Thomas Sibut-Pinote and Hugo Herbelin added support for side effect hooks in cbv, cbn and simpl. The side effects are
provided via a plugin available at https://github.com/herbelin/reduction-effects/.
The BigN, BigZ, BigQ libraries are no longer part of the Coq standard library, they are now provided by a separate
repository https://github.com/coq/bignums, maintained by Pierre Letouzey.
In the Reals library, IZR has been changed to produce a compact representation of integers and real constants are now
represented using IZR (work by Guillaume Melquiond).
Standard library additions and improvements by Jason Gross, Pierre Letouzey and others, documented in the CHANGES.
md file.
The mathematical proof language/declarative mode plugin was removed from the archive.
The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.
Packaging tools and software development kits were prepared by Michael Soegtrop with the help of Maxime Dénès and
Enrico Tassi for Windows, and Maxime Dénès for MacOS X. Packages are regularly built on the Travis continuous
integration server.
The contributors for this version are Abhishek Anand, C.J. Bell, Yves Bertot, Frédéric Besson, Tej Chajed, Pierre
Courtieu, Maxime Dénès, Julien Forest, Gaëtan Gilbert, Jason Gross, Hugo Herbelin, Emilio Jesús Gallego Arias, Ralf
Jung, Matej Košík, Xavier Leroy, Pierre Letouzey, Assia Mahboubi, Cyprien Mangin, Erik Martin-Dorel, Olivier Marty,
Guillaume Melquiond, Sam Pablo Kuper, Benjamin Pierce, Pierre-Marie Pédrot, Lars Rasmusson, Lionel Rieg, Valentin
Robert, Yann Régis-Gianas, Thomas Sibut-Pinote, Michael Soegtrop, Matthieu Sozeau, Arnaud Spiwack, Paul Steckler,
George Stelle, Pierre-Yves Strub, Enrico Tassi, Hendrik Tews, Amin Timany, Laurent Théry, Vadim Zaliva and Théo
Zimmermann.
The development process was coordinated by Matthieu Sozeau with the help of Maxime Dénès, who was also in charge
of the release process. Théo Zimmermann is the maintainer of this release.
Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the Coq-Club mailing list. Special thanks to the users who contributed patches and intensive
brain-storming and code reviews, starting with Jason Gross, Ralf Jung, Robbert Krebbers, Xavier Leroy, Clément Pit–
Claudel and Gabriel Scherer. It would however be impossible to mention exhaustively the names of everybody who to
some extent influenced the development.
Version 8.7 is the second release of Coq developed on a time-based development cycle. Its development spanned 9 months
from the release of Coq 8.6 and was based on a public road-map. It attracted many external contributions. Code reviews
and continuous integration testing were systematically used before integration of new features, with an important focus
given to compatibility and performance issues, resulting in a hopefully more robust release than Coq 8.6 while maintaining
compatibility.
Coq Enhancement Proposals (CEPs for short) and open pull request discussions were used to discuss publicly the new
features.
The Coq consortium, an organization directed towards users and supporters of the system, is now upcoming and will rely
on Inria’s newly created Foundation.

Paris, August 2017,
Matthieu Sozeau and the Coq development team
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2.13 Credits: version 8.8

Coq version 8.8 contains the result of refinements and stabilization of features and deprecations, cleanups of the internals
of the system along with a few new features. The main user visible changes are:

• Kernel: fix a subject reduction failure due to allowing fixpoints on non-recursive values, by Matthieu Sozeau. Han-
dling of evars in the VM (the kernel still does not accept evars) by Pierre-Marie Pédrot.

• Notations: many improvements on recursive notations and support for destructuring patterns in the syntax of nota-
tions by Hugo Herbelin.

• Proof language: tacticals for profiling, timing and checking success or failure of tactics by JasonGross. The focusing
bracket { supports single-numbered goal selectors, e.g. 2:{, by Théo Zimmermann.

• Vernacular: deprecation of commands and more uniform handling of the Local flag, by Vincent Laporte and
Maxime Dénès, part of a larger attribute system overhaul. Experimental Show Extraction command by
Pierre Letouzey. Coercion now accepts Prop or Type as a source by Arthur Charguéraud. Exportmodifier for
options allowing to export the option to modules that Import and not only Require a module, by Pierre-Marie
Pédrot.

• Universes: many user-level and API level enhancements: qualified naming and printing, variance annotations for
cumulative inductive types, more general constraints and enhancements of the minimization heuristics, interaction
with modules by Gaëtan Gilbert, Pierre-Marie Pédrot and Matthieu Sozeau.

• Library: Decimal Numbers library by Pierre Letouzey and various small improvements.
• Documentation: a large community effort resulted in the migration of the reference manual to the Sphinx docu-
mentation tool. The result is this manual. The new documentation infrastructure (based on Sphinx) is by Clément
Pit-Claudel. The migration was coordinated by Maxime Dénès and Paul Steckler, with some help of Théo Zim-
mermann during the final integration phase. The 14 people who ported the manual are Calvin Beck, Heiko Becker,
Yves Bertot, Maxime Dénès, Richard Ford, Pierre Letouzey, Assia Mahboubi, Clément Pit-Claudel, Laurence
Rideau, Matthieu Sozeau, Paul Steckler, Enrico Tassi, Laurent Théry, Nikita Zyuzin.

• Tools: experimental -mangle-names option to coqtop/coqc for linting proof scripts, by Jasper Hugunin.
On the implementation side, the dev/doc/changes.md file documents the numerous changes to the implementation
and improvements of interfaces. The file provides guidelines on porting a plugin to the new version.
Version 8.8 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. Most important ones are documented in the CHANGES.md file.
The efficiency of the whole system has seen improvements thanks to contributions from Gaëtan Gilbert, Pierre-Marie
Pédrot, Maxime Dénès and Matthieu Sozeau and performance issue tracking by Jason Gross and Paul Steckler.
The official wiki and the bugtracker of Coq migrated to the GitHub platform, thanks to the work of Pierre Letouzey and
Théo Zimmermann. Gaëtan Gilbert, Emilio Jesús Gallego Arias worked on maintaining and improving the continuous
integration system.
The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.
The 44 contributors for this version are Yves Bertot, Joachim Breitner, Tej Chajed, Arthur Charguéraud, Jacques-Pascal
Deplaix, Maxime Dénès, Jim Fehrle, Julien Forest, Yannick Forster, Gaëtan Gilbert, Jason Gross, Samuel Gruetter,
Thomas Hebb, Hugo Herbelin, Jasper Hugunin, Emilio Jesus Gallego Arias, Ralf Jung, Johannes Kloos, Matej Košík,
Robbert Krebbers, Tony Beta Lambda, Vincent Laporte, Peter LeFanu Lumsdaine, Pierre Letouzey, Farzon Lotfi, Cy-
prien Mangin, Guillaume Melquiond, Raphaël Monat, Carl Patenaude Poulin, Pierre-Marie Pédrot, Clément Pit-Claudel,
Matthew Ryan, Matt Quinn, Sigurd Schneider, Bernhard Schommer, Michael Soegtrop, Matthieu Sozeau, Arnaud Spi-
wack, Paul Steckler, Enrico Tassi, Anton Trunov, Martin Vassor, Vadim Zaliva and Théo Zimmermann.
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Version 8.8 is the third release of Coq developed on a time-based development cycle. Its development spanned 6 months
from the release of Coq 8.7 and was based on a public roadmap. The development process was coordinated by Matthieu
Sozeau. Maxime Dénès was in charge of the release process. Théo Zimmermann is the maintainer of this release.
Many power users helped to improve the design of the new features via the bug tracker, the pull request system, the Coq
development mailing list or the coq-club@inria.fr mailing list. Special thanks to the users who contributed patches and
intensive brain-storming and code reviews, starting with Jason Gross, Ralf Jung, Robbert Krebbers and Amin Timany.
It would however be impossible to mention exhaustively the names of everybody who to some extent influenced the
development.
The Coq consortium, an organization directed towards users and supporters of the system, is now running and employs
Maxime Dénès. The contacts of the Coq Consortium are Yves Bertot and Maxime Dénès.

Santiago de Chile, March 2018,
Matthieu Sozeau for the Coq development team

2.14 Credits: version 8.9

Coq version 8.9 contains the result of refinements and stabilization of features and deprecations or removals of deprecated
features, cleanups of the internals of the system and API along with a few new features. This release includes many user-
visible changes, including deprecations that are documented in CHANGES.md and new features that are documented in
the reference manual. Here are the most important changes:

• Kernel: mutually recursive records are now supported, by Pierre-Marie Pédrot.
• Notations:

– Support for autonomous grammars of terms called “custom entries”, by Hugo Herbelin (see Section Custom
entries of the reference manual).

– Deprecated notations of the standard library will be removed in the next version of Coq, see the CHANGES.
md file for a script to ease porting, by Jason Gross and Jean-Christophe Léchenet.

– Added the Numeral Notation command for registering decimal numeral notations for custom types, by
Daniel de Rauglaudre, Pierre Letouzey and Jason Gross.

• Tactics: Introduction tactics intro/intros on a goal that is an existential variable now force a refinement of the
goal into a dependent product rather than failing, by Hugo Herbelin.

• Decision procedures: deprecation of tactic romega in favor of lia and removal of fourier, replaced by lra
which subsumes it, by Frédéric Besson, Maxime Dénès, Vincent Laporte and Laurent Théry.

• Proof language: focusing bracket{ now supports named goals, e.g. [x]:{will focus on a goal (existential variable)
named x, by Théo Zimmermann.

• SSReflect: the implementation of delayed clear was simplified by Enrico Tassi: the variables are always renamed
using inaccessible names when the clear switch is processed and finally cleared at the end of the intro pattern. In
addition to that, the use-and-discard flag {} typical of rewrite rules can now be also applied to views, e.g. =>
{}/v applies v and then clears v. See Section Introduction in the context.

• Vernacular:
– Experimental support for attributes on commands, by Vincent Laporte, as in #[local] Lemma foo :
bar. Tactics and tactic notations now support the deprecated attribute.

– Removed deprecated commands Arguments Scope and Implicit Arguments in favor of
Arguments, with the help of Jasper Hugunin.
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– New flag Uniform Inductive Parameters by Jasper Hugunin to avoid repeating uniform parame-
ters in constructor declarations.

– New commands Hint Variables and Hint Constants, by Matthieu Sozeau, for controlling the
opacity status of variables and constants in hint databases. It is recommended to always use these commands
after creating a hint databse with Create HintDb.

– Multiple sections with the same name are now allowed, by Jasper Hugunin.
• Library: additions and changes in the VectorDef, Ascii, and String libraries. Syntax notations are now
available only when using Import of libraries and not merely Require, by various contributors (source of
incompatibility, see CHANGES.md for details).

• Toplevels: coqtop and coqide can now display diffs between proof steps in color, using the Diffs option, by
Jim Fehrle.

• Documentation: we integrated a large number of fixes to the new Sphinx documentation by various contributors,
coordinated by Clément Pit-Claudel and Théo Zimmermann.

• Tools: removed the gallina utility and the homebrewed Emacs mode.
• Packaging: as in Coq 8.8.2, the Windows installer now includes many more external packages that can be individ-
ually selected for installation, by Michael Soegtrop.

Version 8.9 also comes with a bunch of smaller-scale changes and improvements regarding the different components of
the system. Most important ones are documented in the CHANGES.md file.
On the implementation side, the dev/doc/changes.md file documents the numerous changes to the implementation
and improvements of interfaces. The file provides guidelines on porting a plugin to the new version and a plugin develop-
ment tutorial kept in sync with Coq was introduced by Yves Bertot http://github.com/ybertot/plugin_tutorials. The new
dev/doc/critical-bugs file documents the known critical bugs of Coq and affected releases.
The efficiency of the whole system has seen improvements thanks to contributions from Gaëtan Gilbert, Pierre-Marie
Pédrot, and Maxime Dénès.
Maxime Dénès, Emilio Jesús Gallego Arias, Gaëtan Gilbert, Michael Soegtrop, Théo Zimmermann worked on maintain-
ing and improving the continuous integration system.
The OPAM repository for Coq packages has been maintained by Guillaume Melquiond, Matthieu Sozeau, Enrico Tassi
with contributions from many users. A list of packages is available at https://coq.inria.fr/opam/www/.
The 54 contributors for this version are Léo Andrès, Rin Arakaki, Benjamin Barenblat, Langston Barrett, Siddharth Bhat,
Martin Bodin, Simon Boulier, Timothy Bourke, Joachim Breitner, Tej Chajed, Arthur Charguéraud, Pierre Courtieu,
Maxime Dénès, Andres Erbsen, Jim Fehrle, Julien Forest, Emilio Jesus Gallego Arias, Gaëtan Gilbert, Matěj Grabovský,
Jason Gross, Samuel Gruetter, Armaël Guéneau, Hugo Herbelin, Jasper Hugunin, Ralf Jung, Sam Pablo Kuper, Ambroise
Lafont, Leonidas Lampropoulos, Vincent Laporte, Peter LeFanu Lumsdaine, Pierre Letouzey, Jean-Christophe Léchenet,
Nick Lewycky, Yishuai Li, SvenM.Hallberg, AssiaMahboubi, CyprienMangin, GuillaumeMelquiond, Perry E.Metzger,
Clément Pit-Claudel, Pierre-Marie Pédrot, Daniel R. Grayson, Kazuhiko Sakaguchi, Michael Soegtrop, Matthieu Sozeau,
Paul Steckler, Enrico Tassi, Laurent Théry, Anton Trunov, whitequark, Théo Winterhalter, Zeimer, Beta Ziliani, Théo
Zimmermann.
Many power users helped to improve the design of the new features via the issue and pull request system, the Coq
development mailing list or the coq-club@inria.fr mailing list. It would be impossible to mention exhaustively the names
of everybody who to some extent influenced the development.
Version 8.9 is the fourth release of Coq developed on a time-based development cycle. Its development spanned 7 months
from the release of Coq 8.8. The development moved to a decentralized merging process during this cycle. Guillaume
Melquiond was in charge of the release process and is the maintainer of this release. This release is the result of ~2,000
commits and ~500 PRs merged, closing 75+ issues.
The Coq development team welcomed Vincent Laporte, a new Coq engineer working with Maxime Dénès in the Coq
consortium.
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Paris, November 2018,
Matthieu Sozeau for the Coq development team
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CHAPTER

THREE

THE LANGUAGE

3.1 The Gallina specification language

This chapter describes Gallina, the specification language of Coq. It allows developing mathematical theories and to
prove specifications of programs. The theories are built from axioms, hypotheses, parameters, lemmas, theorems and
definitions of constants, functions, predicates and sets. The syntax of logical objects involved in theories is described in
Section Terms. The language of commands, called The Vernacular is described in Section The Vernacular.
In Coq, logical objects are typed to ensure their logical correctness. The rules implemented by the typing algorithm are
described in Chapter Calculus of Inductive Constructions.

3.1.1 About the grammars in the manual

Grammars are presented in Backus-Naur form (BNF). Terminal symbols are set in black typewriter font. In
addition, there are special notations for regular expressions.
An expression enclosed in square brackets […] means at most one occurrence of this expression (this corresponds to an
optional component).
The notation “entry sep … sep entry” stands for a non empty sequence of expressions parsed by entry and
separated by the literal “sep”1.
Similarly, the notation “entry … entry” stands for a non empty sequence of expressions parsed by the “entry”
entry, without any separator between.
At the end, the notation “[entry sep … sep entry]” stands for a possibly empty sequence of expressions parsed
by the “entry” entry, separated by the literal “sep”.

3.1.2 Lexical conventions

Blanks Space, newline and horizontal tabulation are considered as blanks. Blanks are ignored but they separate tokens.
Comments Comments in Coq are enclosed between (* and *), and can be nested. They can contain any character.

However, string literals must be correctly closed. Comments are treated as blanks.
Identifiers and access identifiers Identifiers, written ident, are sequences of letters, digits, _ and ', that do not start

with a digit or '. That is, they are recognized by the following lexical class:

first_letter ::= a..z ∣ A..Z ∣ _ ∣ unicode-letter
subsequent_letter ::= a..z ∣ A..Z ∣ 0..9 ∣ _ ∣ ' ∣ unicode-letter ∣ unicode-id-part

1 This is similar to the expression “entry { sep entry }” in standard BNF, or “entry ( sep entry )*” in the syntax of regular expressions.
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ident ::= first_letter[subsequent_letter…subsequent_letter]
access_ident ::= .ident

All characters are meaningful. In particular, identifiers are case-sensitive. The entry unicode-letter
non-exhaustively includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian, Hangul, Hiragana and
Katakana characters, CJK ideographs, mathematical letter-like symbols, hyphens, non-breaking space, … The
entry unicode-id-part non-exhaustively includes symbols for prime letters and subscripts.
Access identifiers, written access_ident, are identifiers prefixed by . (dot) without blank. They are used in
the syntax of qualified identifiers.

Natural numbers and integers Numerals are sequences of digits. Integers are numerals optionally preceded by a minus
sign.

digit ::= 0..9
num ::= digit…digit
integer ::= [-]num

Strings Strings are delimited by " (double quote), and enclose a sequence of any characters different from " or the
sequence "" to denote the double quote character. In grammars, the entry for quoted strings is string.

Keywords The following identifiers are reserved keywords, and cannot be employed otherwise:

_ as at cofix else end exists exists2 fix for
forall fun if IF in let match mod Prop return
Set then Type using where with

Special tokens The following sequences of characters are special tokens:

! % & && ( () ) * + ++ , - -> . .( ..
/ /\ : :: :< := :> ; < <- <-> <: <= <> =
=> =_D > >-> >= ? ?= @ [ \/ ] ^ { | |-
|| } ~ #[

Lexical ambiguities are resolved according to the “longest match” rule: when a sequence of non alphanumerical
characters can be decomposed into several different ways, then the first token is the longest possible one (among
all tokens defined at this moment), and so on.

3.1.3 Terms

Syntax of terms

The following grammars describe the basic syntax of the terms of the Calculus of Inductive Constructions (also called
Cic). The formal presentation of Cic is given in Chapter Calculus of Inductive Constructions. Extensions of this syntax
are given in Chapter Extensions of Gallina. How to customize the syntax is described in Chapter Syntax extensions and
interpretation scopes.

term ::= forall binders , term
| fun binders => term
| fix fix_bodies
| cofix cofix_bodies
| let ident [binders] [: term] := term in term
| let fix fix_body in term
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| let cofix cofix_body in term
| let ( [name , … , name] ) [dep_ret_type] := term in term
| let ' pattern [in term] := term [return_type] in term
| if term [dep_ret_type] then term else term
| term : term
| term <: term
| term :>
| term -> term
| term arg … arg
| @ qualid [term … term]
| term % ident
| match match_item , … , match_item [return_type] with
[[|] equation | … | equation] end
| qualid
| sort
| num
| _
| ( term )

arg ::= term
| ( ident := term )

binders ::= binder … binder
binder ::= name

| ( name … name : term )
| ( name [: term] := term )
| ' pattern

name ::= ident | _
qualid ::= ident | qualid access_ident
sort ::= Prop | Set | Type
fix_bodies ::= fix_body

| fix_body with fix_body with … with fix_body for ident
cofix_bodies ::= cofix_body

| cofix_body with cofix_body with … with cofix_body for ident
fix_body ::= ident binders [annotation] [: term] := term
cofix_body ::= ident [binders] [: term] := term
annotation ::= { struct ident }
match_item ::= term [as name] [in qualid [pattern … pattern]]
dep_ret_type ::= [as name] return_type
return_type ::= return term
equation ::= mult_pattern | … | mult_pattern => term
mult_pattern ::= pattern , … , pattern
pattern ::= qualid pattern … pattern

| @ qualid pattern … pattern
| pattern as ident
| pattern % ident
| qualid
| _
| num
| ( or_pattern , … , or_pattern )

or_pattern ::= pattern | … | pattern
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Types

Coq terms are typed. Coq types are recognized by the same syntactic class as term. We denote by type the semantic
subclass of types inside the syntactic class term.

Qualified identifiers and simple identifiers

Qualified identifiers (qualid) denote global constants (definitions, lemmas, theorems, remarks or facts), global variables
(parameters or axioms), inductive types or constructors of inductive types. Simple identifiers (or shortly ident) are a
syntactic subset of qualified identifiers. Identifiers may also denote local variables, while qualified identifiers do not.

Numerals

Numerals have no definite semantics in the calculus. They are mere notations that can be bound to objects through the
notation mechanism (see Chapter Syntax extensions and interpretation scopes for details). Initially, numerals are bound to
Peano’s representation of natural numbers (see Datatypes).

Note: Negative integers are not at the same level as num, for this would make precedence unnatural.

Sorts

There are three sorts Set, Prop and Type.
• Prop is the universe of logical propositions. The logical propositions themselves are typing the proofs. We denote
propositions by form. This constitutes a semantic subclass of the syntactic class term.

• Set is the universe of program types or specifications. The specifications themselves are typing the programs. We
denote specifications by specif. This constitutes a semantic subclass of the syntactic class term.

• Type is the type of Prop and Set
More on sorts can be found in Section Sorts.

Binders

Various constructions such as fun, forall, fix and cofix bind variables. A binding is represented by an identifier.
If the binding variable is not used in the expression, the identifier can be replaced by the symbol _. When the type of a
bound variable cannot be synthesized by the system, it can be specified with the notation (ident : type). There is
also a notation for a sequence of binding variables sharing the same type: ( ident +

 : type). A binder can also be
any pattern prefixed by a quote, e.g. '(x,y).
Some constructions allow the binding of a variable to value. This is called a “let-binder”. The entry binder of
the grammar accepts either an assumption binder as defined above or a let-binder. The notation in the latter case is
(ident := term). In a let-binder, only one variable can be introduced at the same time. It is also possible to give
the type of the variable as follows: (ident : type := term).
Lists of binder are allowed. In the case of fun and forall, it is intended that at least one binder of the list is an
assumption otherwise fun and forall gets identical. Moreover, parentheses can be omitted in the case of a single sequence
of bindings sharing the same type (e.g.: fun (x y z : A) => t can be shortened in fun x y z : A => t).
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Abstractions

The expression fun ident : type => term defines the abstraction of the variable ident, of type type, over
the term term. It denotes a function of the variable ident that evaluates to the expression term (e.g. fun x :
A => x denotes the identity function on type A). The keyword fun can be followed by several binders as given in
Section Binders. Functions over several variables are equivalent to an iteration of one-variable functions. For instance
the expression “fun ident1 … ident𝑛 : type => term” denotes the same function as “ fun ident1 : type => …
fun ident𝑛 : type => term”. If a let-binder occurs in the list of binders, it is expanded to a let-in definition (see
Section Let-in definitions).

Products

The expression forall ident : type, term denotes the product of the variable ident of type type, over the
term term. As for abstractions, forall is followed by a binder list, and products over several variables are equivalent
to an iteration of one-variable products. Note that term is intended to be a type.
If the variable ident occurs in term, the product is called dependent product. The intention behind a dependent
product forall x : A, B is twofold. It denotes either the universal quantification of the variable x of type A in the
proposition B or the functional dependent product from A to B (a construction usually written Π𝑥∶𝐴.𝐵 in set theory).
Non dependent product types have a special notation: A -> B stands for forall _ : A, B. The non dependent
product is used both to denote the propositional implication and function types.

Applications

The expression term0 term1 denotes the application of term0 to term1.
The expression term0 term1 ... term𝑛 denotes the application of the term term0 to the arguments term1 ... then
term𝑛. It is equivalent to ( … ( term0 term1 ) … ) term𝑛 : associativity is to the left.
The notation (ident := term) for arguments is used for making explicit the value of implicit arguments (see Sec-
tion Explicit applications).

Type cast

The expression term : type is a type cast expression. It enforces the type of term to be type.
term <: type locally sets up the virtual machine for checking that term has type type.
term <<: type uses native compilation for checking that term has type type.

Inferable subterms

Expressions often contain redundant pieces of information. Subterms that can be automatically inferred by Coq can be
replaced by the symbol _ and Coq will guess the missing piece of information.

Let-in definitions

let ident := term in term’ denotes the local binding of term to the variable ident in term’. There is
a syntactic sugar for let-in definition of functions: let ident binder

+
:= term in term’ stands for let

ident := fun binder
+

=> term in term’.
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Definition by case analysis

Objects of inductive types can be destructurated by a case-analysis construction called pattern matching expression. A
pattern matching expression is used to analyze the structure of an inductive object and to apply specific treatments ac-
cordingly.
This paragraph describes the basic form of pattern matching. See SectionMultiple and nested pattern matching and Chap-
ter Extended pattern matching for the description of the general form. The basic form of pattern matching is characterized
by a single match_item expression, a mult_pattern restricted to a single pattern and pattern restricted to
the form qualid ident

* .
The expression match ”term0 return_type with pattern1 => term1 | … | pattern𝑛 => term𝑛 end” denotes
a pattern matching over the term term0 (expected to be of an inductive type 𝐼). The terms term1…term𝑛 are the
branches of the pattern matching expression. Each of pattern𝑖 has a form qualid ident where qualid must
denote a constructor. There should be exactly one branch for every constructor of 𝐼 .
The return_type expresses the type returned by the whole match expression. There are several cases. In the non
dependent case, all branches have the same type, and the return_type is the common type of branches. In this case,
return_type can usually be omitted as it can be inferred from the type of the branches2.
In the dependent case, there are three subcases. In the first subcase, the type in each branch may depend on the exact
value being matched in the branch. In this case, the whole pattern matching itself depends on the term being matched.
This dependency of the term being matched in the return type is expressed with an “as ident” clause where ident is
dependent in the return type. For instance, in the following example:

Inductive bool : Type := true : bool | false : bool.
Inductive eq (A:Type) (x:A) : A -> Prop := eq_refl : eq A x x.
Inductive or (A:Prop) (B:Prop) : Prop :=

| or_introl : A -> or A B
| or_intror : B -> or A B.

Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) :=
match b as x return or (eq bool x true) (eq bool x false) with
| true => or_introl (eq bool true true) (eq bool true false) (eq_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false) (eq_refl bool false)
end.

the branches have respective types ”or (eq bool true true) (eq bool true false)” and ”or (eq
bool false true) (eq bool false false)” while the whole pattern matching expression has type ”or
(eq bool b true) (eq bool b false)”, the identifier b being used to represent the dependency.

Note: When the term being matched is a variable, the as clause can be omitted and the term being matched can serve
itself as binding name in the return type. For instance, the following alternative definition is accepted and has the same
meaning as the previous one.

Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) :=
match b return or (eq bool b true) (eq bool b false) with
| true => or_introl (eq bool true true) (eq bool true false) (eq_refl bool true)
| false => or_intror (eq bool false true) (eq bool false false) (eq_refl bool false)
end.

The second subcase is only relevant for annotated inductive types such as the equality predicate (see Section Equality),
the order predicate on natural numbers or the type of lists of a given length (see Section Matching objects of dependent
types). In this configuration, the type of each branch can depend on the type dependencies specific to the branch and
the whole pattern matching expression has a type determined by the specific dependencies in the type of the term being

2 Except if the inductive type is empty in which case there is no equation that can be used to infer the return type.
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matched. This dependency of the return type in the annotations of the inductive type is expressed using a “in 𝐼 _ … _
pattern1 … pattern𝑛” clause, where

• 𝐼 is the inductive type of the term being matched;
• the _ are matching the parameters of the inductive type: the return type is not dependent on them.
• the pattern𝑖 are matching the annotations of the inductive type: the return type is dependent on them
• in the basic case which we describe below, each pattern𝑖 is a name ident𝑖; see Patterns in in for the general
case

For instance, in the following example:

Definition eq_sym (A:Type) (x y:A) (H:eq A x y) : eq A y x :=
match H in eq _ _ z return eq A z x with
| eq_refl _ _ => eq_refl A x
end.

the type of the branch is eq A x x because the third argument of eq is x in the type of the pattern eq_refl. On the
contrary, the type of the whole pattern matching expression has type eq A y x because the third argument of eq is y
in the type of H. This dependency of the case analysis in the third argument of eq is expressed by the identifier z in the
return type.
Finally, the third subcase is a combination of the first and second subcase. In particular, it only applies to pattern matching
on terms in a type with annotations. For this third subcase, both the clauses as and in are available.
There are specific notations for case analysis on types with one or two constructors: if … then … else … and let
(…,…) := … in … (see Sections Pattern-matching on boolean values: the if expression and Irrefutable patterns: the
destructuring let variants).

Recursive functions

The expression “fix ident1 binder1 : type1 := term1 with … with ident𝑛 binder𝑛 : type𝑛 :=
term𝑛 for ident𝑖” denotes the 𝑖-th component of a block of functions defined by mutual structural recursion. It is
the local counterpart of the Fixpoint command. When 𝑛 = 1, the “for ident𝑖” clause is omitted.
The expression “cofix ident1 binder1 : type1 with … with ident𝑛 binder𝑛 : type𝑛 for ident𝑖”
denotes the 𝑖-th component of a block of terms defined by a mutual guarded co-recursion. It is the local counterpart of
the CoFixpoint command. When 𝑛 = 1, the “for ident𝑖” clause is omitted.
The association of a single fixpoint and a local definition have a special syntax: let fix ident binders :=
term in stands for let ident := fix ident binders := term in. The same applies for co-fixpoints.

3.1.4 The Vernacular

decorated-sentence ::= [decoration] sentence
sentence ::= assumption

| definition
| inductive
| fixpoint
| assertion proof

assumption ::= assumption_keyword assums.
assumption_keyword ::= Axiom | Conjecture

| Parameter | Parameters
| Variable | Variables
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| Hypothesis | Hypotheses
assums ::= ident … ident : term

| ( ident … ident : term ) … ( ident … ident : term )
definition ::= [Local] Definition ident [binders] [: term] := term .

| Let ident [binders] [: term] := term .
inductive ::= Inductive ind_body with … with ind_body .

| CoInductive ind_body with … with ind_body .
ind_body ::= ident [binders] : term :=

[[|] ident [binders] [:term] | … | ident [binders] [:term]]
fixpoint ::= Fixpoint fix_body with … with fix_body .

| CoFixpoint cofix_body with … with cofix_body .
assertion ::= assertion_keyword ident [binders] : term .
assertion_keyword ::= Theorem | Lemma

| Remark | Fact
| Corollary | Proposition
| Definition | Example

proof ::= Proof . … Qed .
| Proof . … Defined .
| Proof . … Admitted .

decoration ::= #[ attributes ]
attributes ::= [attribute, … , attribute]
attribute ::= ident

| ident = string
| ident ( attributes )

This grammar describes The Vernacular which is the language of commands of Gallina. A sentence of the vernacular
language, like in many natural languages, begins with a capital letter and ends with a dot.
Sentences may be decorated with so-called attributes, which are described in the corresponding section (Attributes).
The different kinds of command are described hereafter. They all suppose that the terms occurring in the sentences are
well-typed.

Assumptions

Assumptions extend the environment with axioms, parameters, hypotheses or variables. An assumption binds an ident
to a type. It is accepted by Coq if and only if this type is a correct type in the environment preexisting the declaration
and if ident was not previously defined in the same module. This type is considered to be the type (or specification,
or statement) assumed by ident and we say that ident has type type.
Command: Parameter ident : type

This command links type to the name ident as its specification in the global context. The fact asserted by type
is thus assumed as a postulate.
Error: ident already exists.

Variant: Parameter ident
+

: type
Adds several parameters with specification type.

Variant: Parameter  (  ident +
: type )

+

Adds blocks of parameters with different specifications.

Variant: Local Parameter (  ident
+

: type )

+

Such parameters are never made accessible through their unqualified name by Import and its variants. You
have to explicitly give their fully qualified name to refer to them.
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Variant: Local
?

Parameters (  ident
+

: type )

+

Variant: Local
?

Axiom (  ident
+

: type )

+

Variant: Local
?

Axioms (  ident
+

: type )

+

Variant: Local
?

Conjecture (  ident
+

: type )

+

Variant: Local
?

Conjectures (  ident
+

: type )

+

These variants are synonyms of Local ?
Parameter (  ident

+
: type )

+

.

Variant: Variable (  ident
+

: type )

+

Variant: Variables (  ident
+

: type )

+

Variant: Hypothesis (  ident
+

: type )

+

Variant: Hypotheses (  ident
+

: type )

+

Outside of any section, these variants are synonyms of Local Parameter

(  ident
+

: type )

+

. For their meaning inside a section, see Variable in Section mech-
anism.
Warning: ident is declared as a local axiom [local-declaration,scope]

Warning generated when using Variable instead of Local Parameter.

Note: It is advised to use the commands Axiom, Conjecture and Hypothesis (and their plural forms) for logical
postulates (i.e. when the assertion type is of sort Prop), and to use the commands Parameter and Variable (and
their plural forms) in other cases (corresponding to the declaration of an abstract mathematical entity).

See also:
Section Section mechanism.

Definitions

Definitions extend the environment with associations of names to terms. A definition can be seen as a way to give a
meaning to a name or as a way to abbreviate a term. In any case, the name can later be replaced at any time by its
definition.
The operation of unfolding a name into its definition is called 𝛿-conversion (see Section δ-reduction). A definition is
accepted by the system if and only if the defined term is well-typed in the current context of the definition and if the
name is not already used. The name defined by the definition is called a constant and the term it refers to is its body. A
definition has a type which is the type of its body.
A formal presentation of constants and environments is given in Section Typing rules.
Command: Definition ident := term

This command binds term to the name ident in the environment, provided that term is well-typed.
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Error: ident already exists.

Variant: Definition ident : type := term
This variant checks that the type of term is definitionally equal to type, and registers ident as being of
type type, and bound to value term.
Error: The term term has type type while it is expected to have type type'.

Variant: Definition ident binders : type
?

:= term
This is equivalent to Definition ident : forall binders, type := fun
binders => term.

Variant: Local Definition ident binders
?

: type
?

:= term
Such definitions are never made accessible through their unqualified name by Import and its variants. You
have to explicitly give their fully qualified name to refer to them.

Variant: Local
?

Example ident binders
?

: type
?

:= term
This is equivalent to Definition.

Variant: Let ident := term
Outside of any section, this variant is a synonym of Local Definition ident := term. For its
meaning inside a section, see Let in Section mechanism.
Warning: ident is declared as a local definition [local-declaration,scope]

Warning generated when using Let instead of Local Definition.
See also:
Section Section mechanism, commands Opaque, Transparent, and tactic unfold.

Inductive definitions

Wegradually explain simple inductive types, simple annotated inductive types, simple parametric inductive types, mutually
inductive types. We explain also co-inductive types.

Simple inductive types

Command: Inductive ident : sort
?

:= |
?

ident : type | ident : type
*

This command defines a simple inductive type and its constructors. The first ident is the name of the inductively
defined type and sort is the universe where it lives. The next idents are the names of its constructors and type
their respective types. Depending on the universe where the inductive type ident lives (e.g. its type sort),
Coq provides a number of destructors. Destructors are named ident_ind, ident_rec or ident_rect
which respectively correspond to elimination principles on Prop, Set and Type. The type of the destructors
expresses structural induction/recursion principles over objects of type ident. The constant ident_ind is
always provided, whereasident_rec andident_rect can be impossible to derive (for example, whenident
is a proposition).
Error: Non strictly positive occurrence of ident in type.

The types of the constructors have to satisfy a positivity condition (see Section Positivity Condition). This
condition ensures the soundness of the inductive definition.

Error: The conclusion of type is not valid; it must be built from ident.
The conclusion of the type of the constructors must be the inductive type ident being defined (or ident
applied to arguments in the case of annotated inductive types — cf. next section).
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Example
The set of natural numbers is defined as:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

nat is defined
nat_rect is defined
nat_ind is defined
nat_rec is defined

The type nat is defined as the least Set containing O and closed by the S constructor. The names nat, O and S
are added to the environment.
Now let us have a look at the elimination principles. They are three of them: nat_ind, nat_rec and
nat_rect. The type of nat_ind is:

Check nat_ind.
nat_ind

: forall P : nat -> Prop,
P O -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

This is the well known structural induction principle over natural numbers, i.e. the second-order form of Peano’s
induction principle. It allows proving some universal property of natural numbers (forall n:nat, P n) by
induction on n.
The types of nat_rec and nat_rect are similar, except that they pertain to (P:nat->Set) and
(P:nat->Type) respectively. They correspond to primitive induction principles (allowing dependent types)
respectively over sorts Set and Type.

Variant: Inductive ident : sort
?

:= |
?

ident binders
?

: type
?

*

|
Constructors idents can come with binders in which case, the actual type of the constructor is forall
binders, type.
In the case where inductive types have no annotations (next section gives an example of such annotations), a
constructor can be defined by only giving the type of its arguments.

Example

Inductive nat : Set := O | S (_:nat).

Simple annotated inductive types

In an annotated inductive types, the universe where the inductive type is defined is no longer a simple sort, but what is
called an arity, which is a type whose conclusion is a sort.

Example
As an example of annotated inductive types, let us define the even predicate:
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Inductive even : nat -> Prop :=
| even_0 : even O
| even_SS : forall n:nat, even n -> even (S (S n)).

even is defined
even_ind is defined

The type nat->Prop means that even is a unary predicate (inductively defined) over natural numbers. The type of its
two constructors are the defining clauses of the predicate even. The type of even_ind is:

Check even_ind.
even_ind

: forall P : nat -> Prop,
P O ->
(forall n : nat, even n -> P n -> P (S (S n))) ->
forall n : nat, even n -> P n

From a mathematical point of view it asserts that the natural numbers satisfying the predicate even are exactly in the
smallest set of naturals satisfying the clauses even_0 or even_SS. This is why, when we want to prove any predicate
P over elements of even, it is enough to prove it for O and to prove that if any natural number n satisfies P its double
successor (S (S n)) satisfies also P. This is indeed analogous to the structural induction principle we got for nat.

Parameterized inductive types

Variant: Inductive ident binders : type
?

:= |
?

ident : type | ident : type
*

In the previous example, each constructor introduces a different instance of the predicate even. In some cases,
all the constructors introduce the same generic instance of the inductive definition, in which case, instead of an
annotation, we use a context of parameters which are binders shared by all the constructors of the definition.
Parameters differ from inductive type annotations in the fact that the conclusion of each type of constructor invoke
the inductive type with the same values of parameters as its specification.

Example
A typical example is the definition of polymorphic lists:

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.

In the type of nil and cons, we write (list A) and not just list. The constructors nil and cons will
have respectively types:

Check nil.
nil

: forall A : Set, list A

Check cons.
cons

: forall A : Set, A -> list A -> list A

Types of destructors are also quantified with (A:Set).
Once again, it is possible to specify only the type of the arguments of the constructors, and to omit the type of the
conclusion:
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Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A).

Note:
• It is possible in the type of a constructor, to invoke recursively the inductive definition on an argument which is not
the parameter itself.
One can define :

Inductive list2 (A:Set) : Set :=
| nil2 : list2 A
| cons2 : A -> list2 (A*A) -> list2 A.

list2 is defined
list2_rect is defined
list2_ind is defined
list2_rec is defined

that can also be written by specifying only the type of the arguments:

Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:list2 (A*A)).
list2 is defined
list2_rect is defined
list2_ind is defined
list2_rec is defined

But the following definition will give an error:

Fail Inductive listw (A:Set) : Set :=
| nilw : listw (A*A)
| consw : A -> listw (A*A) -> listw (A*A).

The command has indeed failed with message:
Last occurrence of "listw" must have "A" as 1st argument in
"listw (A * A)%type".

because the conclusion of the type of constructors should be listw A in both cases.
• A parameterized inductive definition can be defined using annotations instead of parameters but it will sometimes
give a different (bigger) sort for the inductive definition and will produce a less convenient rule for case elimination.

Flag: Uniform Inductive Parameters
When this option is set (it is off by default), inductive definitions are abstracted over their parameters before type
checking constructors, allowing to write:

Set Uniform Inductive Parameters.
Inductive list3 (A:Set) : Set :=
| nil3 : list3
| cons3 : A -> list3 -> list3.

list3 is defined
list3_rect is defined
list3_ind is defined
list3_rec is defined

This behavior is essentially equivalent to starting a new section and using Context to give the uniform parameters,
like so (cf. Section mechanism):
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Section list3.
Context (A:Set).

A is declared

Inductive list3 : Set :=
| nil3 : list3
| cons3 : A -> list3 -> list3.

list3 is defined
list3_rect is defined
list3_ind is defined
list3_rec is defined

End list3.

See also:
Section Inductive Definitions and the induction tactic.

Variants

Command: Variant ident binders : type
?

:= |
?

ident : type | ident : type
*

The Variant command is identical to the Inductive command, except that it disallows recursive definition
of types (for instance, lists cannot be defined using Variant). No induction scheme is generated for this variant,
unless option Nonrecursive Elimination Schemes is on.
Error: The num th argument of ident must be ident in type.

Mutually defined inductive types

Variant: Inductive ident : type
?

:= |
?

ident : type
*

|
with |

?
ident : type

?
*

|

*

This variant allows defining a block of mutually inductive types. It has the same semantics as the above
Inductive definition for each ident. All ident are simultaneously added to the environment. Then well-
typing of constructors can be checked. Each one of the ident can be used on its own.

Variant: Inductive ident binders : type
?

:= |
?

ident : type
*

|
with |

?
ident binders : type

?
*

|

*

In this variant, the inductive definitions are parameterized with binders. However, parameters correspond
to a local context in which the whole set of inductive declarations is done. For this reason, the parameters
must be strictly the same for each inductive types.

Example
The typical example of a mutual inductive data type is the one for trees and forests. We assume given two types A and B
as variables. It can be declared the following way.

Variables A B : Set.
Inductive tree : Set := node : A -> forest -> tree

with forest : Set :=

(continues on next page)
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(continued from previous page)
| leaf : B -> forest
| cons : tree -> forest -> forest.

This declaration generates automatically six induction principles. They are respectively called tree_rec, tree_ind,
tree_rect, forest_rec, forest_ind, forest_rect. These ones are not the most general ones but are just
the induction principles corresponding to each inductive part seen as a single inductive definition.
To illustrate this point on our example, we give the types of tree_rec and forest_rec.

Check tree_rec.
tree_rec

: forall P : tree -> Set,
(forall (a : A) (f : forest), P (node a f)) -> forall t : tree, P t

Check forest_rec.
forest_rec

: forall P : forest -> Set,
(forall b : B, P (leaf b)) ->
(forall (t : tree) (f0 : forest), P f0 -> P (cons t f0)) ->
forall f1 : forest, P f1

Assume we want to parameterize our mutual inductive definitions with the two type variables A and B, the declaration
should be done the following way:

Inductive tree (A B:Set) : Set := node : A -> forest A B -> tree A B

with forest (A B:Set) : Set :=
| leaf : B -> forest A B
| cons : tree A B -> forest A B -> forest A B.

Assumewe define an inductive definition inside a section (cf. Sectionmechanism). When the section is closed, the variables
declared in the section and occurring free in the declaration are added as parameters to the inductive definition.

See also:
A generic command Scheme is useful to build automatically various mutual induction principles.

Co-inductive types

The objects of an inductive type are well-founded with respect to the constructors of the type. In other words, such objects
contain only a finite number of constructors. Co-inductive types arise from relaxing this condition, and admitting types
whose objects contain an infinity of constructors. Infinite objects are introduced by a non-ending (but effective) process
of construction, defined in terms of the constructors of the type.

Command: CoInductive ident binders : type
?

:= |
?

ident : type | ident : type
*

This command introduces a co-inductive type. The syntax of the command is the same as the command
Inductive. No principle of induction is derived from the definition of a co-inductive type, since such prin-
ciples only make sense for inductive types. For co-inductive types, the only elimination principle is case analysis.

Example
An example of a co-inductive type is the type of infinite sequences of natural numbers, usually called streams.
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CoInductive Stream : Set := Seq : nat -> Stream -> Stream.

The usual destructors on streams hd:Stream->nat and tl:Str->Str can be defined as follows:

Definition hd (x:Stream) := let (a,s) := x in a.
Definition tl (x:Stream) := let (a,s) := x in s.

Definition of co-inductive predicates and blocks of mutually co-inductive definitions are also allowed.

Example
An example of a co-inductive predicate is the extensional equality on streams:

CoInductive EqSt : Stream -> Stream -> Prop :=
eqst : forall s1 s2:Stream,

hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.

In order to prove the extensional equality of two streams s1 and s2 we have to construct an infinite proof of equality,
that is, an infinite object of type (EqSt s1 s2). We will see how to introduce infinite objects in Section Definitions
of recursive objects in co-inductive types.

Caveat

The ability to define co-inductive types by constructors, hereafter called positive co-inductive types, is known to break
subject reduction. The story is a bit long: this is due to dependent pattern-matching which implies propositional η-
equality, which itself would require full η-conversion for subject reduction to hold, but full η-conversion is not acceptable
as it would make type-checking undecidable.
Since the introduction of primitive records in Coq 8.5, an alternative presentation is available, called negative co-inductive
types. This consists in defining a co-inductive type as a primitive record type through its projections. Such a technique is
akin to the co-pattern style that can be found in e.g. Agda, and preserves subject reduction.
The above example can be rewritten in the following way.

Set Primitive Projections.
CoInductive Stream : Set := Seq { hd : nat; tl : Stream }.

Stream is defined
hd is defined
tl is defined

CoInductive EqSt (s1 s2: Stream) : Prop := eqst {
eqst_hd : hd s1 = hd s2;
eqst_tl : EqSt (tl s1) (tl s2);

}.
EqSt is defined
eqst_hd is defined
eqst_tl is defined

Some properties that hold over positive streams are lost when going to the negative presentation, typically when they
imply equality over streams. For instance, propositional η-equality is lost when going to the negative presentation. It is
nonetheless logically consistent to recover it through an axiom.

Axiom Stream_eta : forall s: Stream, s = Seq (hd s) (tl s).
Stream_eta is declared
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More generally, as in the case of positive coinductive types, it is consistent to further identify extensional equality of
coinductive types with propositional equality:

Axiom Stream_ext : forall (s1 s2: Stream), EqSt s1 s2 -> s1 = s2.
Stream_ext is declared

As of Coq 8.9, it is now advised to use negative co-inductive types rather than their positive counterparts.
See also:
Primitive Projections for more information about negative records and primitive projections.

Definition of recursive functions

Definition of functions by recursion over inductive objects

This section describes the primitive form of definition by recursion over inductive objects. See the Function command
for more advanced constructions.

Command: Fixpoint ident binders {struct ident}
?

: type
?

:= term
This command allows defining functions by pattern matching over inductive objects using a fixed point construction.
The meaning of this declaration is to define ident a recursive function with arguments specified by the binders
such that ident applied to arguments corresponding to these binders has type type, and is equivalent to the
expression term. The type of ident is consequently forall binders, type and its value is equivalent
to fun binders => term.
To be accepted, a Fixpoint definition has to satisfy some syntactical constraints on a special argument called the
decreasing argument. They are needed to ensure that the Fixpoint definition always terminates. The point of
the {struct ident} annotation is to let the user tell the system which argument decreases along the recursive
calls.
The {struct ident} annotation may be left implicit, in this case the system tries successively arguments from
left to right until it finds one that satisfies the decreasing condition.

Note:
• Some fixpoints may have several arguments that fit as decreasing arguments, and this choice influences the
reduction of the fixpoint. Hence an explicit annotation must be used if the leftmost decreasing argument is
not the desired one. Writing explicit annotations can also speed up type checking of large mutual fixpoints.

• In order to keep the strong normalization property, the fixed point reduction will only be performed when the
argument in position of the decreasing argument (which type should be in an inductive definition) starts with
a constructor.

Example
One can define the addition function as :

Fixpoint add (n m:nat) {struct n} : nat :=
match n with
| O => m
| S p => S (add p m)
end.

add is defined
add is recursively defined (decreasing on 1st argument)
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The match operator matches a value (here n) with the various constructors of its (inductive) type. The remaining
arguments give the respective values to be returned, as functions of the parameters of the corresponding constructor.
Thus here when n equals O we return m, and when n equals (S p) we return (S (add p m)).
The match operator is formally described in Section The match ... with ... end construction. The system recognizes
that in the inductive call (add p m) the first argument actually decreases because it is a pattern variable coming
from match n with.

Example
The following definition is not correct and generates an error message:

Fail Fixpoint wrongplus (n m:nat) {struct n} : nat :=
match m with
| O => n
| S p => S (wrongplus n p)
end.

The command has indeed failed with message:
Recursive definition of wrongplus is ill-formed.
In environment
wrongplus : nat -> nat -> nat
n : nat
m : nat
p : nat
Recursive call to wrongplus has principal argument equal to
"n" instead of a subterm of "n".
Recursive definition is:
"fun n m : nat => match m with

| 0 => n
| S p => S (wrongplus n p)
end".

because the declared decreasing argumentn does not actually decrease in the recursive call. The function computing
the addition over the second argument should rather be written:

Fixpoint plus (n m:nat) {struct m} : nat :=
match m with
| O => n
| S p => S (plus n p)
end.

plus is defined
plus is recursively defined (decreasing on 2nd argument)

Example
The recursive call may not only be on direct subterms of the recursive variable n but also on a deeper subterm and
we can directly write the function mod2 which gives the remainder modulo 2 of a natural number.

Fixpoint mod2 (n:nat) : nat :=
match n with
| O => O
| S p => match p with

| O => S O
| S q => mod2 q
end

(continues on next page)
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(continued from previous page)
end.

mod2 is defined
mod2 is recursively defined (decreasing on 1st argument)

Variant: Fixpoint ident binders {struct ident}
?

: type
?

:= term with ident binders : type
?

:= term

*

This variant allows defining simultaneously several mutual fixpoints. It is especially useful when defining
functions over mutually defined inductive types.

Example
The size of trees and forests can be defined the following way:

Fixpoint tree_size (t:tree) : nat :=
match t with
| node a f => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| leaf b => 1
| cons t f' => (tree_size t + forest_size f')
end.

tree_size is defined
forest_size is defined
tree_size, forest_size are recursively defined
(decreasing respectively on 1st, 1st arguments)

Definitions of recursive objects in co-inductive types

Command: CoFixpoint ident binders
?

: type
?

:= term
This command introduces a method for constructing an infinite object of a coinductive type. For example, the
stream containing all natural numbers can be introduced applying the following method to the number O (see
Section Co-inductive types for the definition of Stream, hd and tl):

CoFixpoint from (n:nat) : Stream := Seq n (from (S n)).
from is defined
from is corecursively defined

Oppositely to recursive ones, there is no decreasing argument in a co-recursive definition. To be admissible, a
method of construction must provide at least one extra constructor of the infinite object for each iteration. A
syntactical guard condition is imposed on co-recursive definitions in order to ensure this: each recursive call in the
definition must be protected by at least one constructor, and only by constructors. That is the case in the former
definition, where the single recursive call of from is guarded by an application of Seq. On the contrary, the
following recursive function does not satisfy the guard condition:

Fail CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream :=
if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s).
The command has indeed failed with message:
Recursive definition of filter is ill-formed.
In environment
filter : (nat -> bool) -> Stream -> Stream

(continues on next page)
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(continued from previous page)
p : nat -> bool
s : Stream
Unguarded recursive call in "filter p (tl s)".
Recursive definition is:
"fun (p : nat -> bool) (s : Stream) =>
if p (hd s)
then {| hd := hd s; tl := filter p (tl s) |}
else filter p (tl s)".

The elimination of co-recursive definition is done lazily, i.e. the definition is expanded only when it occurs at the
head of an application which is the argument of a case analysis expression. In any other context, it is considered as
a canonical expression which is completely evaluated. We can test this using the command Eval, which computes
the normal forms of a term:

Eval compute in (from 0).
= (cofix from (n : nat) : Stream := {| hd := n; tl := from (S n) |}) 0

: Stream

Eval compute in (hd (from 0)).
= 0

: nat

Eval compute in (tl (from 0)).
= (cofix from (n : nat) : Stream := {| hd := n; tl := from (S n) |}) 1

: Stream

Variant: CoFixpoint ident binders
?

: type
?

:= term with ident binders
?

: type
?

:= term

*

As in the Fixpoint command, it is possible to introduce a block of mutually dependent methods.

Assertions and proofs

An assertion states a proposition (or a type) of which the proof (or an inhabitant of the type) is interactively built using
tactics. The interactive proof mode is described in Chapter Proof handling and the tactics in Chapter Tactics. The basic
assertion command is:

Command: Theorem ident binders
?

: type
After the statement is asserted, Coq needs a proof. Once a proof of type under the assumptions represented by
binders is given and validated, the proof is generalized into a proof of forall binders, type and the
theorem is bound to the name ident in the environment.
Error: The term term has type type which should be Set, Prop or Type.

Error: ident already exists.
The name you provided is already defined. You have then to choose another name.

Error: Nested proofs are not allowed unless you turn option Nested Proofs Allowed on.
You are asserting a new statement while already being in proof editing mode. This feature, called nested
proofs, is disabled by default. To activate it, turn option Nested Proofs Allowed on.

Variant: Lemma ident binders
?

: type

Variant: Remark ident binders
?

: type

Variant: Fact ident binders
?

: type

Variant: Corollary ident binders
?

: type
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Variant: Proposition ident binders
?

: type

These commands are all synonyms of Theorem ident binders
?

: type.

Variant: Theorem ident binders
?

: type with ident binders
?

: type

*

This command is useful for theorems that are proved by simultaneous induction over a mutually inductive assump-
tion, or that assert mutually dependent statements in some mutual co-inductive type. It is equivalent to Fixpoint
or CoFixpoint but using tactics to build the proof of the statements (or the body of the specification, depending
on the point of view). The inductive or co-inductive types on which the induction or coinduction has to be done is
assumed to be non ambiguous and is guessed by the system.
Like in a Fixpoint or CoFixpoint definition, the induction hypotheses have to be used on structurally smaller
arguments (for a Fixpoint) or be guarded by a constructor (for a CoFixpoint). The verification that recursive
proof arguments are correct is done only at the time of registering the lemma in the environment. To know if the
use of induction hypotheses is correct at some time of the interactive development of a proof, use the command
Guarded.
The command can be used also with Lemma, Remark, etc. instead of Theorem.

Variant: Definition ident binders
?

: type
This allows defining a term of type type using the proof editing mode. It behaves as Theorem but is intended to
be used in conjunction with Defined in order to define a constant of which the computational behavior is relevant.
The command can be used also with Example instead of Definition.
See also:
Opaque, Transparent, unfold.

Variant: Let ident binders
?

: type

Like Definition ident binders
?

: type except that the definition is turned into a let-in definition
generalized over the declarations depending on it after closing the current section.

Variant: Fixpoint ident binders : type with ident binders : type
*

This generalizes the syntax of Fixpoint so that one or more bodies can be defined interactively using the proof
editing mode (when a body is omitted, its type is mandatory in the syntax). When the block of proofs is completed,
it is intended to be ended by Defined.

Variant: CoFixpoint ident binders
?

: type with ident binders
?

: type

*

This generalizes the syntax of CoFixpoint so that one or more bodies can be defined interactively using the
proof editing mode.

A proof starts by the keyword Proof. Then Coq enters the proof editing mode until the proof is completed. The proof
editing mode essentially contains tactics that are described in chapter Tactics. Besides tactics, there are commands to
manage the proof editing mode. They are described in Chapter Proof handling.
When the proof is completed it should be validated and put in the environment using the keyword Qed.

Note:
1. Several statements can be simultaneously asserted provided option Nested Proofs Allowed was turned on.
2. Not only other assertions but any vernacular command can be given while in the process of proving a given assertion.

In this case, the command is understood as if it would have been given before the statements still to be proved.
Nonetheless, this practice is discouraged and may stop working in future versions.
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3. Proofs ended by Qed are declared opaque. Their content cannot be unfolded (see Performing computations), thus
realizing some form of proof-irrelevance. To be able to unfold a proof, the proof should be ended by Defined.

4. Proof is recommended but can currently be omitted. On the opposite side, Qed (or Defined) is mandatory to
validate a proof.

5. One can also use Admitted in place of Qed to turn the current asserted statement into an axiom and exit the
proof editing mode.

Attributes

Any vernacular command can be decorated with a list of attributes, enclosed between #[ (hash and opening square
bracket) and ] (closing square bracket) and separated by commas ,.
Each attribute has a name (an identifier) and may have a value. A value is either a string (in which case it is specified
with an equal = sign), or a list of attributes, enclosed within brackets.
Currently, the following attributes names are recognized:
monomorphic, polymorphic Take no value, analogous to the Monomorphic and Polymorphic flags (see

Polymorphic Universes).
program Takes no value, analogous to the Program flag (see Program).
global, local Take no value, analogous to the Global and Local flags (see Controlling the locality of commands).
deprecated Takes as value the optional attributes since and note; both have a string value.

This attribute can trigger the following warnings:
Warning: Tactic qualid is deprecated since string. string.

Warning: Tactic Notation qualid is deprecated since string. string.

Here are a few examples:

From Coq Require Program.
[Loading ML file extraction_plugin.cmxs ... done]

#[program] Definition one : nat := S _.
one has type-checked, generating 1 obligation
Solving obligations automatically...
1 obligation remaining
Obligation 1 of one: nat.

Next Obligation.
1 subgoal

============================
nat

exact O.
No more subgoals.

Defined.
one_obligation_1 is defined
No more obligations remaining
one is defined

#[deprecated(since="8.9.0", note="Use idtac instead.")]
(continues on next page)
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(continued from previous page)
Ltac foo := idtac.

foo is defined

Goal True.
1 subgoal

============================
True

Proof.
now foo.

Toplevel input, characters 4-7:
> now foo.
> ^^^
Warning: Tactic foo is deprecated since 8.9.0. Use idtac instead.
[deprecated-tactic,deprecated]
No more subgoals.

Abort.

3.2 Extensions of Gallina

Gallina is the kernel language of Coq. We describe here extensions of Gallina’s syntax.

3.2.1 Record types

The Record construction is a macro allowing the definition of records as is done in many programming languages. Its
syntax is described in the grammar below. In fact, the Record macro is more general than the usual record types, since
it allows also for “manifest” expressions. In this sense, the Record construction allows defining “signatures”.

record ::= record_keyword record_body with … with record_body
record_keyword ::= Record | Inductive | CoInductive
record_body ::= ident [ binders ] [: sort ] := [ ident ] { [ field ; … ; field ] }.
field ::= ident [ binders ] : type [ where notation ]

| ident [ binders ] [: type ] := term

Command: Record ident binders : sort
?

:= ident
?

{ ident binders : type
*

;
}

The first identifier ident is the name of the defined record and sort is its type. The optional identifier following
:= is the name of its constructor. If it is omitted, the default name Build_ident, where ident is the record
name, is used. If sort is omitted, the default sort is Type. The identifiers inside the brackets are the names of
fields. For a given field ident, its type is forall binders, type. Remark that the type of a particular
identifier may depend on a previously-given identifier. Thus the order of the fields is important. Finally, binders
are parameters of the record.

More generally, a record may have explicitly defined (a.k.a. manifest) fields. For instance, we might have: Record
ident binders : sort := { ident1 : type1 ; ident2 := term2 ; ident3 : type3 }. in
which case the correctness of type3 may rely on the instance term2 of ident2 and term2 may in turn depend on
ident1.
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Example
The set of rational numbers may be defined as:

Record Rat : Set := mkRat
{ sign : bool
; top : nat
; bottom : nat
; Rat_bottom_cond : 0 <> bottom
; Rat_irred_cond :

forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1
}.

Rat is defined
sign is defined
top is defined
bottom is defined
Rat_bottom_cond is defined
Rat_irred_cond is defined

Note here that the fields Rat_bottom_cond depends on the field bottom and Rat_irred_cond depends on both
top and bottom.

Let us now see the work done by the Record macro. First the macro generates a variant type definition with just one
constructor: Variant ident binders

?
: sort := ident0 binders

? .
To build an object of type ident, one should provide the constructor ident0 with the appropriate number of terms
filling the fields of the record.

Example
Let us define the rational 1/2:

Theorem one_two_irred : forall x y z:nat, x * y = 1 /\ x * z = 2 -> x = 1.
Admitted.
Definition half := mkRat true 1 2 (O_S 1) one_two_irred.
Check half.

record_term ::= {| [field_def ; … ; field_def] |}
field_def ::= name [binders] := record_term

Alternatively, the following syntax allows creating objects by using named fields, as shown in this grammar. The fields do
not have to be in any particular order, nor do they have to be all present if the missing ones can be inferred or prompted
for (see Program).

Definition half' :=
{| sign := true;

Rat_bottom_cond := O_S 1;
Rat_irred_cond := one_two_irred |}.

half' is defined

The following settings let you control the display format for types:
Flag: Printing Records

If set, use the record syntax (shown above) as the default display format.
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You can override the display format for specified types by adding entries to these tables:
Table: Printing Record qualid

Specifies a set of qualids which are displayed as records. Use the Add @table and Remove @table com-
mands to update the set of qualids.

Table: Printing Constructor qualid
Specifies a set of qualids which are displayed as constructors. Use the Add @table and Remove @table
commands to update the set of qualids.

This syntax can also be used for pattern matching.

Eval compute in (
match half with
| {| sign := true; top := n |} => n
| _ => 0
end).
= 1

: nat

The macro generates also, when it is possible, the projection functions for destructuring an object of type ident. These
projection functions are given the names of the corresponding fields. If a field is named _ then no projection is built for
it. In our example:

Eval compute in top half.
= 1

: nat

Eval compute in bottom half.
= 2

: nat

Eval compute in Rat_bottom_cond half.
= O_S 1

: 0 <> bottom half

An alternative syntax for projections based on a dot notation is available:

Eval compute in half.(top).
= 1

: nat

Flag: Printing Projections
This flag activates the dot notation for printing.

Example

Set Printing Projections.
Check top half.

half.(top)
: nat

projection ::= term `.` ( qualid )
| term `.` ( qualid arg … arg )
| term `.` ( @qualid term … term )
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Syntax of Record projections
The corresponding grammar rules are given in the preceding grammar. When qualid denotes a projection, the syntax
term.(qualid) is equivalent to qualid term, the syntax term.(qualid arg

+
) to qualid arg

+

term. and the syntax term.(@qualid term
+
) to @qualid term

+
term. In each case, term is the

object projected and the other arguments are the parameters of the inductive type.

Note: Records defined with the Record keyword are not allowed to be recursive (references to the record’s name in
the type of its field raises an error). To define recursive records, one can use the Inductive and CoInductive
keywords, resulting in an inductive or co-inductive record. Definition of mutal inductive or co-inductive records are also
allowed, as long as all of the types in the block are records.

Note: Induction schemes are automatically generated for inductive records. Automatic generation of induction
schemes for non-recursive records defined with the Record keyword can be activated with the Nonrecursive
Elimination Schemes option (see Generation of induction principles with Scheme).

Note: Structure is a synonym of the keyword Record.

Warning: ident cannot be defined.
It can happen that the definition of a projection is impossible. This message is followed by an explanation of this
impossibility. There may be three reasons:
1. The name ident already exists in the environment (see Axiom).
2. The body of ident uses an incorrect elimination for ident (see Fixpoint and Destructors).
3. The type of the projections ident depends on previous projections which themselves could not be defined.

Error: Records declared with the keyword Record or Structure cannot be recursive.
The record name ident appears in the type of its fields, but uses the keyword Record. Use the keyword
Inductive or CoInductive instead.

Error: Cannot handle mutually (co)inductive records.
Records cannot be defined as part of mutually inductive (or co-inductive) definitions, whether with records only or
mixed with standard definitions.

During the definition of the one-constructor inductive definition, all the errors of inductive definitions, as described in
Section Inductive definitions, may also occur.
See also:
Coercions and records in section Classes as Records of the chapter devoted to coercions.

Primitive Projections

Flag: Primitive Projections
Turns on the use of primitive projections when defining subsequent records (even through the Inductive and
CoInductive commands). Primitive projections extended the Calculus of Inductive Constructions with a new
binary term constructor r.(p) representing a primitive projection p applied to a record object r (i.e., primitive
projections are always applied). Even if the record type has parameters, these do not appear in the internal represen-
tation of applications of the projection, considerably reducing the sizes of terms when manipulating parameterized
records and type checking time. On the user level, primitive projections can be used as a replacement for the usual
defined ones, although there are a few notable differences.
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Flag: Printing Primitive Projection Parameters
This compatibility option reconstructs internally omitted parameters at printing time (even though they are absent
in the actual AST manipulated by the kernel).

Flag: Printing Primitive Projection Compatibility
This compatibility option (on by default) governs the printing of pattern matching over primitive records.

Primitive Record Types

When the Primitive Projections option is on, definitions of record types change meaning. When a type is
declared with primitive projections, its match construct is disabled (see Primitive Projections though). To eliminate the
(co-)inductive type, one must use its defined primitive projections.
For compatibility, the parameters still appear to the user when printing terms even though they are absent in the ac-
tual AST manipulated by the kernel. This can be changed by unsetting the Printing Primitive Projection
Parameters flag. Further compatibility printing can be deactivated thanks to the Printing Primitive
Projection Compatibility option which governs the printing of pattern matching over primitive records.
There are currently two ways to introduce primitive records types:

1. Through the Record command, in which case the type has to be non-recursive. The defined type enjoys eta-
conversion definitionally, that is the generalized form of surjective pairing for records: r = Build_R (r.(p1)
… r.(p𝑛)). Eta-conversion allows to define dependent elimination for these types as well.

2. Through the Inductive and CoInductive commands, when the body of the definition is a record declaration
of the form Build_R { p1 : t1; … ; p𝑛 : t𝑛 }. In this case the types can be recursive and eta-conversion is
disallowed. These kind of record types differ from their traditional versions in the sense that dependent elimination
is not available for them and only non-dependent case analysis can be defined.

Reduction

The basic reduction rule of a primitive projection is p𝑖 (Build_R t1 … t𝑛) →𝜄 t𝑖. However, to take the 𝛿 flag into
account, projections can be in two states: folded or unfolded. An unfolded primitive projection application obeys the rule
above, while the folded version delta-reduces to the unfolded version. This allows to precisely mimic the usual unfolding
rules of constants. Projections obey the usual simpl flags of the Arguments command in particular. There is cur-
rently no way to input unfolded primitive projections at the user-level, and one must use the Printing Primitive
Projection Compatibility to display unfolded primitive projections as matches and distinguish them from
folded ones.

Compatibility Projections and match

To ease compatibility with ordinary record types, each primitive projection is also defined as a ordinary constant taking
parameters and an object of the record type as arguments, and whose body is an application of the unfolded primitive
projection of the same name. These constants are used when elaborating partial applications of the projection. One
can distinguish them from applications of the primitive projection if the Printing Primitive Projection
Parameters option is off: For a primitive projection application, parameters are printed as underscores while for the
compatibility projections they are printed as usual.
Additionally, user-written match constructs on primitive records are desugared into substitution of the projections, they
cannot be printed back as match constructs.
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3.2.2 Variants and extensions of match

Multiple and nested pattern matching

The basic version of match allows pattern matching on simple patterns. As an extension, multiple nested patterns or
disjunction of patterns are allowed, as in ML-like languages.
The extension just acts as a macro that is expanded during parsing into a sequence of match on simple patterns. Espe-
cially, a construction defined using the extended match is generally printed under its expanded form (see Printing
Matching).
See also:
Extended pattern matching.

Pattern-matching on boolean values: the if expression

For inductive types with exactly two constructors and for patternmatching expressions that do not depend on the arguments
of the constructors, it is possible to use a if … then … else notation. For instance, the definition

Definition not (b:bool) :=
match b with
| true => false
| false => true
end.

not is defined

can be alternatively written

Definition not (b:bool) := if b then false else true.
not is defined

More generally, for an inductive type with constructors C1 and C2, we have the following equivalence

if term [dep_ret_type] then term1 else term2 ≡
match term [dep_ret_type] with
| C1 _ … _ => term1
| C2 _ … _ => term2
end

Example

Check (fun x (H:{x=0}+{x<>0}) =>
match H with
| left _ => true
| right _ => false
end).

fun (x : nat) (H : {x = 0} + {x <> 0}) => if H then true else false
: forall x : nat, {x = 0} + {x <> 0} -> bool

Notice that the printing uses the if syntax because sumbool is declared as such (see Controlling pretty-printing of match
expressions).
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Irrefutable patterns: the destructuring let variants

Pattern-matching on terms inhabiting inductive type having only one constructor can be alternatively written using let
… in … constructions. There are two variants of them.

First destructuring let syntax

The expression let (ident1, … , ident𝑛) := term0in term1 performs case analysis on term0 which must
be in an inductive type with one constructor having itself 𝑛 arguments. Variables ident1 … ident𝑛 are bound to the
𝑛 arguments of the constructor in expression term1. For instance, the definition

Definition fst (A B:Set) (H:A * B) := match H with
| pair x y => x
end.

fst is defined

can be alternatively written

Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x.
fst is defined

Notice that reduction is different from regular let … in … construction since it happens only if term0 is in constructor
form. Otherwise, the reduction is blocked.
The pretty-printing of a definition by matching on a irrefutable pattern can either be done using match or the let
construction (see Section Controlling pretty-printing of match expressions).
If term inhabits an inductive type with one constructor C, we have an equivalence between

let (ident1, …, ident�) [dep_ret_type] := term in term'

and

match term [dep_ret_type] with
C ident1 … ident� => term'
end

Second destructuring let syntax

Another destructuring let syntax is available for inductive types with one constructor by giving an arbitrary pattern instead
of just a tuple for all the arguments. For example, the preceding example can be written:

Definition fst (A B:Set) (p:A*B) := let 'pair x _ := p in x.
fst is defined

This is useful to match deeper inside tuples and also to use notations for the pattern, as the syntax let ’p := t in
b allows arbitrary patterns to do the deconstruction. For example:

Definition deep_tuple (A:Set) (x:(A*A)*(A*A)) : A*A*A*A :=
let '((a,b), (c, d)) := x in (a,b,c,d).

deep_tuple is defined

Notation " x 'With' p " := (exist _ x p) (at level 20).
Identifier 'With' now a keyword

(continues on next page)
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(continued from previous page)
Definition proj1_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A :=
let 'x With p := t in x.

proj1_sig' is defined

When printing definitions which are written using this construct it takes precedence over let printing directives for the
datatype under consideration (see Section Controlling pretty-printing of match expressions).

Controlling pretty-printing of match expressions

The following commands give some control over the pretty-printing of match expressions.

Printing nested patterns

Flag: Printing Matching
The Calculus of Inductive Constructions knows patternmatching only over simple patterns. It is however convenient
to re-factorize nested pattern matching into a single pattern matching over a nested pattern.
When this option is on (default), Coq’s printer tries to do such limited re-factorization. Turning it off tells Coq to
print only simple pattern matching problems in the same way as the Coq kernel handles them.

Factorization of clauses with same right-hand side

Flag: Printing Factorizable Match Patterns
When several patterns share the same right-hand side, it is additionally possible to share the clauses using disjunctive
patterns. Assuming that the printing matching mode is on, this option (on by default) tells Coq’s printer to try to
do this kind of factorization.

Use of a default clause

Flag: Printing Allow Match Default Clause
When several patterns share the same right-hand side which do not depend on the arguments of the patterns, yet an
extra factorization is possible: the disjunction of patterns can be replaced with a _ default clause. Assuming that
the printing matching mode and the factorization mode are on, this option (on by default) tells Coq’s printer to use
a default clause when relevant.

Printing of wildcard patterns

Flag: Printing Wildcard
Some variables in a pattern may not occur in the right-hand side of the pattern matching clause. When this option
is on (default), the variables having no occurrences in the right-hand side of the pattern matching clause are just
printed using the wildcard symbol “_”.

Printing of the elimination predicate

Flag: Printing Synth
In most of the cases, the type of the result of a matched term is mechanically synthesizable. Especially, if the result
type does not depend of the matched term. When this option is on (default), the result type is not printed when
Coq knows that it can re- synthesize it.

52 Chapter 3. The language



The Coq Reference Manual, Release 8.9.1

Printing matching on irrefutable patterns

If an inductive type has just one constructor, pattern matching can be written using the first destructuring let syntax.
Table: Printing Let qualid

Specifies a set of qualids for which pattern matching is displayed using a let expression. Note that this only applies
to pattern matching instances entered with match. It doesn’t affect pattern matching explicitly entered with a
destructuring let. Use the Add @table and Remove @table commands to update this set.

Printing matching on booleans

If an inductive type is isomorphic to the boolean type, pattern matching can be written using if… then… else….
This table controls which types are written this way:
Table: Printing If qualid

Specifies a set of qualids for which pattern matching is displayed using if… then… else…. Use the Add
@table and Remove @table commands to update this set.

This example emphasizes what the printing options offer.

Example

Definition snd (A B:Set) (H:A * B) := match H with
| pair x y => y
end.

snd is defined

Test Printing Let for prod.
Cases on elements of prod are printed using a `let' form

Print snd.
snd =
fun (A B : Set) (H : A * B) => let (_, y) := H in y

: forall A B : Set, A * B -> B

Argument scopes are [type_scope type_scope _]

Remove Printing Let prod.
Unset Printing Synth.
Unset Printing Wildcard.
Print snd.

snd =
fun (A B : Set) (H : A * B) => match H return B with

| (x, y) => y
end

: forall A B : Set, A * B -> B

Argument scopes are [type_scope type_scope _]

3.2.3 Advanced recursive functions

The following experimental command is available when the FunInd library has been loaded via Require Import
FunInd:
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Command: Function ident binder
*

{ decrease_annot } : type := term
This command can be seen as a generalization of Fixpoint. It is actually a wrapper for several ways of defining
a function and other useful related objects, namely: an induction principle that reflects the recursive structure of the
function (see function induction) and its fixpoint equality. The meaning of this declaration is to define a
function ident, similarly to Fixpoint. Like in Fixpoint, the decreasing argument must be given (unless the
function is not recursive), but it might not necessarily be structurally decreasing. The point of the {} annotation is to
name the decreasing argument and to describe which kind of decreasing criteria must be used to ensure termination
of recursive calls.

The Function construction also enjoys the with extension to define mutually recursive definitions. However, this
feature does not work for non structurally recursive functions.
See the documentation of functional induction (function induction) and Functional Scheme (Generation
of induction principles with Functional Scheme) for how to use the induction principle to easily reason about the function.
Remark: To obtain the right principle, it is better to put rigid parameters of the function as first arguments. For example
it is better to define plus like this:

Function plus (m n : nat) {struct n} : nat :=
match n with
| 0 => m
| S p => S (plus m p)
end.

plus is defined
plus is recursively defined (decreasing on 2nd argument)
plus_equation is defined
plus_ind is defined
plus_rec is defined
plus_rect is defined
R_plus_correct is defined
R_plus_complete is defined

than like this:

Function plus (n m : nat) {struct n} : nat :=
match n with
| 0 => m
| S p => S (plus p m)
end.

plus is defined
plus is recursively defined (decreasing on 1st argument)
plus_equation is defined
plus_ind is defined
plus_rec is defined
plus_rect is defined
R_plus_correct is defined
R_plus_complete is defined

Limitations

term0 must be built as a pure pattern matching tree (match … with) with applications only at the end of each branch.
Function does not support partial application of the function being defined. Thus, the following example cannot be
accepted due to the presence of partial application of wrong in the body of wrong:

Fail Function wrong (C:nat) : nat :=
List.hd 0 (List.map wrong (C::nil)).

The command has indeed failed with message:
The reference List.hd was not found in the current environment.
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For now, dependent cases are not treated for non structurally terminating functions.
Error: The recursive argument must be specified.

Error: No argument name ident.

Error: Cannot use mutual definition with well-founded recursion or measure.

Warning: Cannot define graph for ident.
The generation of the graph relation (R_ident) used to compute the induction scheme of ident raised a typing
error. Only ident is defined; the induction scheme will not be generated. This error happens generally when:

• the definition uses pattern matching on dependent types, which Function cannot deal with yet.
• the definition is not a pattern matching tree as explained above.

Warning: Cannot define principle(s) for ident.
The generation of the graph relation (R_ident) succeeded but the induction principle could not be built. Only
ident is defined. Please report.

Warning: Cannot build functional inversion principle.
functional inversion will not be available for the function.

See also:
Generation of induction principles with Functional Scheme and function induction

Depending on the {…} annotation, different definition mechanisms are used by Function. A more precise description
is given below.

Variant: Function ident binder
*

: type := term
Defines the not recursive function ident as if declared with Definition. Moreover the following are defined:

• ident_rect, ident_rec and ident_ind, which reflect the pattern matching structure of term (see
Inductive);

• The inductive R_ident corresponding to the graph of ident (silently);
• ident_complete and ident_correct which are inversion information linking the function and its
graph.

Variant: Function ident binder
*

{ struct ident } : type := term
Defines the structural recursive function ident as if declared with Fixpoint. Moreover the following are
defined:

• The same objects as above;
• The fixpoint equation of ident: ident_equation.

Variant: Function ident binder
*

{ measure term ident } : type := term

Variant: Function ident binder
*

{ wf term ident } : type := term
Defines a recursive function by well-founded recursion. The module Recdef of the standard library must be
loaded for this feature. The {} annotation is mandatory and must be one of the following:

• {measure term ident }with ident being the decreasing argument and term being a function from
type of ident to nat for which value on the decreasing argument decreases (for the lt order on nat) at
each recursive call of term. Parameters of the function are bound in term;

• {wf term ident } with ident being the decreasing argument and term an ordering relation on the
type of ident (i.e. of type Tident → Tident → Prop) for which the decreasing argument decreases at each
recursive call of term. The order must be well-founded. Parameters of the function are bound in term.
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Depending on the annotation, the user is left with some proof obligations that will be used to define the function.
These proofs are: proofs that each recursive call is actually decreasing with respect to the given criteria, and (if
the criteria is wf) a proof that the ordering relation is well-founded. Once proof obligations are discharged, the
following objects are defined:

• The same objects as with the struct;
• The lemma identtcc which collects all proof obligations in one property;
• The lemmas identterminate and identF which is needed to be inlined during extraction of ident.

The way this recursive function is defined is the subject of several papers by Yves Bertot and Antonia Balaa on the
one hand, and Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu on the other hand. Remark: Proof
obligations are presented as several subgoals belonging to a Lemma identtcc.

3.2.4 Section mechanism

Sections create local contexts which can be shared across multiple definitions.

Example
Sections are opened by the Section command, and closed by End.

Section s1.

Inside a section, local parameters can be introduced using Variable, Hypothesis, or Context (there are also
plural variants for the first two).

Variables x y : nat.
x is declared
y is declared

The command Let introduces section-wide Let-in definitions. These definitions won’t persist when the section is closed,
and all persistent definitions which depend on y' will be prefixed with let y' := y in.

Let y' := y.
Definition x' := S x.
Definition x'' := x' + y'.

Print x'.
x' = S x

: nat

Print x''.
x'' = x' + y'

: nat

End s1.
Print x'.

x' = fun x : nat => S x
: nat -> nat

Argument scope is [nat_scope]

Print x''.
x'' = fun x y : nat => let y' := y in x' x + y'

: nat -> nat -> nat

(continues on next page)
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(continued from previous page)

Argument scopes are [nat_scope nat_scope]

Notice the difference between the value of x' and x'' inside section s1 and outside.

Command: Section ident
This command is used to open a section named ident. Section names do not need to be unique.

Command: End ident
This command closes the section named ident. After closing of the section, the local declarations (variables and
local definitions, see Variable) get discharged, meaning that they stop being visible and that all global objects
defined in the section are generalized with respect to the variables and local definitions they each depended on in
the section.
Error: This is not the last opened section.

Note: Most commands, like Hint, Notation, option management, … which appear inside a section are canceled
when the section is closed.

Command: Variable ident : type
This command links type to the name ident in the context of the current section. When the current section
is closed, name ident will be unknown and every object using this variable will be explicitly parameterized (the
variable is discharged).
Error: ident already exists.

Variant: Variable ident
+

: type
Links type to each ident.

Variant: Variable  (  ident +
: type )

+

Declare one or more variables with various types.

Variant: Variables  (  ident +
: type)

+

Variant: Hypothesis  (  ident +
: type)

+

Variant: Hypotheses  (  ident +
: type)

+

These variants are synonyms of Variable  (  ident +
: type)

+

.

Command: Let ident := term
This command binds the value term to the name ident in the environment of the current section. The name
ident is accessible only within the current section. When the section is closed, all persistent definitions and
theorems within it and depending on ident will be prefixed by the let-in definition let ident := term
in.
Error: ident already exists.

Variant: Let ident binders
?

: type
?

:= term

Variant: Let Fixpoint ident fix_body with fix_body
*
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Variant: Let CoFixpoint ident cofix_body with cofix_body
*

Command: Context binders
Declare variables in the context of the current section, like Variable, but also allowing implicit variables, Implicit
generalization, and let-binders.

Context {A : Type} (a b : A).
Context `{EqDec A}.
Context (b' := b).

See also:
Section Binders. Section Sections and contexts in chapter Typeclasses.

3.2.5 Module system

The module system provides a way of packaging related elements together, as well as a means of massive abstraction.

module_type ::= qualid
| module_type with Definition qualid := term
| module_type with Module qualid := qualid
| qualid qualid … qualid
| !qualid qualid … qualid

module_binding ::= ( [Import|Export] ident … ident : module_type )
module_bindings ::= module_binding … module_binding
module_expression ::= qualid … qualid

| !qualid … qualid

Syntax of modules
In the syntax of module application, the ! prefix indicates that any Inline directive in the type of the functor arguments
will be ignored (see the Module Type command below).
Command: Module ident

This command is used to start an interactive module named ident.

Variant: Module ident module_binding
*

Starts an interactive functor with parameters given by module_bindings.
Variant: Module ident : module_type

Starts an interactive module specifying its module type.

Variant: Module ident module_binding
*

: module_type
Starts an interactive functor with parameters given by the list of module_bindings, and output module type
module_type.

Variant: Module ident <: module_type
+

<:

Starts an interactive module satisfying each module_type.

Variant: Module ident module_binding
*

<: module_type
+

<:
.

Starts an interactive functor with parameters given by the list of module_binding. The output module
type is verified against each module_type.
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Variant: Module [ Import | Export ]
Behaves like Module, but automatically imports or exports the module.

Reserved commands inside an interactive module

Command: Include module
Includes the content of module in the current interactive module. Here module can be a module expression or
a module type expression. If module is a high-order module or module type expression then the system tries to
instantiate module by the current interactive module.

Command: Include module
+

<+
is a shortcut for the commands Include module for each module.

Command: End ident
This command closes the interactive module ident. If the module type was given the content of the module
is matched against it and an error is signaled if the matching fails. If the module is basic (is not a functor) its
components (constants, inductive types, submodules etc.) are now available through the dot notation.

Error: No such label ident.

Error: Signature components for label ident do not match.

Error: This is not the last opened module.

Command: Module ident := module_expression
This command defines the module identifier ident to be equal to module_expression.

Variant: Module ident module_binding
*

:= module_expression
Defines a functor with parameters given by the list of module_binding and body
module_expression.

Variant: Module ident module_binding
*

: module_type := module_expression
Defines a functor with parameters given by the list of module_binding (possibly none), and output mod-
ule type module_type, with body module_expression.

Variant: Module ident module_binding
*

<: module_type
+

<:
:= module_expression

Defines a functor with parameters given by module_bindings (possibly none) with body
module_expression. The body is checked against each module_typei.

Variant: Module ident module_binding
*

:= module_expression
+

<+
is equivalent to an interactive module where each module_expression is included.

Command: Module Type ident
This command is used to start an interactive module type ident.

Variant: Module Type ident module_binding
*

Starts an interactive functor type with parameters given by module_bindings.

Reserved commands inside an interactive module type:

Command: Include module
Same as Include inside a module.

Command: Include module
+

<+
This is a shortcut for the command Include module for each module.
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Command: assumption_keyword Inline assums
The instance of this assumption will be automatically expanded at functor application, except when this functor
application is prefixed by a ! annotation.

Command: End ident
This command closes the interactive module type ident.
Error: This is not the last opened module type.

Command: Module Type ident := module_type
Defines a module type ident equal to module_type.

Variant: Module Type ident module_binding
*

:= module_type
Defines a functor type ident specifying functors taking arguments module_bindings and
returning module_type.

Variant: Module Type ident module_binding
*

:= module_type
+

<+
is equivalent to an interactive module type were each module_type is included.

Command: Declare Module ident : module_type
Declares a module ident of type module_type.

Variant: Declare Module ident module_binding
*

: module_type
Declares a functor with parameters given by the list of module_binding and output module
type module_type.

Example
Let us define a simple module.

Module M.
Interactive Module M started

Definition T := nat.
T is defined

Definition x := 0.
x is defined

Definition y : bool.
1 subgoal

============================
bool

exact true.
No more subgoals.

Defined.
y is defined

End M.
Module M is defined

Inside a module one can define constants, prove theorems and do any other things that can be done in the toplevel. Com-
ponents of a closed module can be accessed using the dot notation:
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Print M.x.
M.x = 0

: nat

A simple module type:

Module Type SIG.
Interactive Module Type SIG started

Parameter T : Set.
T is declared

Parameter x : T.
x is declared

End SIG.
Module Type SIG is defined

Now we can create a new module from M, giving it a less precise specification: the y component is dropped as well as the
body of x.

Module N : SIG with Definition T := nat := M.
Module N is defined

Print N.T.
N.T = nat

: Set

Print N.x.
*** [ N.x : N.T ]

Fail Print N.y.
The command has indeed failed with message:
N.y not a defined object.

The definition of N using the module type expression SIGwith Definition T := nat is equivalent to the following
one:

Module Type SIG'.
Interactive Module Type SIG' started

Definition T : Set := nat.
T is defined

Parameter x : T.
x is declared

End SIG'.
Module Type SIG' is defined

Module N : SIG' := M.
Module N is defined

If we just want to be sure that our implementation satisfies a given module type without restricting the interface, we can
use a transparent constraint
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Module P <: SIG := M.
Module P is defined

Print P.y.
P.y = true

: bool

Now let us create a functor, i.e. a parametric module

Module Two (X Y: SIG).
Interactive Module Two started

Definition T := (X.T * Y.T)%type.
T is defined

Definition x := (X.x, Y.x).
x is defined

End Two.
Module Two is defined

and apply it to our modules and do some computations:

Module Q := Two M N.
Module Q is defined

Eval compute in (fst Q.x + snd Q.x).
= N.x

: nat

In the end, let us define a module type with two sub-modules, sharing some of the fields and give one of its possible
implementations:

Module Type SIG2.
Interactive Module Type SIG2 started

Declare Module M1 : SIG.
Module M1 is declared

Module M2 <: SIG.
Interactive Module M2 started

Definition T := M1.T.
T is defined

Parameter x : T.
x is declared

End M2.
Module M2 is defined

End SIG2.
Module Type SIG2 is defined

Module Mod <: SIG2.
Interactive Module Mod started

(continues on next page)
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(continued from previous page)
Module M1.

Interactive Module M1 started

Definition T := nat.
T is defined

Definition x := 1.
x is defined

End M1.
Module M1 is defined

Module M2 := M.
Module M2 is defined

End Mod.
Module Mod is defined

Notice that M is a correct body for the component M2 since its T component is equal nat and hence M1.T as specified.

Note:
1. Modules and module types can be nested components of each other.
2. One can have sections inside a module or a module type, but not a module or a module type inside a section.
3. Commands like Hint or Notation can also appear inside modules and module types. Note that in case of a

module definition like:

Module N : SIG := M.

or:

Module N : SIG. … End N.

hints and the like valid for N are not those defined in M (or the module body) but the ones defined in SIG.

Command: Import qualid
If qualid denotes a valid basic module (i.e. its module type is a signature), makes its components available by
their short names.

Example

Module Mod.
Interactive Module Mod started

Definition T:=nat.
T is defined

Check T.
T

: Set

End Mod.
Module Mod is defined

(continues on next page)
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(continued from previous page)

Check Mod.T.
Mod.T

: Set

Fail Check T.
The command has indeed failed with message:
The reference T was not found in the current environment.

Import Mod.
Check T.

T
: Set

Some features defined in modules are activated only when a module is imported. This is for instance the case of
notations (see Notations).
Declarations made with the Local flag are never imported by the Import command. Such declarations are only
accessible through their fully qualified name.

Example

Module A.
Interactive Module A started

Module B.
Interactive Module B started

Local Definition T := nat.
T is defined

End B.
Module B is defined

End A.
Module A is defined

Import A.
Fail Check B.T.

The command has indeed failed with message:
The reference B.T was not found in the current environment.

Variant: Export qualid
When the module containing the command Export qualid is imported, qualid is imported as well.
Error: qualid is not a module.

Warning: Trying to mask the absolute name qualid!

Command: Print Module ident
Prints the module type and (optionally) the body of the module ident.

Command: Print Module Type ident
Prints the module type corresponding to ident.

Flag: Short Module Printing
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This option (off by default) disables the printing of the types of fields, leaving only their names, for the commands
Print Module and Print Module Type.

3.2.6 Libraries and qualified names

Names of libraries

The theories developed in Coq are stored in library files which are hierarchically classified into libraries and sublibraries.
To express this hierarchy, library names are represented by qualified identifiers qualid, i.e. as list of identifiers separated
by dots (see Qualified identifiers and simple identifiers). For instance, the library file Mult of the standard Coq library
Arith is named Coq.Arith.Mult. The identifier that starts the name of a library is called a library root. All library
files of the standard library of Coq have the reserved root Coq but library filenames based on other roots can be obtained
by using Coq commands (coqc, coqtop, coqdep, …) options -Q or -R (see By command line options). Also, when an
interactive Coq session starts, a library of root Top is started, unless option -top or -notop is set (see By command
line options).

Qualified names

Library files are modules which possibly contain submodules which eventually contain constructions (axioms, parameters,
definitions, lemmas, theorems, remarks or facts). The absolute name, or full name, of a construction in some library file
is a qualified identifier starting with the logical name of the library file, followed by the sequence of submodules names
encapsulating the construction and ended by the proper name of the construction. Typically, the absolute name Coq.
Init.Logic.eq denotes Leibniz’ equality defined in the module Logic in the sublibrary Init of the standard library
of Coq.
The proper name that ends the name of a construction is the short name (or sometimes base name) of the construction
(for instance, the short name of Coq.Init.Logic.eq is eq). Any partial suffix of the absolute name is a partially
qualified name (e.g. Logic.eq is a partially qualified name for Coq.Init.Logic.eq). Especially, the short name
of a construction is its shortest partially qualified name.
Coq does not accept two constructions (definition, theorem, …) with the same absolute name but different constructions
can have the same short name (or even same partially qualified names as soon as the full names are different).
Notice that the notion of absolute, partially qualified and short names also applies to library filenames.
Visibility
Coq maintains a table called the name table which maps partially qualified names of constructions to absolute names.
This table is updated by the commands Require, Import and Export and also each time a new declaration is added
to the context. An absolute name is called visible from a given short or partially qualified name when this latter name is
enough to denote it. This means that the short or partially qualified name is mapped to the absolute name in Coq name
table. Definitions flagged as Local are only accessible with their fully qualified name (see Definitions).
It may happen that a visible name is hidden by the short name or a qualified name of another construction. In this case,
the name that has been hidden must be referred to using one more level of qualification. To ensure that a construction
always remains accessible, absolute names can never be hidden.

Example

Check 0.
0

: nat

Definition nat := bool.

(continues on next page)
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(continued from previous page)
nat is defined

Check 0.
0

: Datatypes.nat

Check Datatypes.nat.
Datatypes.nat

: Set

Locate nat.
Constant Top.nat
Inductive Coq.Init.Datatypes.nat

(shorter name to refer to it in current context is Datatypes.nat)

See also:
Commands Locate and Locate Library.

Libraries and filesystem

Note: The questions described here have been subject to redesign in Coq 8.5. Former versions of Coq use the same
terminology to describe slightly different things.

Compiled files (.vo and .vio) store sub-libraries. In order to refer to them inside Coq, a translation from file-system
names to Coq names is needed. In this translation, names in the file system are called physical paths while Coq names
are contrastingly called logical names.
A logical prefix Lib can be associated to a physical pathpath using the command line option -Q path Lib. All subfolders
of path are recursively associated to the logical path Lib extended with the corresponding suffix coming from the physical
path. For instance, the folder path/fOO/Bar maps to Lib.fOO.Bar. Subdirectories corresponding to invalid Coq
identifiers are skipped, and, by convention, subdirectories named CVS or _darcs are skipped too.
Thanks to this mechanism, .vo files are made available through the logical name of the folder they are in, extended with
their own basename. For example, the name associated to the file path/fOO/Bar/File.vo is Lib.fOO.Bar.
File. The same caveat applies for invalid identifiers. When compiling a source file, the .vo file stores its logical name,
so that an error is issued if it is loaded with the wrong loadpath afterwards.
Some folders have a special status and are automatically put in the path. Coq commands associate auto-
matically a logical path to files in the repository trees rooted at the directory from where the command is
launched, coqlib/user-contrib/, the directories listed in the $COQPATH, ${XDG_DATA_HOME}/coq/ and
${XDG_DATA_DIRS}/coq/ environment variables (see XDG base directory specification6) with the same physical-
to-logical translation and with an empty logical prefix.
The command line option -R is a variant of -Q which has the strictly same behavior regarding loadpaths, but which also
makes the corresponding .vo files available through their short names in a way not unlike the Import command (see
here). For instance, -R path Lib associates to the file /path/fOO/Bar/File.vo the logical name Lib.fOO.
Bar.File, but allows this file to be accessed through the short names fOO.Bar.File,Bar.File and File. If
several files with identical base name are present in different subdirectories of a recursive loadpath, which of these files is
found first may be system- dependent and explicit qualification is recommended. The From argument of the Require
command can be used to bypass the implicit shortening by providing an absolute root to the required file (see Compiled
files).

6 http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
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There also exists another independent loadpath mechanism attached to OCaml object files (.cmo or .cmxs) rather than
Coq object files as described above. The OCaml loadpath is managed using the option -I path (in the OCaml world,
there is neither a notion of logical name prefix nor a way to access files in subdirectories of path). See the command
Declare ML Module in Compiled files to understand the need of the OCaml loadpath.
See By command line options for a more general view over the Coq command line options.

3.2.7 Implicit arguments

An implicit argument of a function is an argument which can be inferred from contextual knowledge. There are different
kinds of implicit arguments that can be considered implicit in different ways. There are also various commands to control
the setting or the inference of implicit arguments.

The different kinds of implicit arguments

Implicit arguments inferable from the knowledge of other arguments of a function

The first kind of implicit arguments covers the arguments that are inferable from the knowledge of the type of other
arguments of the function, or of the type of the surrounding context of the application. Especially, such implicit arguments
correspond to parameters dependent in the type of the function. Typical implicit arguments are the type arguments in
polymorphic functions. There are several kinds of such implicit arguments.
Strict Implicit Arguments
An implicit argument can be either strict or non strict. An implicit argument is said to be strict if, whatever the other
arguments of the function are, it is still inferable from the type of some other argument. Technically, an implicit argument
is strict if it corresponds to a parameter which is not applied to a variable which itself is another parameter of the function
(since this parameter may erase its arguments), not in the body of a match, and not itself applied or matched against
patterns (since the original form of the argument can be lost by reduction).
For instance, the first argument of

cons: forall A:Set, A -> list A -> list A

in module List.v is strict because list is an inductive type and A will always be inferable from the type list A
of the third argument of cons. Also, the first argument of cons is strict with respect to the second one, since the first
argument is exactly the type of the second argument. On the contrary, the second argument of a term of type

forall P:nat->Prop, forall n:nat, P n -> ex nat P

is implicit but not strict, since it can only be inferred from the type P n of the third argument and if P is, e.g., fun _
=> True, it reduces to an expression where n does not occur any longer. The first argument P is implicit but not strict
either because it can only be inferred from P n and P is not canonically inferable from an arbitrary n and the normal
form of P n. Consider, e.g., that n is 0 and the third argument has type True, then any P of the form
fun n => match n with 0 => True | _ => anything end

would be a solution of the inference problem.
Contextual Implicit Arguments
An implicit argument can be contextual or not. An implicit argument is said contextual if it can be inferred only from the
knowledge of the type of the context of the current expression. For instance, the only argument of:

nil : forall A:Set, list A`
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is contextual. Similarly, both arguments of a term of type:

forall P:nat->Prop, forall n:nat, P n \/ n = 0

are contextual (moreover, n is strict and P is not).
Reversible-Pattern Implicit Arguments
There is another class of implicit arguments that can be reinferred unambiguously if all the types of the remaining ar-
guments are known. This is the class of implicit arguments occurring in the type of another argument in position of
reversible pattern, which means it is at the head of an application but applied only to uninstantiated distinct variables.
Such an implicit argument is called reversible- pattern implicit argument. A typical example is the argument P of nat_rec
in

nat_rec : forall P : nat -> Set, P 0 ->
(forall n : nat, P n -> P (S n)) -> forall x : nat, P x

(P is reinferable by abstracting over n in the type P n).
See Controlling reversible-pattern implicit arguments for the automatic declaration of reversible-pattern implicit arguments.

Implicit arguments inferable by resolution

This corresponds to a class of non-dependent implicit arguments that are solved based on the structure of their type only.

Maximal or non maximal insertion of implicit arguments

In case a function is partially applied, and the next argument to be applied is an implicit argument, two disciplines are
applicable. In the first case, the function is considered to have no arguments furtherly: one says that the implicit argument
is not maximally inserted. In the second case, the function is considered to be implicitly applied to the implicit arguments
it is waiting for: one says that the implicit argument is maximally inserted.
Each implicit argument can be declared to have to be inserted maximally or non maximally. This can be governed
argument per argument by the command Arguments (implicits) or globally by the Maximal Implicit
Insertion option.
See also:
Displaying what the implicit arguments are.

Casual use of implicit arguments

In a given expression, if it is clear that some argument of a function can be inferred from the type of the other arguments,
the user can force the given argument to be guessed by replacing it by “_”. If possible, the correct argument will be
automatically generated.
Error: Cannot infer a term for this placeholder.

Coq was not able to deduce an instantiation of a “_”.

Declaration of implicit arguments

In case one wants that some arguments of a given object (constant, inductive types, constructors, assumptions, local or
not) are always inferred by Coq, one may declare once and for all which are the expected implicit arguments of this object.
There are two ways to do this, a priori and a posteriori.
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Implicit Argument Binders

In the first setting, one wants to explicitly give the implicit arguments of a declared object as part of its definition. To do
this, one has to surround the bindings of implicit arguments by curly braces:

Definition id {A : Type} (x : A) : A := x.
id is defined

This automatically declares the argument A of id as a maximally inserted implicit argument. One can then do as-if the
argument was absent in every situation but still be able to specify it if needed:

Definition compose {A B C} (g : B -> C) (f : A -> B) := fun x => g (f x).
compose is defined

Goal forall A, compose id id = id (A:=A).
1 subgoal

============================
forall A : Type, compose id id = id

The syntax is supported in all top-level definitions: Definition, Fixpoint, Lemma and so on. For (co-)inductive
datatype declarations, the semantics are the following: an inductive parameter declared as an implicit argument need not
be repeated in the inductive definition but will become implicit for the constructors of the inductive only, not the inductive
type itself. For example:

Inductive list {A : Type} : Type :=
| nil : list
| cons : A -> list -> list.

list is defined
list_rect is defined
list_ind is defined
list_rec is defined

Print list.
Inductive list (A : Type) : Type := nil : list | cons : A -> list -> list

For list: Argument A is implicit and maximally inserted
For nil: Argument A is implicit and maximally inserted
For cons: Argument A is implicit and maximally inserted
For list: Argument scope is [type_scope]
For nil: Argument scope is [type_scope]
For cons: Argument scopes are [type_scope _ _]

One can always specify the parameter if it is not uniform using the usual implicit arguments disambiguation syntax.

Declaring Implicit Arguments

Command: Arguments qualid [ ident ] | ident
*

This command is used to set implicit arguments a posteriori, where the list of possibly bracketed ident is a prefix
of the list of arguments of qualid where the ones to be declared implicit are surrounded by square brackets and
the ones to be declared as maximally inserted implicits are surrounded by curly braces.
After the above declaration is issued, implicit arguments can just (and have to) be skipped in any expression involv-
ing an application of qualid.
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Command: Arguments qualid : clear implicits
This command clears implicit arguments.

Variant: Global Arguments qualid [ ident ] | ident
*

This command is used to recompute the implicit arguments of qualid after ending of the current section if any,
enforcing the implicit arguments known from inside the section to be the ones declared by the command.

Variant: Local Arguments qualid [ ident ] | ident
*

When in a module, tell not to activate the implicit arguments of qualid declared by this command to contexts
that require the module.

Variant: Global | Local
?

Arguments qualid [ ident ] | ident
+

*

,

For names of constants, inductive types, constructors, lemmas which can only be applied to a fixed number of argu-
ments (this excludes for instance constants whose type is polymorphic), multiple implicit arguments declarations
can be given. Depending on the number of arguments qualid is applied to in practice, the longest applicable list of
implicit arguments is used to select which implicit arguments are inserted. For printing, the omitted arguments are
the ones of the longest list of implicit arguments of the sequence.

Example

Inductive list (A:Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.

list is defined
list_rect is defined
list_ind is defined
list_rec is defined

Check (cons nat 3 (nil nat)).
cons nat 3 (nil nat)

: list nat

Arguments cons [A] _ _.
Arguments nil [A].
Check (cons 3 nil).

cons 3 nil
: list nat

Fixpoint map (A B:Type) (f:A->B) (l:list A) : list B := match l with nil => nil |␣
↪cons a t => cons (f a) (map A B f t) end.

map is defined
map is recursively defined (decreasing on 4th argument)

Fixpoint length (A:Type) (l:list A) : nat := match l with nil => 0 | cons _ m => S␣
↪(length A m) end.

length is defined
length is recursively defined (decreasing on 2nd argument)

Arguments map [A B] f l.
Arguments length {A} l.
(* A has to be maximally inserted *)

Check (fun l:list (list nat) => map length l).
fun l : list (list nat) => map length l

: list (list nat) -> list nat
(continues on next page)
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(continued from previous page)

Arguments map [A B] f l, [A] B f l, A B f l.
Check (fun l => map length l = map (list nat) nat length l).

fun l : list (list nat) => map length l = map length l
: list (list nat) -> Prop

Note: To know which are the implicit arguments of an object, use the command Print Implicit (see Displaying
what the implicit arguments are).

Automatic declaration of implicit arguments

Command: Arguments qualid : default implicits
This command tells Coq to automatically detect what are the implicit arguments of a defined object.
The auto-detection is governed by options telling if strict, contextual, or reversible-pattern implicit arguments must
be considered or not (see Controlling strict implicit arguments, Controlling strict implicit arguments, Controlling
reversible-pattern implicit arguments, and also Controlling the insertion of implicit arguments not followed by explicit
arguments).
Variant: Global Arguments qualid : default implicits

Tell to recompute the implicit arguments of qualid after ending of the current section if any.
Variant: Local Arguments qualid : default implicits

When in a module, tell not to activate the implicit arguments of qualid computed by this declaration to
contexts that requires the module.

Example

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.

list is defined
list_rect is defined
list_ind is defined
list_rec is defined

Arguments cons : default implicits.
Print Implicit cons.

cons : forall A : Set, A -> list A -> list A

Argument A is implicit

Arguments nil : default implicits.
Print Implicit nil.

nil : forall A : Set, list A

Set Contextual Implicit.
Arguments nil : default implicits.
Print Implicit nil.

nil : forall A : Set, list A

Argument A is implicit and maximally inserted
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The computation of implicit arguments takes account of the unfolding of constants. For instance, the variable p below has
type (Transitivity R) which is reducible to forall x,y:U, R x y -> forall z:U, R y z -> R
x z. As the variables x, y and z appear strictly in the body of the type, they are implicit.

Variable X : Type.
X is declared

Definition Relation := X -> X -> Prop.
Relation is defined

Definition Transitivity (R:Relation) := forall x y:X, R x y -> forall z:X, R y z -> R␣
↪x z.

Transitivity is defined

Variables (R : Relation) (p : Transitivity R).
R is declared
p is declared

Arguments p : default implicits.
Print p.

*** [ p : Transitivity R ]

Expanded type for implicit arguments
p : forall x y : X, R x y -> forall z : X, R y z -> R x z

Arguments x, y, z are implicit

Print Implicit p.
p : forall x y : X, R x y -> forall z : X, R y z -> R x z

Arguments x, y, z are implicit

Variables (a b c : X) (r1 : R a b) (r2 : R b c).
a is declared
b is declared
c is declared
r1 is declared
r2 is declared

Check (p r1 r2).
p r1 r2

: R a c

Mode for automatic declaration of implicit arguments

Flag: Implicit Arguments
This option (off by default) allows to systematically declare implicit the arguments detectable as such. Auto-
detection of implicit arguments is governed by options controlling whether strict and contextual implicit arguments
have to be considered or not.

Controlling strict implicit arguments

Flag: Strict Implicit
When the mode for automatic declaration of implicit arguments is on, the default is to automatically set implicit
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only the strict implicit arguments plus, for historical reasons, a small subset of the non-strict implicit arguments.
To relax this constraint and to set implicit all non strict implicit arguments by default, you can turn this option off.

Flag: Strongly Strict Implicit
Use this option (off by default) to capture exactly the strict implicit arguments and no more than the strict implicit
arguments.

Controlling contextual implicit arguments

Flag: Contextual Implicit
By default, Coq does not automatically set implicit the contextual implicit arguments. You can turn this option on
to tell Coq to also infer contextual implicit argument.

Controlling reversible-pattern implicit arguments

Flag: Reversible Pattern Implicit
By default, Coq does not automatically set implicit the reversible-pattern implicit arguments. You can turn this
option on to tell Coq to also infer reversible-pattern implicit argument.

Controlling the insertion of implicit arguments not followed by explicit arguments

Flag: Maximal Implicit Insertion
Assuming the implicit argument mode is on, this option (off by default) declares implicit arguments to be automat-
ically inserted when a function is partially applied and the next argument of the function is an implicit one.

Explicit applications

In presence of non-strict or contextual argument, or in presence of partial applications, the synthesis of implicit arguments
may fail, so one may have to give explicitly certain implicit arguments of an application. The syntax for this is (ident
:= term)where ident is the name of the implicit argument and term is its corresponding explicit term. Alternatively,
one can locally deactivate the hiding of implicit arguments of a function by using the notation qualid term

+ . This
syntax extension is given in the following grammar:

term ::= @ qualid term … term
| @ qualid
| qualid argument … argument

argument ::= term
| (ident := term)

Syntax for explicitly giving implicit arguments

Example: (continued)

Check (p r1 (z:=c)).
p r1 (z:=c)

: R b c -> R a c

Check (p (x:=a) (y:=b) r1 (z:=c) r2).
p r1 r2

: R a c
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Renaming implicit arguments

Command: Arguments qualid name
*

: rename
This command is used to redefine the names of implicit arguments.

With the assert flag, Arguments can be used to assert that a given object has the expected number of arguments and
that these arguments are named as expected.

Example: (continued)

Arguments p [s t] _ [u] _: rename.
Check (p r1 (u:=c)).

p r1 (u:=c)
: R b c -> R a c

Check (p (s:=a) (t:=b) r1 (u:=c) r2).
p r1 r2

: R a c

Fail Arguments p [s t] _ [w] _ : assert.
The command has indeed failed with message:
Flag "rename" expected to rename u into w.

Displaying what the implicit arguments are

Command: Print Implicit qualid
Use this command to display the implicit arguments associated to an object, and to know if each of them is to be
used maximally or not.

Explicit displaying of implicit arguments for pretty-printing

Flag: Printing Implicit
By default, the basic pretty-printing rules hide the inferable implicit arguments of an application. Turn this option
on to force printing all implicit arguments.

Flag: Printing Implicit Defensive
By default, the basic pretty-printing rules display the implicit arguments that are not detected as strict implicit
arguments. This “defensive” mode can quickly make the display cumbersome so this can be deactivated by turning
this option off.

See also:
Printing All.

Interaction with subtyping

When an implicit argument can be inferred from the type of more than one of the other arguments, then only the type of
the first of these arguments is taken into account, and not an upper type of all of them. As a consequence, the inference
of the implicit argument of “=” fails in
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Fail Check nat = Prop.
The command has indeed failed with message:
The term "Prop" has type "Type" while it is expected to have type
"Set" (universe inconsistency).

but succeeds in

Check Prop = nat.
Prop = nat

: Prop

Deactivation of implicit arguments for parsing

Flag: Parsing Explicit
Turning this option on (it is off by default) deactivates the use of implicit arguments.
In this case, all arguments of constants, inductive types, constructors, etc, including the arguments declared as
implicit, have to be given as if no arguments were implicit. By symmetry, this also affects printing.

Canonical structures

A canonical structure is an instance of a record/structure type that can be used to solve unification problems involving a
projection applied to an unknown structure instance (an implicit argument) and a value. The complete documentation of
canonical structures can be found in Canonical Structures; here only a simple example is given.
Command: Canonical Structure qualid

This command declares qualid as a canonical structure.
Assume that qualid denotes an object (Build_struct c1 … c𝑛 ) in the structure struct of which the
fields are x1, …, x𝑛. Then, each time an equation of the form (x𝑖 _) =𝛽𝛿𝜄𝜁 c𝑖 has to be solved during the type
checking process, qualid is used as a solution. Otherwise said, qualid is canonically used to extend the field
c𝑖 into a complete structure built on c𝑖.
Canonical structures are particularly useful when mixed with coercions and strict implicit arguments.

Example
Here is an example.

Require Import Relations.
Require Import EqNat.
Set Implicit Arguments.
Unset Strict Implicit.
Structure Setoid : Type := {Carrier :> Set; Equal : relation Carrier;

Prf_equiv : equivalence Carrier Equal}.
Setoid is defined
Carrier is defined
Equal is defined
Prf_equiv is defined

Definition is_law (A B:Setoid) (f:A -> B) := forall x y:A, Equal x y -> Equal (f␣
↪x) (f y).

is_law is defined

Axiom eq_nat_equiv : equivalence nat eq_nat.

(continues on next page)
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(continued from previous page)
eq_nat_equiv is declared

Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv.
nat_setoid is defined

Canonical Structure nat_setoid.

Thanks to nat_setoid declared as canonical, the implicit arguments A and B can be synthesized in the next
statement.

Lemma is_law_S : is_law S.
1 subgoal

============================
is_law (A:=nat_setoid) (B:=nat_setoid) S

Note: If a same field occurs in several canonical structures, then only the structure declared first as canonical is
considered.

Variant: Canonical Structure ident : type
?

:= term
This is equivalent to a regular definition of ident followed by the declaration Canonical Structure
ident.

Command: Print Canonical Projections
This displays the list of global names that are components of some canonical structure. For each of them, the
canonical structure of which it is a projection is indicated.

Example
For instance, the above example gives the following output:

Print Canonical Projections.
nat <- Carrier ( nat_setoid )
eq_nat <- Equal ( nat_setoid )
eq_nat_equiv <- Prf_equiv ( nat_setoid )

Implicit types of variables

It is possible to bind variable names to a given type (e.g. in a development using arithmetic, it may be convenient to bind
the names n or m to the type nat of natural numbers).

Command: Implicit Types ident
+

: type
The effect of the command is to automatically set the type of bound variables starting with ident (either ident
itself or ident followed by one or more single quotes, underscore or digits) to be type (unless the bound variable
is already declared with an explicit type in which case, this latter type is considered).

Example
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Require Import List.
Implicit Types m n : nat.
Lemma cons_inj_nat : forall m n l, n :: l = m :: l -> n = m.

1 subgoal

============================
forall (m n : nat) (l : list nat), n :: l = m :: l -> n = m

Proof.
intros m n.

1 subgoal

m, n : nat
============================
forall l : list nat, n :: l = m :: l -> n = m

Abort.
Lemma cons_inj_bool : forall (m n:bool) l, n :: l = m :: l -> n = m.

1 subgoal

============================
forall (m n : bool) (l : list bool), n :: l = m :: l -> n = m

Abort.

Variant: Implicit Type ident : type
This is useful for declaring the implicit type of a single variable.

Variant: Implicit Types ( ident
+

: type )

+

Adds blocks of implicit types with different specifications.

Implicit generalization

Implicit generalization is an automatic elaboration of a statement with free variables into a closed statement where these
variables are quantified explicitly. Implicit generalization is done inside binders starting with a ‘ and terms delimited
by ‘{ } and ‘( ), always introducing maximally inserted implicit arguments for the generalized variables. Inside implicit
generalization delimiters, free variables in the current context are automatically quantified using a product or a lambda
abstraction to generate a closed term. In the following statement for example, the variables n and m are automatically
generalized and become explicit arguments of the lemma as we are using ‘( ):

Generalizable All Variables.
Lemma nat_comm : `(n = n + 0).

1 subgoal

============================
forall n : nat, n = n + 0

One can control the set of generalizable identifiers with the Generalizable vernacular command to avoid unex-
pected generalizations when mistyping identifiers. There are several commands that specify which variables should be
generalizable.
Command: Generalizable All Variables

All variables are candidate for generalization if they appear free in the context under a generalization delimiter. This
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may result in confusing errors in case of typos. In such cases, the context will probably contain some unexpected
generalized variable.

Command: Generalizable No Variables
Disable implicit generalization entirely. This is the default behavior.

Command: Generalizable (Variable | Variables) ident
+

Allow generalization of the given identifiers only. Calling this command multiple times adds to the allowed identi-
fiers.

Command: Global Generalizable
Allows exporting the choice of generalizable variables.

One can also use implicit generalization for binders, in which case the generalized variables are added as binders and set
maximally implicit.

Definition id `(x : A) : A := x.
id is defined

Print id.
id = fun (A : Type) (x : A) => x

: forall A : Type, A -> A

Argument A is implicit and maximally inserted
Argument scopes are [type_scope _]

The generalizing binders ‘{ } and ‘( ) work similarly to their explicit counterparts, only binding the generalized variables
implicitly, as maximally-inserted arguments. In these binders, the binding name for the bound object is optional, whereas
the type is mandatory, dually to regular binders.

3.2.8 Coercions

Coercions can be used to implicitly inject terms from one class in which they reside into another one. A class is either a
sort (denoted by the keyword Sortclass), a product type (denoted by the keyword Funclass), or a type constructor
(denoted by its name), e.g. an inductive type or any constant with a type of the form forall ( x1 : A1 ) … (x𝑛 : A𝑛),
s where s is a sort.
Then the user is able to apply an object that is not a function, but can be coerced to a function, and more generally to
consider that a term of type A is of type B provided that there is a declared coercion between A and B.
More details and examples, and a description of the commands related to coercions are provided in Implicit Coercions.

3.2.9 Printing constructions in full

Flag: Printing All
Coercions, implicit arguments, the type of pattern matching, but also notations (see Syntax extensions and interpre-
tation scopes) can obfuscate the behavior of some tactics (typically the tactics applying to occurrences of subterms
are sensitive to the implicit arguments). Turning this option on deactivates all high-level printing features such as
coercions, implicit arguments, returned type of pattern matching, notations and various syntactic sugar for pattern
matching or record projections. Otherwise said, Printing All includes the effects of the options Printing
Implicit, Printing Coercions, Printing Synth, Printing Projections, and Printing
Notations. To reactivate the high-level printing features, use the command Unset Printing All.
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3.2.10 Printing universes

Flag: Printing Universes
Turn this option on to activate the display of the actual level of each occurrence of Type. See Sorts for details.
This wizard option, in combination with Printing All can help to diagnose failures to unify terms apparently
identical but internally different in the Calculus of Inductive Constructions.

Command: Print Sorted
?

Universes
This command can be used to print the constraints on the internal level of the occurrences of Type (see Sorts).
If the optional Sorted option is given, each universe will be made equivalent to a numbered label reflecting its
level (with a linear ordering) in the universe hierarchy.

Variant: Print Sorted
?

Universes string
This variant accepts an optional output filename.
If string ends in .dot or .gv, the constraints are printed in the DOT language, and can be processed by
Graphviz tools. The format is unspecified if string doesn’t end in .dot or .gv.

3.2.11 Existential variables

Coq terms can include existential variables which represents unknown subterms to eventually be replaced by actual sub-
terms.
Existential variables are generated in place of unsolvable implicit arguments or “_” placeholders when using commands
such as Check (see Section Requests to the environment) or when using tactics such as refine, as well as in place of
unsolvable instances when using tactics such that eapply. An existential variable is defined in a context, which is the
context of variables of the placeholder which generated the existential variable, and a type, which is the expected type of
the placeholder.
As a consequence of typing constraints, existential variables can be duplicated in such a way that they possibly appear in
different contexts than their defining context. Thus, any occurrence of a given existential variable comes with an instance
of its original context. In the simple case, when an existential variable denotes the placeholder which generated it, or is
used in the same context as the one in which it was generated, the context is not displayed and the existential variable is
represented by “?” followed by an identifier.

Parameter identity : forall (X:Set), X -> X.
identity is declared

Check identity _ _.
identity ?y ?x

: ?S0@{x:=?x}
where
?y : [ |- forall x : ?S, ?S0]
?S : [ |- Set]
?S0 : [x : ?S |- Set]
?x : [ |- ?S]

Check identity _ (fun x => _).
identity ?y (fun x : ?S0 => ?y0)

: ?S@{x:=fun x : ?S0 => ?y0}
where
?y : [ |- forall x : forall x : ?S0, ?S1, ?S]
?S : [x : forall x : ?S0, ?S1 |- Set]
?S0 : [ |- Set]
?S1 : [x : ?S0 |- Set]
?y0 : [x : ?S0 |- ?S1]
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In the general case, when an existential variable ?ident appears outside of its context of definition, its instance, written
under the form { ident := term

*
; } is appending to its name, indicating how the variables of its defining context

are instantiated. The variables of the context of the existential variables which are instantiated by themselves are not
written, unless the flag Printing Existential Instances is on (see Section Explicit displaying of existential
instances for pretty-printing), and this is why an existential variable used in the same context as its context of definition is
written with no instance.

Check (fun x y => _) 0 1.
(fun x y : nat => ?y) 0 1

: ?T@{x:=0; y:=1}
where
?T : [x : nat y : nat |- Type]
?y : [x : nat y : nat |- ?T]

Set Printing Existential Instances.
Check (fun x y => _) 0 1.

(fun x y : nat => ?y@{x:=x; y:=y}) 0 1
: ?T@{x:=0; y:=1}

where
?T : [x : nat y : nat |- Type]
?y : [x : nat y : nat |- ?T@{x:=x; y:=y}]

Existential variables can be named by the user upon creation using the syntax ?[ident]. This is useful when the
existential variable needs to be explicitly handled later in the script (e.g. with a named-goal selector, see Goal selectors).

Explicit displaying of existential instances for pretty-printing

Flag: Printing Existential Instances
This option (off by default) activates the full display of how the context of an existential variable is instantiated at
each of the occurrences of the existential variable.

Solving existential variables using tactics

Instead of letting the unification engine try to solve an existential variable by itself, one can also provide an explicit
hole together with a tactic to solve it. Using the syntax ltac:(tacexpr), the user can put a tactic anywhere a term
is expected. The order of resolution is not specified and is implementation-dependent. The inner tactic may use any
variable defined in its scope, including repeated alternations between variables introduced by term binding as well as
those introduced by tactic binding. The expression tacexpr can be any tactic expression as described in The tactic
language.

Definition foo (x : nat) : nat := ltac:(exact x).
identity is declared
foo is defined

This construction is useful when one wants to define complicated terms using highly automated tactics without resorting
to writing the proof-term by means of the interactive proof engine.
This mechanism is comparable to the Declare Implicit Tactic command defined at Setting implicit automation
tactics, except that the used tactic is local to each hole instead of being declared globally.

3.3 The Coq library

The Coq library is structured into two parts:
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• The initial library: it contains elementary logical notions and data-types. It constitutes the basic state of the system
directly available when running Coq;

• The standard library: general-purpose libraries containing various developments of Coq axiomatizations about
sets, lists, sorting, arithmetic, etc. This library comes with the system and its modules are directly accessible through
the Require command (see Section Compiled files);

In addition, user-provided libraries or developments are provided by Coq users’ community. These libraries and develop-
ments are available for download at http://coq.inria.fr (see Section Users’ contributions).
This chapter briefly reviews the Coq libraries whose contents can also be browsed at http://coq.inria.fr/stdlib.

3.3.1 The basic library

This section lists the basic notions and results which are directly available in the standard Coq system. Most of these
constructions are defined in the Preludemodule in directory theories/Init at the Coq root directory; this includes
the modules Notations, Logic, Datatypes, Specif, Peano, Wf and Tactics. Module Logic_Type also
makes it in the initial state.

Notations

This module defines the parsing and pretty-printing of many symbols (infixes, prefixes, etc.). However, it does not assign
a meaning to these notations. The purpose of this is to define and fix once for all the precedence and associativity of very
common notations. The main notations fixed in the initial state are :

Notation Precedence Associativity
_ -> _ 99 right
_ <-> _ 95 no
_ \/ _ 85 right
_ /\ _ 80 right
~ _ 75 right
_ = _ 70 no
_ = _ = _ 70 no
_ = _ :> _ 70 no
_ <> _ 70 no
_ <> _ :> _ 70 no
_ < _ 70 no
_ > _ 70 no
_ <= _ 70 no
_ >= _ 70 no
_ < _ < _ 70 no
_ < _ <= _ 70 no
_ <= _ < _ 70 no
_ <= _ <= _ 70 no
_ + _ 50 left
_ || _ 50 left
_ - _ 50 left
_ * _ 40 left
_ _ 40 left
_ / _ 40 left
- _ 35 right
/ _ 35 right
_ ^ _ 30 right
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Logic

The basic library of Coq comes with the definitions of standard (intuitionistic) logical connectives (they are defined as
inductive constructions). They are equipped with an appealing syntax enriching the subclass form of the syntactic class
term. The syntax of form is shown below:

form ::= True (True)
| False (False)
| ~ form (not)
| form /\ form (and)
| form \/ form (or)
| form -> form (primitive implication)
| form <-> form (iff)
| forall ident : type, form (primitive for all)
| exists ident [: specif], form (ex)
| exists2 ident [: specif], form & form (ex2)
| term = term (eq)
| term = term :> specif (eq)

Note: Implication is not defined but primitive (it is a non-dependent product of a proposition over another proposition).
There is also a primitive universal quantification (it is a dependent product over a proposition). The primitive universal
quantification allows both first-order and higher-order quantification.

Propositional Connectives

First, we find propositional calculus connectives:

Inductive True : Prop := I.
Inductive False : Prop := .
Definition not (A: Prop) := A -> False.
Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).
Section Projections.
Variables A B : Prop.
Theorem proj1 : A /\ B -> A.
Theorem proj2 : A /\ B -> B.

End Projections.
Inductive or (A B:Prop) : Prop :=
| or_introl (_:A)
| or_intror (_:B).
Definition iff (P Q:Prop) := (P -> Q) /\ (Q -> P).
Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R.

Quantifiers

Then we find first-order quantifiers:

Definition all (A:Set) (P:A -> Prop) := forall x:A, P x.
Inductive ex (A: Set) (P:A -> Prop) : Prop :=
ex_intro (x:A) (_:P x).

(continues on next page)
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(continued from previous page)
Inductive ex2 (A:Set) (P Q:A -> Prop) : Prop :=
ex_intro2 (x:A) (_:P x) (_:Q x).

The following abbreviations are allowed:

exists x:A, P ex A (fun x:A => P)
exists x, P ex _ (fun x => P)
exists2 x:A, P & Q ex2 A (fun x:A => P) (fun x:A => Q)
exists2 x, P & Q ex2 _ (fun x => P) (fun x => Q)

The type annotation :A can be omitted when A can be synthesized by the system.

Equality

Then, we find equality, defined as an inductive relation. That is, given a type A and an x of type A, the predicate (eq A
x) is the smallest one which contains x. This definition, due to Christine Paulin-Mohring, is equivalent to define eq as
the smallest reflexive relation, and it is also equivalent to Leibniz’ equality.

Inductive eq (A:Type) (x:A) : A -> Prop :=
eq_refl : eq A x x.

Lemmas

Finally, a few easy lemmas are provided.

Theorem absurd : forall A C:Prop, A -> ~ A -> C.
Section equality.
Variables A B : Type.
Variable f : A -> B.
Variables x y z : A.
Theorem eq_sym : x = y -> y = x.
Theorem eq_trans : x = y -> y = z -> x = z.
Theorem f_equal : x = y -> f x = f y.
Theorem not_eq_sym : x <> y -> y <> x.
End equality.
Definition eq_ind_r :
forall (A:Type) (x:A) (P:A->Prop), P x -> forall y:A, y = x -> P y.

Definition eq_rec_r :
forall (A:Type) (x:A) (P:A->Set), P x -> forall y:A, y = x -> P y.

Definition eq_rect_r :
forall (A:Type) (x:A) (P:A->Type), P x -> forall y:A, y = x -> P y.

Hint Immediate eq_sym not_eq_sym : core.

The theorem f_equal is extended to functions with two to five arguments. The theorem are names f_equal2,
f_equal3, f_equal4 and f_equal5. For instance f_equal3 is defined the following way.

Theorem f_equal3 :
forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B)
(x1 y1:A1) (x2 y2:A2) (x3 y3:A3),
x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3.
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Datatypes

In the basic library, we find in Datatypes.v the definition of the basic data-types of programming, defined as inductive
constructions over the sort Set. Some of them come with a special syntax shown below (this syntax table is common
with the next section Specification):

specif ::= specif * specif (prod)
| specif + specif (sum)
| specif + { specif } (sumor)
| { specif } + { specif } (sumbool)
| { ident : specif | form } (sig)
| { ident : specif | form & form } (sig2)
| { ident : specif & specif } (sigT)
| { ident : specif & specif & specif } (sigT2)

term ::= (term, term) (pair)

Programming

Inductive unit : Set := tt.
Inductive bool : Set := true | false.
Inductive nat : Set := O | S (n:nat).
Inductive option (A:Set) : Set := Some (_:A) | None.
Inductive identity (A:Type) (a:A) : A -> Type :=

refl_identity : identity A a a.

Note that zero is the letter O, and not the numeral 0.
The predicate identity is logically equivalent to equality but it lives in sort Type. It is mainly maintained for com-
patibility.
We then define the disjoint sum of A+B of two sets A and B, and their product A*B.

Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B).
Inductive prod (A B:Set) : Set := pair (_:A) (_:B).
Section projections.
Variables A B : Set.
Definition fst (H: prod A B) := match H with

| pair _ _ x y => x
end.

Definition snd (H: prod A B) := match H with
| pair _ _ x y => y
end.

End projections.

Some operations on bool are also provided: andb (with infix notation &&), orb (with infix notation ||), xorb, implb
and negb.

Specification

The following notions defined in module Specif.v allow to build new data-types and specifications. They are available
with the syntax shown in the previous section Datatypes.
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For instance, given A:Type and P:A->Prop, the construct {x:A | P x} (in abstract syntax (sig A P)) is a
Type. We may build elements of this set as (exist x p) whenever we have a witness x:A with its justification p:P
x.
From such a (exist x p) we may in turn extract its witness x:A (using an elimination construct such as match)
but not its justification, which stays hidden, like in an abstract data-type. In technical terms, one says that sig is a weak
(dependent) sum. A variant sig2 with two predicates is also provided.

Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P x).
Inductive sig2 (A:Set) (P Q:A -> Prop) : Set :=

exist2 (x:A) (_:P x) (_:Q x).

A strong (dependent) sum {x:A & P x} may be also defined, when the predicate P is now defined as a constructor of
types in Type.

Inductive sigT (A:Type) (P:A -> Type) : Type := existT (x:A) (_:P x).
Section Projections2.
Variable A : Type.
Variable P : A -> Type.
Definition projT1 (H:sigT A P) := let (x, h) := H in x.
Definition projT2 (H:sigT A P) :=
match H return P (projT1 H) with
existT _ _ x h => h

end.
End Projections2.
Inductive sigT2 (A: Type) (P Q:A -> Type) : Type :=

existT2 (x:A) (_:P x) (_:Q x).

A related non-dependent construct is the constructive sum {A}+{B} of two propositions A and B.

Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).

This sumbool construct may be used as a kind of indexed boolean data-type. An intermediate between sumbool and
sum is the mixed sumor which combines A:Set and B:Prop in the construction A+{B} in Set.

Inductive sumor (A:Set) (B:Prop) : Set :=
| inleft (_:A)
| inright (_:B).

We may define variants of the axiom of choice, like in Martin-Löf’s Intuitionistic Type Theory.

Lemma Choice :
forall (S S':Set) (R:S -> S' -> Prop),
(forall x:S, {y : S' | R x y}) ->
{f : S -> S' | forall z:S, R z (f z)}.

Lemma Choice2 :
forall (S S':Set) (R:S -> S' -> Set),
(forall x:S, {y : S' & R x y}) ->
{f : S -> S' & forall z:S, R z (f z)}.

Lemma bool_choice :
forall (S:Set) (R1 R2:S -> Prop),
(forall x:S, {R1 x} + {R2 x}) ->
{f : S -> bool |
forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x}.

The next construct builds a sum between a data-type A:Type and an exceptional value encoding errors:
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Definition Exc := option.
Definition value := Some.
Definition error := None.

This module ends with theorems, relating the sorts Set or Type and Prop in a way which is consistent with the realiz-
ability interpretation.

Definition except := False_rec.
Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.
Theorem and_rect2 :
forall (A B:Prop) (P:Type), (A -> B -> P) -> A /\ B -> P.

Basic Arithmetics

The basic library includes a few elementary properties of natural numbers, together with the definitions of predecessor,
addition and multiplication, in module Peano.v. It also provides a scope nat_scope gathering standard notations for
common operations (+, *) and a decimal notation for numbers, allowing for instance to write 3 for S (S (S O))).
This also works on the left hand side of a match expression (see for example section refine). This scope is opened
by default.

Example
The following example is not part of the standard library, but it shows the usage of the notations:

Fixpoint even (n:nat) : bool :=
match n with
| 0 => true
| 1 => false
| S (S n) => even n
end.

Now comes the content of module Peano:

Theorem eq_S : forall x y:nat, x = y -> S x = S y.
Definition pred (n:nat) : nat :=
match n with
| 0 => 0
| S u => u
end.

Theorem pred_Sn : forall m:nat, m = pred (S m).
Theorem eq_add_S : forall n m:nat, S n = S m -> n = m.
Hint Immediate eq_add_S : core.
Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
Definition IsSucc (n:nat) : Prop :=
match n with
| 0 => False
| S p => True
end.

Theorem O_S : forall n:nat, 0 <> S n.
Theorem n_Sn : forall n:nat, n <> S n.
Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| 0 => m
| S p => S (p + m)

(continues on next page)
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(continued from previous page)
end

where "n + m" := (plus n m) : nat_scope.
Lemma plus_n_O : forall n:nat, n = n + 0.
Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Fixpoint mult (n m:nat) {struct n} : nat :=
match n with
| 0 => 0
| S p => m + p * m
end

where "n * m" := (mult n m) : nat_scope.
Lemma mult_n_O : forall n:nat, 0 = n * 0.
Lemma mult_n_Sm : forall n m:nat, n * m + n = n * (S m).

Finally, it gives the definition of the usual orderings le, lt, ge and gt.

Inductive le (n:nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m:nat, n <= m -> n <= (S m)
where "n <= m" := (le n m) : nat_scope.
Definition lt (n m:nat) := S n <= m.
Definition ge (n m:nat) := m <= n.
Definition gt (n m:nat) := m < n.

Properties of these relations are not initially known, but may be required by the user from modules Le and Lt. Finally,
Peano gives some lemmas allowing pattern matching, and a double induction principle.

Theorem nat_case :
forall (n:nat) (P:nat -> Prop),
P 0 -> (forall m:nat, P (S m)) -> P n.

Theorem nat_double_ind :
forall R:nat -> nat -> Prop,
(forall n:nat, R 0 n) ->
(forall n:nat, R (S n) 0) ->
(forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m.

Well-founded recursion

The basic library contains the basics of well-founded recursion and well-founded induction, in module Wf.v.

Section Well_founded.
Variable A : Type.
Variable R : A -> A -> Prop.
Inductive Acc (x:A) : Prop :=

Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.
Lemma Acc_inv x : Acc x -> forall y:A, R y x -> Acc y.
Definition well_founded := forall a:A, Acc a.
Hypothesis Rwf : well_founded.
Theorem well_founded_induction :
forall P:A -> Set,
(forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.

Theorem well_founded_ind :
forall P:A -> Prop,
(forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.

The automatically generated scheme Acc_rect can be used to define functions by fixpoints using well-founded relations
to justify termination. Assuming extensionality of the functional used for the recursive call, the fixpoint equation can be
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proved.

Section FixPoint.
Variable P : A -> Type.
Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=

F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)).
Definition Fix (x:A) := Fix_F x (Rwf x).
Hypothesis F_ext :

forall (x:A) (f g:forall y:A, R y x -> P y),
(forall (y:A) (p:R y x), f y p = g y p) -> F x f = F x g.

Lemma Fix_F_eq :
forall (x:A) (r:Acc x),
F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)) = Fix_F x r.

Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.
Lemma fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R y x) => Fix y).
End FixPoint.
End Well_founded.

Accessing the Type level

The standard library includes Type level definitions of counterparts of some logic concepts and basic lemmas about them.
The module Datatypes defines identity, which is the Type level counterpart of equality:

Inductive identity (A:Type) (a:A) : A -> Type :=
identity_refl : identity A a a.

Some properties of identity are proved in the module Logic_Type, which also provides the definition of Type
level negation:

Definition notT (A:Type) := A -> False.

Tactics

A few tactics defined at the user level are provided in the initial state, in module Tactics.v. They are listed at http:
//coq.inria.fr/stdlib, in paragraph Init, link Tactics.

3.3.2 The standard library

Survey

The rest of the standard library is structured into the following subdirectories:
• Logic : Classical logic and dependent equality
• Arith : Basic Peano arithmetic
• PArith : Basic positive integer arithmetic
• NArith : Basic binary natural number arithmetic
• ZArith : Basic relative integer arithmetic
• Numbers : Various approaches to natural, integer and cyclic numbers (currently axiomatically and on top of 2^31
binary words)

88 Chapter 3. The language

http://coq.inria.fr/stdlib
http://coq.inria.fr/stdlib


The Coq Reference Manual, Release 8.9.1

• Bool : Booleans (basic functions and results)
• Lists : Monomorphic and polymorphic lists (basic functions and results), Streams (infinite sequences defined with
co-inductive types)

• Sets : Sets (classical, constructive, finite, infinite, power set, etc.)
• FSets : Specification and implementations of finite sets and finite maps (by lists and by AVL trees)
• Reals : Axiomatization of real numbers (classical, basic functions, integer part, fractional part, limit, derivative,
Cauchy series, power series and results,...)

• Relations : Relations (definitions and basic results)
• Sorting : Sorted list (basic definitions and heapsort correctness)
• Strings : 8-bits characters and strings
• Wellfounded : Well-founded relations (basic results)

These directories belong to the initial load path of the system, and the modules they provide are compiled at installation
time. So they are directly accessible with the command Require (see Section Compiled files).
The different modules of the Coq standard library are documented online at http://coq.inria.fr/stdlib.

Peano’s arithmetic (nat)

While in the initial state, many operations and predicates of Peano’s arithmetic are defined, further operations and results
belong to other modules. For instance, the decidability of the basic predicates are defined here. This is provided by
requiring the module Arith.
The following table describes the notations available in scope nat_scope :

Notation Interpretation
_ < _ lt
_ <= _ le
_ > _ gt
_ >= _ ge
x < y < z x < y /\ y < z
x < y <= z x < y /\ y <= z
x <= y < z x <= y /\ y < z
x <= y <= z x <= y /\ y <= z
_ + _ plus
_ - _ minus
_ * _ mult

Notations for integer arithmetics

The following table describes the syntax of expressions for integer arithmetics. It is provided by requiring and opening the
module ZArith and opening scope Z_scope. It specifies how notations are interpreted and, when not already reserved,
the precedence and associativity.
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Notation Interpretation Precedence Associativity
_ < _ Z.lt
_ <= _ Z.le
_ > _ Z.gt
_ >= _ Z.ge
x < y < z x < y /\ y < z
x < y <= z x < y /\ y <= z
x <= y < z x <= y /\ y < z
x <= y <= z x <= y /\ y <= z
_ ?= _ Z.compare 70 no
_ + _ Z.add
_ - _ Z.sub
_ * _ Z.mul
_ / _ Z.div
_ mod _ Z.modulo 40 no
- _ Z.opp
_ ^ _ Z.pow

Example

Require Import ZArith.
[Loading ML file quote_plugin.cmxs ... done]
[Loading ML file newring_plugin.cmxs ... done]
[Loading ML file omega_plugin.cmxs ... done]

Check (2 + 3)%Z.
(2 + 3)%Z

: Z

Open Scope Z_scope.
Check 2 + 3.

2 + 3
: Z

Real numbers library

Notations for real numbers

This is provided by requiring and opening the module Reals and opening scope R_scope. This set of notations is very
similar to the notation for integer arithmetics. The inverse function was added.
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Notation Interpretation
_ < _ Rlt
_ <= _ Rle
_ > _ Rgt
_ >= _ Rge
x < y < z x < y /\ y < z
x < y <= z x < y /\ y <= z
x <= y < z x <= y /\ y < z
x <= y <= z x <= y /\ y <= z
_ + _ Rplus
_ - _ Rminus
_ * _ Rmult
_ / _ Rdiv
- _ Ropp
/ _ Rinv
_ ^ _ pow

Example

Require Import Reals.
[Loading ML file r_syntax_plugin.cmxs ... done]
[Loading ML file micromega_plugin.cmxs ... done]

Check (2 + 3)%R.
(2 + 3)%R

: R

Open Scope R_scope.
Check 2 + 3.

2 + 3
: R

Some tactics for real numbers

In addition to the powerful ring, field and lra tactics (see Chapter Tactics), there are also:
discrR

Proves that two real integer constants are different.

Example

Require Import DiscrR.
Open Scope R_scope.
Goal 5 <> 0.

1 subgoal

============================
5 <> 0

discrR.
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split_Rabs
Allows unfolding the Rabs constant and splits corresponding conjunctions.

Example

Require Import Reals.
Open Scope R_scope.
Goal forall x:R, x <= Rabs x.

1 subgoal

============================
forall x : R, x <= Rabs x

intro; split_Rabs.
2 subgoals

x : R
Hlt : x < 0
============================
x <= - x

subgoal 2 is:
x <= x

split_Rmult
Splits a condition that a product is non null into subgoals corresponding to the condition on each operand of the
product.

Example

Require Import Reals.
Open Scope R_scope.
Goal forall x y z:R, x * y * z <> 0.

1 subgoal

============================
forall x y z : R, x * y * z <> 0

intros; split_Rmult.
3 subgoals

x, y, z : R
============================
x <> 0

subgoal 2 is:
y <> 0

subgoal 3 is:
z <> 0

These tactics has been written with the tactic language Ltac described in Chapter The tactic language.
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List library

Some elementary operations on polymorphic lists are defined here. They can be accessed by requiring module List.
It defines the following notions:

• length

• head : first element (with default)
• tail : all but first element
• app : concatenation
• rev : reverse
• nth : accessing n-th element (with default)
• map : applying a function
• flat_map : applying a function returning lists
• fold_left : iterator (from head to tail)
• fold_right : iterator (from tail to head)

The following table shows notations available when opening scope list_scope.

Notation Interpretation Precedence Associativity
_ ++ _ app 60 right
_ :: _ cons 60 right

3.3.3 Users’ contributions

Numerous users’ contributions have been collected and are available at URL http://coq.inria.fr/opam/www/. On this web
page, you have a list of all contributions with informations (author, institution, quick description, etc.) and the possibility
to download them one by one. You will also find informations on how to submit a new contribution.

3.4 Calculus of Inductive Constructions

The underlying formal language of Coq is a Calculus of Inductive Constructions (Cic) whose inference rules are presented
in this chapter. The history of this formalism as well as pointers to related work are provided in a separate chapter; see
Credits.

3.4.1 The terms

The expressions of the Cic are terms and all terms have a type. There are types for functions (or programs), there are
atomic types (especially datatypes)... but also types for proofs and types for the types themselves. Especially, any object
handled in the formalism must belong to a type. For instance, universal quantification is relative to a type and takes the
form “for all x of type 𝑇 , 𝑃 ”. The expression “𝑥 of type 𝑇 ” is written “𝑥 ∶ 𝑇 ”. Informally, “𝑥 ∶ 𝑇 ” can be thought as “𝑥
belongs to 𝑇 ”.
The types of types are sorts. Types and sorts are themselves terms so that terms, types and sorts are all components of a
common syntactic language of terms which is described in Section Terms but, first, we describe sorts.
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Sorts

All sorts have a type and there is an infinite well-founded typing hierarchy of sorts whose base sorts are Prop and Set.
The sort Prop intends to be the type of logical propositions. If 𝑀 is a logical proposition then it denotes the class of
terms representing proofs of 𝑀 . An object 𝑚 belonging to 𝑀 witnesses the fact that 𝑀 is provable. An object of type
Prop is called a proposition.
The sort Set intends to be the type of small sets. This includes data types such as booleans and naturals, but also products,
subsets, and function types over these data types.
Prop and Set themselves can be manipulated as ordinary terms. Consequently they also have a type. Because assuming
simply that Set has type Set leads to an inconsistent theory [Coq86], the language of Cic has infinitely many sorts. There
are, in addition to Set and Prop a hierarchy of universes Type(𝑖) for any integer 𝑖 ≥ 1.
Like Set, all of the sorts Type(𝑖) contain small sets such as booleans, natural numbers, as well as products, subsets and
function types over small sets. But, unlike Set, they also contain large sets, namely the sorts Set and Type(𝑗) for 𝑗 < 𝑖,
and all products, subsets and function types over these sorts.
Formally, we call 𝒮 the set of sorts which is defined by:

𝒮 ≡ {Prop,Set,Type(𝑖) | 𝑖 ∈ ℕ}

Their properties, such as: Prop ∶ Type(1), Set ∶ Type(1), and Type(𝑖) ∶ Type(𝑖 + 1), are defined in Section Subtyping
rules.
The user does not have to mention explicitly the index 𝑖 when referring to the universe Type(𝑖). One only writes Type.
The system itself generates for each instance of Type a new index for the universe and checks that the constraints between
these indexes can be solved. From the user point of view we consequently have Type ∶ Type. We shall make precise in
the typing rules the constraints between the indices.
Implementation issues In practice, the Type hierarchy is implemented using algebraic universes. An algebraic universe
𝑢 is either a variable (a qualified identifier with a number) or a successor of an algebraic universe (an expression 𝑢 + 1),
or an upper bound of algebraic universes (an expression max(𝑢1, ..., 𝑢𝑛)), or the base universe (the expression 0) which
corresponds, in the arity of template polymorphic inductive types (see Section Well-formed inductive definitions), to the
predicative sortSet. A graph of constraints between the universe variables is maintained globally. To ensure the existence
of a mapping of the universes to the positive integers, the graph of constraints must remain acyclic. Typing expressions
that violate the acyclicity of the graph of constraints results in a Universe inconsistency error.
See also:
Section Printing universes.

Terms

Terms are built from sorts, variables, constants, abstractions, applications, local definitions, and products. From a syntactic
point of view, types cannot be distinguished from terms, except that they cannot start by an abstraction or a constructor.
More precisely the language of the Calculus of Inductive Constructions is built from the following rules.

1. the sorts Set, Prop, Type(𝑖) are terms.
2. variables, hereafter ranged over by letters 𝑥, 𝑦, etc., are terms
3. constants, hereafter ranged over by letters 𝑐, 𝑑, etc., are terms.
4. if 𝑥 is a variable and 𝑇 , 𝑈 are terms then ∀𝑥 ∶ 𝑇 , 𝑈 (forall x:T, U in Coq concrete syntax) is a term. If

𝑥 occurs in 𝑈 , ∀𝑥 ∶ 𝑇 , 𝑈 reads as “for all 𝑥 of type 𝑇 , 𝑈”. As 𝑈 depends on 𝑥, one says that ∀𝑥 ∶ 𝑇 , 𝑈 is a
dependent product. If 𝑥 does not occur in 𝑈 then ∀𝑥 ∶ 𝑇 , 𝑈 reads as “if 𝑇 then 𝑈”. A non dependent product can
be written: 𝑇 → 𝑈 .
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5. if 𝑥 is a variable and 𝑇 , 𝑢 are terms then 𝜆𝑥 ∶ 𝑇 . 𝑢 (fun x:T => u in Coq concrete syntax) is a term. This is
a notation for the λ-abstraction of λ-calculus [Bar81]. The term 𝜆𝑥 ∶ 𝑇 . 𝑢 is a function which maps elements of 𝑇
to the expression 𝑢.

6. if 𝑡 and 𝑢 are terms then (𝑡 𝑢) is a term (t u in Coq concrete syntax). The term (𝑡 𝑢) reads as “𝑡 applied to 𝑢”.
7. if 𝑥 is a variable, and 𝑡, 𝑇 and 𝑢 are terms then let 𝑥 ∶= 𝑡 ∶ 𝑇 in 𝑢 is a term which denotes the term 𝑢 where the

variable 𝑥 is locally bound to 𝑡 of type 𝑇 . This stands for the common “let-in” construction of functional programs
such as ML or Scheme.

Free variables. The notion of free variables is defined as usual. In the expressions 𝜆𝑥 ∶ 𝑇 . 𝑈 and ∀𝑥 ∶ 𝑇 , 𝑈 the
occurrences of 𝑥 in 𝑈 are bound.
Substitution. The notion of substituting a term 𝑡 to free occurrences of a variable 𝑥 in a term 𝑢 is defined as usual. The
resulting term is written 𝑢{𝑥/𝑡}.
The logical vs programming readings. The constructions of the Cic can be used to express both logical and program-
ming notions, accordingly to the Curry-Howard correspondence between proofs and programs, and between propositions
and types [CFC58][How80][dB72].
For instance, let us assume that nat is the type of natural numbers with zero element written 0 and that True is the always
true proposition. Then → is used both to denote nat → nat which is the type of functions from nat to nat, to denote
True→True which is an implicative proposition, to denote nat → Prop which is the type of unary predicates over the
natural numbers, etc.
Let us assume that mult is a function of type nat → nat → nat and eqnat a predicate of type nat → nat → Prop.
The λ-abstraction can serve to build “ordinary” functions as in 𝜆𝑥 ∶ nat. (mult 𝑥 𝑥) (i.e. fun x:nat => mult x
x in Coq notation) but may build also predicates over the natural numbers. For instance 𝜆𝑥 ∶ nat. (eqnat 𝑥 0) (i.e. fun
x:nat => eqnat x 0 in Coq notation) will represent the predicate of one variable 𝑥 which asserts the equality of
𝑥 with 0. This predicate has type nat → Prop and it can be applied to any expression of type nat, say 𝑡, to give an object
𝑃 𝑡 of type Prop, namely a proposition.
Furthermore forall x:nat, P x will represent the type of functions which associate to each natural number 𝑛 an
object of type (𝑃 𝑛) and consequently represent the type of proofs of the formula “∀𝑥. 𝑃(𝑥)”.

3.4.2 Typing rules

As objects of type theory, terms are subjected to type discipline. The well typing of a term depends on a global environment
and a local context.
Local context. A local context is an ordered list of local declarations of names which we call variables. The declaration
of some variable 𝑥 is either a local assumption, written 𝑥 ∶ 𝑇 (𝑇 is a type) or a local definition, written 𝑥 ∶= 𝑡 ∶ 𝑇 . We
use brackets to write local contexts. A typical example is [𝑥 ∶ 𝑇 ; 𝑦 ∶= 𝑢 ∶ 𝑈; 𝑧 ∶ 𝑉 ]. Notice that the variables declared
in a local context must be distinct. If Γ is a local context that declares some 𝑥, we write 𝑥 ∈ Γ. By writing (𝑥 ∶ 𝑇 ) ∈ Γ
we mean that either 𝑥 ∶ 𝑇 is an assumption in Γ or that there exists some 𝑡 such that 𝑥 ∶= 𝑡 ∶ 𝑇 is a definition in Γ. If
Γ defines some 𝑥 ∶= 𝑡 ∶ 𝑇 , we also write (𝑥 ∶= 𝑡 ∶ 𝑇 ) ∈ Γ. For the rest of the chapter, Γ ∶∶ (𝑦 ∶ 𝑇 ) denotes the local
context Γ enriched with the local assumption 𝑦 ∶ 𝑇 . Similarly, Γ ∶∶ (𝑦 ∶= 𝑡 ∶ 𝑇 ) denotes the local context Γ enriched
with the local definition (𝑦 ∶= 𝑡 ∶ 𝑇 ). The notation [] denotes the empty local context. By Γ1; Γ2 we mean concatenation
of the local context Γ1 and the local context Γ2.
Global environment. A global environment is an ordered list of global declarations. Global declarations are either global
assumptions or global definitions, but also declarations of inductive objects. Inductive objects themselves declare both
inductive or coinductive types and constructors (see Section Inductive Definitions).
A global assumption will be represented in the global environment as (𝑐 ∶ 𝑇 ) which assumes the name 𝑐 to be of some
type 𝑇 . A global definition will be represented in the global environment as 𝑐 ∶= 𝑡 ∶ 𝑇 which defines the name 𝑐 to have
value 𝑡 and type 𝑇 . We shall call such names constants. For the rest of the chapter, the 𝐸; 𝑐 ∶ 𝑇 denotes the global
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environment 𝐸 enriched with the global assumption 𝑐 ∶ 𝑇 . Similarly, 𝐸; 𝑐 ∶= 𝑡 ∶ 𝑇 denotes the global environment 𝐸
enriched with the global definition (𝑐 ∶= 𝑡 ∶ 𝑇 ).
The rules for inductive definitions (see Section Inductive Definitions) have to be considered as assumption rules to which
the following definitions apply: if the name 𝑐 is declared in 𝐸, we write 𝑐 ∈ 𝐸 and if 𝑐 ∶ 𝑇 or 𝑐 ∶= 𝑡 ∶ 𝑇 is declared in
𝐸, we write (𝑐 ∶ 𝑇 ) ∈ 𝐸.
Typing rules. In the following, we define simultaneously two judgments. The first one 𝐸[Γ] ⊢ 𝑡 ∶ 𝑇 means the term 𝑡
is well-typed and has type 𝑇 in the global environment 𝐸 and local context Γ. The second judgment 𝒲ℱ(𝐸)[Γ] means
that the global environment 𝐸 is well-formed and the local context Γ is a valid local context in this global environment.
A term 𝑡 is well typed in a global environment 𝐸 iff there exists a local context Γ and a term 𝑇 such that the judgment
𝐸[Γ] ⊢ 𝑡 ∶ 𝑇 can be derived from the following rules.
W-Empty

𝒲ℱ([])[]

W-Local-Assum

𝐸[Γ] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ 𝒮 𝑥 ∉ Γ
𝒲ℱ(𝐸)[Γ ∶∶ (𝑥 ∶ 𝑇 )]

W-Local-Def

𝐸[Γ] ⊢ 𝑡 ∶ 𝑇 𝑥 ∉ Γ
𝒲ℱ(𝐸)[Γ ∶∶ (𝑥 ∶= 𝑡 ∶ 𝑇 )]

W-Global-Assum

𝐸[] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ 𝒮 𝑐 ∉ 𝐸
𝒲ℱ(𝐸; 𝑐 ∶ 𝑇 )[]

W-Global-Def

𝐸[] ⊢ 𝑡 ∶ 𝑇 𝑐 ∉ 𝐸
𝒲ℱ(𝐸; 𝑐 ∶= 𝑡 ∶ 𝑇 )[]

Ax-Prop

𝒲ℱ(𝐸)[Γ]
𝐸[Γ] ⊢ Prop ∶ Type(1)

Ax-Set

𝒲ℱ(𝐸)[Γ]
𝐸[Γ] ⊢ Set ∶ Type(1)

Ax-Type

𝒲ℱ(𝐸)[Γ]
𝐸[Γ] ⊢ Type(𝑖) ∶ Type(𝑖 + 1)

Var

𝒲ℱ(𝐸)[Γ] (𝑥 ∶ 𝑇 ) ∈ Γ or (𝑥 ∶= 𝑡 ∶ 𝑇 ) ∈ Γ for some 𝑡
𝐸[Γ] ⊢ 𝑥 ∶ 𝑇
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Const

𝒲ℱ(𝐸)[Γ] (𝑐 ∶ 𝑇 ) ∈ 𝐸 or (𝑐 ∶= 𝑡 ∶ 𝑇 ) ∈ 𝐸 for some 𝑡
𝐸[Γ] ⊢ 𝑐 ∶ 𝑇

Prod-Prop

𝐸[Γ] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ 𝒮 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑈 ∶ Prop
𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑈 ∶ Prop

Prod-Set

𝐸[Γ] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ {Prop,Set} 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑈 ∶ Set
𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑈 ∶ Set

Prod-Type

𝐸[Γ] ⊢ 𝑇 ∶ Type(𝑖) 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑈 ∶ Type(𝑖)
𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑈 ∶ Type(𝑖)

Lam

𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑈 ∶ 𝑠 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑡 ∶ 𝑈
𝐸[Γ] ⊢ 𝜆𝑥 ∶ 𝑇 . 𝑡 ∶ ∀𝑥 ∶ 𝑇 , 𝑈

App

𝐸[Γ] ⊢ 𝑡 ∶ ∀𝑥 ∶ 𝑈, 𝑇 𝐸[Γ] ⊢ 𝑢 ∶ 𝑈
𝐸[Γ] ⊢ (𝑡 𝑢) ∶ 𝑇 {𝑥/𝑢}

Let

𝐸[Γ] ⊢ 𝑡 ∶ 𝑇 𝐸[Γ ∶∶ (𝑥 ∶= 𝑡 ∶ 𝑇 )] ⊢ 𝑢 ∶ 𝑈
𝐸[Γ] ⊢ let 𝑥 ∶= 𝑡 ∶ 𝑇 in 𝑢 ∶ 𝑈{𝑥/𝑡}

Note: Prod-Prop and Prod-Set typing-rules make sense if we consider the semantic difference between Prop and Set:
• All values of a type that has a sort Set are extractable.
• No values of a type that has a sort Prop are extractable.

Note: We may have let 𝑥 ∶= 𝑡 ∶ 𝑇 in 𝑢 well-typed without having ((𝜆𝑥 ∶ 𝑇 . 𝑢) 𝑡) well-typed (where 𝑇 is a type of 𝑡).
This is because the value 𝑡 associated to 𝑥 may be used in a conversion rule (see Section Conversion rules).

3.4.3 Conversion rules

In Cic, there is an internal reduction mechanism. In particular, it can decide if two programs are intentionally equal (one
says convertible). Convertibility is described in this section.
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β-reduction

We want to be able to identify some terms as we can identify the application of a function to a given argument with its
result. For instance the identity function over a given type 𝑇 can be written 𝜆𝑥 ∶ 𝑇 . 𝑥. In any global environment 𝐸 and
local context Γ, we want to identify any object 𝑎 (of type 𝑇 ) with the application ((𝜆𝑥 ∶ 𝑇 . 𝑥) 𝑎). We define for this a
reduction (or a conversion) rule we call 𝛽:

𝐸[Γ] ⊢ ((𝜆𝑥 ∶ 𝑇 . 𝑡) 𝑢) ▷𝛽 𝑡{𝑥/𝑢}

We say that 𝑡{𝑥/𝑢} is the β-contraction of ((𝜆𝑥 ∶ 𝑇 . 𝑡) 𝑢) and, conversely, that ((𝜆𝑥 ∶ 𝑇 . 𝑡) 𝑢) is the β-expansion of
𝑡{𝑥/𝑢}.
According to β-reduction, terms of the Calculus of Inductive Constructions enjoy some fundamental properties such as
confluence, strong normalization, subject reduction. These results are theoretically of great importance but we will not
detail them here and refer the interested reader to [Coq85].

ι-reduction

A specific conversion rule is associated to the inductive objects in the global environment. We shall give later on (see
SectionWell-formed inductive definitions) the precise rules but it just says that a destructor applied to an object built from
a constructor behaves as expected. This reduction is called ι-reduction and is more precisely studied in [PM93][Wer94].

δ-reduction

We may have variables defined in local contexts or constants defined in the global environment. It is legal to identify such
a reference with its value, that is to expand (or unfold) it into its value. This reduction is called δ-reduction and shows as
follows.
Delta-Local

𝒲ℱ(𝐸)[Γ] (𝑥 ∶= 𝑡 ∶ 𝑇 ) ∈ Γ
𝐸[Γ] ⊢ 𝑥 ▷Δ 𝑡

Delta-Global
𝒲ℱ(𝐸)[Γ] (𝑐 ∶= 𝑡 ∶ 𝑇 ) ∈ 𝐸

𝐸[Γ] ⊢ 𝑐 ▷𝛿 𝑡

ζ-reduction

Coq allows also to remove local definitions occurring in terms by replacing the defined variable by its value. The declaration
being destroyed, this reduction differs from δ-reduction. It is called ζ-reduction and shows as follows.
Zeta

𝒲ℱ(𝐸)[Γ] 𝐸[Γ] ⊢ 𝑢 ∶ 𝑈 𝐸[Γ ∶∶ (𝑥 ∶= 𝑢 ∶ 𝑈)] ⊢ 𝑡 ∶ 𝑇
𝐸[Γ] ⊢ let 𝑥 ∶= 𝑢 ∶ 𝑈 in 𝑡 ▷𝜁 𝑡{𝑥/𝑢}

η-expansion

Another important concept is η-expansion. It is legal to identify any term 𝑡 of functional type ∀𝑥 ∶ 𝑇 , 𝑈 with its so-called
η-expansion

𝜆𝑥 ∶ 𝑇 . (𝑡 𝑥)
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for 𝑥 an arbitrary variable name fresh in 𝑡.

Note: We deliberately do not define η-reduction:

𝜆𝑥 ∶ 𝑇 . (𝑡 𝑥) ⋫𝜂 𝑡

This is because, in general, the type of 𝑡 need not to be convertible to the type of 𝜆𝑥 ∶ 𝑇 . (𝑡 𝑥). E.g., if we take 𝑓 such
that:

𝑓 ∶ ∀𝑥 ∶ Type(2), Type(1)

then

𝜆𝑥 ∶ Type(1). (𝑓 𝑥) ∶ ∀𝑥 ∶ Type(1), Type(1)

We could not allow

𝜆𝑥 ∶ Type(1). (𝑓 𝑥) ▷𝜂 𝑓

because the type of the reduced term ∀𝑥 ∶ Type(2), Type(1) would not be convertible to the type of the original term
∀𝑥 ∶ Type(1), Type(1).

Convertibility

Let us write 𝐸[Γ] ⊢ 𝑡 ▷ 𝑢 for the contextual closure of the relation 𝑡 reduces to 𝑢 in the global environment 𝐸 and local
context Γ with one of the previous reductions β, δ, ι or ζ.
We say that two terms 𝑡1 and 𝑡2 are βδιζη-convertible, or simply convertible, or equivalent, in the global environment 𝐸
and local context Γ iff there exist terms 𝑢1 and 𝑢2 such that 𝐸[Γ] ⊢ 𝑡1 ▷ … ▷ 𝑢1 and 𝐸[Γ] ⊢ 𝑡2 ▷ … ▷ 𝑢2 and either 𝑢1
and 𝑢2 are identical, or they are convertible up to η-expansion, i.e. 𝑢1 is 𝜆𝑥 ∶ 𝑇 . 𝑢′

1 and 𝑢2𝑥 is recursively convertible to
𝑢′

1, or, symmetrically, 𝑢2 is 𝜆𝑥 ∶ 𝑇 . 𝑢′
2 and 𝑢1𝑥 is recursively convertible to 𝑢′

2. We then write 𝐸[Γ] ⊢ 𝑡1 =𝛽𝛿𝜄𝜁𝜂 𝑡2.
Apart from this we consider two instances of polymorphic and cumulative (see Chapter Polymorphic Universes) inductive
types (see below) convertible

𝐸[Γ] ⊢ 𝑡 𝑤1…𝑤𝑚 =𝛽𝛿𝜄𝜁𝜂 𝑡 𝑤′
1…𝑤′

𝑚

if we have subtypings (see below) in both directions, i.e.,

𝐸[Γ] ⊢ 𝑡 𝑤1…𝑤𝑚 ≤𝛽𝛿𝜄𝜁𝜂 𝑡 𝑤′
1…𝑤′

𝑚

and

𝐸[Γ] ⊢ 𝑡 𝑤′
1…𝑤′

𝑚 ≤𝛽𝛿𝜄𝜁𝜂 𝑡 𝑤1…𝑤𝑚.

Furthermore, we consider

𝐸[Γ] ⊢ 𝑐 𝑣1…𝑣𝑚 =𝛽𝛿𝜄𝜁𝜂 𝑐′ 𝑣′
1…𝑣′

𝑚

convertible if

𝐸[Γ] ⊢ 𝑣𝑖 =𝛽𝛿𝜄𝜁𝜂 𝑣′
𝑖

and we have that 𝑐 and 𝑐′ are the same constructors of different instances of the same inductive types (differing only in
universe levels) such that

𝐸[Γ] ⊢ 𝑐 𝑣1…𝑣𝑚 ∶ 𝑡 𝑤1…𝑤𝑚
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and

𝐸[Γ] ⊢ 𝑐′ 𝑣′
1…𝑣′

𝑚 ∶ 𝑡′ 𝑤′
1…𝑤′

𝑚

and we have

𝐸[Γ] ⊢ 𝑡 𝑤1…𝑤𝑚 =𝛽𝛿𝜄𝜁𝜂 𝑡 𝑤′
1…𝑤′

𝑚.

The convertibility relation allows introducing a new typing rule which says that two convertible well-formed types have
the same inhabitants.

3.4.4 Subtyping rules

At the moment, we did not take into account one rule between universes which says that any term in a universe of index
𝑖 is also a term in the universe of index 𝑖 + 1 (this is the cumulativity rule of Cic). This property extends the equivalence
relation of convertibility into a subtyping relation inductively defined by:

1. if 𝐸[Γ] ⊢ 𝑡 =𝛽𝛿𝜄𝜁𝜂 𝑢 then 𝐸[Γ] ⊢ 𝑡 ≤𝛽𝛿𝜄𝜁𝜂 𝑢,
2. if 𝑖 ≤ 𝑗 then 𝐸[Γ] ⊢ Type(𝑖) ≤𝛽𝛿𝜄𝜁𝜂 Type(𝑗),
3. for any 𝑖, 𝐸[Γ] ⊢ Set ≤𝛽𝛿𝜄𝜁𝜂 Type(𝑖),
4. 𝐸[Γ] ⊢ Prop ≤𝛽𝛿𝜄𝜁𝜂 Set, hence, by transitivity, 𝐸[Γ] ⊢ Prop ≤𝛽𝛿𝜄𝜁𝜂 Type(𝑖), for any 𝑖
5. if 𝐸[Γ] ⊢ 𝑇 =𝛽𝛿𝜄𝜁𝜂 𝑈 and 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑇 ′ ≤𝛽𝛿𝜄𝜁𝜂 𝑈 ′ then 𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑇 ′ ≤𝛽𝛿𝜄𝜁𝜂 ∀𝑥 ∶ 𝑈, 𝑈 ′.
6. if Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) is a universe polymorphic and cumulative (see Chapter Polymorphic Universes) inductive

type (see below) and (𝑡 ∶ ∀Γ𝑃 , ∀ΓArr(𝑡), 𝑆) ∈ Γ𝐼 and (𝑡′ ∶ ∀Γ′
𝑃 , ∀Γ′

Arr(𝑡), 𝑆′) ∈ Γ𝐼 are two different instances of
the same inductive type (differing only in universe levels) with constructors

[𝑐1 ∶ ∀Γ𝑃 , ∀𝑇1,1…𝑇1,𝑛1
, 𝑡 𝑣1,1…𝑣1,𝑚; …; 𝑐𝑘 ∶ ∀Γ𝑃 , ∀𝑇𝑘,1…𝑇𝑘,𝑛𝑘

, 𝑡 𝑣𝑘,1…𝑣𝑘,𝑚]

and

[𝑐1 ∶ ∀Γ′
𝑃 , ∀𝑇 ′

1,1…𝑇 ′
1,𝑛1

, 𝑡′ 𝑣′
1,1…𝑣′

1,𝑚; …; 𝑐𝑘 ∶ ∀Γ′
𝑃 , ∀𝑇 ′

𝑘,1…𝑇 ′
𝑘,𝑛𝑘

, 𝑡′ 𝑣′
𝑘,1…𝑣′

𝑘,𝑚]

respectively then

𝐸[Γ] ⊢ 𝑡 𝑤1…𝑤𝑚 ≤𝛽𝛿𝜄𝜁𝜂 𝑡′ 𝑤′
1…𝑤′

𝑚

(notice that 𝑡 and 𝑡′ are both fully applied, i.e., they have a sort as a type) if

𝐸[Γ] ⊢ 𝑤𝑖 =𝛽𝛿𝜄𝜁𝜂 𝑤′
𝑖

for 1 ≤ 𝑖 ≤ 𝑚 and we have

𝐸[Γ] ⊢ 𝑇𝑖,𝑗 ≤𝛽𝛿𝜄𝜁𝜂 𝑇 ′
𝑖,𝑗

and

𝐸[Γ] ⊢ 𝐴𝑖 ≤𝛽𝛿𝜄𝜁𝜂 𝐴′
𝑖

where ΓArr(𝑡) = [𝑎1 ∶ 𝐴1; …; 𝑎𝑙 ∶ 𝐴𝑙] and Γ′
Arr(𝑡) = [𝑎1 ∶ 𝐴′

1; …; 𝑎𝑙 ∶ 𝐴′
𝑙].

The conversion rule up to subtyping is now exactly:
Conv

𝐸[Γ] ⊢ 𝑈 ∶ 𝑠 𝐸[Γ] ⊢ 𝑡 ∶ 𝑇 𝐸[Γ] ⊢ 𝑇 ≤𝛽𝛿𝜄𝜁𝜂 𝑈
𝐸[Γ] ⊢ 𝑡 ∶ 𝑈
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Normal form. A term which cannot be any more reduced is said to be in normal form. There are several ways (or
strategies) to apply the reduction rules. Among them, we have to mention the head reduction which will play an important
role (see Chapter Tactics). Any term 𝑡 can be written as 𝜆𝑥1 ∶ 𝑇1. …𝜆𝑥𝑘 ∶ 𝑇𝑘. (𝑡0 𝑡1…𝑡𝑛) where 𝑡0 is not an application.
We say then that 𝑡0 is the head of 𝑡. If we assume that 𝑡0 is 𝜆𝑥 ∶ 𝑇 . 𝑢0 then one step of β-head reduction of 𝑡 is:

𝜆𝑥1 ∶ 𝑇1. …𝜆𝑥𝑘 ∶ 𝑇𝑘. (𝜆𝑥 ∶ 𝑇 . 𝑢0 𝑡1…𝑡𝑛) ▷ 𝜆(𝑥1 ∶ 𝑇1)…(𝑥𝑘 ∶ 𝑇𝑘). (𝑢0{𝑥/𝑡1} 𝑡2…𝑡𝑛)

Iterating the process of head reduction until the head of the reduced term is no more an abstraction leads to the β-head
normal form of 𝑡:

𝑡 ▷ … ▷ 𝜆𝑥1 ∶ 𝑇1. …𝜆𝑥𝑘 ∶ 𝑇𝑘. (𝑣 𝑢1…𝑢𝑚)

where 𝑣 is not an abstraction (nor an application). Note that the head normal form must not be confused with the normal
form since some 𝑢𝑖 can be reducible. Similar notions of head-normal forms involving δ, ι and ζ reductions or any
combination of those can also be defined.

3.4.5 Inductive Definitions

Formally, we can represent any inductive definition as Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) where:
• Γ𝐼 determines the names and types of inductive types;
• Γ𝐶 determines the names and types of constructors of these inductive types;
• 𝑝 determines the number of parameters of these inductive types.

These inductive definitions, together with global assumptions and global definitions, then form the global environment.
Additionally, for any 𝑝 there always exists Γ𝑃 = [𝑎1 ∶ 𝐴1; …; 𝑎𝑝 ∶ 𝐴𝑝] such that each 𝑇 in (𝑡 ∶ 𝑇 ) ∈ Γ𝐼 ∪ Γ𝐶 can be
written as: ∀Γ𝑃 , 𝑇 ′ where Γ𝑃 is called the context of parameters. Furthermore, we must have that each 𝑇 in (𝑡 ∶ 𝑇 ) ∈ Γ𝐼
can be written as: ∀Γ𝑃 , ∀ΓArr(𝑡), 𝑆 where ΓArr(𝑡) is called the Arity of the inductive type 𝑡 and 𝑆 is called the sort of the
inductive type 𝑡 (not to be confused with 𝒮 which is the set of sorts).

Example
The declaration for parameterized lists is:

Ind [1] ([list ∶ Set → Set] ∶= [ nil ∶ ∀𝐴 ∶ Set, list 𝐴
cons ∶ ∀𝐴 ∶ Set, 𝐴 → list 𝐴 → list 𝐴 ])

which corresponds to the result of the Coq declaration:

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.

Example
The declaration for a mutual inductive definition of tree and forest is:

Ind [0] ⎛⎜
⎝

[ tree ∶ Set
forest ∶ Set ] ∶= ⎡⎢

⎣

node ∶ forest → tree
emptyf ∶ forest
consf ∶ tree → forest → forest

⎤⎥
⎦

⎞⎟
⎠

which corresponds to the result of the Coq declaration:
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Inductive tree : Set :=
| node : forest -> tree
with forest : Set :=
| emptyf : forest
| consf : tree -> forest -> forest.

Example
The declaration for a mutual inductive definition of even and odd is:

Ind [0] ⎛⎜
⎝

[ even ∶ nat → Prop
odd ∶ nat → Prop ] ∶= ⎡⎢

⎣

evenO ∶ even 0
evenS ∶ ∀𝑛, odd 𝑛 → even (S 𝑛)
oddS ∶ ∀𝑛, even 𝑛 → odd (S 𝑛)

⎤⎥
⎦

⎞⎟
⎠

which corresponds to the result of the Coq declaration:

Inductive even : nat -> Prop :=
| even_O : even 0
| even_S : forall n, odd n -> even (S n)
with odd : nat -> Prop :=
| odd_S : forall n, even n -> odd (S n).

Types of inductive objects

We have to give the type of constants in a global environment 𝐸 which contains an inductive definition.
Ind

𝒲ℱ(𝐸)[Γ] Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) ∈ 𝐸 (𝑎 ∶ 𝐴) ∈ Γ𝐼
𝐸[Γ] ⊢ 𝑎 ∶ 𝐴

Constr
𝒲ℱ(𝐸)[Γ] Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) ∈ 𝐸 (𝑐 ∶ 𝐶) ∈ Γ𝐶

𝐸[Γ] ⊢ 𝑐 ∶ 𝐶

Example
Provided that our environment 𝐸 contains inductive definitions we showed before, these two inference rules above enable
us to conclude that:

𝐸[Γ] ⊢ even ∶ nat → Prop
𝐸[Γ] ⊢ odd ∶ nat → Prop
𝐸[Γ] ⊢ evenO ∶ even O
𝐸[Γ] ⊢ evenS ∶ ∀𝑛 ∶ nat, odd 𝑛 → even (S 𝑛)
𝐸[Γ] ⊢ oddS ∶ ∀𝑛 ∶ nat, even 𝑛 → odd (S 𝑛)

Well-formed inductive definitions

We cannot accept any inductive definition because some of them lead to inconsistent systems. We restrict ourselves to
definitions which satisfy a syntactic criterion of positivity. Before giving the formal rules, we need a few definitions:
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Arity of a given sort

A type 𝑇 is an arity of sort 𝑠 if it converts to the sort 𝑠 or to a product ∀𝑥 ∶ 𝑇 , 𝑈 with 𝑈 an arity of sort 𝑠.

Example
𝐴 → Set is an arity of sort Set. ∀𝐴 ∶ Prop, 𝐴 → Prop is an arity of sort Prop.

Arity

A type 𝑇 is an arity if there is a 𝑠 ∈ 𝒮 such that 𝑇 is an arity of sort 𝑠.

Example
𝐴 → Set and ∀𝐴 ∶ Prop, 𝐴 → Prop are arities.

Type of constructor

We say that 𝑇 is a type of constructor of 𝐼 in one of the following two cases:
• 𝑇 is (𝐼 𝑡1…𝑡𝑛)
• 𝑇 is ∀𝑥 ∶ 𝑈, 𝑇 ′ where 𝑇 ′ is also a type of constructor of 𝐼

Example
nat and nat → nat are types of constructor of nat. ∀𝐴 ∶ Type, list 𝐴 and ∀𝐴 ∶ Type, 𝐴 → list 𝐴 → list 𝐴 are types
of constructor of list.

Positivity Condition

The type of constructor 𝑇 will be said to satisfy the positivity condition for a constant 𝑋 in the following cases:
• 𝑇 = (𝑋 𝑡1…𝑡𝑛) and 𝑋 does not occur free in any 𝑡𝑖

• 𝑇 = ∀𝑥 ∶ 𝑈, 𝑉 and 𝑋 occurs only strictly positively in 𝑈 and the type 𝑉 satisfies the positivity condition for 𝑋.

Strict positivity

The constant 𝑋 occurs strictly positively in 𝑇 in the following cases:
• 𝑋 does not occur in 𝑇
• 𝑇 converts to (𝑋 𝑡1…𝑡𝑛) and 𝑋 does not occur in any of 𝑡𝑖

• 𝑇 converts to ∀𝑥 ∶ 𝑈, 𝑉 and 𝑋 does not occur in type 𝑈 but occurs strictly positively in type 𝑉
• 𝑇 converts to (𝐼 𝑎1…𝑎𝑚 𝑡1…𝑡𝑝) where 𝐼 is the name of an inductive definition of the form

Ind [𝑚] (𝐼 ∶ 𝐴 ∶= 𝑐1 ∶ ∀𝑝1 ∶ 𝑃1, …∀𝑝𝑚 ∶ 𝑃𝑚, 𝐶1; …; 𝑐𝑛 ∶ ∀𝑝1 ∶ 𝑃1, …∀𝑝𝑚 ∶ 𝑃𝑚, 𝐶𝑛)
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(in particular, it is not mutually defined and it has 𝑚 parameters) and 𝑋 does not occur in any of the 𝑡𝑖, and the
(instantiated) types of constructor 𝐶𝑖{𝑝𝑗/𝑎𝑗}𝑗=1…𝑚 of 𝐼 satisfy the nested positivity condition for 𝑋

Nested Positivity

The type of constructor 𝑇 of 𝐼 satisfies the nested positivity condition for a constant 𝑋 in the following cases:
• 𝑇 = (𝐼 𝑏1…𝑏𝑚 𝑢1…𝑢𝑝), 𝐼 is an inductive type with 𝑚 parameters and 𝑋 does not occur in any 𝑢𝑖

• 𝑇 = ∀𝑥 ∶ 𝑈, 𝑉 and 𝑋 occurs only strictly positively in 𝑈 and the type 𝑉 satisfies the nested positivity condition
for 𝑋

Example
For instance, if one considers the following variant of a tree type branching over the natural numbers:

Inductive nattree (A:Type) : Type :=
| leaf : nattree A
| natnode : A -> (nat -> nattree A) -> nattree A.

Then every instantiated constructor of nattree A satisfies the nested positivity condition for nattree:
• Type nattree A of constructor leaf satisfies the positivity condition for nattree because nattree does
not appear in any (real) arguments of the type of that constructor (primarily because nattree does not have any
(real) arguments) ... (bullet 1)

• Type A → (nat → nattree A) → nattree A of constructor natnode satisfies the positivity condi-
tion for nattree because:
– nattree occurs only strictly positively in A ... (bullet 1)
– nattree occurs only strictly positively in nat → nattree A ... (bullet 3 + 2)
– nattree satisfies the positivity condition for nattree A ... (bullet 1)

Correctness rules

We shall now describe the rules allowing the introduction of a new inductive definition.
Let 𝐸 be a global environment and Γ𝑃 , Γ𝐼 , Γ𝐶 be contexts such that Γ𝐼 is [𝐼1 ∶ ∀Γ𝑃 , 𝐴1; …; 𝐼𝑘 ∶ ∀Γ𝑃 , 𝐴𝑘], and Γ𝐶 is
[𝑐1 ∶ ∀Γ𝑃 , 𝐶1; …; 𝑐𝑛 ∶ ∀Γ𝑃 , 𝐶𝑛]. Then
W-Ind

𝒲ℱ(𝐸)[Γ𝑃 ] (𝐸[Γ𝐼 ; Γ𝑃 ] ⊢ 𝐶𝑖 ∶ 𝑠𝑞𝑖
)𝑖=1…𝑛

𝒲ℱ(𝐸; Ind [𝑝] (Γ𝐼 ∶= Γ𝐶))[]

provided that the following side conditions hold:
• 𝑘 > 0 and all of 𝐼𝑗 and 𝑐𝑖 are distinct names for 𝑗 = 1…𝑘 and 𝑖 = 1…𝑛,
• 𝑝 is the number of parameters of Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) and Γ𝑃 is the context of parameters,
• for 𝑗 = 1…𝑘 we have that 𝐴𝑗 is an arity of sort 𝑠𝑗 and 𝐼𝑗 ∉ 𝐸,
• for 𝑖 = 1…𝑛 we have that 𝐶𝑖 is a type of constructor of 𝐼𝑞𝑖

which satisfies the positivity condition for 𝐼1…𝐼𝑘 and
𝑐𝑖 ∉ 𝐸.
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One can remark that there is a constraint between the sort of the arity of the inductive type and the sort of the type of its
constructors which will always be satisfied for the impredicative sort Prop but may fail to define inductive type on sort
Set and generate constraints between universes for inductive types in the Type hierarchy.

Example
It is well known that the existential quantifier can be encoded as an inductive definition. The following declaration intro-
duces the second-order existential quantifier ∃𝑋.𝑃(𝑋).
Inductive exProp (P:Prop->Prop) : Prop :=
| exP_intro : forall X:Prop, P X -> exProp P.

The same definition on Set is not allowed and fails:
Fail Inductive exSet (P:Set->Prop) : Set :=
exS_intro : forall X:Set, P X -> exSet P.

The command has indeed failed with message:
Large non-propositional inductive types must be in Type.

It is possible to declare the same inductive definition in the universe Type. The exType inductive definition has type
(Type(𝑖) → Prop) → Type(𝑗) with the constraint that the parameter 𝑋 of exTintro has type Type(𝑘) with 𝑘 < 𝑗 and
𝑘 ≤ 𝑖.
Inductive exType (P:Type->Prop) : Type :=
exT_intro : forall X:Type, P X -> exType P.

exType is defined
exType_rect is defined
exType_ind is defined
exType_rec is defined

Template polymorphism

Inductive types declared in Type are polymorphic over their arguments in Type. If 𝐴 is an arity of some sort and 𝑠 is a
sort, we write 𝐴/𝑠 for the arity obtained from 𝐴 by replacing its sort with 𝑠. Especially, if 𝐴 is well-typed in some global
environment and local context, then 𝐴/𝑠 is typable by typability of all products in the Calculus of Inductive Constructions.
The following typing rule is added to the theory.
Let Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) be an inductive definition. Let Γ𝑃 = [𝑝1 ∶ 𝑃1; …; 𝑝𝑝 ∶ 𝑃𝑝] be its context of parameters,
Γ𝐼 = [𝐼1 ∶ ∀Γ𝑃 , 𝐴1; …; 𝐼𝑘 ∶ ∀Γ𝑃 , 𝐴𝑘] its context of definitions and Γ𝐶 = [𝑐1 ∶ ∀Γ𝑃 , 𝐶1; …; 𝑐𝑛 ∶ ∀Γ𝑃 , 𝐶𝑛]
its context of constructors, with 𝑐𝑖 a constructor of 𝐼𝑞𝑖

. Let 𝑚 ≤ 𝑝 be the length of the longest prefix of parameters
such that the 𝑚 first arguments of all occurrences of all 𝐼𝑗 in all 𝐶𝑘 (even the occurrences in the hypotheses of 𝐶𝑘) are
exactly applied to 𝑝1…𝑝𝑚 (𝑚 is the number of recursively uniform parameters and the 𝑝 − 𝑚 remaining parameters are
the recursively non-uniform parameters). Let 𝑞1, …, 𝑞𝑟, with 0 ≤ 𝑟 ≤ 𝑚, be a (possibly) partial instantiation of the
recursively uniform parameters of Γ𝑃 . We have:
Ind-Family

⎧{
⎨{⎩

Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) ∈ 𝐸
(𝐸[] ⊢ 𝑞𝑙 ∶ 𝑃 ′

𝑙 )𝑙=1…𝑟
(𝐸[] ⊢ 𝑃 ′

𝑙 ≤𝛽𝛿𝜄𝜁𝜂 𝑃𝑙{𝑝𝑢/𝑞𝑢}𝑢=1…𝑙−1)𝑙=1…𝑟
1 ≤ 𝑗 ≤ 𝑘

𝐸[] ⊢ 𝐼𝑗 𝑞1…𝑞𝑟 ∶ ∀[𝑝𝑟+1 ∶ 𝑃𝑟+1; …; 𝑝𝑝 ∶ 𝑃𝑝], (𝐴𝑗)/𝑠𝑗

provided that the following side conditions hold:

3.4. Calculus of Inductive Constructions 105



The Coq Reference Manual, Release 8.9.1

• Γ𝑃 ′ is the context obtained from Γ𝑃 by replacing each 𝑃𝑙 that is an arity with 𝑃 ′
𝑙 for 1 ≤ 𝑙 ≤ 𝑟 (notice that 𝑃𝑙

arity implies 𝑃 ′
𝑙 arity since 𝐸[] ⊢ 𝑃 ′

𝑙 ≤𝛽𝛿𝜄𝜁𝜂 𝑃𝑙{𝑝𝑢/𝑞𝑢}𝑢=1…𝑙−1);
• there are sorts 𝑠𝑖, for 1 ≤ 𝑖 ≤ 𝑘 such that, for Γ𝐼′ = [𝐼1 ∶ ∀Γ𝑃 ′ , (𝐴1)/𝑠1

; …; 𝐼𝑘 ∶ ∀Γ𝑃 ′ , (𝐴𝑘)/𝑠𝑘
] we have

(𝐸[Γ𝐼′ ; Γ𝑃 ′ ] ⊢ 𝐶𝑖 ∶ 𝑠𝑞𝑖
)𝑖=1…𝑛 ;

• the sorts 𝑠𝑖 are such that all eliminations, to Prop, Set and Type(𝑗), are allowed (see Section Destructors).
Notice that if 𝐼𝑗 𝑞1…𝑞𝑟 is typable using the rules Ind-Const and App, then it is typable using the rule Ind-Family.
Conversely, the extended theory is not stronger than the theory without Ind-Family. We get an equiconsistency result
by mapping each Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) occurring into a given derivation into as many different inductive types and con-
structors as the number of different (partial) replacements of sorts, needed for this derivation, in the parameters that are
arities (this is possible because Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) well-formed implies that Ind [𝑝] (Γ𝐼′ ∶= Γ𝐶′) is well-formed and
has the same allowed eliminations, where Γ𝐼′ is defined as above and Γ𝐶′ = [𝑐1 ∶ ∀Γ𝑃 ′ , 𝐶1; …; 𝑐𝑛 ∶ ∀Γ𝑃 ′ , 𝐶𝑛]). That
is, the changes in the types of each partial instance 𝑞1…𝑞𝑟 can be characterized by the ordered sets of arity sorts among
the types of parameters, and to each signature is associated a new inductive definition with fresh names. Conversion
is preserved as any (partial) instance 𝐼𝑗 𝑞1…𝑞𝑟 or 𝐶𝑖 𝑞1…𝑞𝑟 is mapped to the names chosen in the specific instance of
Ind [𝑝] (Γ𝐼 ∶= Γ𝐶).
In practice, the rule Ind-Family is used by Coq only when all the inductive types of the inductive definition are declared
with an arity whose sort is in the Type hierarchy. Then, the polymorphism is over the parameters whose type is an arity
of sort in the Type hierarchy. The sorts 𝑠𝑗 are chosen canonically so that each 𝑠𝑗 is minimal with respect to the hierarchy
Prop ⊂ Set𝑝 ⊂ Type where Set𝑝 is predicative Set. More precisely, an empty or small singleton inductive definition
(i.e. an inductive definition of which all inductive types are singleton – see Section Destructors) is set in Prop, a small
non-singleton inductive type is set in Set (even in case Set is impredicative – see Section The-Calculus-of-Inductive-
Construction-with-impredicative-Set), and otherwise in the Type hierarchy.
Note that the side-condition about allowed elimination sorts in the rule Ind-Family is just to avoid to recompute the
allowed elimination sorts at each instance of a pattern matching (see Section Destructors). As an example, let us consider
the following definition:

Example

Inductive option (A:Type) : Type :=
| None : option A
| Some : A -> option A.

As the definition is set in the Type hierarchy, it is used polymorphically over its parameters whose types are arities of a
sort in the Type hierarchy. Here, the parameter 𝐴 has this property, hence, if option is applied to a type in Set, the
result is in Set. Note that if option is applied to a type in Prop, then, the result is not set in Prop but in Set still. This
is because option is not a singleton type (see Section Destructors) and it would lose the elimination to Set and Type if
set in Prop.

Example

Check (fun A:Set => option A).
fun A : Set => option A

: Set -> Set

Check (fun A:Prop => option A).
fun A : Prop => option A

: Prop -> Set

Here is another example.
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Example

Inductive prod (A B:Type) : Type := pair : A -> B -> prod A B.

As prod is a singleton type, it will be in Prop if applied twice to propositions, in Set if applied twice to at least one type
in Set and none in Type, and in Type otherwise. In all cases, the three kind of eliminations schemes are allowed.

Example

Check (fun A:Set => prod A).
fun A : Set => prod A

: Set -> Type -> Type

Check (fun A:Prop => prod A A).
fun A : Prop => prod A A

: Prop -> Prop

Check (fun (A:Prop) (B:Set) => prod A B).
fun (A : Prop) (B : Set) => prod A B

: Prop -> Set -> Set

Check (fun (A:Type) (B:Prop) => prod A B).
fun (A : Type) (B : Prop) => prod A B

: Type -> Prop -> Type

Note: Template polymorphism used to be called “sort-polymorphism of inductive types” before universe polymorphism
(see Chapter Polymorphic Universes) was introduced.

Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still have to say how to use
an object in an inductive type.
This problem is rather delicate. There are actually several different ways to do that. Some of them are logically equivalent
but not always equivalent from the computational point of view or from the user point of view.
From the computational point of view, we want to be able to define a function whose domain is an inductively defined
type by using a combination of case analysis over the possible constructors of the object and recursion.
Because we need to keep a consistent theory and also we prefer to keep a strongly normalizing reduction, we cannot
accept any sort of recursion (even terminating). So the basic idea is to restrict ourselves to primitive recursive functions
and functionals.
For instance, assuming a parameter𝐴 ∶ Set exists in the local context, we want to build a function length of type list𝐴 →
nat which computes the length of the list, such that (length (nil 𝐴)) = O and (length (cons 𝐴 𝑎 𝑙)) = (S (length 𝑙)).
We want these equalities to be recognized implicitly and taken into account in the conversion rule.
From the logical point of view, we have built a type family by giving a set of constructors. We want to capture the fact
that we do not have any other way to build an object in this type. So when trying to prove a property about an object 𝑚
in an inductive type it is enough to enumerate all the cases where 𝑚 starts with a different constructor.
In case the inductive definition is effectively a recursive one, we want to capture the extra property that we have built
the smallest fixed point of this recursive equation. This says that we are only manipulating finite objects. This analysis
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provides induction principles. For instance, in order to prove ∀𝑙 ∶ list 𝐴, (has_length 𝐴 𝑙 (length 𝑙)) it is enough to
prove:

• (has_length 𝐴 (nil 𝐴) (length (nil 𝐴)))
• ∀𝑎 ∶ 𝐴, ∀𝑙 ∶ list 𝐴, (has_length 𝐴 𝑙 (length 𝑙)) → (has_length 𝐴 (cons 𝐴 𝑎 𝑙) (length (cons 𝐴 𝑎 𝑙)))

which given the conversion equalities satisfied by length is the same as proving:
• (has_length 𝐴 (nil 𝐴) O)
• ∀𝑎 ∶ 𝐴, ∀𝑙 ∶ list 𝐴, (has_length 𝐴 𝑙 (length 𝑙)) → (has_length 𝐴 (cons 𝐴 𝑎 𝑙) (S (length 𝑙)))

One conceptually simple way to do that, following the basic scheme proposed by Martin-Löf in his Intuitionistic Type
Theory, is to introduce for each inductive definition an elimination operator. At the logical level it is a proof of the usual
induction principle and at the computational level it implements a generic operator for doing primitive recursion over the
structure.
But this operator is rather tedious to implement and use. We choose in this version of Coq to factorize the operator for
primitive recursion into two more primitive operations as was first suggested by Th. Coquand in [Coq92]. One is the
definition by pattern matching. The second one is a definition by guarded fixpoints.

The match ... with ... end construction

The basic idea of this operator is that we have an object 𝑚 in an inductive type 𝐼 and we want to prove a property which
possibly depends on 𝑚. For this, it is enough to prove the property for 𝑚 = (𝑐𝑖 𝑢1…𝑢𝑝𝑖

) for each constructor of 𝐼 . The
Coq term for this proof will be written:

match𝑚 with (𝑐1 𝑥11...𝑥1𝑝1
) ⇒ 𝑓1|…|(𝑐𝑛 𝑥𝑛1...𝑥𝑛𝑝𝑛

) ⇒ 𝑓𝑛 end

In this expression, if 𝑚 eventually happens to evaluate to (𝑐𝑖 𝑢1…𝑢𝑝𝑖
) then the expression will behave as specified in its

𝑖-th branch and it will reduce to 𝑓𝑖 where the 𝑥𝑖1…𝑥𝑖𝑝𝑖
are replaced by the 𝑢1…𝑢𝑝𝑖

according to the ι-reduction.
Actually, for type checking a match…with…end expression we also need to know the predicate 𝑃 to be proved by
case analysis. In the general case where 𝐼 is an inductively defined 𝑛-ary relation, 𝑃 is a predicate over 𝑛 + 1 argu-
ments: the 𝑛 first ones correspond to the arguments of 𝐼 (parameters excluded), and the last one corresponds to object
𝑚. Coq can sometimes infer this predicate but sometimes not. The concrete syntax for describing this predicate uses
the as…in…return construction. For instance, let us assume that 𝐼 is an unary predicate with one parameter and one
argument. The predicate is made explicit using the syntax:

match𝑚 as 𝑥 in 𝐼 _ 𝑎 return 𝑃 with (𝑐1 𝑥11...𝑥1𝑝1
) ⇒ 𝑓1|…|(𝑐𝑛 𝑥𝑛1...𝑥𝑛𝑝𝑛

) ⇒ 𝑓𝑛 end

The as part can be omitted if either the result type does not depend on 𝑚 (non-dependent elimination) or 𝑚 is a variable
(in this case, 𝑚 can occur in 𝑃 where it is considered a bound variable). The in part can be omitted if the result type
does not depend on the arguments of 𝐼 . Note that the arguments of 𝐼 corresponding to parameters must be _, because
the result type is not generalized to all possible values of the parameters. The other arguments of 𝐼 (sometimes called
indices in the literature) have to be variables (𝑎 above) and these variables can occur in 𝑃 . The expression after in must
be seen as an inductive type pattern. Notice that expansion of implicit arguments and notations apply to this pattern. For
the purpose of presenting the inference rules, we use a more compact notation:

case(𝑚, (𝜆𝑎𝑥.𝑃 ), 𝜆𝑥11...𝑥1𝑝1
.𝑓1 |…| 𝜆𝑥𝑛1...𝑥𝑛𝑝𝑛

.𝑓𝑛)

Allowed elimination sorts. An important question for building the typing rule for match is what can be the type of
𝜆𝑎𝑥.𝑃 with respect to the type of 𝑚. If 𝑚 ∶ 𝐼 and 𝐼 ∶ 𝐴 and 𝜆𝑎𝑥.𝑃 ∶ 𝐵 then by [𝐼 ∶ 𝐴|𝐵] we mean that one can use
𝜆𝑎𝑥.𝑃 with 𝑚 in the above match-construct.
Notations. The [𝐼 ∶ 𝐴|𝐵] is defined as the smallest relation satisfying the following rules: We write [𝐼|𝐵] for [𝐼 ∶ 𝐴|𝐵]
where 𝐴 is the type of 𝐼 .
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The case of inductive types in sorts Set or Type is simple. There is no restriction on the sort of the predicate to be
eliminated.
Prod

[(𝐼 𝑥) ∶ 𝐴′|𝐵′]
[𝐼 ∶ ∀𝑥 ∶ 𝐴, 𝐴′|∀𝑥 ∶ 𝐴, 𝐵′]

Set & Type
𝑠1 ∈ {Set,Type(𝑗)} 𝑠2 ∈ 𝒮

[𝐼 ∶ 𝑠1|𝐼 → 𝑠2]

The case of Inductive definitions of sort Prop is a bit more complicated, because of our interpretation of this sort. The
only harmless allowed elimination, is the one when predicate 𝑃 is also of sort Prop.
Prop

[𝐼 ∶ Prop|𝐼 → Prop]

Prop is the type of logical propositions, the proofs of properties 𝑃 in Prop could not be used for computation and are
consequently ignored by the extraction mechanism. Assume 𝐴 and 𝐵 are two propositions, and the logical disjunction
𝐴 ∨ 𝐵 is defined inductively by:

Example

Inductive or (A B:Prop) : Prop :=
or_introl : A -> or A B | or_intror : B -> or A B.

The following definition which computes a boolean value by case over the proof of or A B is not accepted:

Example

Fail Definition choice (A B: Prop) (x:or A B) :=
match x with or_introl _ _ a => true | or_intror _ _ b => false end.

The command has indeed failed with message:
Incorrect elimination of "x" in the inductive type "or":
the return type has sort "Set" while it should be "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort Set
because proofs can be eliminated only to build proofs.

From the computational point of view, the structure of the proof of (or A B) in this term is needed for computing the
boolean value.
In general, if 𝐼 has type Prop then 𝑃 cannot have type 𝐼 → Set, because it will mean to build an informative proof of
type (𝑃 𝑚) doing a case analysis over a non-computational object that will disappear in the extracted program. But the
other way is safe with respect to our interpretation we can have 𝐼 a computational object and 𝑃 a non-computational one,
it just corresponds to proving a logical property of a computational object.
In the same spirit, elimination on 𝑃 of type 𝐼 → Type cannot be allowed because it trivially implies the elimination on
𝑃 of type 𝐼 → Set by cumulativity. It also implies that there are two proofs of the same property which are provably
different, contradicting the proof-irrelevance property which is sometimes a useful axiom:

Example
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Axiom proof_irrelevance : forall (P : Prop) (x y : P), x=y.
proof_irrelevance is declared

The elimination of an inductive type of sort Prop on a predicate 𝑃 of type 𝐼 → Type leads to a paradox when applied
to impredicative inductive definition like the second-order existential quantifier exProp defined above, because it gives
access to the two projections on this type.
Empty and singleton elimination. There are special inductive definitions in Prop for which more eliminations are
allowed.
Prop-extended

𝐼 is an empty or singleton definition 𝑠 ∈ 𝒮
[𝐼 ∶ Prop|𝐼 → 𝑠]

A singleton definition has only one constructor and all the arguments of this constructor have type Prop. In that case, there
is a canonical way to interpret the informative extraction on an object in that type, such that the elimination on any sort 𝑠
is legal. Typical examples are the conjunction of non-informative propositions and the equality. If there is a hypothesis
ℎ ∶ 𝑎 = 𝑏 in the local context, it can be used for rewriting not only in logical propositions but also in any type.

Example

Print eq_rec.
eq_rec =
fun (A : Type) (x : A) (P : A -> Set) => eq_rect x P

: forall (A : Type) (x : A) (P : A -> Set),
P x -> forall y : A, x = y -> P y

Argument A is implicit
Argument scopes are [type_scope _ function_scope _ _ _]

Require Extraction.
[Loading ML file extraction_plugin.cmxs ... done]

Extraction eq_rec.
(** val eq_rec : 'a1 -> 'a2 -> 'a1 -> 'a2 **)

let eq_rec _ f _ =
f

An empty definition has no constructors, in that case also, elimination on any sort is allowed.
Type of branches. Let 𝑐 be a term of type 𝐶, we assume 𝐶 is a type of constructor for an inductive type 𝐼 . Let 𝑃
be a term that represents the property to be proved. We assume 𝑟 is the number of parameters and 𝑠 is the number of
arguments.
We define a new type {𝑐 ∶ 𝐶}𝑃 which represents the type of the branch corresponding to the 𝑐 ∶ 𝐶 constructor.

{𝑐 ∶ (𝐼 𝑞1 … 𝑞𝑟 𝑡1 … 𝑡𝑠)}𝑃 ≡ (𝑃 𝑡1 … 𝑡𝑠 𝑐)
{𝑐 ∶ ∀𝑥 ∶ 𝑇 , 𝐶}𝑃 ≡ ∀𝑥 ∶ 𝑇 , {(𝑐 𝑥) ∶ 𝐶}𝑃

We write {𝑐}𝑃 for {𝑐 ∶ 𝐶}𝑃 with 𝐶 the type of 𝑐.

Example
The following term in concrete syntax:
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match t as l return P' with
| nil _ => t1
| cons _ hd tl => t2
end

can be represented in abstract syntax as

case(𝑡, 𝑃 , 𝑓1|𝑓2)

where

𝑃 = 𝜆𝑙. 𝑃 ′

𝑓1 = 𝑡1
𝑓2 = 𝜆(ℎ𝑑 ∶ nat). 𝜆(𝑡𝑙 ∶ list nat). 𝑡2

According to the definition:

{(nil nat)}𝑃 ≡ {(nil nat) ∶ (list nat)}𝑃 ≡ (𝑃 (nil nat))

{(cons nat)}𝑃 ≡ {(cons nat) ∶ (nat → list nat → list nat)}𝑃

≡ ∀𝑛 ∶ nat, {(cons nat 𝑛) ∶ (list nat → list nat)}𝑃

≡ ∀𝑛 ∶ nat, ∀𝑙 ∶ list nat, {(cons nat 𝑛 𝑙) ∶ (list nat)}𝑃

≡ ∀𝑛 ∶ nat, ∀𝑙 ∶ list nat, (𝑃 (cons nat 𝑛 𝑙)).
Given some 𝑃 then {(nil nat)}𝑃 represents the expected type of 𝑓1, and {(cons nat)}𝑃 represents the expected type of
𝑓2.

Typing rule. Our very general destructor for inductive definition enjoys the following typing rule
match

𝐸[Γ] ⊢ 𝑐 ∶ (𝐼 𝑞1…𝑞𝑟 𝑡1…𝑡𝑠)
𝐸[Γ] ⊢ 𝑃 ∶ 𝐵
[(𝐼 𝑞1…𝑞𝑟)|𝐵]
(𝐸[Γ] ⊢ 𝑓𝑖 ∶ {(𝑐𝑝𝑖

𝑞1…𝑞𝑟)}𝑃 )𝑖=1…𝑙
𝐸[Γ] ⊢ case(𝑐, 𝑃 , 𝑓1|…|𝑓𝑙) ∶ (𝑃 𝑡1…𝑡𝑠 𝑐)

provided 𝐼 is an inductive type in a definition Ind [𝑟] (Γ𝐼 ∶= Γ𝐶) with Γ𝐶 = [𝑐1 ∶ 𝐶1; …; 𝑐𝑛 ∶ 𝐶𝑛] and 𝑐𝑝1
…𝑐𝑝𝑙

are
the only constructors of 𝐼 .

Example
Below is a typing rule for the term shown in the previous example:
list example

𝐸[Γ] ⊢ 𝑡 ∶ (list nat)
𝐸[Γ] ⊢ 𝑃 ∶ 𝐵
[(list nat)|𝐵]
𝐸[Γ] ⊢ 𝑓1 ∶ {(nil nat)}𝑃

𝐸[Γ] ⊢ 𝑓2 ∶ {(cons nat)}𝑃

𝐸[Γ] ⊢ case(𝑡, 𝑃 , 𝑓1|𝑓2) ∶ (𝑃 𝑡)

Definition of ι-reduction. We still have to define the ι-reduction in the general case.
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An ι-redex is a term of the following form:

case((𝑐𝑝𝑖
𝑞1…𝑞𝑟 𝑎1…𝑎𝑚), 𝑃 , 𝑓1|…|𝑓𝑙)

with 𝑐𝑝𝑖
the 𝑖-th constructor of the inductive type 𝐼 with 𝑟 parameters.

The ι-contraction of this term is (𝑓𝑖 𝑎1…𝑎𝑚) leading to the general reduction rule:

case((𝑐𝑝𝑖
𝑞1…𝑞𝑟 𝑎1…𝑎𝑚), 𝑃 , 𝑓1|…|𝑓𝑙) ▷𝜄 (𝑓𝑖 𝑎1…𝑎𝑚)

Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutually recursive definitions.
The basic concrete syntax for a recursive set of mutually recursive declarations is (with Γ𝑖 contexts):

fix 𝑓1(Γ1) ∶ 𝐴1 ∶= 𝑡1 with…with 𝑓𝑛(Γ𝑛) ∶ 𝐴𝑛 ∶= 𝑡𝑛

The terms are obtained by projections from this set of declarations and are written

fix 𝑓1(Γ1) ∶ 𝐴1 ∶= 𝑡1 with…with 𝑓𝑛(Γ𝑛) ∶ 𝐴𝑛 ∶= 𝑡𝑛 for 𝑓𝑖

In the inference rules, we represent such a term by

Fix 𝑓𝑖{𝑓1 ∶ 𝐴′
1 ∶= 𝑡′

1…𝑓𝑛 ∶ 𝐴′
𝑛 ∶= 𝑡′

𝑛}

with 𝑡′
𝑖 (resp. 𝐴′

𝑖) representing the term 𝑡𝑖 abstracted (resp. generalized) with respect to the bindings in the context Γ𝑖,
namely 𝑡′

𝑖 = 𝜆Γ𝑖.𝑡𝑖 and 𝐴′
𝑖 = ∀Γ𝑖, 𝐴𝑖.

Typing rule

The typing rule is the expected one for a fixpoint.
Fix

(𝐸[Γ] ⊢ 𝐴𝑖 ∶ 𝑠𝑖)𝑖=1…𝑛 (𝐸[Γ; 𝑓1 ∶ 𝐴1; …; 𝑓𝑛 ∶ 𝐴𝑛] ⊢ 𝑡𝑖 ∶ 𝐴𝑖)𝑖=1…𝑛
𝐸[Γ] ⊢ Fix 𝑓𝑖{𝑓1 ∶ 𝐴1 ∶= 𝑡1…𝑓𝑛 ∶ 𝐴𝑛 ∶= 𝑡𝑛} ∶ 𝐴𝑖

Any fixpoint definition cannot be accepted because non-normalizing terms allow proofs of absurdity. The basic scheme
of recursion that should be allowed is the one needed for defining primitive recursive functionals. In that case the fixpoint
enjoys a special syntactic restriction, namely one of the arguments belongs to an inductive type, the function starts with a
case analysis and recursive calls are done on variables coming from patterns and representing subterms. For instance in
the case of natural numbers, a proof of the induction principle of type

∀𝑃 ∶ nat → Prop, (𝑃 O) → (∀𝑛 ∶ nat, (𝑃 𝑛) → (𝑃 (S 𝑛))) → ∀𝑛 ∶ nat, (𝑃 𝑛)

can be represented by the term:

𝜆𝑃 ∶ nat → Prop. 𝜆𝑓 ∶ (𝑃 O). 𝜆𝑔 ∶ (∀𝑛 ∶ nat, (𝑃 𝑛) → (𝑃 (S 𝑛))).
Fix ℎ{ℎ ∶ ∀𝑛 ∶ nat, (𝑃 𝑛) ∶= 𝜆𝑛 ∶ nat. case(𝑛, 𝑃 , 𝑓|𝜆𝑝 ∶ nat. (𝑔 𝑝 (ℎ 𝑝)))}

Before accepting a fixpoint definition as being correctly typed, we check that the definition is “guarded”. A precise analysis
of this notion can be found in [Gimenez94]. The first stage is to precise on which argument the fixpoint will be decreasing.
The type of this argument should be an inductive type. For doing this, the syntax of fixpoints is extended and becomes

Fix 𝑓𝑖{𝑓1/𝑘1 ∶ 𝐴1 ∶= 𝑡1…𝑓𝑛/𝑘𝑛 ∶ 𝐴𝑛 ∶= 𝑡𝑛}

112 Chapter 3. The language



The Coq Reference Manual, Release 8.9.1

where 𝑘𝑖 are positive integers. Each 𝑘𝑖 represents the index of parameter of 𝑓𝑖, on which 𝑓𝑖 is decreasing. Each𝐴𝑖 should
be a type (reducible to a term) starting with at least 𝑘𝑖 products ∀𝑦1 ∶ 𝐵1, …∀𝑦𝑘𝑖

∶ 𝐵𝑘𝑖
, 𝐴′

𝑖 and 𝐵𝑘𝑖
an inductive type.

Now in the definition 𝑡𝑖, if 𝑓𝑗 occurs then it should be applied to at least 𝑘𝑗 arguments and the 𝑘𝑗-th argument should be
syntactically recognized as structurally smaller than 𝑦𝑘𝑖

.
The definition of being structurally smaller is a bit technical. One needs first to define the notion of recursive arguments
of a constructor. For an inductive definition Ind [𝑟] (Γ𝐼 ∶= Γ𝐶), if the type of a constructor 𝑐 has the form ∀𝑝1 ∶
𝑃1, …∀𝑝𝑟 ∶ 𝑃𝑟, ∀𝑥1 ∶ 𝑇1, …∀𝑥𝑚 ∶ 𝑇𝑚, (𝐼𝑗 𝑝1…𝑝𝑟 𝑡1…𝑡𝑠), then the recursive arguments will correspond to 𝑇𝑖 in
which one of the 𝐼𝑙 occurs.
The main rules for being structurally smaller are the following. Given a variable 𝑦 of an inductively defined type in a
declaration Ind [𝑟] (Γ𝐼 ∶= Γ𝐶) where Γ𝐼 is [𝐼1 ∶ 𝐴1; …; 𝐼𝑘 ∶ 𝐴𝑘], and Γ𝐶 is [𝑐1 ∶ 𝐶1; …; 𝑐𝑛 ∶ 𝐶𝑛], the terms
structurally smaller than 𝑦 are:

• (𝑡 𝑢) and 𝜆𝑥 ∶ 𝑈. 𝑡 when 𝑡 is structurally smaller than 𝑦.
• case(𝑐, 𝑃 , 𝑓1…𝑓𝑛) when each 𝑓𝑖 is structurally smaller than 𝑦. If 𝑐 is 𝑦 or is structurally smaller than 𝑦, its type is
an inductive type 𝐼𝑝 part of the inductive definition corresponding to 𝑦. Each 𝑓𝑖 corresponds to a type of constructor
𝐶𝑞 ≡ ∀𝑝1 ∶ 𝑃1, …, ∀𝑝𝑟 ∶ 𝑃𝑟, ∀𝑦1 ∶ 𝐵1, …∀𝑦𝑚 ∶ 𝐵𝑚, (𝐼𝑝 𝑝1…𝑝𝑟 𝑡1…𝑡𝑠) and can consequently be written
𝜆𝑦1 ∶ 𝐵′

1. …𝜆𝑦𝑚 ∶ 𝐵′
𝑚. 𝑔𝑖. (𝐵′

𝑖 is obtained from 𝐵𝑖 by substituting parameters for variables) the variables 𝑦𝑗
occurring in 𝑔𝑖 corresponding to recursive arguments 𝐵𝑖 (the ones in which one of the 𝐼𝑙 occurs) are structurally
smaller than 𝑦.

The following definitions are correct, we enter them using the Fixpoint command and show the internal representation.

Example

Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| O => m
| S p => S (plus p m)
end.

plus is defined
plus is recursively defined (decreasing on 1st argument)

Print plus.
plus =
fix plus (n m : nat) {struct n} : nat :=

match n with
| 0 => m
| S p => S (plus p m)
end

: nat -> nat -> nat

Argument scopes are [nat_scope nat_scope]

Fixpoint lgth (A:Set) (l:list A) {struct l} : nat :=
match l with
| nil _ => O
| cons _ a l' => S (lgth A l')
end.

lgth is defined
lgth is recursively defined (decreasing on 2nd argument)

Print lgth.
lgth =
fix lgth (A : Set) (l : list A) {struct l} : nat :=

(continues on next page)
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(continued from previous page)
match l with
| nil _ => 0
| cons _ _ l' => S (lgth A l')
end

: forall A : Set, list A -> nat

Argument scopes are [type_scope _]

Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f)
with sizef (f:forest) : nat :=
match f with
| emptyf => O
| consf t f => plus (sizet t) (sizef f)
end.

sizet is defined
sizef is defined
sizet, sizef are recursively defined (decreasing respectively on 1st,
1st arguments)

Print sizet.
sizet =
fix sizet (t : tree) : nat := let (f) := t in S (sizef f)
with sizef (f : forest) : nat :=

match f with
| emptyf => 0
| consf t f0 => plus (sizet t) (sizef f0)
end

for sizet
: tree -> nat

Reduction rule

Let 𝐹 be the set of declarations: 𝑓1/𝑘1 ∶ 𝐴1 ∶= 𝑡1…𝑓𝑛/𝑘𝑛 ∶ 𝐴𝑛 ∶= 𝑡𝑛. The reduction for fixpoints is:
(Fix 𝑓𝑖{𝐹} 𝑎1…𝑎𝑘𝑖

) ▷𝜄 𝑡𝑖{𝑓𝑘/Fix 𝑓𝑘{𝐹}}𝑘=1…𝑛 𝑎1…𝑎𝑘𝑖

when 𝑎𝑘𝑖
starts with a constructor. This last restriction is needed in order to keep strong normalization and corresponds

to the reduction for primitive recursive operators. The following reductions are now possible:
plus (S (S O)) (S O) ▷𝜄 S (plus (S O) (S O))

▷𝜄 S (S (plus O (S O)))
▷𝜄 S (S (S O))

Mutual induction
The principles of mutual induction can be automatically generated using the Scheme command described in Section
Generation of induction principles with Scheme.

3.4.6 Admissible rules for global environments

From the original rules of the type system, one can show the admissibility of rules which change the local context of defi-
nition of objects in the global environment. We show here the admissible rules that are used in the discharge mechanism
at the end of a section.
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Abstraction. One can modify a global declaration by generalizing it over a previously assumed constant 𝑐. For doing
that, we need to modify the reference to the global declaration in the subsequent global environment and local context by
explicitly applying this constant to the constant 𝑐.
Below, if Γ is a context of the form [𝑦1 ∶ 𝐴1; …; 𝑦𝑛 ∶ 𝐴𝑛], we write ∀𝑥 ∶ 𝑈, Γ{𝑐/𝑥} to mean
[𝑦1 ∶ ∀𝑥 ∶ 𝑈, 𝐴1{𝑐/𝑥}; …; 𝑦𝑛 ∶ ∀𝑥 ∶ 𝑈, 𝐴𝑛{𝑐/𝑥}] and 𝐸{|Γ|/|Γ|𝑐} to mean the parallel substitution
𝐸{𝑦1/(𝑦1 𝑐)}…{𝑦𝑛/(𝑦𝑛 𝑐)}.
First abstracting property:

𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′; 𝑐′ ∶= 𝑡 ∶ 𝑇 ; 𝐸″)[Γ]
𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′; 𝑐′ ∶= 𝜆𝑥 ∶ 𝑈. 𝑡{𝑐/𝑥} ∶ ∀𝑥 ∶ 𝑈, 𝑇 {𝑐/𝑥}; 𝐸″{𝑐′/(𝑐′ 𝑐)})[Γ{𝑐′/(𝑐′ 𝑐)}]

𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′; 𝑐′ ∶ 𝑇 ; 𝐸″)[Γ]
𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′; 𝑐′ ∶ ∀𝑥 ∶ 𝑈, 𝑇 {𝑐/𝑥}; 𝐸″{𝑐′/(𝑐′ 𝑐)})[Γ{𝑐′/(𝑐′ 𝑐)}]

𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′; Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) ; 𝐸″)[Γ]

𝒲ℱ (𝐸; 𝑐 ∶ 𝑈; 𝐸′; Ind [𝑝 + 1] (∀𝑥 ∶ 𝑈, Γ𝐼{𝑐/𝑥} ∶= ∀𝑥 ∶ 𝑈, Γ𝐶{𝑐/𝑥}) ; 𝐸″{|Γ𝐼 ; Γ𝐶 |/|Γ𝐼 ; Γ𝐶 |𝑐})
[Γ{|Γ𝐼 ; Γ𝐶 |/|Γ𝐼 ; Γ𝐶 |𝑐}]

One can similarly modify a global declaration by generalizing it over a previously defined constant 𝑐. Below, if Γ is a
context of the form [𝑦1 ∶ 𝐴1; …; 𝑦𝑛 ∶ 𝐴𝑛], we write Γ{𝑐/𝑢} to mean [𝑦1 ∶ 𝐴1{𝑐/𝑢}; …; 𝑦𝑛 ∶ 𝐴𝑛{𝑐/𝑢}].
Second abstracting property:

𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; 𝑐′ ∶= 𝑡 ∶ 𝑇 ; 𝐸″)[Γ]
𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; 𝑐′ ∶= (let 𝑥 ∶= 𝑢 ∶ 𝑈 in 𝑡{𝑐/𝑥}) ∶ 𝑇 {𝑐/𝑢}; 𝐸″)[Γ]

𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; 𝑐′ ∶ 𝑇 ; 𝐸″)[Γ]
𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; 𝑐′ ∶ 𝑇 {𝑐/𝑢}; 𝐸″)[Γ]

𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; Ind [𝑝] (Γ𝐼 ∶= Γ𝐶) ; 𝐸″)[Γ]
𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′; Ind [𝑝] (Γ𝐼{𝑐/𝑢} ∶= Γ𝐶{𝑐/𝑢}) ; 𝐸″)[Γ]

Pruning the local context. If one abstracts or substitutes constants with the above rules then it may happen that some
declared or defined constant does not occur any more in the subsequent global environment and in the local context. One
can consequently derive the following property.
First pruning property:

𝒲ℱ(𝐸; 𝑐 ∶ 𝑈; 𝐸′)[Γ] 𝑐 does not occur in 𝐸′ and Γ
𝒲ℱ(𝐸; 𝐸′)[Γ]

Second pruning property:

𝒲ℱ(𝐸; 𝑐 ∶= 𝑢 ∶ 𝑈; 𝐸′)[Γ] 𝑐 does not occur in 𝐸′ and Γ
𝒲ℱ(𝐸; 𝐸′)[Γ]

3.4.7 Co-inductive types

The implementation contains also co-inductive definitions, which are types inhabited by infinite objects. More information
on co-inductive definitions can be found in [Gimenez95][Gimenez98][GimenezCasteran05].
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3.4.8 The Calculus of Inductive Constructions with impredicative Set

Coq can be used as a type checker for the Calculus of Inductive Constructions with an impredicative sort Set by using
the compiler option -impredicative-set. For example, using the ordinary coqtop command, the following is
rejected,

Example

Fail Definition id: Set := forall X:Set,X->X.
The command has indeed failed with message:
The term "forall X : Set, X -> X" has type "Type"
while it is expected to have type "Set" (universe inconsistency).

while it will type check, if one uses instead the coqtop -impredicative-set option..
The major change in the theory concerns the rule for product formation in the sort Set, which is extended to a domain in
any sort:
ProdImp

𝐸[Γ] ⊢ 𝑇 ∶ 𝑠 𝑠 ∈ 𝒮 𝐸[Γ ∶∶ (𝑥 ∶ 𝑇 )] ⊢ 𝑈 ∶ Set
𝐸[Γ] ⊢ ∀𝑥 ∶ 𝑇 , 𝑈 ∶ Set

This extension has consequences on the inductive definitions which are allowed. In the impredicative system, one can
build so-called large inductive definitions like the example of second-order existential quantifier (exSet).
There should be restrictions on the eliminations which can be performed on such definitions. The elimination rules in the
impredicative system for sort Set become:
Set1

𝑠 ∈ {Prop,Set}
[𝐼 ∶ Set|𝐼 → 𝑠]

Set2
𝐼 is a small inductive definition 𝑠 ∈ {Type(𝑖)}

[𝐼 ∶ Set|𝐼 → 𝑠]

3.5 The Module System

The module system extends the Calculus of Inductive Constructions providing a convenient way to structure large devel-
opments as well as a means of massive abstraction.

3.5.1 Modules and module types

Access path. An access path is denoted by 𝑝 and can be either a module variable 𝑋 or, if 𝑝′ is an access path and 𝑖𝑑 an
identifier, then 𝑝′.𝑖𝑑 is an access path.
Structure element. A structure element is denoted by 𝑒 and is either a definition of a constant, an assumption, a definition
of an inductive, a definition of a module, an alias of a module or a module type abbreviation.
Structure expression. A structure expression is denoted by 𝑆 and can be:

• an access path 𝑝
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• a plain structure Struct 𝑒; …; 𝑒 End
• a functor Functor(𝑋 ∶ 𝑆) 𝑆′, where 𝑋 is a module variable, 𝑆 and 𝑆′ are structure expressions
• an application 𝑆 𝑝, where 𝑆 is a structure expression and 𝑝 an access path
• a refined structure 𝑆 with 𝑝 ∶= 𝑝′ or 𝑆 with 𝑝 ∶= 𝑡 ∶ 𝑇 where 𝑆 is a structure expression, 𝑝 and 𝑝′ are access paths,

𝑡 is a term and 𝑇 is the type of 𝑡.
Module definition. A module definition is written Mod(𝑋 ∶ 𝑆 [∶= 𝑆′]) and consists of a module variable 𝑋, a module
type 𝑆 which can be any structure expression and optionally a module implementation 𝑆′ which can be any structure
expression except a refined structure.
Module alias. A module alias is writtenModA(𝑋 == 𝑝) and consists of a module variable 𝑋 and a module path 𝑝.
Module type abbreviation. A module type abbreviation is written ModType(𝑌 ∶= 𝑆), where 𝑌 is an identifier and 𝑆
is any structure expression .

3.5.2 Typing Modules

In order to introduce the typing system we first slightly extend the syntactic class of terms and environments given in
section The terms. The environments, apart from definitions of constants and inductive types now also hold any other
structure elements. Terms, apart from variables, constants and complex terms, include also access paths.
We also need additional typing judgments:

• 𝐸[] ⊢ 𝒲ℱ(𝑆), denoting that a structure 𝑆 is well-formed,
• 𝐸[] ⊢ 𝑝 ∶ 𝑆, denoting that the module pointed by 𝑝 has type 𝑆 in environment 𝐸.
• 𝐸[] ⊢ 𝑆 ⟶ 𝑆, denoting that a structure 𝑆 is evaluated to a structure 𝑆 in weak head normal form.
• 𝐸[] ⊢ 𝑆1 <∶ 𝑆2 , denoting that a structure 𝑆1 is a subtype of a structure 𝑆2.
• 𝐸[] ⊢ 𝑒1 <∶ 𝑒2 , denoting that a structure element e_1 is more precise than a structure element e_2.

The rules for forming structures are the following:
WF-STR

𝒲ℱ(𝐸; 𝐸′)[]
𝐸[] ⊢ 𝒲ℱ(Struct 𝐸′ End)

WF-FUN

𝐸;Mod(𝑋 ∶ 𝑆)[] ⊢ 𝒲ℱ(𝑆′)
𝐸[] ⊢ 𝒲ℱ(Functor(𝑋 ∶ 𝑆) 𝑆′)

Evaluation of structures to weak head normal form:
WEVAL-APP

𝐸[] ⊢ 𝑆 ⟶ Functor(𝑋 ∶ 𝑆1) 𝑆2 𝐸[] ⊢ 𝑆1 ⟶ 𝑆1
𝐸[] ⊢ 𝑝 ∶ 𝑆3 𝐸[] ⊢ 𝑆3 <∶ 𝑆1

𝐸[] ⊢ 𝑆 𝑝 ⟶ 𝑆2{𝑝/𝑋, 𝑡1/𝑝1.𝑐1, …, 𝑡𝑛/𝑝𝑛.𝑐𝑛}

In the last rule, {𝑡1/𝑝1.𝑐1, …, 𝑡𝑛/𝑝𝑛.𝑐𝑛} is the resulting substitution from the inlining mechanism. We substitute in 𝑆
the inlined fields 𝑝𝑖.𝑐𝑖 fromMod(𝑋 ∶ 𝑆1) by the corresponding delta- reduced term 𝑡𝑖 in 𝑝.
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WEVAL-WITH-MOD
𝐸[] ⊢ 𝑆 ⟶ Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋 ∶ 𝑆1); 𝑒𝑖+2; …; 𝑒𝑛 End

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆1 ⟶ 𝑆1 𝐸[] ⊢ 𝑝 ∶ 𝑆2
𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆2 <∶ 𝑆1
𝐸[] ⊢ 𝑆 with 𝑥 ∶= 𝑝 ⟶

Struct 𝑒1; …; 𝑒𝑖;ModA(𝑋 == 𝑝); 𝑒𝑖+2{𝑝/𝑋}; …; 𝑒𝑛{𝑝/𝑋} End

WEVAL-WITH-MOD-REC
𝐸[] ⊢ 𝑆 ⟶ Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋1 ∶ 𝑆1); 𝑒𝑖+2; …; 𝑒𝑛 End

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆1 with 𝑝 ∶= 𝑝1 ⟶ 𝑆2
𝐸[] ⊢ 𝑆 with 𝑋1.𝑝 ∶= 𝑝1 ⟶

Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋 ∶ 𝑆2); 𝑒𝑖+2{𝑝1/𝑋1.𝑝}; …; 𝑒𝑛{𝑝1/𝑋1.𝑝} End

WEVAL-WITH-DEF
𝐸[] ⊢ 𝑆 ⟶ Struct 𝑒1; …; 𝑒𝑖;Assum()(𝑐 ∶ 𝑇1); 𝑒𝑖+2; …; 𝑒𝑛 End

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝐷𝑒𝑓()(𝑐 ∶= 𝑡 ∶ 𝑇 ) <∶ Assum()(𝑐 ∶ 𝑇1)
𝐸[] ⊢ 𝑆 with 𝑐 ∶= 𝑡 ∶ 𝑇 ⟶

Struct 𝑒1; …; 𝑒𝑖; 𝐷𝑒𝑓()(𝑐 ∶= 𝑡 ∶ 𝑇 ); 𝑒𝑖+2; …; 𝑒𝑛 End

WEVAL-WITH-DEF-REC
𝐸[] ⊢ 𝑆 ⟶ Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋1 ∶ 𝑆1); 𝑒𝑖+2; …; 𝑒𝑛 End

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆1 with 𝑝 ∶= 𝑝1 ⟶ 𝑆2
𝐸[] ⊢ 𝑆 with 𝑋1.𝑝 ∶= 𝑡 ∶ 𝑇 ⟶

Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋 ∶ 𝑆2); 𝑒𝑖+2; …; 𝑒𝑛 End

WEVAL-PATH-MOD1
𝐸[] ⊢ 𝑝 ⟶ Struct 𝑒1; …; 𝑒𝑖;Mod(𝑋 ∶ 𝑆 [∶= 𝑆1]); 𝑒𝑖+2; …; 𝑒𝑛𝐸𝑛𝑑

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆 ⟶ 𝑆
𝐸[] ⊢ 𝑝.𝑋 ⟶ 𝑆

WEVAL-PATH-MOD2
𝒲ℱ(𝐸)[] Mod(𝑋 ∶ 𝑆 [∶= 𝑆1]) ∈ 𝐸 𝐸[] ⊢ 𝑆 ⟶ 𝑆

𝐸[] ⊢ 𝑋 ⟶ 𝑆

WEVAL-PATH-ALIAS1
𝐸[] ⊢ 𝑝 ⟶ Struct 𝑒1; …; 𝑒𝑖;ModA(𝑋 == 𝑝1); 𝑒𝑖+2; …; 𝑒𝑛𝐸𝑛𝑑

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑝1 ⟶ 𝑆
𝐸[] ⊢ 𝑝.𝑋 ⟶ 𝑆

WEVAL-PATH-ALIAS2
𝒲ℱ(𝐸)[] ModA(𝑋 == 𝑝1) ∈ 𝐸 𝐸[] ⊢ 𝑝1 ⟶ 𝑆

𝐸[] ⊢ 𝑋 ⟶ 𝑆

WEVAL-PATH-TYPE1
𝐸[] ⊢ 𝑝 ⟶ Struct 𝑒1; …; 𝑒𝑖;ModType(𝑌 ∶= 𝑆); 𝑒𝑖+2; …; 𝑒𝑛𝐸𝑛𝑑

𝐸; 𝑒1; …; 𝑒𝑖[] ⊢ 𝑆 ⟶ 𝑆
𝐸[] ⊢ 𝑝.𝑌 ⟶ 𝑆
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WEVAL-PATH-TYPE2

𝒲ℱ(𝐸)[] ModType(𝑌 ∶= 𝑆) ∈ 𝐸 𝐸[] ⊢ 𝑆 ⟶ 𝑆
𝐸[] ⊢ 𝑌 ⟶ 𝑆

Rules for typing module:
MT-EVAL

𝐸[] ⊢ 𝑝 ⟶ 𝑆
𝐸[] ⊢ 𝑝 ∶ 𝑆

MT-STR

𝐸[] ⊢ 𝑝 ∶ 𝑆
𝐸[] ⊢ 𝑝 ∶ 𝑆/𝑝

The last rule, called strengthening is used to make all module fields manifestly equal to themselves. The notation 𝑆/𝑝 has
the following meaning:

• if 𝑆 ⟶ Struct 𝑒1; …; 𝑒𝑛 End then 𝑆/𝑝 = Struct 𝑒1/𝑝; …; 𝑒𝑛/𝑝 End where 𝑒/𝑝 is defined as follows (note that
opaque definitions are processed as assumptions):
– Def()(𝑐 ∶= 𝑡 ∶ 𝑇 )/𝑝 = Def()(𝑐 ∶= 𝑡 ∶ 𝑇 )
– Assum()(𝑐 ∶ 𝑈)/𝑝 = Def()(𝑐 ∶= 𝑝.𝑐 ∶ 𝑈)
– Mod(𝑋 ∶ 𝑆)/𝑝 = ModA(𝑋 == 𝑝.𝑋)
– ModA(𝑋 == 𝑝′)/𝑝 = ModA(𝑋 == 𝑝′)
– Ind[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼)/𝑝 = Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼)
– Ind𝑝′()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼)/𝑝 = Ind𝑝′()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼)

• if 𝑆 ⟶ Functor(𝑋 ∶ 𝑆′) 𝑆″ then 𝑆/𝑝 = 𝑆
The notation Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼) denotes an inductive definition that is definitionally equal to the inductive defi-
nition in the module denoted by the path 𝑝. All rules which have Ind[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼) as premises are also valid for
Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼). We give the formation rule for Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼) below as well as the equality rules on
inductive types and constructors.
The module subtyping rules:
MSUB-STR

𝐸; 𝑒1; …; 𝑒𝑛[] ⊢ 𝑒𝜎(𝑖) <∶ 𝑒′
𝑖 for 𝑖 = 1..𝑚

𝜎 ∶ {1…𝑚} → {1…𝑛} injective
𝐸[] ⊢ Struct 𝑒1; …; 𝑒𝑛 End <∶ Struct 𝑒′

1; …; 𝑒′𝑚 End

MSUB-FUN

𝐸[] ⊢ 𝑆′
1 <∶ 𝑆1 𝐸;Mod(𝑋 ∶ 𝑆′

1)[] ⊢ 𝑆2 <∶ 𝑆′
2

𝐸[] ⊢ Functor(𝑋 ∶ 𝑆1)𝑆2 <∶ Functor(𝑋 ∶ 𝑆′
1)𝑆′

2

Structure element subtyping rules:
ASSUM-ASSUM

𝐸[] ⊢ 𝑇1 ≤𝛽𝛿𝜄𝜁𝜂 𝑇2
𝐸[] ⊢ Assum()(𝑐 ∶ 𝑇1) <∶ Assum()(𝑐 ∶ 𝑇2)
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DEF-ASSUM

𝐸[] ⊢ 𝑇1 ≤𝛽𝛿𝜄𝜁𝜂 𝑇2
𝐸[] ⊢ Def()(𝑐 ∶= 𝑡 ∶ 𝑇1) <∶ Assum()(𝑐 ∶ 𝑇2)

ASSUM-DEF

𝐸[] ⊢ 𝑇1 ≤𝛽𝛿𝜄𝜁𝜂 𝑇2 𝐸[] ⊢ 𝑐 =𝛽𝛿𝜄𝜁𝜂 𝑡2
𝐸[] ⊢ Assum()(𝑐 ∶ 𝑇1) <∶ Def()(𝑐 ∶= 𝑡2 ∶ 𝑇2)

DEF-DEF

𝐸[] ⊢ 𝑇1 ≤𝛽𝛿𝜄𝜁𝜂 𝑇2 𝐸[] ⊢ 𝑡1 =𝛽𝛿𝜄𝜁𝜂 𝑡2
𝐸[] ⊢ Def()(𝑐 ∶= 𝑡1 ∶ 𝑇1) <∶ Def()(𝑐 ∶= 𝑡2 ∶ 𝑇2)

IND-IND

𝐸[] ⊢ Γ𝑃 =𝛽𝛿𝜄𝜁𝜂 Γ′
𝑃 𝐸[Γ𝑃 ] ⊢ Γ𝐶 =𝛽𝛿𝜄𝜁𝜂 Γ′

𝐶 𝐸[Γ𝑃 ; Γ𝐶 ] ⊢ Γ𝐼 =𝛽𝛿𝜄𝜁𝜂 Γ′
𝐼

𝐸[] ⊢ Ind [Γ𝑃 ] (Γ𝐶 ∶= Γ𝐼) <∶ Ind [Γ′
𝑃 ] (Γ′

𝐶 ∶= Γ′
𝐼)

INDP-IND

𝐸[] ⊢ Γ𝑃 =𝛽𝛿𝜄𝜁𝜂 Γ′
𝑃 𝐸[Γ𝑃 ] ⊢ Γ𝐶 =𝛽𝛿𝜄𝜁𝜂 Γ′

𝐶 𝐸[Γ𝑃 ; Γ𝐶 ] ⊢ Γ𝐼 =𝛽𝛿𝜄𝜁𝜂 Γ′
𝐼

𝐸[] ⊢ Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼) <∶ Ind [Γ′
𝑃 ] (Γ′

𝐶 ∶= Γ′
𝐼)

INDP-INDP

𝐸[] ⊢ Γ𝑃 =𝛽𝛿𝜄𝜁𝜂 Γ′
𝑃 𝐸[Γ𝑃 ] ⊢ Γ𝐶 =𝛽𝛿𝜄𝜁𝜂 Γ′

𝐶
𝐸[Γ𝑃 ; Γ𝐶 ] ⊢ Γ𝐼 =𝛽𝛿𝜄𝜁𝜂 Γ′

𝐼 𝐸[] ⊢ 𝑝 =𝛽𝛿𝜄𝜁𝜂 𝑝′

𝐸[] ⊢ Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼) <∶ Ind𝑝′()[Γ′
𝑃 ](Γ′

𝐶 ∶= Γ′
𝐼)

MOD-MOD

𝐸[] ⊢ 𝑆1 <∶ 𝑆2
𝐸[] ⊢ Mod(𝑋 ∶ 𝑆1) <∶ Mod(𝑋 ∶ 𝑆2)

ALIAS-MOD

𝐸[] ⊢ 𝑝 ∶ 𝑆1 𝐸[] ⊢ 𝑆1 <∶ 𝑆2
𝐸[] ⊢ ModA(𝑋 == 𝑝) <∶ Mod(𝑋 ∶ 𝑆2)

MOD-ALIAS

𝐸[] ⊢ 𝑝 ∶ 𝑆2 𝐸[] ⊢ 𝑆1 <∶ 𝑆2 𝐸[] ⊢ 𝑋 =𝛽𝛿𝜄𝜁𝜂 𝑝
𝐸[] ⊢ Mod(𝑋 ∶ 𝑆1) <∶ ModA(𝑋 == 𝑝)

ALIAS-ALIAS

𝐸[] ⊢ 𝑝1 =𝛽𝛿𝜄𝜁𝜂 𝑝2
𝐸[] ⊢ ModA(𝑋 == 𝑝1) <∶ ModA(𝑋 == 𝑝2)

MODTYPE-MODTYPE

𝐸[] ⊢ 𝑆1 <∶ 𝑆2 𝐸[] ⊢ 𝑆2 <∶ 𝑆1
𝐸[] ⊢ ModType(𝑌 ∶= 𝑆1) <∶ ModType(𝑌 ∶= 𝑆2)
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New environment formation rules
WF-MOD1

𝒲ℱ(𝐸)[] 𝐸[] ⊢ 𝒲ℱ(𝑆)
𝑊𝐹(𝐸;Mod(𝑋 ∶ 𝑆))[]

WF-MOD2
𝐸[] ⊢ 𝑆2 <∶ 𝑆1 𝒲ℱ(𝐸)[] 𝐸[] ⊢ 𝒲ℱ(𝑆1) 𝐸[] ⊢ 𝒲ℱ(𝑆2)

𝒲ℱ(𝐸;Mod(𝑋 ∶ 𝑆1 [∶= 𝑆2]))[]

WF-ALIAS
𝒲ℱ(𝐸)[] 𝐸[] ⊢ 𝑝 ∶ 𝑆
𝒲ℱ(𝐸,ModA(𝑋 == 𝑝))[]

WF-MODTYPE
𝒲ℱ(𝐸)[] 𝐸[] ⊢ 𝒲ℱ(𝑆)
𝒲ℱ(𝐸,ModType(𝑌 ∶= 𝑆))[]

WF-IND

𝒲ℱ(𝐸; Ind [Γ𝑃 ] (Γ𝐶 ∶= Γ𝐼))[]
𝐸[] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑛; Ind [Γ′

𝑃 ] (Γ′
𝐶 ∶= Γ′

𝐼) ; … End ∶
𝐸[] ⊢ Ind [Γ′

𝑃 ] (Γ′
𝐶 ∶= Γ′

𝐼) <∶ Ind [Γ𝑃 ] (Γ𝐶 ∶= Γ𝐼)
𝒲ℱ(𝐸; Ind𝑝()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼))[]

Component access rules
ACC-TYPE1

𝐸[Γ] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖;Assum()(𝑐 ∶ 𝑇 ); … End
𝐸[Γ] ⊢ 𝑝.𝑐 ∶ 𝑇

ACC-TYPE2
𝐸[Γ] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖;Def()(𝑐 ∶= 𝑡 ∶ 𝑇 ); … End

𝐸[Γ] ⊢ 𝑝.𝑐 ∶ 𝑇

Notice that the following rule extends the delta rule defined in section Conversion rules
ACC-DELTA

𝐸[Γ] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖;Def()(𝑐 ∶= 𝑡 ∶ 𝑈); … End
𝐸[Γ] ⊢ 𝑝.𝑐 ▷𝛿 𝑡

In the rules below we assume Γ𝑃 is [𝑝1 ∶ 𝑃1; …; 𝑝𝑟 ∶ 𝑃𝑟], Γ𝐼 is [𝐼1 ∶ 𝐴1; …; 𝐼𝑘 ∶ 𝐴𝑘], and Γ𝐶 is [𝑐1 ∶ 𝐶1; …; 𝑐𝑛 ∶ 𝐶𝑛].
ACC-IND1

𝐸[Γ] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖; Ind [Γ𝑃 ] (Γ𝐶 ∶= Γ𝐼) ; … End
𝐸[Γ] ⊢ 𝑝.𝐼𝑗 ∶ (𝑝1 ∶ 𝑃1)…(𝑝𝑟 ∶ 𝑃𝑟)𝐴𝑗

ACC-IND2
𝐸[Γ] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖; Ind [Γ𝑃 ] (Γ𝐶 ∶= Γ𝐼) ; … End
𝐸[Γ] ⊢ 𝑝.𝑐𝑚 ∶ (𝑝1 ∶ 𝑃1)…(𝑝𝑟 ∶ 𝑃𝑟)𝐶𝑚𝐼𝑗(𝐼𝑗 𝑝1…𝑝𝑟)𝑗=1…𝑘
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ACC-INDP1

𝐸[] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖; Ind𝑝′()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼); … End
𝐸[] ⊢ 𝑝.𝐼𝑖 ▷𝛿 𝑝′.𝐼𝑖

ACC-INDP2

𝐸[] ⊢ 𝑝 ∶ Struct 𝑒1; …; 𝑒𝑖; Ind𝑝′()[Γ𝑃 ](Γ𝐶 ∶= Γ𝐼); … End
𝐸[] ⊢ 𝑝.𝑐𝑖 ▷𝛿 𝑝′.𝑐𝑖
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CHAPTER

FOUR

THE PROOF ENGINE

4.1 Vernacular commands

4.1.1 Displaying

Command: Print qualid
This command displays on the screen information about the declared or defined object referred by qualid.
Error messages:
Error: qualid not a defined object.

Error: Universe instance should have length num.

Error: This object does not support universe names.

Variant: Print Term qualid
This is a synonym of Print qualid when qualid denotes a global constant.

Variant: Print Term
?

qualid@name
This locally renames the polymorphic universes of qualid. An underscore means the raw universe is
printed.

Command: About qualid
This displays various information about the object denoted by qualid: its kind (module, constant, assumption,
inductive, constructor, abbreviation, …), long name, type, implicit arguments and argument scopes. It does not
print the body of definitions or proofs.
Variant: About qualid@name

This locally renames the polymorphic universes of qualid. An underscore means the raw universe is
printed.

Command: Print All
This command displays information about the current state of the environment, including sections and modules.
Variant: Inspect num

This command displays the num last objects of the current environment, including sections and modules.
Variant: Print Section ident

The name ident should correspond to a currently open section, this command displays the objects defined
since the beginning of this section.

4.1.2 Flags, Options and Tables

Coq has many settings to control its behavior. Setting types include flags, options and tables:
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• A flag has a boolean value, such as Asymmetric Patterns.
• An option generally has a numeric or string value, such as Firstorder Depth.
• A table contains a set of strings or qualids.
• In addition, some commands provide settings, such as Extraction Language.

Flags, options and tables are identified by a series of identifiers, each with an initial capital letter.

Command: Local | Global | Export
?

Set flag
Sets flag on. Scoping qualifiers are described here.

Command: Local | Global | Export
?

Unset flag
Sets flag off. Scoping qualifiers are described here.

Command: Test flag
Prints the current value of flag.

Command: Local | Global | Export
?

Set option ( num | string )
Sets option to the specified value. Scoping qualifiers are described here.

Command: Local | Global | Export
?

Unset option
Sets option to its default value. Scoping qualifiers are described here.

Command: Test option
Prints the current value of option.

Command: Print Options
Prints the current value of all flags and options, and the names of all tables.

Command: Add table ( string | qualid )
Adds the specified value to table.

Command: Remove table ( string | qualid )
Removes the specified value from table.

Command: Test table for ( string | qualid )
Reports whether table contains the specified value.

Command: Print Table table
Prints the values in table.

Command: Test table
A synonym for Print Table @table.

Command: Print Tables
A synonym for Print Options.

Scope qualifiers for Set and Unset

Local | Global | Export
?

Flag and option settings can be global in scope or local to nested scopes created by Module and Section commands.
There are four alternatives:

• no qualifier: the original setting is not restored at the end of the current module or section.
• Local: the setting is applied within the current scope. The original value of the option or flag is restored at the end
of the current module or section.
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• Global: similar to no qualifier, the original setting is not restored at the end of the current module or section. In
addition, if the value is set in a file, then Require-ing the file sets the option.

• Export: similar to Local, the original value of the option or flag is restored at the end of the current module or
section. In addition, if the value is set in a file, then Import-ing the file sets the option.

Newly opened scopes inherit the current settings.

4.1.3 Requests to the environment

Command: Check term
This command displays the type of term. When called in proof mode, the term is checked in the local context of
the current subgoal.
Variant: selector: Check term

This variant specifies on which subgoal to perform typing (see Section Invocation of tactics).
Command: Eval convtactic in term

This command performs the specified reduction on term, and displays the resulting term with its type. The term
to be reduced may depend on hypothesis introduced in the first subgoal (if a proof is in progress).
See also:
Section Performing computations.

Command: Compute term
This command performs a call-by-value evaluation of term by using the bytecode-based virtual machine. It is a
shortcut for Eval vm_compute in term.
See also:
Section Performing computations.

Command: Print Assumptions qualid
This commands display all the assumptions (axioms, parameters and variables) a theorem or definition depends on.
Especially, it informs on the assumptions with respect to which the validity of a theorem relies.
Variant: Print Opaque Dependencies qualid

Displays the set of opaque constants qualid relies on in addition to the assumptions.
Variant: Print Transparent Dependencies qualid

Displays the set of transparent constants qualid relies on in addition to the assumptions.
Variant: Print All Dependencies qualid

Displays all assumptions and constants qualid relies on.
Command: Search qualid

This command displays the name and type of all objects (hypothesis of the current goal, theorems, axioms, etc) of
the current context whose statement contains qualid. This command is useful to remind the user of the name of
library lemmas.
Error: The reference qualid was not found in the current environment.

There is no constant in the environment named qualid.
Variant: Search string

If string is a valid identifier, this command displays the name and type of all objects (theorems, axioms,
etc) of the current context whose name contains string. If string is a notation’s string denoting some reference
qualid (referred to by its main symbol as in "+" or by its notation’s string as in "_ + _" or "_ 'U'
_", see Section Notations), the command works like Search qualid.
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Variant: Search string%key
The string string must be a notation or the main symbol of a notation which is then interpreted in the scope
bound to the delimiting key key (see Section Local interpretation rules for notations).

Variant: Search term_pattern
This searches for all statements or types of definition that contains a subterm that matches the pattern
term_pattern (holes of the pattern are either denoted by _ or by ?ident when non linear patterns
are expected).

Variant: Search { + [-]term_pattern_string }
where term_pattern_string is a term_pattern, a string, or a string followed by a scope delimiting key
%key. This generalization of Search searches for all objects whose statement or type contains a subterm
matching term_pattern (or qualid if string is the notation for a reference qualid) and whose name
contains all string of the request that correspond to valid identifiers. If a term_pattern or a string is prefixed
by -, the search excludes the objects that mention that term_pattern or that string.

Variant: Search term_pattern_string … term_pattern_string inside qualid
+

This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: Search term_pattern_string … term_pattern_string outside qualid
+

This restricts the search to constructions not defined in the modules named by the given qualid sequence.
Variant: selector: Search [-]term_pattern_string … [-]term_pattern_string

This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Example

Require Import ZArith.

Search Z.mul Z.add "distr".
Z.mul_add_distr_l: forall n m p : Z, (n * (m + p))%Z = (n * m + n * p)%Z
Z.mul_add_distr_r: forall n m p : Z, ((n + m) * p)%Z = (n * p + m * p)%Z
fast_Zmult_plus_distr_l:
forall (n m p : Z) (P : Z -> Prop),
P (n * p + m * p)%Z -> P ((n + m) * p)%Z

Search "+"%Z "*"%Z "distr" -positive -Prop.
Z.mul_add_distr_l: forall n m p : Z, (n * (m + p))%Z = (n * m + n * p)%Z
Z.mul_add_distr_r: forall n m p : Z, ((n + m) * p)%Z = (n * p + m * p)%Z

Search (?x * _ + ?x * _)%Z outside OmegaLemmas.
Z.mul_add_distr_l: forall n m p : Z, (n * (m + p))%Z = (n * m + n * p)%Z

Variant: SearchAbout
Deprecated since version 8.5.
Up to Coq version 8.4, Search had the behavior of current SearchHead and the behavior of cur-
rent Search was obtained with command SearchAbout. For compatibility, the deprecated name
SearchAbout can still be used as a synonym of Search. For compatibility, the list of objects to search
when using SearchAbout may also be enclosed by optional [ ] delimiters.

Command: SearchHead term
This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion has the form (term t1 .. tn). This command is useful to remind the
user of the name of library lemmas.
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Example

SearchHead le.
le_n: forall n : nat, n <= n
le_0_n: forall n : nat, 0 <= n
le_S: forall n m : nat, n <= m -> n <= S m
le_pred: forall n m : nat, n <= m -> Nat.pred n <= Nat.pred m
le_n_S: forall n m : nat, n <= m -> S n <= S m
le_S_n: forall n m : nat, S n <= S m -> n <= m

SearchHead (@eq bool).
andb_true_intro:

forall b1 b2 : bool, b1 = true /\ b2 = true -> (b1 && b2)%bool = true

Variant: SearchHead term inside qualid
+

This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: SearchHead term outside qualid
+

This restricts the search to constructions not defined in the modules named by the given qualid sequence.
Error: Module/section qualid not found.

No module qualid has been required (see Section Compiled files).
Variant: selector: SearchHead term

This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Note: Up to Coq version 8.4, SearchHead was named Search.

Command: SearchPattern term
This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion or last hypothesis and conclusion matches the expressionterm where holes
in the latter are denoted by _. It is a variant of Search term_pattern that does not look for subterms but
searches for statements whose conclusion has exactly the expected form, or whose statement finishes by the given
series of hypothesis/conclusion.

Example

Require Import Arith.

SearchPattern (_ + _ = _ + _).
Nat.add_comm: forall n m : nat, n + m = m + n
plus_Snm_nSm: forall n m : nat, S n + m = n + S m
Nat.add_succ_comm: forall n m : nat, S n + m = n + S m
Nat.add_shuffle3: forall n m p : nat, n + (m + p) = m + (n + p)
plus_assoc_reverse: forall n m p : nat, n + m + p = n + (m + p)
Nat.add_assoc: forall n m p : nat, n + (m + p) = n + m + p
Nat.add_shuffle0: forall n m p : nat, n + m + p = n + p + m
f_equal2_plus:

forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 + x2 = y1 + y2
Nat.add_shuffle2: forall n m p q : nat, n + m + (p + q) = n + q + (m + p)
Nat.add_shuffle1: forall n m p q : nat, n + m + (p + q) = n + p + (m + q)

(continues on next page)
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(continued from previous page)
SearchPattern (nat -> bool).

Nat.odd: nat -> bool
Init.Nat.odd: nat -> bool
Nat.even: nat -> bool
Init.Nat.even: nat -> bool
Init.Nat.testbit: nat -> nat -> bool
Nat.leb: nat -> nat -> bool
Nat.eqb: nat -> nat -> bool
Init.Nat.eqb: nat -> nat -> bool
Nat.ltb: nat -> nat -> bool
Nat.testbit: nat -> nat -> bool
Init.Nat.leb: nat -> nat -> bool
Init.Nat.ltb: nat -> nat -> bool
BinNat.N.testbit_nat: BinNums.N -> nat -> bool
BinPosDef.Pos.testbit_nat: BinNums.positive -> nat -> bool
BinPos.Pos.testbit_nat: BinNums.positive -> nat -> bool
BinNatDef.N.testbit_nat: BinNums.N -> nat -> bool

SearchPattern (forall l : list _, _ l l).
List.incl_refl: forall (A : Type) (l : list A), List.incl l l
List.lel_refl: forall (A : Type) (l : list A), List.lel l l

Patterns need not be linear: you can express that the same expression must occur in two places by using pattern
variables ?ident.

Example

SearchPattern (?X1 + _ = _ + ?X1).
Nat.add_comm: forall n m : nat, n + m = m + n

Variant: SearchPattern term inside qualid
+

This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: SearchPattern term outside qualid
+

This restricts the search to constructions not defined in the modules named by the given qualid sequence.
Variant: selector: SearchPattern term

This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Command: SearchRewrite term
This command displays the name and type of all hypothesis of the current goal (if any) and theorems of the current
context whose statement’s conclusion is an equality of which one side matches the expression term. Holes in term
are denoted by “_”.

Example

Require Import Arith.

SearchRewrite (_ + _ + _).
Nat.add_shuffle0: forall n m p : nat, n + m + p = n + p + m
plus_assoc_reverse: forall n m p : nat, n + m + p = n + (m + p)

(continues on next page)
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(continued from previous page)
Nat.add_assoc: forall n m p : nat, n + (m + p) = n + m + p
Nat.add_shuffle1: forall n m p q : nat, n + m + (p + q) = n + p + (m + q)
Nat.add_shuffle2: forall n m p q : nat, n + m + (p + q) = n + q + (m + p)
Nat.add_carry_div2:

forall (a b : nat) (c0 : bool),
(a + b + Nat.b2n c0) / 2 =
a / 2 + b / 2 +
Nat.b2n
(Nat.testbit a 0 && Nat.testbit b 0
|| c0 && (Nat.testbit a 0 || Nat.testbit b 0))

Variant: SearchRewrite term inside qualid
+

This restricts the search to constructions defined in the modules named by the given qualid sequence.

Variant: SearchRewrite term outside qualid
+

This restricts the search to constructions not defined in the modules named by the given qualid sequence.
Variant: selector: SearchRewrite term

This specifies the goal on which to search hypothesis (see Section Invocation of tactics). By default the 1st
goal is searched. This variant can be combined with other variants presented here.

Note:
Table: Search Blacklist string

Specifies a set of strings used to exclude lemmas from the results of Search, SearchHead, SearchPattern
and SearchRewrite queries. A lemma whose fully-qualified name contains any of the strings will be excluded
from the search results. The default blacklisted substrings are _subterm, _subproof and Private_.
Use the Add @table and Remove @table commands to update the set of blacklisted strings.

Command: Locate qualid
This command displays the full name of objects whose name is a prefix of the qualified identifier qualid, and con-
sequently the Coq module in which they are defined. It searches for objects from the different qualified namespaces
of Coq: terms, modules, Ltac, etc.

Example

Locate nat.
Inductive Coq.Init.Datatypes.nat

Locate Datatypes.O.
Constructor Coq.Init.Datatypes.O

(shorter name to refer to it in current context is O)

Locate Init.Datatypes.O.
Constructor Coq.Init.Datatypes.O

(shorter name to refer to it in current context is O)

Locate Coq.Init.Datatypes.O.
Constructor Coq.Init.Datatypes.O

(shorter name to refer to it in current context is O)

Locate I.Dont.Exist.
No object of suffix I.Dont.Exist
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Variant: Locate Term qualid
As Locate but restricted to terms.

Variant: Locate Module qualid
As Locate but restricted to modules.

Variant: Locate Ltac qualid
As Locate but restricted to tactics.

See also:
Section Locating notations

4.1.4 Loading files

Coq offers the possibility of loading different parts of a whole development stored in separate files. Their contents will be
loaded as if they were entered from the keyboard. This means that the loaded files are ASCII files containing sequences
of commands for Coq’s toplevel. This kind of file is called a script for Coq. The standard (and default) extension of Coq’s
script files is .v.
Command: Load ident

This command loads the file named ident.v, searching successively in each of the directories specified in the
loadpath. (see Section Libraries and filesystem)
Files loaded this way cannot leave proofs open, and the Load command cannot be used inside a proof either.
Variant: Load string

Loads the file denoted by the string string, where string is any complete filename. Then the ~ and ..
abbreviations are allowed as well as shell variables. If no extension is specified, Coq will use the default
extension .v.

Variant: Load Verbose ident
Variant: Load Verbose string

Display, while loading, the answers of Coq to each command (including tactics) contained in the loaded file.
See also:
Section Controlling display.

Error: Can’t find file ident on loadpath.

Error: Load is not supported inside proofs.

Error: Files processed by Load cannot leave open proofs.

4.1.5 Compiled files

This section describes the commands used to load compiled files (see Chapter The Coq commands for documentation on
how to compile a file). A compiled file is a particular case of module called library file.
Command: Require qualid

This command looks in the loadpath for a file containing module qualid and adds the corresponding module
to the environment of Coq. As library files have dependencies in other library files, the command Require
qualid recursively requires all library files the module qualid depends on and adds the corresponding modules to
the environment of Coq too. Coq assumes that the compiled files have been produced by a valid Coq compiler and
their contents are then not replayed nor rechecked.
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To locate the file in the file system, qualid is decomposed under the formdirpath.ident and the fileident.
vo is searched in the physical directory of the file system that is mapped in Coq loadpath to the logical path dirpath
(see Section Libraries and filesystem). The mapping between physical directories and logical names at the time of
requiring the file must be consistent with the mapping used to compile the file. If several files match, one of them
is picked in an unspecified fashion.
Variant: Require Import qualid

This loads and declares the module qualid and its dependencies then imports the contents of qualid as
described here. It does not import the modules on which qualid depends unless these modules were themselves
required in module qualid using Require Export, as described below, or recursively required through
a sequence of Require Export. If the module required has already been loaded, Require Import
qualid simply imports it, as Import qualid would.

Variant: Require Export qualid
This command acts as Require Import qualid, but if a further module, say A, contains a command
Require Export B, then the command Require Import A also imports the module B.

Variant: Require [Import | Export] qualid
+

This loads the modules named by the qualid sequence and their recursive dependencies. If Import or
Export is given, it also imports these modules and all the recursive dependencies that were marked or
transitively marked as Export.

Variant: From dirpath Require qualid
This command acts as Require, but picks any library whose absolute name is of the form dirpath.
dirpath’.qualid for some dirpath’. This is useful to ensure that the qualid library comes from
a given package by making explicit its absolute root.

Error: Cannot load qualid: no physical path bound to dirpath.

Error: Cannot find library foo in loadpath.
The command did not find the file foo.vo. Either foo.v exists but is not compiled or foo.vo is in a directory
which is not in your LoadPath (see Section Libraries and filesystem).

Error: Compiled library ident.vo makes inconsistent assumptions over library qualid.
The command tried to load library file ident.vo that depends on some specific version of library qualid
which is not the one already loaded in the current Coq session. Probably ident.v was not properly recom-
piled with the last version of the file containing module qualid.

Error: Bad magic number.
The file ident.vo was found but either it is not a Coq compiled module, or it was compiled with an
incompatible version of Coq.

Error: The file :n:`ident.vo` contains library dirpath and not library dirpath’.
The library file dirpath’ is indirectly required by the Require command but it is bound in the current
loadpath to the file ident.vo which was bound to a different library name dirpath at the time it was
compiled.

Error: Require is not allowed inside a module or a module type.
This command is not allowed inside a module or a module type being defined. It is meant to describe a
dependency between compilation units. Note however that the commands Import and Export alone can
be used inside modules (see Section Import).
See also:
Chapter The Coq commands

Command: Print Libraries
This command displays the list of library files loaded in the current Coq session. For each of these libraries, it also
tells if it is imported.
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Command: Declare ML Module string
+

This commands loads the OCaml compiled files with names given by the string sequence (dynamic link). It is
mainly used to load tactics dynamically. The files are searched into the current OCaml loadpath (see the command
Add ML Path). Loading of OCaml files is only possible under the bytecode version of coqtop (i.e. coqtop
called with option -byte, see chapter The Coq commands), or when Coq has been compiled with a version of
OCaml that supports native Dynlink (≥ 3.11).

Variant: Local Declare ML Module string
+

This variant is not exported to the modules that import the module where they occur, even if outside a section.
Error: File not found on loadpath: string.

Error: Loading of ML object file forbidden in a native Coq.

Command: Print ML Modules
This prints the name of all OCaml modules loaded with Declare ML Module. To know from where these
module were loaded, the user should use the command Locate File.

4.1.6 Loadpath

Loadpaths are preferably managed using Coq command line options (see Section libraries-and-filesystem)
but there remain vernacular commands to manage them for practical purposes. Such commands are only meant to be
issued in the toplevel, and using them in source files is discouraged.
Command: Pwd

This command displays the current working directory.
Command: Cd string

This command changes the current directory according to string which can be any valid path.
Variant: Cd

Is equivalent to Pwd.
Command: Add LoadPath string as dirpath

This command is equivalent to the command line option -Q string dirpath. It adds the physical directory
string to the current Coq loadpath and maps it to the logical directory dirpath.
Variant: Add LoadPath string

Performs as Add LoadPath string dirpath but for the empty directory path.
Command: Add Rec LoadPath string as dirpath

This command is equivalent to the command line option -R string dirpath. It adds the physical directory
string and all its subdirectories to the current Coq loadpath.
Variant: Add Rec LoadPath string

Works as Add Rec LoadPath string as dirpath but for the empty logical directory path.
Command: Remove LoadPath string

This command removes the path string from the current Coq loadpath.
Command: Print LoadPath

This command displays the current Coq loadpath.
Variant: Print LoadPath dirpath

Works as Print LoadPath but displays only the paths that extend the dirpath prefix.
Command: Add ML Path string

This command adds the path string to the current OCaml loadpath (see the command Declare ML
Module` in Section Compiled files).
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Command: Add Rec ML Path string
This command adds the directory string and all its subdirectories to the current OCaml loadpath (see the com-
mand Declare ML Module).

Command: Print ML Path string
This command displays the current OCaml loadpath. This command makes sense only under the bytecode version
of coqtop, i.e. using option -byte (see the command Declare ML Module in Section Compiled files).

Command: Locate File string
This command displays the location of file string in the current loadpath. Typically, string is a .cmo or .vo or .v
file.

Command: Locate Library dirpath
This command gives the status of the Coq module dirpath. It tells if the module is loaded and if not searches in the
load path for a module of logical name dirpath.

4.1.7 Backtracking

The backtracking commands described in this section can only be used interactively, they cannot be part of a vernacular
file loaded via Load or compiled by coqc.
Command: Reset ident

This command removes all the objects in the environment since identwas introduced, including ident. ident
may be the name of a defined or declared object as well as the name of a section. One cannot reset over the name
of a module or of an object inside a module.
Error: ident: no such entry.

Variant: Reset Initial
Goes back to the initial state, just after the start of the interactive session.

Command: Back
This command undoes all the effects of the last vernacular command. Commands read from a vernacular file via a
Load are considered as a single command. Proof management commands are also handled by this command (see
Chapter Proof handling). For that, Back may have to undo more than one command in order to reach a state where
the proof management information is available. For instance, when the last command is a Qed, the management
information about the closed proof has been discarded. In this case, Back will then undo all the proof steps up to
the statement of this proof.
Variant: Back num

Undo num vernacular commands. As for Back, some extra commands may be undone in order to reach an
adequate state. For instance Back num will not re-enter a closed proof, but rather go just before that proof.

Error: Invalid backtrack.
The user wants to undo more commands than available in the history.

Command: BackTo num
This command brings back the system to the state labeled num, forgetting the effect of all commands executed after
this state. The state label is an integer which grows after each successful command. It is displayed in the prompt
when in -emacs mode. Just as Back (see above), the BackTo command now handles proof states. For that, it
may have to undo some extra commands and end on a state num′ ≤ num if necessary.
Variant: Backtrack num num num

Deprecated since version 8.4.
Backtrack is a deprecated form of BackTo which allows explicitly manipulating the proof environment.
The three numbers represent the following:
• first number : State label to reach, as for BackTo.
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• second number : Proof state number to unbury once aborts have been done. Coq will compute the number
of Undo to perform (see Chapter Proof handling).

• third number : Number of Abort to perform, i.e. the number of currently opened nested proofs that
must be canceled (see Chapter Proof handling).

Error: Invalid backtrack.
The destination state label is unknown.

4.1.8 Quitting and debugging

Command: Quit
This command permits to quit Coq.

Command: Drop
This is used mostly as a debug facility by Coq’s implementers and does not concern the casual user. This command
permits to leave Coq temporarily and enter the OCaml toplevel. The OCaml command:

#use "include";;

adds the right loadpaths and loads some toplevel printers for all abstract types of Coq- section_path, identifiers,
terms, judgments, …. You can also use the file base_include instead, that loads only the pretty-printers for sec-
tion_paths and identifiers. You can return back to Coq with the command:

go();;

Warning:
1. It only works with the bytecode version of Coq (i.e. coqtop.byte, see Section

interactive-use).
2. You must have compiled Coq from the source package and set the environment variable COQTOP to the

root of your copy of the sources (see Section customization-by-environment-variables).

Command: Time command
This command executes the vernacular command command and displays the time needed to execute it.

Command: Redirect string command
This command executes the vernacular command command, redirecting its output to ”string.out”.

Command: Timeout num command
This command executes the vernacular command command. If the command has not terminated after the time
specified by the num (time expressed in seconds), then it is interrupted and an error message is displayed.
Option: Default Timeout num

This option controls a default timeout for subsequent commands, as if they were passed to a Timeout
command. Commands already starting by a Timeout are unaffected.

Command: Fail command
For debugging scripts, sometimes it is desirable to knowwhether a command or a tactic fails. If the given command
fails, the Fail statement succeeds, without changing the proof state, and in interactive mode, the system prints a
message confirming the failure. If the given command succeeds, the statement is an error, and it prints a message
indicating that the failure did not occur.
Error: The command has not failed!
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4.1.9 Controlling display

Flag: Silent
This option controls the normal displaying.

Option: Warnings " ( - | + )
?

ident

+

,
"

This option configures the display of warnings. It is experimental, and expects, between quotes, a comma-separated
list of warning names or categories. Adding - in front of a warning or category disables it, adding +makes it an error.
It is possible to use the special categories all and default, the latter containing the warnings enabled by default. The
flags are interpreted from left to right, so in case of an overlap, the flags on the right have higher priority, meaning
that A,-A is equivalent to -A.

Flag: Search Output Name Only
This option restricts the output of search commands to identifier names; turning it on causes invocations ofSearch,
SearchHead, SearchPattern, SearchRewrite etc. to omit types from their output, printing only iden-
tifiers.

Option: Printing Width num
This command sets which left-aligned part of the width of the screen is used for display. At the time of writing
this documentation, the default value is 78.

Option: Printing Depth num
This option controls the nesting depth of the formatter used for pretty- printing. Beyond this depth, display of
subterms is replaced by dots. At the time of writing this documentation, the default value is 50.

Flag: Printing Compact Contexts
This option controls the compact display mode for goals contexts. When on, the printer tries to reduce the vertical
size of goals contexts by putting several variables (even if of different types) on the same line provided it does not
exceed the printing width (see Printing Width). At the time of writing this documentation, it is off by default.

Flag: Printing Unfocused
This option controls whether unfocused goals are displayed. Such goals are created by focusing other goals with
bullets (see Bullets or curly braces). It is off by default.

Flag: Printing Dependent Evars Line
This option controls the printing of the “(dependent evars: …)” line when -emacs is passed.

4.1.10 Controlling the reduction strategies and the conversion algorithm

Coq provides reduction strategies that the tactics can invoke and two different algorithms to check the convertibility of
types. The first conversion algorithm lazily compares applicative terms while the other is a brute-force but efficient algo-
rithm that first normalizes the terms before comparing them. The second algorithm is based on a bytecode representation
of terms similar to the bytecode representation used in the ZINC virtual machine [Ler90]. It is especially useful for
intensive computation of algebraic values, such as numbers, and for reflection-based tactics. The commands to fine- tune
the reduction strategies and the lazy conversion algorithm are described first.

Command: Opaque qualid
+

This command has an effect on unfoldable constants, i.e. on constants defined by Definition or Let (with an
explicit body), or by a command assimilated to a definition such as Fixpoint, Program Definition, etc,
or by a proof ended by Defined. The command tells not to unfold the constants in the qualid sequence in
tactics using δ-conversion (unfolding a constant is replacing it by its definition).
Opaque has also an effect on the conversion algorithm of Coq, telling it to delay the unfolding of a constant as
much as possible when Coq has to check the conversion (see Section Conversion rules) of two distinct applied
constants.
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Variant: Global Opaque qualid
+

The scope of Opaque is limited to the current section, or current file, unless the variant Global Opaque
is used.

See also:
Sections Performing computations, Automating, Switching on/off the proof editing mode

Error: The reference qualid was not found in the current environment.
There is no constant referred by qualid in the environment. Nevertheless, if you asked Opaque foo bar
and if bar does not exist, foo is set opaque.

Command: Transparent qualid
+

This command is the converse of Opaque and it applies on unfoldable constants to restore their unfoldability after
an Opaque command.
Note in particular that constants defined by a proof ended by Qed are not unfoldable and Transparent has no effect
on them. This is to keep with the usual mathematical practice of proof irrelevance: what matters in a mathematical
development is the sequence of lemma statements, not their actual proofs. This distinguishes lemmas from the
usual defined constants, whose actual values are of course relevant in general.

Variant: Global Transparent qualid
+

The scope of Transparent is limited to the current section, or current file, unless the variant Global
Transparent is used.

Error: The reference qualid was not found in the current environment.
There is no constant referred by qualid in the environment.
See also:
Sections Performing computations, Automating, Switching on/off the proof editing mode

Command: Strategy level [ qualid
+

]
This command generalizes the behavior of Opaque and Transparent commands. It is used to fine-tune the strategy
for unfolding constants, both at the tactic level and at the kernel level. This command associates a level to the
qualified names in thequalid sequence. Whenever two expressions with two distinct head constants are compared
(for instance, this comparison can be triggered by a type cast), the one with lower level is expanded first. In case
of a tie, the second one (appearing in the cast type) is expanded.
Levels can be one of the following (higher to lower):

• opaque : level of opaque constants. They cannot be expanded by tactics (behaves like +∞, see
next item).

• num : levels indexed by an integer. Level 0 corresponds to the default behavior, which corre-
sponds to transparent constants. This level can also be referred to as transparent. Negative levels
correspond to constants to be expanded before normal transparent constants, while positive levels
correspond to constants to be expanded after normal transparent constants.

• expand : level of constants that should be expanded first (behaves like −∞)

Variant: Local Strategy level [ qualid
+

]
These directives survive section and module closure, unless the command is prefixed by Local. In
the latter case, the behavior regarding sections and modules is the same as for the Transparent
and Opaque commands.

Command: Print Strategy qualid
This command prints the strategy currently associated toqualid. It fails ifqualid is not an unfoldable reference,
that is, neither a variable nor a constant.
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Error: The reference is not unfoldable.

Variant: Print Strategies
Print all the currently non-transparent strategies.

Command: Declare Reduction ident := convtactic
This command allows giving a short name to a reduction expression, for instance lazy beta delta [foo bar]. This
short name can then be used in Eval ident in or eval directives. This command accepts the Local modifier,
for discarding this reduction name at the end of the file or module. For the moment the name cannot be qualified.
In particular declaring the same name in several modules or in several functor applications will be refused if these
declarations are not local. The name ident cannot be used directly as an Ltac tactic, but nothing prevents the
user to also perform a Ltac ident := convtactic.
See also:
Performing computations

4.1.11 Controlling the locality of commands

Command: Local command
Command: Global command

Some commands support a Local or Global prefix modifier to control the scope of their effect. There are four kinds
of commands:

• Commands whose default is to extend their effect both outside the section and the module or library file they
occur in. For these commands, the Local modifier limits the effect of the command to the current section or
module it occurs in. As an example, the Coercion and Strategy commands belong to this category.

• Commands whose default behavior is to stop their effect at the end of the section they occur in but to extend
their effect outside the module or library file they occur in. For these commands, the Local modifier limits
the effect of the command to the current module if the command does not occur in a section and the Global
modifier extends the effect outside the current sections and current module if the command occurs in a section.
As an example, the Arguments, Ltac or Notation commands belong to this category. Notice that a
subclass of these commands do not support extension of their scope outside sections at all and the Global
modifier is not applicable to them.

• Commands whose default behavior is to stop their effect at the end of the section or module they occur in.
For these commands, the Global modifier extends their effect outside the sections and modules they occur
in. The Transparent and Opaque (see Section Controlling the reduction strategies and the conversion
algorithm) commands belong to this category.

• Commands whose default behavior is to extend their effect outside sections but not outside modules when they
occur in a section and to extend their effect outside the module or library file they occur in when no section
contains them.For these commands, the Local modifier limits the effect to the current section or module while
the Global modifier extends the effect outside the module even when the command occurs in a section. The
Set and Unset commands belong to this category.

4.2 Proof handling

In Coq’s proof editing mode all top-level commands documented in Chapter Vernacular commands remain available and
the user has access to specialized commands dealing with proof development pragmas documented in this section. They
can also use some other specialized commands called tactics. They are the very tools allowing the user to deal with logical
reasoning. They are documented in Chapter Tactics.
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Coq user interfaces usually have a way of marking whether the user has switched to proof editing mode. For instance,
in coqtop the prompt Coq <   is changed into ident <   where ident is the declared name of the theorem currently
edited.
At each stage of a proof development, one has a list of goals to prove. Initially, the list consists only in the theorem itself.
After having applied some tactics, the list of goals contains the subgoals generated by the tactics.
To each subgoal is associated a number of hypotheses called the local context of the goal. Initially, the local context
contains the local variables and hypotheses of the current section (see Section Assumptions) and the local variables and
hypotheses of the theorem statement. It is enriched by the use of certain tactics (see e.g. intro).
When a proof is completed, the message Proof completed is displayed. One can then register this proof as a defined
constant in the environment. Because there exists a correspondence between proofs and terms of λ-calculus, known as
the Curry-Howard isomorphism [How80][Bar81][GLT89][Hue89], Coq stores proofs as terms of Cic. Those terms are
called proof terms.
Error: No focused proof.

Coq raises this error message when one attempts to use a proof editing command out of the proof editing mode.

4.2.1 Switching on/off the proof editing mode

The proof editing mode is entered by asserting a statement, which typically is the assertion of a theorem using an assertion
command like Theorem. The list of assertion commands is given in Assertions and proofs. The command Goal can
also be used.
Command: Goal form

This is intended for quick assertion of statements, without knowing in advance which name to give to the assertion,
typically for quick testing of the provability of a statement. If the proof of the statement is eventually completed
and validated, the statement is then bound to the name Unnamed_thm (or a variant of this name not already used
for another statement).

Command: Qed
This command is available in interactive editing proof mode when the proof is completed. Then Qed extracts
a proof term from the proof script, switches back to Coq top-level and attaches the extracted proof term to the
declared name of the original goal. This name is added to the environment as an opaque constant.
Error: Attempt to save an incomplete proof.

Note: Sometimes an error occurs when building the proof term, because tactics do not enforce completely the
term construction constraints.
The user should also be aware of the fact that since the proof term is completely rechecked at this point, one may
have to wait a while when the proof is large. In some exceptional cases one may even incur a memory overflow.

Variant: Defined
Same as Qed but the proof is then declared transparent, which means that its content can be explicitly used
for type checking and that it can be unfolded in conversion tactics (see Performing computations, Opaque,
Transparent).

Variant: Save ident
Forces the name of the original goal to be ident. This command (and the following ones) can only be used
if the original goal has been opened using the Goal command.

Command: Admitted
This command is available in interactive editing mode to give up the current proof and declare the initial goal as
an axiom.
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Command: Abort
This command cancels the current proof development, switching back to the previous proof development, or to the
Coq toplevel if no other proof was edited.
Error: No focused proof (No proof-editing in progress).

Variant: Abort ident
Aborts the editing of the proof named ident (in case you have nested proofs).
See also:
Nested Proofs Allowed

Variant: Abort All
Aborts all current goals.

Command: Proof term
This command applies in proof editing mode. It is equivalent to exact term. Qed. That is, you have to give
the full proof in one gulp, as a proof term (see Section Applying theorems).

Command: Proof
Is a no-op which is useful to delimit the sequence of tactic commands which start a proof, after a Theorem
command. It is a good practice to use Proof as an opening parenthesis, closed in the script with a closing Qed.
See also:
Proof with

Command: Proof using ident
+

This command applies in proof editing mode. It declares the set of section variables (see Assumptions) used by the
proof. At Qed time, the system will assert that the set of section variables actually used in the proof is a subset of
the declared one.
The set of declared variables is closed under type dependency. For example, if T is a variable and a is a variable
of type T, then the commands Proof using a and Proof using T a are equivalent.

Variant: Proof using ident
+

with tactic
Combines in a single line Proof with and Proof using.
See also:
Setting implicit automation tactics

Variant: Proof using All
Use all section variables.

Variant: Proof using Type
?

Use only section variables occurring in the statement.
Variant: Proof using Type*

The * operator computes the forward transitive closure. E.g. if the variable H has type p < 5 then H is in p*
since p occurs in the type of H. Type* is the forward transitive closure of the entire set of section variables
occurring in the statement.

Variant: Proof using -( ident
+
)

Use all section variables except the list of ident.
Variant: Proof using collection1 + collection2

Use section variables from the union of both collections. See Name a set of section hypotheses for Proof using
to know how to form a named collection.
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Variant: Proof using collection1 - collection2
Use section variables which are in the first collection but not in the second one.

Variant: Proof using collection - ( ident
+
)

Use section variables which are in the first collection but not in the list of ident.
Variant: Proof using collection *

Use section variables in the forward transitive closure of the collection. The * operator binds stronger than +
and -.

Proof using options

The following options modify the behavior of Proof using.
Option: Default Proof Using "expression"

Use expression as the default Proof using value. E.g. Set Default Proof Using "a b" will
complete all Proof commands not followed by a using part with using a b.

Flag: Suggest Proof Using
When Qed is performed, suggest a using annotation if the user did not provide one.

Name a set of section hypotheses for Proof using

Command: Collection ident := expression
This can be used to name a set of section hypotheses, with the purpose of making Proof using annotations
more compact.

Example
Define the collection named Some containing x, y and z:

Collection Some := x y z.

Define the collection named Fewer containing only x and y:

Collection Fewer := Some - z

Define the collection named Many containing the set union or set difference of Fewer and Some:

Collection Many := Fewer + Some
Collection Many := Fewer - Some

Define the collection named Many containing the set difference of Fewer and the unnamed collection x y:

Collection Many := Fewer - (x y)

Command: Existential num := term
This command instantiates an existential variable. num is an index in the list of uninstantiated existential variables
displayed by Show Existentials.
This command is intended to be used to instantiate existential variables when the proof is completed but some
uninstantiated existential variables remain. To instantiate existential variables during proof edition, you should use
the tactic instantiate.

140 Chapter 4. The proof engine



The Coq Reference Manual, Release 8.9.1

Command: Grab Existential Variables
This command can be run when a proof has no more goal to be solved but has remaining uninstantiated existential
variables. It takes every uninstantiated existential variable and turns it into a goal.

4.2.2 Navigation in the proof tree

Command: Undo
This command cancels the effect of the last command. Thus, it backtracks one step.

Variant: Undo num
Repeats Undo num times.

Variant: Restart
This command restores the proof editing process to the original goal.
Error: No focused proof to restart.

Command: Focus
This focuses the attention on the first subgoal to prove and the printing of the other subgoals is suspended until the
focused subgoal is solved or unfocused. This is useful when there are many current subgoals which clutter your
screen.
Deprecated since version 8.8: Prefer the use of bullets or focusing brackets (see below).

Variant: Focus num
This focuses the attention on the num th subgoal to prove.
Deprecated since version 8.8: Prefer the use of focusing brackets with a goal selector (see below).

Command: Unfocus
This command restores to focus the goal that were suspended by the last Focus command.
Deprecated since version 8.8.

Command: Unfocused
Succeeds if the proof is fully unfocused, fails if there are some goals out of focus.

Command: { | }

The command { (without a terminating period) focuses on the first goal, much like Focus does, how-
ever, the subproof can only be unfocused when it has been fully solved ( i.e. when there is no focused
goal left). Unfocusing is then handled by } (again, without a terminating period). See also an example
in the next section.
Note that when a focused goal is proved a message is displayed together with a suggestion about the
right bullet or } to unfocus it or focus the next one.
Variant: num: {

This focuses on the num-th subgoal to prove.
Variant: [ident]: {

This focuses on the named goal ident.

Note: Goals are just existential variables and existential variables do not get a name by default.
You can give a name to a goal by using refine ?[ident].

See also:
Existential variables
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Example
This can also be a way of focusing on a shelved goal, for instance:

Goal exists n : nat, n = n.
1 subgoal

============================
exists n : nat, n = n

eexists ?[x].
1 focused subgoal
(shelved: 1)

============================
?x = ?x

reflexivity.
All the remaining goals are on the shelf.

1 subgoal

subgoal 1 is:
nat

[x]: exact 0.
No more subgoals.

Qed.
Unnamed_thm is defined

Error: This proof is focused, but cannot be unfocused this way.
You are trying to use } but the current subproof has not been fully solved.

Error: No such goal (num).

Error: No such goal (ident).

Error: Brackets do not support multi-goal selectors.
Brackets are used to focus on a single goal given either by its position or by its name if it has one.

See also:
The error messages about bullets below.

Bullets

Alternatively to { and }, proofs can be structured with bullets. The use of a bullet b for the first time focuses on the first
goal g, the same bullet cannot be used again until the proof of g is completed, then it is mandatory to focus the next goal
with b. The consequence is that g and all goals present when g was focused are focused with the same bullet b. See the
example below.
Different bullets can be used to nest levels. The scope of bullet does not go beyond enclosing { and }, so bullets can be
reused as further nesting levels provided they are delimited by these. Bullets are made of repeated -, + or * symbols:

bullet ::= - + | +
+

| *
+
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Note again that when a focused goal is proved a message is displayed together with a suggestion about the right bullet or
} to unfocus it or focus the next one.

Note: In Proof General (Emacs interface to Coq), you must use bullets with the priority ordering shown above to have
a correct indentation. For example - must be the outer bullet and ** the inner one in the example below.

The following example script illustrates all these features:

Example

Goal (((True /\ True) /\ True) /\ True) /\ True.
1 subgoal

============================
(((True /\ True) /\ True) /\ True) /\ True

Proof.
split.

2 subgoals

============================
((True /\ True) /\ True) /\ True

subgoal 2 is:
True

- split.
1 subgoal

============================
((True /\ True) /\ True) /\ True

2 subgoals

============================
(True /\ True) /\ True

subgoal 2 is:
True

+ split.
1 subgoal

============================
(True /\ True) /\ True

2 subgoals

============================
True /\ True

subgoal 2 is:
True

** { split.
1 subgoal

(continues on next page)
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(continued from previous page)

============================
True /\ True

1 subgoal

============================
True /\ True

2 subgoals

============================
True

subgoal 2 is:
True

- trivial.
1 subgoal

============================
True

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet -.

4 subgoals

subgoal 1 is:
True

subgoal 2 is:
True

subgoal 3 is:
True

subgoal 4 is:
True

- trivial.
1 subgoal

============================
True

This subproof is complete, but there are some unfocused goals.
Try unfocusing with "}".

3 subgoals

subgoal 1 is:
True

subgoal 2 is:
True

subgoal 3 is:
True

}
** trivial.

(continues on next page)
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(continued from previous page)
This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet **.

3 subgoals

subgoal 1 is:
True

subgoal 2 is:
True

subgoal 3 is:
True

1 subgoal

============================
True

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet +.

2 subgoals

subgoal 1 is:
True

subgoal 2 is:
True

+ trivial.
1 subgoal

============================
True

This subproof is complete, but there are some unfocused goals.
Focus next goal with bullet -.

1 subgoal

subgoal 1 is:
True

- assert True.
1 subgoal

============================
True

2 subgoals

============================
True

subgoal 2 is:
True

{ trivial.
1 subgoal

(continues on next page)
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(continued from previous page)

============================
True

This subproof is complete, but there are some unfocused goals.
Try unfocusing with "}".

1 subgoal

subgoal 1 is:
True

}
assumption.

1 subgoal

H : True
============================
True

No more subgoals.

Qed.
Unnamed_thm0 is defined

Error: Wrong bullet bullet1: Current bullet bullet2 is not finished.
Before using bullet bullet1 again, you should first finish proving the current focused goal. Note that bullet1
and bullet2 may be the same.

Error: Wrong bullet bullet1: Bullet bullet2 is mandatory here.
You must put bullet2 to focus on the next goal. No other bullet is allowed here.

Error: No such goal. Focus next goal with bullet bullet.
You tried to apply a tactic but no goals were under focus. Using bullet is mandatory here.

Error: No such goal. Try unfocusing with }.
You just finished a goal focused by {, you must unfocus it with }.

Set Bullet Behavior

Option: Bullet Behavior ( "None" | "Strict Subproofs" )
This option controls the bullet behavior and can take two possible values:

• ”None”: this makes bullets inactive.
• ”Strict Subproofs”: this makes bullets active (this is the default behavior).

4.2.3 Requesting information

Command: Show
This command displays the current goals.
Error: No focused proof.

Variant: Show num
Displays only the num-th subgoal.
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Error: No such goal.

Variant: Show ident
Displays the named goal ident. This is useful in particular to display a shelved goal but only works if the
corresponding existential variable has been named by the user (see Existential variables) as in the following
example.

Example

Goal exists n, n = 0.
1 subgoal

============================
exists n : nat, n = 0

eexists ?[n].
1 focused subgoal
(shelved: 1)

============================
?n = 0

Show n.
subgoal n is:

============================
nat

Variant: Show Script
Displays the whole list of tactics applied from the beginning of the current proof. This tactics script may
contain some holes (subgoals not yet proved). They are printed under the form
<Your Tactic Text here>.

Variant: Show Proof
It displays the proof term generated by the tactics that have been applied. If the proof is not completed, this
term contain holes, which correspond to the sub-terms which are still to be constructed. These holes appear
as a question mark indexed by an integer, and applied to the list of variables in the context, since it may
depend on them. The types obtained by abstracting away the context from the type of each placeholder are
also printed.

Variant: Show Conjectures
It prints the list of the names of all the theorems that are currently being proved. As it is possible to start
proving a previous lemma during the proof of a theorem, this list may contain several names.

Variant: Show Intro
If the current goal begins by at least one product, this command prints the name of the first product, as it would
be generated by an anonymous intro. The aim of this command is to ease the writing of more robust scripts.
For example, with an appropriate Proof General macro, it is possible to transform any anonymous intro
into a qualified one such as intro y13. In the case of a non-product goal, it prints nothing.

Variant: Show Intros
This command is similar to the previous one, it simulates the naming process of an intros.

Variant: Show Existentials
It displays the set of all uninstantiated existential variables in the current proof tree, along with the type and
the context of each variable.
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Variant: Show Match ident
This variant displays a template of the Gallina match construct with a branch for each constructor of the
type ident

Example

Show Match nat.
match # with
| O =>
| S x =>
end

Error: Unknown inductive type.

Variant: Show Universes
It displays the set of all universe constraints and its normalized form at the current stage of the proof, useful
for debugging universe inconsistencies.

Command: Guarded
Some tactics (e.g. refine) allow to build proofs using fixpoint or co-fixpoint constructions. Due to the incremental
nature of interactive proof construction, the check of the termination (or guardedness) of the recursive calls in the
fixpoint or cofixpoint constructions is postponed to the time of the completion of the proof.
The command Guarded allows checking if the guard condition for fixpoint and cofixpoint is violated at some
time of the construction of the proof without having to wait the completion of the proof.

4.2.4 Showing differences between proof steps

Coq can automatically highlight the differences between successive proof steps. For example, the following screenshots of
CoqIDE and coqtop show the application of the same intros tactic. The tactic creates two new hypotheses, highlighted
in green. The conclusion is entirely in pale green because although it’s changed, no tokens were added to it. The second
screenshot uses the ”removed” option, so it shows the conclusion a second time with the old text, with deletions marked
in red. Also, since the hypotheses are new, no line of old text is shown for them.

How to enable diffs

Option: Diffs ( "on" | "off" | "removed" )
The “on” option highlights added tokens in green, while the “removed” option additionally reprints items with
removed tokens in red. Unchanged tokens in modified items are shown with pale green or red. (Colors are user-
configurable.)
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For coqtop, showing diffs can be enabled when starting coqtop with the -diffs on|off|removed command-line
option or by setting the Diffs option within Coq. You will need to provide the -color on|auto command-line
option when you start coqtop in either case.
Colors for coqtop can be configured by setting the COQ_COLORS environment variable. See section By environment
variables. Diffs use the tags diff.added, diff.added.bg, diff.removed and diff.removed.bg.
In CoqIDE, diffs should be enabled from the View menu. Don’t use the Set Diffs command in CoqIDE. You
can change the background colors shown for diffs from the Edit | Preferences | Tags panel by changing the
settings for the diff.added, diff.added.bg, diff.removed and diff.removed.bg tags. This panel also
lets you control other attributes of the highlights, such as the foreground color, bold, italic, underline and strikeout.
Note: As of this writing (August 2018), Proof General will need minor changes to be able to show diffs correctly. We
hope it will support this feature soon. See https://github.com/ProofGeneral/PG/issues/381 for the current status.

How diffs are calculated

Diffs are calculated as follows:
1. Select the old proof state to compare to, which is the proof state before the last tactic that changed the proof.

Changes that only affect the view of the proof, such as all: swap 1 2, are ignored.
2. For each goal in the new proof state, determine what old goal to compare it to—the one it is derived from or is the

same as. Match the hypotheses by name (order is ignored), handling compacted items specially.
3. For each hypothesis and conclusion (the “items”) in each goal, pass them as strings to the lexer to break them into

tokens. Then apply the Myers diff algorithm [Mye86] on the tokens and add appropriate highlighting.
Notes:

• Aside from the highlights, output for the ”on” option should be identical to the undiffed output.
• Goals completed in the last proof step will not be shown even with the ”removed” setting.

This screen shot shows the result of applying a split tactic that replaces one goal with 2 goals. Notice that the goal P
1 is not highlighted at all after the split because it has not changed.

This is how diffs may appear after applying a intro tactic that results in compacted hypotheses:

4.2.5 Controlling the effect of proof editing commands

Option: Hyps Limit num
This option controls the maximum number of hypotheses displayed in goals after the application of a tactic. All
the hypotheses remain usable in the proof development. When unset, it goes back to the default mode which is to
print all available hypotheses.

Flag: Automatic Introduction
This option controls the way binders are handled in assertion commands such as Theorem ident

binders
?

: term. When the option is on, which is the default, binders are automatically put in the local
context of the goal to prove.
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When the option is off, binders are discharged on the statement to be proved and a tactic such as intro (see
Section Managing the local context) has to be used to move the assumptions to the local context.

Flag: Nested Proofs Allowed
When turned on (it is off by default), this option enables support for nested proofs: a new assertion command can be
inserted before the current proof is finished, in which case Coq will temporarily switch to the proof of this nested
lemma. When the proof of the nested lemma is finished (with Qed or Defined), its statement will be made
available (as if it had been proved before starting the previous proof) and Coq will switch back to the proof of the
previous assertion.

4.2.6 Controlling memory usage

When experiencing high memory usage the following commands can be used to force Coq to optimize some of its internal
data structures.
Command: Optimize Proof

This command forces Coq to shrink the data structure used to represent the ongoing proof.
Command: Optimize Heap

This command forces the OCaml runtime to perform a heap compaction. This is in general an expensive operation.
See: OCaml Gc7 There is also an analogous tactic optimize_heap.

4.3 Tactics

A deduction rule is a link between some (unique) formula, that we call the conclusion and (several) formulas that we call
the premises. A deduction rule can be read in two ways. The first one says: “if I know this and this then I can deduce
this”. For instance, if I have a proof of A and a proof of B then I have a proof of A ∧ B. This is forward reasoning from
premises to conclusion. The other way says: “to prove this I have to prove this and this”. For instance, to prove A ∧
B, I have to prove A and I have to prove B. This is backward reasoning from conclusion to premises. We say that the
conclusion is the goal to prove and premises are the subgoals. The tactics implement backward reasoning. When applied
to a goal, a tactic replaces this goal with the subgoals it generates. We say that a tactic reduces a goal to its subgoal(s).
Each (sub)goal is denoted with a number. The current goal is numbered 1. By default, a tactic is applied to the current
goal, but one can address a particular goal in the list by writing n:tactic which means “apply tactic tactic to goal number
n”. We can show the list of subgoals by typing Show (see Section Requesting information).
Since not every rule applies to a given statement, not every tactic can be used to reduce a given goal. In other words,
before applying a tactic to a given goal, the system checks that some preconditions are satisfied. If it is not the case, the
tactic raises an error message.
Tactics are built from atomic tactics and tactic expressions (which extends the folklore notion of tactical) to combine
those atomic tactics. This chapter is devoted to atomic tactics. The tactic language will be described in Chapter The tactic
language.

4.3.1 Invocation of tactics

A tactic is applied as an ordinary command. It may be preceded by a goal selector (see Section Semantics). If no selector
is specified, the default selector is used.

tactic_invocation ::= toplevel_selector : tactic.
|tactic .

7 http://caml.inria.fr/pub/docs/manual-ocaml/libref/Gc.html#VALcompact

150 Chapter 4. The proof engine

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Gc.html#VALcompact


The Coq Reference Manual, Release 8.9.1

Option: Default Goal Selector "toplevel_selector"
This option controls the default selector, used when no selector is specified when applying a tactic. The initial value
is 1, hence the tactics are, by default, applied to the first goal.
Using value all will make it so that tactics are, by default, applied to every goal simultaneously. Then, to apply a
tactic tac to the first goal only, you can write 1:tac.
Using value ! enforces that all tactics are used either on a single focused goal or with a local selector (’’strict focusing
mode’’).
Although more selectors are available, only all, ! or a single natural number are valid default goal selectors.

Bindings list

Tactics that take a term as argument may also support a bindings list, so as to instantiate some parameters of the term by
name or position. The general form of a term equipped with a bindings list is term with bindings_list where
bindings_list may be of two different forms:

bindings_list ::= (ref := term) ... (ref := term)
term ... term

• In a bindings list of the form (ref:= term)
* , ref is either an ident or a num. The references are deter-

mined according to the type of term. If ref is an identifier, this identifier has to be bound in the type of term
and the binding provides the tactic with an instance for the parameter of this name. If ref is some number n, this
number denotes the n-th non dependent premise of the term, as determined by the type of term.
Error: No such binder.

• A bindings list can also be a simple list of terms term
* . In that case the references to which these terms

correspond are determined by the tactic. In case of induction, destruct, elim and case, the terms
have to provide instances for all the dependent products in the type of term while in the case of apply, or of
constructor and its variants, only instances for the dependent products that are not bound in the conclusion of
the type are required.
Error: Not the right number of missing arguments.

Occurrence sets and occurrence clauses

An occurrence clause is a modifier to some tactics that obeys the following syntax:

occurrence_clause ::= in goal_occurrences
goal_occurrences ::= [ident [at_occurrences], ... , ident [at_occurrences] [|- [* [at_occurrences]]]]

| * |- [* [at_occurrences]]
| *

at_occurrences ::= at occurrences
occurrences ::= [-] num ... num

The role of an occurrence clause is to select a set of occurrences of a term in a goal. In the first case, the ident

at num
*

?

parts indicate that occurrences have to be selected in the hypotheses named ident. If no numbers are
given for hypothesis ident, then all the occurrences of term in the hypothesis are selected. If numbers are given, they
refer to occurrences of term when the term is printed using option Printing All, counting from left to right. In
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particular, occurrences of term in implicit arguments (see Implicit arguments) or coercions (see Coercions) are counted.
If a minus sign is given between at and the list of occurrences, it negates the condition so that the clause denotes all the
occurrences except the ones explicitly mentioned after the minus sign.
As an exception to the left-to-right order, the occurrences in the return subexpression of a match are considered before
the occurrences in the matched term.
In the second case, the * on the left of |- means that all occurrences of term are selected in every hypothesis.
In the first and second case, if * is mentioned on the right of |-, the occurrences of the conclusion of the goal have to
be selected. If some numbers are given, then only the occurrences denoted by these numbers are selected. If no numbers
are given, all occurrences of term in the goal are selected.
Finally, the last notation is an abbreviation for * |- *. Note also that |- is optional in the first case when no * is given.
Here are some tactics that understand occurrence clauses: set, remember, induction, destruct.
See also:
Managing the local context, Case analysis and induction, Printing constructions in full.

4.3.2 Applying theorems

exact term
This tactic applies to any goal. It gives directly the exact proof term of the goal. Let T be our goal, let p be a term
of type U then exact p succeeds iff T and U are convertible (see Conversion rules).
Error: Not an exact proof.

Variant: eexact term.
This tactic behaves like exact but is able to handle terms and goals with existential variables.

assumption
This tactic looks in the local context for a hypothesis whose type is convertible to the goal. If it is the case, the
subgoal is proved. Otherwise, it fails.
Error: No such assumption.

Variant: eassumption
This tactic behaves like assumption but is able to handle goals with existential variables.

refine term
This tactic applies to any goal. It behaves like exact with a big difference: the user can leave some holes (denoted
by _ or (_ : type)) in the term. refine will generate as many subgoals as there are holes in the term.
The type of holes must be either synthesized by the system or declared by an explicit cast like (_ : nat ->
Prop). Any subgoal that occurs in other subgoals is automatically shelved, as if calling shelve_unifiable.
This low-level tactic can be useful to advanced users.

Example

Inductive Option : Set :=
| Fail : Option
| Ok : bool -> Option.

Option is defined
Option_rect is defined
Option_ind is defined
Option_rec is defined

Definition get : forall x:Option, x <> Fail -> bool.
(continues on next page)
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(continued from previous page)
1 subgoal

============================
forall x : Option, x <> Fail -> bool

refine
(fun x:Option =>

match x return x <> Fail -> bool with
| Fail => _
| Ok b => fun _ => b
end).

1 subgoal

x : Option
============================
Fail <> Fail -> bool

intros; absurd (Fail = Fail); trivial.
No more subgoals.

Defined.
get is defined

Error: Invalid argument.
The tactic refine does not know what to do with the term you gave.

Error: Refine passed ill-formed term.
The term you gave is not a valid proof (not easy to debug in general). This message may also occur in higher-
level tactics that call refine internally.

Error: Cannot infer a term for this placeholder.
There is a hole in the term you gave whose type cannot be inferred. Put a cast around it.

Variant: simple refine term
This tactic behaves like refine, but it does not shelve any subgoal. It does not perform any beta-reduction
either.

Variant: notypeclasses refine term
This tactic behaves like refine except it performs type checking without resolution of typeclasses.

Variant: simple notypeclasses refine term
This tactic behaves like simple refine except it performs type checking without resolution of type-
classes.

apply term
This tactic applies to any goal. The argument term is a term well-formed in the local context. The tactic apply
tries to match the current goal against the conclusion of the type of term. If it succeeds, then the tactic returns as
many subgoals as the number of non-dependent premises of the type of term. If the conclusion of the type of term
does not match the goal and the conclusion is an inductive type isomorphic to a tuple type, then each component
of the tuple is recursively matched to the goal in the left-to-right order.
The tactic apply relies on first-order unification with dependent types unless the conclusion of the type of term
is of the form P (t1 ... tn) with P to be instantiated. In the latter case, the behavior depends on the form
of the goal. If the goal is of the form (fun x => Q) u1 ... un and the ti and ui unify, then P is taken to
be (fun x => Q). Otherwise, apply tries to define P by abstracting over t_1 ... t__n in the goal. See
pattern to transform the goal so that it gets the form (fun x => Q) u1 ... un.
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Error: Unable to unify term with term.
The apply tactic failed to match the conclusion of term and the current goal. You can help the apply
tactic by transforming your goal with the change or pattern tactics.

Error: Unable to find an instance for the variables ident
+
.

This occurs when some instantiations of the premises of term are not deducible from the unification. This
is the case, for instance, when you want to apply a transitivity property. In this case, you have to use one of
the variants below:

Variant: apply term with term
+

Provides apply with explicit instantiations for all dependent premises of the type of term that do not occur in
the conclusion and consequently cannot be found by unification. Notice that the collection term

+ must be
given according to the order of these dependent premises of the type of term.
Error: Not the right number of missing arguments.

Variant: apply term with bindings_list
This also provides apply with values for instantiating premises. Here, variables are referred by names and
non-dependent products by increasing numbers (see bindings list).

Variant: apply term
+
,

This is a shortcut for apply term1; [.. | ... ; [ .. | apply termn] ... ], i.e. for
the successive applications of termi+1 on the last subgoal generated by apply termi , starting from the
application of term1.

Variant: eapply term
The tactic eapply behaves like apply but it does not fail when no instantiations are deducible for some
variables in the premises. Rather, it turns these variables into existential variables which are variables still to
instantiate (see Existential variables). The instantiation is intended to be found later in the proof.

Variant: simple apply term.
This behaves like apply but it reasons modulo conversion only on subterms that contain no variables to
instantiate. For instance, the following example does not succeed because it would require the conversion of
id ?foo and O.

Example

Definition id (x : nat) := x.
id is defined

Parameter H : forall y, id y = y.
H is declared

Goal O = O.
1 subgoal

============================
0 = 0

Fail simple apply H.
The command has indeed failed with message:
Unable to unify "id ?M160 = ?M160" with "0 = 0".

Because it reasons modulo a limited amount of conversion, simple apply fails quicker than apply and
it is then well-suited for uses in user-defined tactics that backtrack often. Moreover, it does not traverse tuples
as apply does.
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Variant: simple
?

apply term with bindings_list
?

+

,

Variant: simple
?

eapply term with bindings_list
?

+

,

This summarizes the different syntaxes for apply and eapply.
Variant: lapply term

This tactic applies to any goal, say G. The argument term has to be well-formed in the current context, its type
being reducible to a non-dependent product A -> B with B possibly containing products. Then it generates
two subgoals B->G and A. Applying lapply H (where H has type A->B and B does not start with a product)
does the same as giving the sequence cut B. 2:apply H. where cut is described below.
Warning: When term contains more than one non dependent product the tactic lapply only takes into account the first product.

Example
Assume we have a transitive relation R on nat:

Variable R : nat -> nat -> Prop.
Hypothesis Rtrans : forall x y z:nat, R x y -> R y z -> R x z.
Variables n m p : nat.
Hypothesis Rnm : R n m.
Hypothesis Rmp : R m p.

Consider the goal (R n p) provable using the transitivity of R:

Goal R n p.

The direct application of Rtrans with apply fails because no value for y in Rtrans is found by apply:

Fail apply Rtrans.
The command has indeed failed with message:
Unable to find an instance for the variable y.

A solution is to apply (Rtrans n m p) or (Rtrans n m).

apply (Rtrans n m p).
2 subgoals

============================
R n m

subgoal 2 is:
R m p

Note that n can be inferred from the goal, so the following would work too.

apply (Rtrans _ m).

More elegantly, apply Rtrans with (y:=m) allows only mentioning the unknown m:

apply Rtrans with (y := m).

Another solution is to mention the proof of (R x y) in Rtrans
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apply Rtrans with (1 := Rnm).
1 subgoal

============================
R m p

... or the proof of (R y z).

apply Rtrans with (2 := Rmp).
1 subgoal

============================
R n m

On the opposite, one can use eapply which postpones the problem of finding m. Then one can apply the hypotheses
Rnm and Rmp. This instantiates the existential variable and completes the proof.

eapply Rtrans.
2 focused subgoals
(shelved: 1)

============================
R n ?y

subgoal 2 is:
R ?y p

apply Rnm.
1 subgoal

============================
R m p

apply Rmp.
No more subgoals.

Note: When the conclusion of the type of the term to apply is an inductive type isomorphic to a tuple type and
apply looks recursively whether a component of the tuple matches the goal, it excludes components whose statement
would result in applying an universal lemma of the form forall A, ... -> A. Excluding this kind of lemma can
be avoided by setting the following option:

Flag: Universal Lemma Under Conjunction
This option, which preserves compatibility with versions of Coq prior to 8.4 is also available for apply term
in ident (see apply ... in).

apply term in ident
This tactic applies to any goal. The argument term is a term well-formed in the local context and the argument
ident is an hypothesis of the context. The tactic apply term in ident tries to match the conclusion of
the type of ident against a non-dependent premise of the type of term, trying them from right to left. If it
succeeds, the statement of hypothesis ident is replaced by the conclusion of the type of term. The tactic also
returns as many subgoals as the number of other non-dependent premises in the type of term and of the non-
dependent premises of the type of ident. If the conclusion of the type of term does not match the goal and the
conclusion is an inductive type isomorphic to a tuple type, then the tuple is (recursively) decomposed and the first
component of the tuple of which a non-dependent premise matches the conclusion of the type of ident. Tuples
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are decomposed in a width-first left-to-right order (for instance if the type of H1 is A <-> B and the type of H2
is A then apply H1 in H2 transforms the type of H2 into B). The tactic apply relies on first-order pattern
matching with dependent types.
Error: Statement without assumptions.

This happens if the type of term has no non-dependent premise.
Error: Unable to apply.

This happens if the conclusion of ident does not match any of the non-dependent premises of the type of
term.

Variant: apply term
+
, in ident

This applies each term in sequence in ident.

Variant: apply term with bindings_list
+

,
in ident

This does the same but uses the bindings in each (ident := term) to instantiate the parameters of the
corresponding type of term (see bindings list).

Variant: eapply term with bindings_list
?

+

,
in ident

This works as apply ... in but turns unresolved bindings into existential variables, if any, instead of
failing.

Variant: apply term with bindings_list
?

+

,
in ident as intro_pattern

This works as apply ... in then applies the intro_pattern to the hypothesis ident.
Variant: simple apply term in ident

This behaves like apply ... in but it reasons modulo conversion only on subterms that contain no vari-
ables to instantiate. For instance, if id := fun x:nat => x and H: forall y, id y = y ->
True and H0 : O = O then simple apply H in H0 does not succeed because it would require
the conversion of id ?x and O where ?x is an existential variable to instantiate. Tactic simple apply
term in ident does not either traverse tuples as apply term in ident does.

Variant: simple
?

apply term with bindings_list
?

+

,
in ident as intro_pattern

?

Variant: simple
?

eapply term with bindings_list
?

+

,
in ident as intro_pattern

?

This summarizes the different syntactic variants of apply term in ident and eapply term in
ident.

constructor num
This tactic applies to a goal such that its conclusion is an inductive type (say I). The argument num must be less
or equal to the numbers of constructor(s) of I. Let ci be the i-th constructor of I, then constructor i is
equivalent to intros; apply ci.
Error: Not an inductive product.

Error: Not enough constructors.

Variant: constructor
This tries constructor 1 then constructor 2, ..., then constructor n where n is the number
of constructors of the head of the goal.

Variant: constructor num with bindings_list
Let c be the i-th constructor of I, then constructor i with bindings_list is equivalent to

4.3. Tactics 157



The Coq Reference Manual, Release 8.9.1

intros; apply c with bindings_list.

Warning: The terms in the bindings_list are checked in the context where constructor is executed
and not in the context where apply is executed (the introductions are not taken into account).

Variant: split with bindings_list
?

This applies only if I has a single constructor. It is then equivalent to constructor 1

with bindings_list
? . It is typically used in the case of a conjunction 𝐴 ∧ 𝐵.

Variant: exists bindings_list
This applies only if I has a single constructor. It is then equivalent to intros; constructor 1
with bindings_list. It is typically used in the case of an existential quantification ∃𝑥, 𝑃 (𝑥).

Variant: exists bindings_list
+

,

This iteratively applies exists bindings_list.
Error: Not an inductive goal with 1 constructor.

Variant: left with bindings_list
?

Variant: right with bindings_list
?

These tactics apply only if I has two constructors, for instance in the case of a disjunction 𝐴 ∨ 𝐵. Then, they
are respectively equivalent to constructor 1 with bindings_list

? and constructor 2

with bindings_list
? .

Error: Not an inductive goal with 2 constructors.

Variant: econstructor
Variant: eexists
Variant: esplit
Variant: eleft
Variant: eright

These tactics and their variants behave like constructor, exists, split, left, right and their
variants but they introduce existential variables instead of failing when the instantiation of a variable cannot
be found (cf. eapply and apply).

4.3.3 Managing the local context

intro
This tactic applies to a goal that is either a product or starts with a let-binder. If the goal is a product, the tactic
implements the ”Lam” rule given in Typing rules1. If the goal starts with a let-binder, then the tactic implements a
mix of the ”Let” and ”Conv”.
If the current goal is a dependent product forall x:T, U (resp let x:=t in U) then intro puts x:T
(resp x:=t) in the local context. The new subgoal is U.
If the goal is a non-dependent product 𝑇 → 𝑈 , then it puts in the local context either Hn:T (if T is of type Set
or Prop) or Xn:T (if the type of T is Type). The optional index n is such that Hn or Xn is a fresh identifier. In
both cases, the new subgoal is U.
If the goal is an existential variable, intro forces the resolution of the existential variable into a dependent product
∀ x:?X, ?Y, puts x:?X in the local context and leaves ?Y as a new subgoal allowed to depend on x.

1 Actually, only the second subgoal will be generated since the other one can be automatically checked.
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The tactic intro applies the tactic hnf until intro can be applied or the goal is not head-reducible.
Error: No product even after head-reduction.

Variant: intro ident
This applies intro but forces ident to be the name of the introduced hypothesis.
Error: ident is already used.

Note: If a name used by intro hides the base name of a global constant then the latter can still be referred to by a
qualified name (see Qualified names).

Variant: intros
This repeats intro until it meets the head-constant. It never reduces head-constants and it never fails.

Variant: intros ident
+
.

This is equivalent to the composed tactic intro ident; ... ; intro ident.
Variant: intros until ident

This repeats intro until it meets a premise of the goal having the form (ident : type) and discharges
the variable named ident of the current goal.
Error: No such hypothesis in current goal.

Variant: intros until num
This repeats intro until the num-th non-dependent product.

Example
On the subgoalforall x y : nat, x = y -> y = x the tacticintros until 1 is equivalent
to intros x y H, as x = y -> y = x is the first non-dependent product.
On the subgoal forall x y z : nat, x = y -> y = x the tactic intros until 1 is equiv-
alent to intros x y z as the product on z can be rewritten as a non-dependent product: forall x y
: nat, nat -> x = y -> y = x.

Error: No such hypothesis in current goal.
This happens when num is 0 or is greater than the number of non-dependent products of the goal.

Variant: intro ident1
?

after ident2

Variant: intro ident1
?

before ident2

Variant: intro ident1
?

at top

Variant: intro ident1
?

at bottom

These tactics apply intro ident1
? and move the freshly introduced hypothesis respectively after the

hypothesis ident2, before the hypothesis ident2, at the top of the local context, or at the bottom of
the local context. All hypotheses on which the new hypothesis depends are moved too so as to respect the
order of dependencies between hypotheses. It is equivalent to intro ident1

? followed by the appropri-
ate call to move ... after ..., move ... before ..., move ... at top, or move ...
at bottom.

Note: intro at bottom is a synonym for intro with no argument.
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Error: No such hypothesis: ident.

intros intro_pattern_list
This extension of the tactic intros allows to apply tactics on the fly on the variables or hypotheses which have
been introduced. An introduction pattern list intro_pattern_list is a list of introduction patterns possibly
containing the filling introduction patterns * and **. An introduction pattern is either:

• a naming introduction pattern, i.e. either one of:
– the pattern ?
– the pattern ?ident
– an identifier

• an action introduction pattern which itself classifies into:
– a disjunctive/conjunctive introduction pattern, i.e. either one of

∗ a disjunction of lists of patterns [intro_pattern_list | ... |
intro_pattern_list]

∗ a conjunction of patterns: ( p +
, )

∗ a list of patterns ( p +

&
) for sequence of right-associative binary constructs

– an equality introduction pattern, i.e. either one of:

∗ a pattern for decomposing an equality: [= p
+
]

∗ the rewriting orientations: -> or <-

– the on-the-fly application of lemmas: p %term + wherep itself is not a pattern for on-the-fly application
of lemmas (note: syntax is in experimental stage)

• the wildcard: _
Assuming a goal of type Q → P (non-dependent product), or of type forall x:T, P (dependent product),
the behavior of intros p is defined inductively over the structure of the introduction pattern p:
Introduction on ? performs the introduction, and lets Coq choose a fresh name for the variable;
Introduction on ?ident performs the introduction, and lets Coq choose a fresh name for the variable based on
ident;
Introduction on ident behaves as described in intro
Introduction over a disjunction of list of patterns [intro_pattern_list | ... |
intro_pattern_list ] expects the product to be over an inductive type whose number of construc-
tors is n (or more generally over a type of conclusion an inductive type built from n constructors, e.g. C ->
A\/B with n=2 since A\/B has 2 constructors): it destructs the introduced hypothesis as destruct (see
destruct) would and applies on each generated subgoal the corresponding tactic;
The introduction patterns in intro_pattern_list are expected to consume no more than the number of
arguments of the i-th constructor. If it consumes less, then Coq completes the pattern so that all the arguments of
the constructors of the inductive type are introduced (for instance, the list of patterns [ | ] H applied on goal
forall x:nat, x=0 -> 0=x behaves the same as the list of patterns [ | ? ] H);

Introduction over a conjunction of patterns ( p +
, ) expects the goal to be a product over an inductive type I with a

single constructor that itself has at least n arguments: It performs a case analysis over the hypothesis, as destruct
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would, and applies the patterns p + to the arguments of the constructor of I (observe that ( p +
) is an alternative

notation for [ p +
]);

Introduction via ( p +

&
) is a shortcut for introduction via (p,( ... ,( ..., p ) ... )); it expects the

hypothesis to be a sequence of right-associative binary inductive constructors such as conj or ex_intro; for
instance, a hypothesis with type A /\(exists x, B /\ C /\ D) can be introduced via pattern (a & x
& b & c & d);

If the product is over an equality type, then a pattern of the form [= p
+
] applies either injection or

discriminate instead of destruct; if injection is applicable, the patterns p
+
, are used on the hy-

potheses generated by injection; if the number of patterns is smaller than the number of hypotheses generated,
the pattern ? is used to complete the list.
Introduction over -> (respectively over <-) expects the hypothesis to be an equality and the right-hand-side (re-
spectively the left-hand-side) is replaced by the left-hand-side (respectively the right-hand-side) in the conclusion
of the goal; the hypothesis itself is erased; if the term to substitute is a variable, it is substituted also in the context
of goal and the variable is removed too.

Introduction over a pattern p %term + first applies term
+ on the hypothesis to be introduced (as in apply

term
+
, ) prior to the application of the introduction pattern p;

Introduction on the wildcard depends on whether the product is dependent or not: in the non-dependent case, it
erases the corresponding hypothesis (i.e. it behaves as an intro followed by a clear) while in the dependent
case, it succeeds and erases the variable only if the wildcard is part of a more complex list of introduction patterns
that also erases the hypotheses depending on this variable;
Introduction over * introduces all forthcoming quantified variables appearing in a row; introduction over ** in-
troduces all forthcoming quantified variables or hypotheses until the goal is not any more a quantification or an
implication.

Example

Goal forall A B C:Prop, A \/ B /\ C -> (A -> C) -> C.
1 subgoal

============================
forall A B C : Prop, A \/ B /\ C -> (A -> C) -> C

intros * [a | (_,c)] f.
2 subgoals

A, B, C : Prop
a : A
f : A -> C
============================
C

subgoal 2 is:
C

Note: intros p
+ is not equivalent to intros p; ... ; intros p for the following reason: If one of the p

is a wildcard pattern, it might succeed in the first case because the further hypotheses it depends on are eventually erased
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too while it might fail in the second case because of dependencies in hypotheses which are not yet introduced (and a
fortiori not yet erased).

Note: In intros intro_pattern_list, if the last introduction pattern is a disjunctive or conjunctive pattern
[ intro_pattern_list

+

|
], the completion of intro_pattern_list so that all the arguments of the i-th

constructors of the corresponding inductive type are introduced can be controlled with the following option:
Flag: Bracketing Last Introduction Pattern

Force completion, if needed, when the last introduction pattern is a disjunctive or conjunctive pattern (on by default).

clear ident
This tactic erases the hypothesis named ident in the local context of the current goal. As a consequence, ident
is no more displayed and no more usable in the proof development.
Error: No such hypothesis.

Error: ident is used in the conclusion.

Error: ident is used in the hypothesis ident.

Variant: clear ident
+

This is equivalent to clear ident. ... clear ident.

Variant: clear - ident
+

This variant clears all the hypotheses except the ones depending in the hypotheses named ident
+ and in

the goal.
Variant: clear

This variants clears all the hypotheses except the ones the goal depends on.
Variant: clear dependent ident

This clears the hypothesis ident and all the hypotheses that depend on it.

Variant: clearbody ident
+

This tactic expects ident
+ to be local definitions and clears their respective bodies. In other words, it

turns the given definitions into assumptions.
Error: ident is not a local definition.

revert ident
+

This applies to any goal with variables ident
+ . It moves the hypotheses (possibly defined) to the goal, if this

respects dependencies. This tactic is the inverse of intro.
Error: No such hypothesis.

Error: ident1 is used in the hypothesis ident2.

Variant: revert dependent ident
This moves to the goal the hypothesis ident and all the hypotheses that depend on it.

move ident1 after ident2
This moves the hypothesis named ident1 in the local context after the hypothesis named ident2, where “after”
is in reference to the direction of the move. The proof term is not changed.
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If ident1 comes before ident2 in the order of dependencies, then all the hypotheses between ident1 and
ident2 that (possibly indirectly) depend on ident1 are moved too, and all of them are thus moved after ident2
in the order of dependencies.
If ident1 comes after ident2 in the order of dependencies, then all the hypotheses between ident1 and
ident2 that (possibly indirectly) occur in the type of ident1 are moved too, and all of them are thus moved
before ident2 in the order of dependencies.
Variant: move ident1 before ident2

This moves ident1 towards and just before the hypothesis named ident2. As for move ... after
..., dependencies over ident1 (when ident1 comes before ident2 in the order of dependencies) or in
the type of ident1 (when ident1 comes after ident2 in the order of dependencies) are moved too.

Variant: move ident at top
This moves ident at the top of the local context (at the beginning of the context).

Variant: move ident at bottom
This moves ident at the bottom of the local context (at the end of the context).

Error: No such hypothesis.

Error: Cannot move ident1 after ident2: it occurs in the type of ident2.

Error: Cannot move ident1 after ident2: it depends on ident2.

Example

Goal forall x :nat, x = 0 -> forall z y:nat, y=y-> 0=x.
1 subgoal

============================
forall x : nat, x = 0 -> nat -> forall y : nat, y = y -> 0 = x

intros x H z y H0.
1 subgoal

x : nat
H : x = 0
z, y : nat
H0 : y = y
============================
0 = x

move x after H0.
1 subgoal

z, y : nat
H0 : y = y
x : nat
H : x = 0
============================
0 = x

Undo.
1 subgoal

x : nat
H : x = 0
z, y : nat

(continues on next page)
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(continued from previous page)
H0 : y = y
============================
0 = x

move x before H0.
1 subgoal

z, y, x : nat
H : x = 0
H0 : y = y
============================
0 = x

Undo.
1 subgoal

x : nat
H : x = 0
z, y : nat
H0 : y = y
============================
0 = x

move H0 after H.
1 subgoal

x, y : nat
H0 : y = y
H : x = 0
z : nat
============================
0 = x

Undo.
1 subgoal

x : nat
H : x = 0
z, y : nat
H0 : y = y
============================
0 = x

move H0 before H.
1 subgoal

x : nat
H : x = 0
y : nat
H0 : y = y
z : nat
============================
0 = x

rename ident1 into ident2
This renames hypothesis ident1 into ident2 in the current context. The name of the hypothesis in the proof-
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term, however, is left unchanged.

Variant: rename identi into identj
+

,

This renames the variables identi into identj in parallel. In particular, the target identifiers may contain
identifiers that exist in the source context, as long as the latter are also renamed by the same tactic.

Error: No such hypothesis.

Error: ident is already used.

set (ident := term)
This replaces term by ident in the conclusion of the current goal and adds the new definition ident := term
to the local context.
If term has holes (i.e. subexpressions of the form “_”), the tactic first checks that all subterms matching the pattern
are compatible before doing the replacement using the leftmost subterm matching the pattern.
Error: The variable ident is already defined.

Variant: set (ident := term) in goal_occurrences
This notation allows specifying which occurrences of term have to be substituted in the context. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior are described in goal
occurrences.

Variant: set (ident binders := term) in goal_occurrences
?

This is equivalent to set (ident := fun binders => term) in goal_occurrences
? .

Variant: set term in goal_occurrences
?

This behaves as set (ident := term) in goal_occurrences
? but ident is generated by

Coq.

Variant: eset (ident binders
?

:= term) in goal_occurrences
?

Variant: eset term in goal_occurrences
?

While the different variants of set expect that no existential variables are generated by the tactic, eset
removes this constraint. In practice, this is relevant only when eset is used as a synonym of epose, i.e.
when the term does not occur in the goal.

remember term as ident1 eqn:ident2
?

This behaves as set (ident1 := term) in *, using a logical (Leibniz’s) equality instead of a local defi-
nition. If ident2 is provided, it will be the name of the new equation.

Variant: remember term as ident1 eqn:ident2
?

in goal_occurrences
This is a more general form of remember that remembers the occurrences of term specified by an occur-
rence set.

Variant: eremember term as ident1 eqn:ident2
?

in goal_occurrences
?

While the different variants of remember expect that no existential variables are generated by the tactic,
eremember removes this constraint.

pose (ident := term)
This adds the local definition ident := term to the current context without performing any replacement in the
goal or in the hypotheses. It is equivalent to set (ident := term) in |-.
Variant: pose (ident binders := term)

This is equivalent to pose (ident := fun binders => term).
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Variant: pose term
This behaves as pose (ident := term) but ident is generated by Coq.

Variant: epose (ident binders
?

:= term)
Variant: epose term

While the different variants of pose expect that no existential variables are generated by the tactic, epose
removes this constraint.

decompose [ qualid
+
] term

This tactic recursively decomposes a complex proposition in order to obtain atomic ones.

Example

Goal forall A B C:Prop, A /\ B /\ C \/ B /\ C \/ C /\ A -> C.
1 subgoal

============================
forall A B C : Prop, A /\ B /\ C \/ B /\ C \/ C /\ A -> C

intros A B C H; decompose [and or] H.
3 subgoals

A, B, C : Prop
H : A /\ B /\ C \/ B /\ C \/ C /\ A
H1 : A
H0 : B
H3 : C
============================
C

subgoal 2 is:
C

subgoal 3 is:
C

all: assumption.
No more subgoals.

Qed.
Unnamed_thm is defined

Note: decompose does not work on right-hand sides of implications or products.

Variant: decompose sum term
This decomposes sum types (like or).

Variant: decompose record term
This decomposes record types (inductive types with one constructor, like and and exists and those defined
with the Record command.
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4.3.4 Controlling the proof flow

assert (ident : type)
This tactic applies to any goal. assert (H : U) adds a new hypothesis of name H asserting U to the current
goal and opens a new subgoal U2. The subgoal U comes first in the list of subgoals remaining to prove.
Error: Not a proposition or a type.

Arises when the argument type is neither of type Prop, Set nor Type.
Variant: assert type

This behaves as assert (ident : type) but ident is generated by Coq.
Variant: assert type by tactic

This tactic behaves like assert but applies tactic to solve the subgoals generated by assert.
Error: Proof is not complete.

Variant: assert type as intro_pattern
If intro_pattern is a naming introduction pattern (see intro), the hypothesis is named after this intro-
duction pattern (in particular, if intro_pattern is ident, the tactic behaves like assert (ident
: type)). If intro_pattern is an action introduction pattern, the tactic behaves like assert type
followed by the action done by this introduction pattern.

Variant: assert type as intro_pattern by tactic
This combines the two previous variants of assert.

Variant: assert (ident := term)
This behaves as assert (ident : type) by exact termwhere type is the type of term. This
is equivalent to using pose proof. If the head of term is ident, the tactic behaves as specialize.
Error: Variable ident is already declared.

Variant: eassert type as intro_pattern by tactic
While the different variants of assert expect that no existential variables are generated by the tactic, eassert
removes this constraint. This allows not to specify the asserted statement completeley before starting to prove it.

Variant: pose proof term as intro_pattern
?

This tactic behaves like assert type as intro_pattern
?

by exact term where type is the
type of term. In particular, pose proof term as ident behaves as assert (ident := term)
and pose proof term as intro_pattern is the same as applying the intro_pattern to term.

Variant: epose proof term as intro_pattern
?

While pose proof expects that no existential variables are generated by the tactic, epose proof removes
this constraint.

Variant: enough (ident : type)
This adds a new hypothesis of name ident asserting type to the goal the tactic enough is applied to. A new
subgoal stating type is inserted after the initial goal rather than before it as assert would do.

Variant: enough type
This behaves like enough (ident : type) with the name ident of the hypothesis generated by Coq.

Variant: enough type as intro_pattern
This behaves like enough type using intro_pattern to name or destruct the new hypothesis.

Variant: enough (ident : type) by tactic

Variant: enough type as intro_pattern
?

by tactic
This behaves as above but with tactic expected to solve the initial goal after the extra assumption type is

2 This corresponds to the cut rule of sequent calculus.
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added and possibly destructed. If the as intro_pattern clause generates more than one subgoal, tactic
is applied to all of them.

Variant: eenough type as intro_pattern
?

by tactic
?

Variant: eenough (ident : type) by tactic
?

While the different variants of enough expect that no existential variables are generated by the tactic, eenough
removes this constraint.

Variant: cut type
This tactic applies to any goal. It implements the non-dependent case of the “App” rule given in Typing rules. (This
is Modus Ponens inference rule.) cut U transforms the current goal T into the two following subgoals: U -> T
and U. The subgoal U -> T comes first in the list of remaining subgoal to prove.

Variant: specialize (ident term
*
) as intro_pattern

?

Variant: specialize ident with bindings_list as intro_pattern
?

This tactic works on local hypothesis ident. The premises of this hypothesis (either universal quantifications or
non-dependent implications) are instantiated by concrete terms coming either from arguments term * or from a
bindings list. In the first form the application to term

* can be partial. The first form is equivalent to assert
(ident := ident term

*
). In the second form, instantiation elements can also be partial. In this case the

uninstantiated arguments are inferred by unification if possible or left quantified in the hypothesis otherwise. With
the as clause, the local hypothesis ident is left unchanged and instead, the modified hypothesis is introduced
as specified by the intro_pattern. The name ident can also refer to a global lemma or hypothesis. In this
case, for compatibility reasons, the behavior of specialize is close to that of generalize: the instantiated
statement becomes an additional premise of the goal. The as clause is especially useful in this case to immediately
introduce the instantiated statement as a local hypothesis.
Error: ident is used in hypothesis ident.

Error: ident is used in conclusion.

generalize term
This tactic applies to any goal. It generalizes the conclusion with respect to some term.

Example

Show.
1 subgoal

x, y : nat
============================
0 <= x + y + y

generalize (x + y + y).
1 subgoal

x, y : nat
============================
forall n : nat, 0 <= n

If the goal is G and t is a subterm of type T in the goal, then generalize t replaces the goal by forall (x:T),
G′ where G′ is obtained from G by replacing all occurrences of t by x. The name of the variable (here n) is chosen
based on T.
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Variant: generalize term
+

This is equivalent to generalize term; ... ; generalize term. Note that the sequence of term i
’s are processed from n to 1.

Variant: generalize term at num
+

This is equivalent togeneralize term but it generalizes only over the specified occurrences ofterm (counting
from left to right on the expression printed using option Printing All).

Variant: generalize term as ident
This is equivalent to generalize term but it uses ident to name the generalized hypothesis.

Variant: generalize term at num
+

as ident

+

,

This is the most general form of generalize that combines the previous behaviors.
Variant: generalize dependent term

This generalizes term but also all hypotheses that depend on term. It clears the generalized hypotheses.
evar (ident : term)

The evar tactic creates a new local definition named ident with type term in the context. The body of this
binding is a fresh existential variable.

instantiate (ident := term )
The instantiate tactic refines (see refine) an existential variable ident with the term term. It is equivalent to
only [ident]: refine term (preferred alternative).

Note: To be able to refer to an existential variable by name, the user must have given the name explicitly (see
Existential variables).

Note: When you are referring to hypotheses which you did not name explicitly, be aware that Coq may make a
different decision on how to name the variable in the current goal and in the context of the existential variable. This
can lead to surprising behaviors.

Variant: instantiate (num := term)
This variant allows to refer to an existential variable which was not named by the user. The num argument is the
position of the existential variable from right to left in the goal. Because this variant is not robust to slight changes
in the goal, its use is strongly discouraged.

Variant: instantiate ( num := term ) in ident
Variant: instantiate ( num := term ) in ( Value of ident )
Variant: instantiate ( num := term ) in ( Type of ident )

These allow to refer respectively to existential variables occurring in a hypothesis or in the body or the type of a
local definition.

Variant: instantiate
Without argument, the instantiate tactic tries to solve as many existential variables as possible, using information
gathered from other tactics in the same tactical. This is automatically done after each complete tactic (i.e. after a
dot in proof mode), but not, for example, between each tactic when they are sequenced by semicolons.

admit
This tactic allows temporarily skipping a subgoal so as to progress further in the rest of the proof. A proof containing
admitted goals cannot be closed with Qed but only with Admitted.

Variant: give_up
Synonym of admit.
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absurd term
This tactic applies to any goal. The argument term is any proposition P of type Prop. This tactic applies False
elimination, that is it deduces the current goal from False, and generates as subgoals ∼P and P. It is very useful in
proofs by cases, where some cases are impossible. In most cases, P or ∼P is one of the hypotheses of the local
context.

contradiction
This tactic applies to any goal. The contradiction tactic attempts to find in the current context (after all intros) a
hypothesis that is equivalent to an empty inductive type (e.g. False), to the negation of a singleton inductive type
(e.g. True or x=x), or two contradictory hypotheses.
Error: No such assumption.

Variant: contradiction ident
The proof of False is searched in the hypothesis named ident.

contradict ident
This tactic allows manipulating negated hypothesis and goals. The name ident should correspond to a hypothesis.
With contradict H, the current goal and context is transformed in the following way:

• H:¬A ⊢ B becomes ⊢ A
• H:¬A ⊢ ¬B becomes H: B ⊢ A
• H: A ⊢ B becomes ⊢ ¬A
• H: A ⊢ ¬B becomes H: B ⊢ ¬A

exfalso
This tactic implements the “ex falso quodlibet” logical principle: an elimination of False is performed on the current
goal, and the user is then required to prove that False is indeed provable in the current context. This tactic is a macro
for elimtype False.

4.3.5 Case analysis and induction

The tactics presented in this section implement induction or case analysis on inductive or co-inductive objects (see Inductive
Definitions).
destruct term

This tactic applies to any goal. The argument term must be of inductive or co-inductive type and the tactic
generates subgoals, one for each possible form of term, i.e. one for each constructor of the inductive or co-
inductive type. Unlike induction, no induction hypothesis is generated by destruct.
Variant: destruct ident

If ident denotes a quantified variable of the conclusion of the goal, then destruct ident behaves as
intros until ident; destruct ident. If ident is not anymore dependent in the goal after
application of destruct, it is erased (to avoid erasure, use parentheses, as in destruct (ident)).
If ident is a hypothesis of the context, and ident is not anymore dependent in the goal after application
of destruct, it is erased (to avoid erasure, use parentheses, as in destruct (ident)).

Variant: destruct num

destruct num behaves as intros until num followed by destruct applied to the last in-
troduced hypothesis.

Note: For destruction of a numeral, use syntax destruct (num) (not very interesting anyway).
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Variant: destruct pattern
The argument of destruct can also be a pattern of which holes are denoted by “_”. In this case, the
tactic checks that all subterms matching the pattern in the conclusion and the hypotheses are compatible and
performs case analysis using this subterm.

Variant: destruct term
+
,

This is a shortcut for destruct term; ...; destruct term.
Variant: destruct term as disj_conj_intro_pattern

This behaves as destruct term but uses the names in disj_conj_intro_pattern to name the
variables introduced in the context. The disj_conj_intro_pattern must have the form [p11 ...
p1n | ... | pm1 ... pmn ] with m being the number of constructors of the type of term. Each
variable introduced by destruct in the context of the i-th goal gets its name from the list pi1 ... pin
in order. If there are not enough names, destruct invents names for the remaining variables to introduce.
More generally, the pij can be any introduction pattern (see intros). This provides a concise notation for
chaining destruction of a hypothesis.

Variant: destruct term eqn:naming_intro_pattern
This behaves as destruct term but adds an equation between term and the value that it takes in each of
the possible cases. The name of the equation is specified by naming_intro_pattern (see intros),
in particular ? can be used to let Coq generate a fresh name.

Variant: destruct term with bindings_list
This behaves like destruct term providing explicit instances for the dependent premises of the type of
term.

Variant: edestruct term
This tactic behaves like destruct term except that it does not fail if the instance of a dependent premises
of the type of term is not inferable. Instead, the unresolved instances are left as existential variables to be
inferred later, in the same way as eapply does.

Variant: destruct term using term with bindings_list
?

This is synonym of induction term using term with bindings_list
? .

Variant: destruct term in goal_occurrences
This syntax is used for selecting which occurrences of term the case analysis has to be done on. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior is described in occurrences
sets.

Variant: destruct term with bindings_list
?

as disj_conj_intro_pattern
?

eqn:naming_intro_pattern
?

using term with bindings_list
?

?

in goal_occurrences
?

Variant: edestruct term with bindings_list
?

as disj_conj_intro_pattern
?

eqn:naming_intro_pattern
?

using term with bindings_list
?

?

in goal_occurrences
?

These are the general forms of destruct and edestruct. They combine the effects of the with, as,
eqn:, using, and in clauses.

case term
The tactic case is a more basic tactic to perform case analysis without recursion. It behaves as elim term but
using a case-analysis elimination principle and not a recursive one.

Variant: case term with bindings_list
Analogous to elim term with bindings_list above.

Variant: ecase term with bindings_list
?

In case the type of term has dependent premises, or dependent premises whose values are not inferable from the
with bindings_list clause, ecase turns them into existential variables to be resolved later on.
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Variant: simple destruct ident
This tactic behaves as intros until ident; case ident when ident is a quantified variable of the
goal.

Variant: simple destruct num
This tactic behaves as intros until num; case ident where ident is the name given by intros
until num to the num -th non-dependent premise of the goal.

Variant: case_eq term
The tactic case_eq is a variant of the case tactic that allows to perform case analysis on a term without com-
pletely forgetting its original form. This is done by generating equalities between the original form of the term and
the outcomes of the case analysis.

induction term
This tactic applies to any goal. The argument termmust be of inductive type and the tactic induction generates
subgoals, one for each possible form of term, i.e. one for each constructor of the inductive type.
If the argument is dependent in either the conclusion or some hypotheses of the goal, the argument is replaced by
the appropriate constructor form in each of the resulting subgoals and induction hypotheses are added to the local
context using names whose prefix is IH.
There are particular cases:

• If term is an identifier ident denoting a quantified variable of the conclusion of the goal, then inductionident
behaves as intros until ident; induction ident. If ident is not anymore dependent in the
goal after application of induction, it is erased (to avoid erasure, use parentheses, as in induction
(ident)).

• If term is a num, then induction num behaves as intros until num followed by induction
applied to the last introduced hypothesis.

Note: For simple induction on a numeral, use syntax induction (num) (not very interesting anyway).

• In case term is a hypothesis ident of the context, and ident is not anymore dependent in the goal after
application of induction, it is erased (to avoid erasure, use parentheses, as in induction (ident)).

• The argument term can also be a pattern of which holes are denoted by “_”. In this case, the tactic checks
that all subterms matching the pattern in the conclusion and the hypotheses are compatible and performs
induction using this subterm.

Example

Lemma induction_test : forall n:nat, n = n -> n <= n.
1 subgoal

============================
forall n : nat, n = n -> n <= n

intros n H.
1 subgoal

n : nat
H : n = n
============================
n <= n

induction n.

(continues on next page)
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(continued from previous page)
2 subgoals

H : 0 = 0
============================
0 <= 0

subgoal 2 is:
S n <= S n

Error: Not an inductive product.

Error: Unable to find an instance for the variables ident ... ident.
Use in this case the variant elim ... with below.

Variant: induction term as disj_conj_intro_pattern
This behaves as induction but uses the names in disj_conj_intro_pattern to name the variables
introduced in the context. The disj_conj_intro_pattern must typically be of the form [ p 11 ... p

1n | ... | pm1 ... pmn ] with m being the number of constructors of the type of term. Each variable
introduced by induction in the context of the i-th goal gets its name from the list pi1 ... pin in order. If there are
not enough names, induction invents names for the remaining variables to introduce. More generally, the pij can
be any disjunctive/conjunctive introduction pattern (see intros ...). For instance, for an inductive type with
one constructor, the pattern notation (p1 , ... , pn ) can be used instead of [ p1 ... pn ].

Variant: induction term with bindings_list
This behaves like induction providing explicit instances for the premises of the type of term (see bindings
list).

Variant: einduction term
This tactic behaves like induction except that it does not fail if some dependent premise of the type of term
is not inferable. Instead, the unresolved premises are posed as existential variables to be inferred later, in the same
way as eapply does.

Variant: induction term using term
This behaves as induction but using term as induction scheme. It does not expect the conclusion of the type
of the first term to be inductive.

Variant: induction term using term with bindings_list
This behaves as induction ... using ... but also providing instances for the premises of the type of the
second term.

Variant: induction term
+
, using qualid

This syntax is used for the case qualid denotes an induction principle with complex predicates as the induction
principles generated by Function or Functional Scheme may be.

Variant: induction term in goal_occurrences
This syntax is used for selecting which occurrences of term the induction has to be carried on. The in
goal_occurrences clause is an occurrence clause whose syntax and behavior is described in occurrences
sets. If variables or hypotheses not mentioning term in their type are listed in goal_occurrences, those are
generalized as well in the statement to prove.

Example

Lemma comm x y : x + y = y + x.
1 subgoal

(continues on next page)
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(continued from previous page)
x, y : nat
============================
x + y = y + x

induction y in x |- *.
2 subgoals

x : nat
============================
x + 0 = 0 + x

subgoal 2 is:
x + S y = S y + x

Show 2.
subgoal 2 is:

x, y : nat
IHy : forall x : nat, x + y = y + x
============================
x + S y = S y + x

Variant: induction term with bindings_list as disj_conj_intro_pattern using term with bindings_list in goal_occurrences
Variant: einduction term with bindings_list as disj_conj_intro_pattern using term with bindings_list in goal_occurrences

These are the most general forms of induction and einduction. It combines the effects of the with, as,
using, and in clauses.

Variant: elim term
This is a more basic induction tactic. Again, the type of the argument term must be an inductive type. Then,
according to the type of the goal, the tactic elim chooses the appropriate destructor and applies it as the tactic
apply would do. For instance, if the proof context contains n:nat and the current goal is T of type Prop, then
elim n is equivalent to apply nat_ind with (n:=n). The tactic elim does not modify the context of
the goal, neither introduces the induction loading into the context of hypotheses. More generally, elim term
also works when the type of term is a statement with premises and whose conclusion is inductive. In that case
the tactic performs induction on the conclusion of the type of term and leaves the non-dependent premises of the
type as subgoals. In the case of dependent products, the tactic tries to find an instance for which the elimination
lemma applies and fails otherwise.

Variant: elim term with bindings_list
Allows to give explicit instances to the premises of the type of term (see bindings list).

Variant: eelim term
In case the type of term has dependent premises, this turns them into existential variables to be resolved later on.

Variant: elim term using term
Variant: elim term using term with bindings_list

Allows the user to give explicitly an induction principle term that is not the standard one for the underlying
inductive type of term. The bindings_list clause allows instantiating premises of the type of term.

Variant: elim term with bindings_list using term with bindings_list
Variant: eelim term with bindings_list using term with bindings_list

These are the most general forms of elim and eelim. It combines the effects of the using clause and of the
two uses of the with clause.

Variant: elimtype type
The argument type must be inductively defined. elimtype I is equivalent to cut I. intro Hn; elim
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Hn; clear Hn. Therefore the hypothesis Hn will not appear in the context(s) of the subgoal(s). Conversely, if
t is a term of (inductive) type I that does not occur in the goal, then elim t is equivalent to elimtype I;
2:exact t.

Variant: simple induction ident
This tactic behaves as intros until ident; elim ident when ident is a quantified variable of the
goal.

Variant: simple induction num
This tactic behaves as intros until num; elim ident where ident is the name given by intros
until num to the num-th non-dependent premise of the goal.

double induction ident ident
This tactic is deprecated and should be replaced by induction ident; induction ident (or
induction ident ; destruct ident depending on the exact needs).

Variant: double induction num1 num2
This tactic is deprecated and should be replaced by induction num1; induction num3 where num3 is
the result of num2 - num1

dependent induction ident
The experimental tactic dependent induction performs induction- inversion on an instantiated inductive predicate.
One needs to first require the Coq.Program.Equality module to use this tactic. The tactic is based on the BasicElim
tactic by Conor McBride [McB00] and the work of Cristina Cornes around inversion [CT95]. From an instantiated
inductive predicate and a goal, it generates an equivalent goal where the hypothesis has been generalized over its
indexes which are then constrained by equalities to be the right instances. This permits to state lemmas without
resorting to manually adding these equalities and still get enough information in the proofs.

Example

Lemma le_minus : forall n:nat, n < 1 -> n = 0.
1 subgoal

============================
forall n : nat, n < 1 -> n = 0

intros n H ; induction H.
2 subgoals

n : nat
============================
n = 0

subgoal 2 is:
n = 0

Here we did not get any information on the indexes to help fulfill this proof. The problem is that, when we use the
induction tactic, we lose information on the hypothesis instance, notably that the second argument is 1 here. Depen-
dent induction solves this problem by adding the corresponding equality to the context.

Require Import Coq.Program.Equality.
Lemma le_minus : forall n:nat, n < 1 -> n = 0.

1 subgoal

============================
forall n : nat, n < 1 -> n = 0

intros n H ; dependent induction H.
(continues on next page)
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(continued from previous page)
2 subgoals

============================
0 = 0

subgoal 2 is:
n = 0

The subgoal is cleaned up as the tactic tries to automatically simplify the subgoals with respect to the generated equalities.
In this enriched context, it becomes possible to solve this subgoal.

reflexivity.
1 subgoal

n : nat
H : S n <= 0
IHle : 0 = 1 -> n = 0
============================
n = 0

Now we are in a contradictory context and the proof can be solved.

inversion H.
No more subgoals.

This technique works with any inductive predicate. In fact, the dependent induction tactic is just a wrapper
around the induction tactic. One can make its own variant by just writing a new tactic based on the definition found
in Coq.Program.Equality.

Variant: dependent induction ident generalizing ident
+

This performs dependent induction on the hypothesis ident but first generalizes the goal by the given variables
so that they are universally quantified in the goal. This is generally what one wants to do with the variables that are
inside some constructors in the induction hypothesis. The other ones need not be further generalized.

Variant: dependent destruction ident
This performs the generalization of the instance ident but uses destruct instead of induction on the general-
ized hypothesis. This gives results equivalent to inversion or dependent inversion if the hypothesis is
dependent.

See also the larger example of dependent induction and an explanation of the underlying technique.

function induction (qualid term
+
)

The tactic functional induction performs case analysis and induction following the definition of a function. It makes
use of a principle generated by Function (see Advanced recursive functions) or Functional Scheme (see
Generation of induction principles with Functional Scheme). Note that this tactic is only available after a Require
Import FunInd.

Example

Require Import FunInd.
[Loading ML file extraction_plugin.cmxs ... done]
[Loading ML file recdef_plugin.cmxs ... done]

Functional Scheme minus_ind := Induction for minus Sort Prop.

(continues on next page)
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(continued from previous page)
sub_equation is defined
minus_ind is defined

Check minus_ind.
minus_ind

: forall P : nat -> nat -> nat -> Prop,
(forall n m : nat, n = 0 -> P 0 m n) ->
(forall n m k : nat, n = S k -> m = 0 -> P (S k) 0 n) ->
(forall n m k : nat,
n = S k ->
forall l : nat, m = S l -> P k l (k - l) -> P (S k) (S l) (k - l)) ->

forall n m : nat, P n m (n - m)

Lemma le_minus (n m:nat) : n - m <= n.
1 subgoal

n, m : nat
============================
n - m <= n

functional induction (minus n m) using minus_ind; simpl; auto.
No more subgoals.

Qed.
le_minus is defined

Note: (qualid term
+
) must be a correct full application of qualid. In particular, the rules for implicit argu-

ments are the same as usual. For example use qualid if you want to write implicit arguments explicitly.

Note: Parentheses around qualid term
+ are not mandatory and can be skipped.

Note: functional induction (f x1 x2 x3) is actually a wrapper for induction x1, x2, x3, (f
x1 x2 x3) using qualid followed by a cleaning phase, where qualid is the induction principle registered for
f (by the Function (see Advanced recursive functions) or Functional Scheme (see Generation of induction prin-
ciples with Functional Scheme) command) corresponding to the sort of the goal. Therefore functional induction
may fail if the induction scheme qualid is not defined. See also Advanced recursive functions for the function terms
accepted by Function.

Note: There is a difference between obtaining an induction scheme for a function by using Function (see Advanced
recursive functions) and by using Functional Scheme after a normal definition using Fixpoint or Definition.
See Advanced recursive functions for details.

See also:
Advanced recursive functions, Generation of induction principles with Functional Scheme and inversion
Error: Cannot find induction information on qualid.

Error: Not the right number of induction arguments.

4.3. Tactics 177



The Coq Reference Manual, Release 8.9.1

Variant: functional induction (qualid term
+
) as disj_conj_intro_pattern using term with bindings_list

Similarly to induction and elim, this allows giving explicitly the name of the introduced variables, the induc-
tion principle, and the values of dependent premises of the elimination scheme, including predicates for mutual
induction when qualid is part of a mutually recursive definition.

discriminate term
This tactic proves any goal from an assumption stating that two structurally different terms of an inductive set are
equal. For example, from (S (S O))=(S O) we can derive by absurdity any proposition.
The argument term is assumed to be a proof of a statement of conclusion term = term with the two terms
being elements of an inductive set. To build the proof, the tactic traverses the normal forms3 of the terms looking
for a couple of subterms u and w (u subterm of the normal form of term and w subterm of the normal form of
term), placed at the same positions and whose head symbols are two different constructors. If such a couple of
subterms exists, then the proof of the current goal is completed, otherwise the tactic fails.

Note: The syntax discriminate ident can be used to refer to a hypothesis quantified in the goal. In this case,
the quantified hypothesis whose name is ident is first introduced in the local context using intros until ident.

Error: No primitive equality found.

Error: Not a discriminable equality.

Variant: discriminate num
This does the same thing as intros until num followed by discriminate ident where ident is the
identifier for the last introduced hypothesis.

Variant: discriminate term with bindings_list
This does the same thing as discriminate term but using the given bindings to instantiate parameters or
hypotheses of term.

Variant: ediscriminate num

Variant: ediscriminate term with bindings_list
?

This works the same as discriminate but if the type of term, or the type of the hypothesis referred to by
num, has uninstantiated parameters, these parameters are left as existential variables.

Variant: discriminate
This behaves like discriminate ident if ident is the name of an hypothesis to which discriminate is ap-
plicable; if the current goal is of the form term <> term, this behaves as intro ident; discriminate
ident.
Error: No discriminable equalities.

injection term
The injection tactic exploits the property that constructors of inductive types are injective, i.e. that if c is a con-
structor of an inductive type and c t1 and c t2 are equal then t1 and t2 are equal too.
If term is a proof of a statement of conclusion term = term, then injection applies the injectivity of
constructors as deep as possible to derive the equality of all the subterms of term and term at positions where
the terms start to differ. For example, from (S p, S n) = (q, S (S m)) we may derive S p = q and
n = S m. For this tactic to work, the terms should be typed with an inductive type and they should be neither
convertible, nor having a different head constructor. If these conditions are satisfied, the tactic derives the equality
of all the subterms at positions where they differ and adds them as antecedents to the conclusion of the current goal.

Example
Consider the following goal:

3 Reminder: opaque constants will not be expanded by δ reductions.
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Inductive list : Set :=
| nil : list
| cons : nat -> list -> list.
Parameter P : list -> Prop.
Goal forall l n, P nil -> cons n l = cons 0 nil -> P l.

intros.
1 subgoal

l : list
n : nat
H : P nil
H0 : cons n l = cons 0 nil
============================
P l

injection H0.
1 subgoal

l : list
n : nat
H : P nil
H0 : cons n l = cons 0 nil
============================
l = nil -> n = 0 -> P l

Beware that injection yields an equality in a sigma type whenever the injected object has a dependent type P with
its two instances in different types (P t1 ... tn ) and (P u1 ... un ). If t1 and u1 are the same and have for
type an inductive type for which a decidable equality has been declared using the command Scheme Equality
(see Generation of induction principles with Scheme), the use of a sigma type is avoided.

Note: If some quantified hypothesis of the goal is named ident, then injection ident first introduces the
hypothesis in the local context using intros until ident.

Error: Not a projectable equality but a discriminable one.

Error: Nothing to do, it is an equality between convertible terms.

Error: Not a primitive equality.

Error: Nothing to inject.

Variant: injection num
This does the same thing as intros until num followed by injection ident where ident is
the identifier for the last introduced hypothesis.

Variant: injection term with bindings_list
This does the same as injection term but using the given bindings to instantiate parameters or hypothe-
ses of term.

Variant: einjection num

Variant: einjection term with bindings_list
?

This works the same as injection but if the type of term, or the type of the hypothesis referred to by
num, has uninstantiated parameters, these parameters are left as existential variables.
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Variant: injection
If the current goal is of the form term <> term , this behaves as intro ident; injection
ident.
Error: goal does not satisfy the expected preconditions.

Variant: injection term with bindings_list
?

as intro_pattern
+

Variant: injection num as intro_pattern
+

Variant: injection as intro_pattern
+

Variant: einjection term with bindings_list
?

as intro_pattern
+

Variant: einjection num as intro_pattern
+

Variant: einjection as intro_pattern
+

These variants apply intros intro_pattern
+ after the call to injection or einjection so

that all equalities generated are moved in the context of hypotheses. The number of intro_patternmust
not exceed the number of equalities newly generated. If it is smaller, fresh names are automatically generated
to adjust the list of intro_pattern to the number of new equalities. The original equality is erased if it
corresponds to a hypothesis.

Flag: Structural Injection
This option ensure that injection term erases the original hypothesis and leaves the generated equalities
in the context rather than putting them as antecedents of the current goal, as if giving injection term
as (with an empty list of names). This option is off by default.

Flag: Keep Proof Equalities
By default, injection only creates new equalities between terms whose type is in sort Type or Set,
thus implementing a special behavior for objects that are proofs of a statement in Prop. This option controls
this behavior.

inversion ident
Let the type of ident in the local context be (I t), where I is a (co)inductive predicate. Then, inversion
applied to ident derives for each possible constructor c i of (I t), all the necessary conditions that should
hold for the instance (I t) to be proved by c i.

Note: If ident does not denote a hypothesis in the local context but refers to a hypothesis quantified in the goal, then
the latter is first introduced in the local context using intros until ident.

Note: As inversion proofs may be large in size, we recommend the user to stock the lemmas whenever the same
instance needs to be inverted several times. See Generation of inversion principles with Derive Inversion.

Note: Part of the behavior of the inversion tactic is to generate equalities between expressions that appeared in the
hypothesis that is being processed. By default, no equalities are generated if they relate two proofs (i.e. equalities between
terms whose type is in sort Prop). This behavior can be turned off by using the option :flag‘Keep Proof Equalities‘.

Variant: inversion num
This does the same thing as intros until num then inversion ident where ident is the identifier
for the last introduced hypothesis.

Variant: inversion_clear ident
This behaves as inversion and then erases ident from the context.

180 Chapter 4. The proof engine



The Coq Reference Manual, Release 8.9.1

Variant: inversion ident as intro_pattern
This generally behaves as inversion but using names in intro_pattern for naming hypotheses. The
intro_pattern must have the form [p11 ... p1n | ... | pm1 ... pmn ] with m being the number
of constructors of the type of ident. Be careful that the list must be of length m even if inversion discards
some cases (which is precisely one of its roles): for the discarded cases, just use an empty list (i.e. n = 0).The
arguments of the i-th constructor and the equalities that inversion introduces in the context of the goal corre-
sponding to the i-th constructor, if it exists, get their names from the list pi1 ... pin in order. If there are not
enough names, inversion invents names for the remaining variables to introduce. In case an equation splits into
several equations (because inversion applies injection on the equalities it generates), the corresponding
name pij in the list must be replaced by a sublist of the form [pij1 ... pijq ] (or, equivalently, (pij1 , ...,
pijq )) where q is the number of subequalities obtained from splitting the original equation. Here is an example.
The inversion ... as variant of inversion generally behaves in a slightly more expectable way than
inversion (no artificial duplication of some hypotheses referring to other hypotheses). To take benefit of these
improvements, it is enough to use inversion ... as [], letting the names being finally chosen by Coq.

Example

Inductive contains0 : list nat -> Prop :=
| in_hd : forall l, contains0 (0 :: l)
| in_tl : forall l b, contains0 l -> contains0 (b :: l).

contains0 is defined
contains0_ind is defined

Goal forall l:list nat, contains0 (1 :: l) -> contains0 l.
1 subgoal

============================
forall l : list nat, contains0 (1 :: l) -> contains0 l

intros l H; inversion H as [ | l' p Hl' [Heqp Heql'] ].
1 subgoal

l : list nat
H : contains0 (1 :: l)
l' : list nat
p : nat
Hl' : contains0 l
Heqp : p = 1
Heql' : l' = l
============================
contains0 l

Variant: inversion num as intro_pattern
This allows naming the hypotheses introduced by inversion num in the context.

Variant: inversion_clear ident as intro_pattern
This allows naming the hypotheses introduced by inversion_clear in the context. Notice that hypothesis
names can be provided as if inversion were called, even though the inversion_clear will eventually
erase the hypotheses.

Variant: inversion ident in ident
+

Let ident + be identifiers in the local context. This tactic behaves as generalizing ident
+ , and then per-

forming inversion.

Variant: inversion ident as intro_pattern in ident
+
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This allows naming the hypotheses introduced in the context by inversion ident in ident
+ .

Variant: inversion_clear ident in ident
+

Let ident + be identifiers in the local context. This tactic behaves as generalizing ident
+ , and then per-

forming inversion_clear.

Variant: inversion_clear ident as intro_pattern in ident
+

This allows naming the hypotheses introduced in the context by inversion_clear ident in ident
+ .

Variant: dependent inversion ident
That must be used when ident appears in the current goal. It acts like inversion and then substitutes ident
for the corresponding @term in the goal.

Variant: dependent inversion ident as intro_pattern
This allows naming the hypotheses introduced in the context by dependent inversion ident.

Variant: dependent inversion_clear ident
Like dependent inversion, except that ident is cleared from the local context.

Variant: dependent inversion_clear ident as intro_pattern
This allows naming the hypotheses introduced in the context by dependent inversion_clear ident.

Variant: dependent inversion ident with term
This variant allows you to specify the generalization of the goal. It is useful when the system fails to generalize the
goal automatically. If ident has type (I t) and I has type forall (x:T), s, then termmust be of type
I:forall (x:T), I x -> s' where s' is the type of the goal.

Variant: dependent inversion ident as intro_pattern with term
This allows naming the hypotheses introduced in the context by dependent inversion ident with
term.

Variant: dependent inversion_clear ident with term
Like dependent inversion ... with ... with but clears ident from the local context.

Variant: dependent inversion_clear ident as intro_pattern with term
This allows naming the hypotheses introduced in the context by dependent inversion_clear ident
with term.

Variant: simple inversion ident
It is a very primitive inversion tactic that derives all the necessary equalities but it does not simplify the constraints
as inversion does.

Variant: simple inversion ident as intro_pattern
This allows naming the hypotheses introduced in the context by simple inversion.

Variant: inversion ident using ident
Let ident have type (I t) (I an inductive predicate) in the local context, and ident be a (dependent) inversion
lemma. Then, this tactic refines the current goal with the specified lemma.

Variant: inversion ident using ident in ident
+

This tactic behaves as generalizing ident
+ , then doing inversion ident using ident.

Variant: inversion_sigma
This tactic turns equalities of dependent pairs (e.g., existT P x p = existT P y q, frequently left over
by inversion on a dependent type family) into pairs of equalities (e.g., a hypothesis H : x = y and a hypoth-
esis of type rew H in p = q); these hypotheses can subsequently be simplified using subst, without ever
invoking any kind of axiom asserting uniqueness of identity proofs. If you want to explicitly specify the hypoth-
esis to be inverted, or name the generated hypotheses, you can invoke induction H as [H1 H2] using
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eq_sigT_rect.This tactic also works forsig, sigT2, andsig2, and there are similareq_sig***_rect
induction lemmas.

Example
Non-dependent inversion.
Let us consider the relation Le over natural numbers:

Inductive Le : nat -> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).

Let us consider the following goal:

1 subgoal

P : nat -> nat -> Prop
Q : forall n m : nat, Le n m -> Prop
n, m : nat
H : Le (S n) m
============================
P n m

To prove the goal, we may need to reason by cases on H and to derive that m is necessarily of the form (S m0) for certain
m0 and that (Le n m0). Deriving these conditions corresponds to proving that the only possible constructor of (Le
(S n) m) is LeS and that we can invert the arrow in the type of LeS. This inversion is possible because Le is the
smallest set closed by the constructors LeO and LeS.

inversion_clear H.
1 subgoal

P : nat -> nat -> Prop
Q : forall n m : nat, Le n m -> Prop
n, m, m0 : nat
H0 : Le n m0
============================
P n (S m0)

Note that m has been substituted in the goal for (S m0) and that the hypothesis (Le n m0) has been added to the
context.
Sometimes it is interesting to have the equality m = (S m0) in the context to use it after. In that case we can use
inversion that does not clear the equalities:

inversion H.
1 subgoal

P : nat -> nat -> Prop
Q : forall n m : nat, Le n m -> Prop
n, m : nat
H : Le (S n) m
n0, m0 : nat
H1 : Le n m0
H0 : n0 = n
H2 : S m0 = m
============================
P n (S m0)
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Example
Dependent inversion.

Let us consider the following goal:

1 subgoal

P : nat -> nat -> Prop
Q : forall n m : nat, Le n m -> Prop
n, m : nat
H : Le (S n) m
============================
Q (S n) m H

As H occurs in the goal, we may want to reason by cases on its structure and so, we would like inversion tactics to
substitute H by the corresponding @term in constructor form. Neither inversion nor inversion_clear do such
a substitution. To have such a behavior we use the dependent inversion tactics:

dependent inversion_clear H.
1 subgoal

P : nat -> nat -> Prop
Q : forall n m : nat, Le n m -> Prop
n, m, m0 : nat
l : Le n m0
============================
Q (S n) (S m0) (LeS n m0 l)

Note that H has been substituted by (LeS n m0 l) and m by (S m0).

Example
Using inversion_sigma.

Let us consider the following inductive type of length-indexed lists, and a lemma about inverting equality of cons:

Require Import Coq.Logic.Eqdep_dec.
Inductive vec A : nat -> Type :=
| nil : vec A O
| cons {n} (x : A) (xs : vec A n) : vec A (S n).

vec is defined
vec_rect is defined
vec_ind is defined
vec_rec is defined

Lemma invert_cons : forall A n x xs y ys,
@cons A n x xs = @cons A n y ys
-> xs = ys.

1 subgoal

============================
forall (A : Type) (n : nat) (x : A) (xs : vec A n) (y : A) (ys : vec A n),
cons A x xs = cons A y ys -> xs = ys

(continues on next page)
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(continued from previous page)
Proof.
intros A n x xs y ys H.

1 subgoal

A : Type
n : nat
x : A
xs : vec A n
y : A
ys : vec A n
H : cons A x xs = cons A y ys
============================
xs = ys

After performing inversion, we are left with an equality of existTs:

inversion H.
1 subgoal

A : Type
n : nat
x : A
xs : vec A n
y : A
ys : vec A n
H : cons A x xs = cons A y ys
H1 : x = y
H2 : existT (fun n : nat => vec A n) n xs =

existT (fun n : nat => vec A n) n ys
============================
xs = ys

We can turn this equality into a usable form with inversion_sigma:

inversion_sigma.
1 subgoal

A : Type
n : nat
x : A
xs : vec A n
y : A
ys : vec A n
H : cons A x xs = cons A y ys
H1 : x = y
H0 : n = n
H3 : eq_rect n (fun a : nat => vec A a) xs n H0 = ys
============================
xs = ys

To finish cleaning up the proof, we will need to use the fact that that all proofs of n = n for n a nat are eq_refl:

let H := match goal with H : n = n |- _ => H end in
pose proof (Eqdep_dec.UIP_refl_nat _ H); subst H.

1 subgoal

A : Type

(continues on next page)
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(continued from previous page)
n : nat
x : A
xs : vec A n
y : A
ys : vec A n
H : cons A x xs = cons A y ys
H1 : x = y
H3 : eq_rect n (fun a : nat => vec A a) xs n eq_refl = ys
============================
xs = ys

simpl in *.
1 subgoal

A : Type
n : nat
x : A
xs : vec A n
y : A
ys : vec A n
H : cons A x xs = cons A y ys
H1 : x = y
H3 : xs = ys
============================
xs = ys

Finally, we can finish the proof:

assumption.
No more subgoals.

Qed.
invert_cons is defined

fix ident num
This tactic is a primitive tactic to start a proof by induction. In general, it is easier to rely on higher-level induction
tactics such as the ones described in induction.
In the syntax of the tactic, the identifier ident is the name given to the induction hypothesis. The natural number
num tells on which premise of the current goal the induction acts, starting from 1, counting both dependent and
non dependent products, but skipping local definitions. Especially, the current lemma must be composed of at least
num products.
Like in a fix expression, the induction hypotheses have to be used on structurally smaller arguments. The verification
that inductive proof arguments are correct is done only at the time of registering the lemma in the environment. To
know if the use of induction hypotheses is correct at some time of the interactive development of a proof, use the
command Guarded (see Section Requesting information).

Variant: fix ident num with (ident binder
+

[{struct ident}] : type)

+

This starts a proof by mutual induction. The statements to be simultaneously proved are respectively forall
binder ... binder, type. The identifiers ident are the names of the induction hypotheses. The iden-
tifiers ident are the respective names of the premises on which the induction is performed in the statements to
be simultaneously proved (if not given, the system tries to guess itself what they are).

cofix ident

186 Chapter 4. The proof engine



The Coq Reference Manual, Release 8.9.1

This tactic starts a proof by coinduction. The identifier ident is the name given to the coinduction hypothesis.
Like in a cofix expression, the use of induction hypotheses have to guarded by a constructor. The verification that
the use of co-inductive hypotheses is correct is done only at the time of registering the lemma in the environment.
To know if the use of coinduction hypotheses is correct at some time of the interactive development of a proof, use
the command Guarded (see Section Requesting information).

Variant: cofix ident with (ident binder
+

: type)

+

This starts a proof by mutual coinduction. The statements to be simultaneously proved are respectively forall
binder ... binder, type The identifiers ident are the names of the coinduction hypotheses.

4.3.6 Rewriting expressions

These tactics use the equality eq:forall A:Type, A->A->Prop defined in file Logic.v (see Logic). The no-
tation for eq T t u is simply t=u dropping the implicit type of t and u.
rewrite term

This tactic applies to any goal. The type of term must have the form
forall (x1 :A1 ) ... (xn :An ). eq term1 term2 .

where eq is the Leibniz equality or a registered setoid equality.
Then rewrite term finds the first subterm matching term1 in the goal, resulting in instances term1’ and
term2’ and then replaces every occurrence of term1’ by term2’. Hence, some of the variables xi are solved by
unification, and some of the types A1, ..., An become new subgoals.
Error: The term provided does not end with an equation.

Error: Tactic generated a subgoal identical to the original goal. This happens if term does not occur in the goal.

Variant: rewrite -> term
Is equivalent to rewrite term

Variant: rewrite <- term
Uses the equality term1 = term 2 from right to left

Variant: rewrite term in clause
Analogous to rewrite term but rewriting is done following clause (similarly to performing computations).
For instance:
• rewrite H in H1 will rewrite H in the hypothesis H1 instead of the current goal.
• rewrite H in H1 at 1, H2 at - 2 |- * means rewrite H; rewrite H in H1 at
1; rewrite H in H2 at - 2. In particular a failure will happen if any of these three simpler
tactics fails.

• rewrite H in * |-will do rewrite H in Hi for all hypotheses Hi different from H. A success
will happen as soon as at least one of these simpler tactics succeeds.

• rewrite H in * is a combination of rewrite H and rewrite H in * |- that succeeds if
at least one of these two tactics succeeds.

Orientation -> or <- can be inserted before the term to rewrite.
Variant: rewrite term at occurrences

Rewrite only the given occurrences of term. Occurrences are specified from left to right as for pattern
(pattern). The rewrite is always performed using setoid rewriting, even for Leibniz’s equality, so one has
to Import Setoid to use this variant.
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Variant: rewrite term by tactic
Use tactic to completely solve the side-conditions arising from the rewrite.

Variant: rewrite term
+
,

Is equivalent to the n successive tactics rewrite term
+

; , each one working on the first subgoal generated
by the previous one. Orientation -> or <- can be inserted before each term to rewrite. One unique clause
can be added at the end after the keyword in; it will then affect all rewrite operations.

In all forms of rewrite described above, a term to rewrite can be immediately prefixed by one of the following
modifiers:

• ? : the tactic rewrite ?term performs the rewrite of term as many times as possible (perhaps zero
time). This form never fails.

• num? : works similarly, except that it will do at most num rewrites.
• ! : works as ?, except that at least one rewrite should succeed, otherwise the tactic fails.
• num! (or simply num) : precisely num rewrites of termwill be done, leading to failure if these num rewrites
are not possible.

Variant: erewrite term
This tactic works as rewrite term but turning unresolved bindings into existential variables, if any, in-
stead of failing. It has the same variants as rewrite has.

replace term with term’
This tactic applies to any goal. It replaces all free occurrences of term in the current goal with term’ and
generates an equality term = term’ as a subgoal. This equality is automatically solved if it occurs among
the assumptions, or if its symmetric form occurs. It is equivalent to cut term = term’; [intro Hn ;
rewrite <- Hn ; clear Hn|| assumption || symmetry; try assumption].
Error: Terms do not have convertible types.

Variant: replace term with term’ by tactic
This acts as replace term with term’ but applies tactic to solve the generated subgoal term =
term’.

Variant: replace term
Replaces termwith term’ using the first assumption whose type has the form term = term’ or term’
= term.

Variant: replace -> term
Replaces term with term’ using the first assumption whose type has the form term = term’

Variant: replace <- term
Replaces term with term’ using the first assumption whose type has the form term’ = term

Variant: replace term with term
?

in clause by tactic
?

Variant: replace -> term in clause
Variant: replace <- term in clause

Acts as before but the replacements take place in the specified clause (see Performing computations) and not
only in the conclusion of the goal. The clause argument must not contain any type of nor value of.

Variant: cutrewrite <- (term = term’)
This tactic is deprecated. It can be replaced by enough (term = term’) as <-.

Variant: cutrewrite -> (term = term’)
This tactic is deprecated. It can be replaced by enough (term = term’) as ->.
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subst ident
This tactic applies to a goal that has ident in its context and (at least) one hypothesis, say H, of type ident =
t or t = ident with ident not occurring in t. Then it replaces ident by t everywhere in the goal (in the
hypotheses and in the conclusion) and clears ident and H from the context.
If ident is a local definition of the form ident := t, it is also unfolded and cleared.

Note:
• When several hypotheses have the form ident = t or t = ident, the first one is used.
• If H is itself dependent in the goal, it is replaced by the proof of reflexivity of equality.

Variant: subst ident
+

This is equivalent to subst ident1; ...; subst identn.
Variant: subst

This applies subst repeatedly from top to bottom to all identifiers of the context for which an equality of the
form ident = t or t = ident or ident := t exists, with ident not occurring in t.

Flag: Regular Subst Tactic
This option controls the behavior of subst. When it is activated (it is by default), subst also deals with
the following corner cases:
• A context with ordered hypotheses ident1 = ident2 and ident1 = t, or t′ = ident1‘ with t′
not a variable, and no other hypotheses of the form ident2 = u or u = ident2; without the option,
a second call to subst would be necessary to replace ident2 by t or t′ respectively.

• The presence of a recursive equation which without the option would be a cause of failure of subst.
• A context with cyclic dependencies as with hypotheses ident1 = f ident2 and ident2 = g
ident1 which without the option would be a cause of failure of subst.

Additionally, it prevents a local definition such as ident := t to be unfolded which otherwise it would
exceptionally unfold in configurations containing hypotheses of the form ident = u, or u′ = ident
with u′ not a variable. Finally, it preserves the initial order of hypotheses, which without the option it may
break. default.

stepl term
This tactic is for chaining rewriting steps. It assumes a goal of the form R term termwhere R is a binary relation
and relies on a database of lemmas of the form forall x y z, R x y -> eq x z -> R z y where
eq is typically a setoid equality. The application of stepl term then replaces the goal by R term term and
adds a new goal stating eq term term.
Command: Declare Left Step term

Adds term to the database used by stepl.
This tactic is especially useful for parametric setoids which are not accepted as regular setoids for rewrite and
setoid_replace (see Generalized rewriting).
Variant: stepl term by tactic

This applies stepl term then applies tactic to the second goal.
Variant: stepr term stepr term by tactic

This behaves as stepl but on the right-hand-side of the binary relation. Lemmas are expected to be of the
form forall x y z, R x y -> eq y z -> R x z.

Command: Declare Right Step term
Adds term to the database used by stepr.
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change term
This tactic applies to any goal. It implements the rule Conv given in Subtyping rules. change U replaces the
current goal T with U providing that U is well-formed and that T and U are convertible.
Error: Not convertible.

Variant: change term with term’
This replaces the occurrences of term by term’ in the current goal. The term term and term’ must be
convertible.

Variant: change term at num
+

with term’

This replaces the occurrences numbered num
+ of term by term’ in the current goal. The terms term

and term’ must be convertible.
Error: Too few occurrences.

Variant: change term at num
+

?

with term

?

in ident

This applies the change tactic not to the goal but to the hypothesis ident.
Variant: now_show term

This is a synonym of change term. It can be used to make some proof steps explicit when refactoring a
proof script to make it readable.

See also:
Performing computations

4.3.7 Performing computations

This set of tactics implements different specialized usages of the tactic change.
All conversion tactics (including change) can be parameterized by the parts of the goal where the conversion can occur.
This is done using goal clauses which consists in a list of hypotheses and, optionally, of a reference to the conclusion of
the goal. For defined hypothesis it is possible to specify if the conversion should occur on the type part, the body part or
both (default).
Goal clauses are written after a conversion tactic (tactics set, rewrite, replace and autorewrite also use goal
clauses) and are introduced by the keyword in. If no goal clause is provided, the default is to perform the conversion
only in the conclusion.
The syntax and description of the various goal clauses is the following:

• in ident
+

|- only in hypotheses ident +

• in ident
+

|- * in hypotheses ident + and in the conclusion
• in * |- in every hypothesis
• in * (equivalent to in * |- *) everywhere
• in (type of ident) (value of ident) ... |- in type part of ident, in the value part of
ident, etc.

For backward compatibility, the notation in ident
+ performs the conversion in hypotheses ident + .

cbv flag
*
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lazy flag
*

These parameterized reduction tactics apply to any goal and perform the normalization of the goal according to the
specified flags. In correspondence with the kinds of reduction considered in Coq namely 𝛽 (reduction of functional
application), 𝛿 (unfolding of transparent constants, see Controlling the reduction strategies and the conversion algo-
rithm), 𝜄 (reduction of pattern matching over a constructed term, and unfolding of fix and cofix expressions)
and 𝜁 (contraction of local definitions), the flags are either beta, delta, match, fix, cofix, iota or zeta.
The iota flag is a shorthand for match, fix and cofix. The delta flag itself can be refined into delta
qualid

+ or delta - qualid
+ , restricting in the first case the constants to unfold to the constants listed,

and restricting in the second case the constant to unfold to all but the ones explicitly mentioned. Notice that the
delta flag does not apply to variables bound by a let-in construction inside the term itself (use here the zeta
flag). In any cases, opaque constants are not unfolded (see Controlling the reduction strategies and the conversion
algorithm).
Normalization according to the flags is done by first evaluating the head of the expression into a weak-head normal
form, i.e. until the evaluation is blocked by a variable (or an opaque constant, or an axiom), as e.g. in x u1 ...
un , or match x with ... end, or (fix f x {struct x} := ...) x, or is a constructed form
(a 𝜆-expression, a constructor, a cofixpoint, an inductive type, a product type, a sort), or is a redex that the flags
prevent to reduce. Once a weak-head normal form is obtained, subterms are recursively reduced using the same
strategy.
Reduction to weak-head normal form can be done using two strategies: lazy (lazy tactic), or call-by-value (cbv
tactic). The lazy strategy is a call-by-need strategy, with sharing of reductions: the arguments of a function call are
weakly evaluated only when necessary, and if an argument is used several times then it is weakly computed only
once. This reduction is efficient for reducing expressions with dead code. For instance, the proofs of a proposition
exists x. P(x) reduce to a pair of a witness t, and a proof that t satisfies the predicate P. Most of the time,
t may be computed without computing the proof of P(t), thanks to the lazy strategy.
The call-by-value strategy is the one used in ML languages: the arguments of a function call are systematically
weakly evaluated first. Despite the lazy strategy always performs fewer reductions than the call-by-value strategy,
the latter is generally more efficient for evaluating purely computational expressions (i.e. with little dead code).

Variant: compute
Variant: cbv

These are synonyms for cbv beta delta iota zeta.
Variant: lazy

This is a synonym for lazy beta delta iota zeta.

Variant: compute qualid
+

Variant: cbv qualid
+

These are synonyms of cbv beta delta qualid
+

iota zeta.

Variant: compute - qualid
+

Variant: cbv - qualid
+

These are synonyms of cbv beta delta - qualid
+

iota zeta.

Variant: lazy qualid
+

Variant: lazy - qualid
+

These are respectively synonyms of lazy beta delta qualid
+

iota zeta and lazy beta

delta - qualid
+

iota zeta.
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Variant: vm_compute
This tactic evaluates the goal using the optimized call-by-value evaluation bytecode-based virtual machine described
in [GregoireL02]. This algorithm is dramatically more efficient than the algorithm used for the cbv tactic, but it
cannot be fine-tuned. It is specially interesting for full evaluation of algebraic objects. This includes the case of
reflection-based tactics.

Variant: native_compute
This tactic evaluates the goal by compilation to Objective Caml as described in [BDenesGregoire11]. If Coq is
running in native code, it can be typically two to five times faster than vm_compute. Note however that the
compilation cost is higher, so it is worth using only for intensive computations.
Flag: NativeCompute Profiling

OnLinux, if you have theperf profiler installed, this optionmakes it possible to profilenative_compute
evaluations.

Option: NativeCompute Profile Filename string
This option specifies the profile output; the default is native_compute_profile.data. The actual
filename used will contain extra characters to avoid overwriting an existing file; that filename is reported to
the user. That means you can individually profile multiple uses of native_compute in a script. From the
Linux command line, run perf report on the profile file to see the results. Consult the perf documen-
tation for more details.

Flag: Debug Cbv
This option makes cbv (and its derivative compute) print information about the constants it encounters and the
unfolding decisions it makes.

red
This tactic applies to a goal that has the form:

forall (x:T1) ... (xk:Tk), T

with T 𝛽𝜄𝜁-reducing to c t1 ... tn and c a constant. If c is transparent then it replaces c with its definition
(say t) and then reduces (t t1 ... tn ) according to 𝛽𝜄𝜁-reduction rules.

Error: Not reducible.

Error: No head constant to reduce.

hnf
This tactic applies to any goal. It replaces the current goal with its head normal form according to the 𝛽𝛿𝜄𝜁-reduction
rules, i.e. it reduces the head of the goal until it becomes a product or an irreducible term. All inner 𝛽𝜄-redexes
are also reduced.
Example: The term fun n : nat => S n + S n is not reduced by hnf.

Note: The 𝛿 rule only applies to transparent constants (seeControlling the reduction strategies and the conversion algorithm
on transparency and opacity).

cbn
simpl

These tactics apply to any goal. They try to reduce a term to something still readable instead of fully normalizing
it. They perform a sort of strong normalization with two key differences:

• They unfold a constant if and only if it leads to a 𝜄-reduction, i.e. reducing a match or unfolding a fixpoint.
• While reducing a constant unfolding to (co)fixpoints, the tactics use the name of the constant the (co)fixpoint
comes from instead of the (co)fixpoint definition in recursive calls.

The cbn tactic is claimed to be a more principled, faster and more predictable replacement for simpl.
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The cbn tactic accepts the same flags as cbv and lazy. The behavior of both simpl and cbn can be tuned
using the Arguments vernacular command as follows:

• A constant can be marked to be never unfolded by cbn or simpl:

Example

Arguments minus n m : simpl never.

After that command an expression like (minus (S x) y) is left untouched by the tactics cbn and
simpl.

• A constant can be marked to be unfolded only if applied to enough arguments. The number of arguments
required can be specified using the / symbol in the argument list of the Arguments vernacular command.

Example

Definition fcomp A B C f (g : A -> B) (x : A) : C := f (g x).
fcomp is defined

Arguments fcomp {A B C} f g x /.
Notation "f \o g" := (fcomp f g) (at level 50).

After that command the expression (f \o g) is left untouched by simpl while ((f \o g) t) is
reduced to (f (g t)). The same mechanism can be used to make a constant volatile, i.e. always unfolded.

Example

Definition volatile := fun x : nat => x.
volatile is defined

Arguments volatile / x.

• A constant can be marked to be unfolded only if an entire set of arguments evaluates to a constructor. The !
symbol can be used to mark such arguments.

Example

Arguments minus !n !m.

After that command, the expression (minus (S x) y) is left untouched by simpl, while (minus (S
x) (S y)) is reduced to (minus x y).

• A special heuristic to determine if a constant has to be unfolded can be activated with the following command:

Example

Arguments minus n m : simpl nomatch.
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The heuristic avoids to perform a simplification step that would expose a match construct in head position.
For example the expression (minus (S (S x)) (S y)) is simplified to (minus (S x) y) even
if an extra simplification is possible.

In detail, the tactic simpl first applies 𝛽𝜄-reduction. Then, it expands transparent constants and tries to reduce
further using 𝛽𝜄- reduction. But, when no 𝜄 rule is applied after unfolding then 𝛿-reductions are not applied. For
instance trying to use simpl on (plus n O) = n changes nothing.
Notice that only transparent constants whose name can be reused in the recursive calls are possibly unfolded by
simpl. For instance a constant defined by plus' := plus is possibly unfolded and reused in the recursive
calls, but a constant such as succ := plus (S O) is never unfolded. This is the main difference between
simpl and cbn. The tactic cbn reduces whenever it will be able to reuse it or not: succ t is reduced to S t.

Variant: cbn qualid
+

Variant: cbn - qualid
+

These are respectively synonyms of cbn beta delta qualid
+

iota zeta and cbn beta delta

- qualid
+

iota zeta (see cbn).
Variant: simpl pattern

This applies simpl only to the subterms matching pattern in the current goal.

Variant: simpl pattern at num
+

This applies simpl only to the num
+ occurrences of the subterms matching pattern in the current goal.

Error: Too few occurrences.

Variant: simpl qualid
Variant: simpl string

This applies simpl only to the applicative subterms whose head occurrence is the unfoldable constant qualid
(the constant can be referred to by its notation using string if such a notation exists).

Variant: simpl qualid at num
+

Variant: simpl string at num
+

This applies simpl only to the num
+ applicative subterms whose head occurrence is qualid (or string).

Flag: Debug RAKAM
This option makes cbn print various debugging information. RAKAM is the Refolding Algebraic Krivine Abstract
Machine.

unfold qualid
This tactic applies to any goal. The argument qualid must denote a defined transparent constant or local definition
(see Definitions and Controlling the reduction strategies and the conversion algorithm). The tactic unfold applies
the 𝛿 rule to each occurrence of the constant to which qualid refers in the current goal and then replaces it with
its 𝛽𝜄-normal form.

Error: qualid does not denote an evaluable constant.

Variant: unfold qualid in ident
Replaces qualid in hypothesis ident with its definition and replaces the hypothesis with its 𝛽𝜄 normal form.

Variant: unfold qualid
+

,

Replaces simultaneously qualid
+

, with their definitions and replaces the current goal with its 𝛽𝜄 normal form.
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Variant: unfold qualid at num
+
,

+

,

The lists num +
, specify the occurrences of qualid to be unfolded. Occurrences are located from left to right.

Error: Bad occurrence number of qualid.

Error: qualid does not occur.

Variant: unfold string
If string denotes the discriminating symbol of a notation (e.g. ”+”) or an expression defining a notation (e.g. "_
+ _"), and this notation refers to an unfoldable constant, then the tactic unfolds it.

Variant: unfold string%key
This is variant of unfold string where string gets its interpretation from the scope bound to the delimiting
key key instead of its default interpretation (see Local interpretation rules for notations).

Variant: unfold qualid_or_string at num
+
,

+

,

This is the most general form, where qualid_or_string is either a qualid or a string referring to a
notation.

fold term
This tactic applies to any goal. The term term is reduced using the red tactic. Every occurrence of the resulting
term in the goal is then replaced by term. This tactic is particularly useful when a fixpoint definition has been
wrongfully unfolded, making the goal very hard to read. On the other hand, when an unfolded function applied to
its argument has been reduced, the fold tactic won’t do anything.

Example

Goal ~0=0.
1 subgoal

============================
0 <> 0

unfold not.
1 subgoal

============================
0 = 0 -> False

Fail progress fold not.
The command has indeed failed with message:
Failed to progress.

pattern (0 = 0).
1 subgoal

============================
(fun P : Prop => P -> False) (0 = 0)

fold not.
1 subgoal

============================
0 <> 0
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Variant: fold term
+

Equivalent to fold term ; ... ; fold term.
pattern term

This command applies to any goal. The argument termmust be a free subterm of the current goal. The command
pattern performs 𝛽-expansion (the inverse of 𝛽-reduction) of the current goal (say T) by

• replacing all occurrences of term in T with a fresh variable
• abstracting this variable
• applying the abstracted goal to term

For instance, if the current goal T is expressible as 𝜑(t) where the notation captures all the instances of t in
𝜑(t), then pattern t transforms it into (fun x:A => 𝜑(x)) t. This tactic can be used, for instance,
when the tactic apply fails on matching.

Variant: pattern term at num
+

Only the occurrences num + of term are considered for 𝛽-expansion. Occurrences are located from left to right.

Variant: pattern term at - num
+

All occurrences except the occurrences of indexes num + of term are considered for 𝛽-expansion. Occurrences
are located from left to right.

Variant: pattern term
+
,

Starting from a goal 𝜑(t1 ... tm), the tactic pattern t1, ..., tm generates the equivalent goal (fun
(x1:A1) ... (xm :Am ) =>𝜑(x1 ... xm )) t1 ... tm. If ti occurs in one of the generated types Aj
these occurrences will also be considered and possibly abstracted.

Variant: pattern term at num
+

+

,

This behaves as above but processing only the occurrences num + of term starting from term.

Variant: pattern term at - ? num
+
,

?
+

,

This is the most general syntax that combines the different variants.

Conversion tactics applied to hypotheses

conv_tactic in ident
+
,

Applies the conversion tactic conv_tactic to the hypotheses ident + . The tactic conv_tactic is any of
the conversion tactics listed in this section.
If ident is a local definition, then ident can be replaced by (type of ident) to address not the body but the
type of the local definition.
Example: unfold not in (type of H1) (type of H3).

Error: No such hypothesis: ident.
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4.3.8 Automation

auto
This tactic implements a Prolog-like resolution procedure to solve the current goal. It first tries to solve the goal
using the assumption tactic, then it reduces the goal to an atomic one using intros and introduces the newly
generated hypotheses as hints. Then it looks at the list of tactics associated to the head symbol of the goal and tries
to apply one of them (starting from the tactics with lower cost). This process is recursively applied to the generated
subgoals.
By default, auto only uses the hypotheses of the current goal and the hints of the database named core.

Warning: auto uses a weaker version of apply that is closer to simple apply so it is expected that
sometimes auto will fail even if applying manually one of the hints would succeed.

Variant: auto num
Forces the search depth to be num. The maximal search depth is 5 by default.

Variant: auto with ident
+

Uses the hint databases ident + in addition to the database core.

Note: Use the fake database nocore if you want to not use the core database.

Variant: auto with *
Uses all existing hint databases. Using this variant is highly discouraged in finished scripts since it is both
slower and less robust than the variant where the required databases are explicitly listed.

See also:
The Hints Databases for auto and eauto for the list of pre-defined databases and the way to create or extend a
database.

Variant: auto using identi
+

with ident
+

?

Uses lemmasidenti in addition to hints. Ifident is an inductive type, it is the collection of its constructors
which are added as hints.

Note: The hints passed through the using clause are used in the same way as if they were passed through
a hint database. Consequently, they use a weaker version of apply and auto using ident may fail
where apply ident succeeds.
Given that this can be seen as counter-intuitive, it could be useful to have an option to use full-blown apply
for lemmas passed through the using clause. Contributions welcome!

Variant: info_auto
Behaves like auto but shows the tactics it uses to solve the goal. This variant is very useful for getting a
better understanding of automation, or to know what lemmas/assumptions were used.

Variant: debug auto
Behaves like auto but shows the tactics it tries to solve the goal, including failing paths.

Variant: info_
?
auto num

?
using lemma

+
?

with ident
+

?

This is the most general form, combining the various options.
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Variant: trivial
This tactic is a restriction of auto that is not recursive and tries only hints that cost 0. Typically it solves trivial
equalities like X=X.

Variant: trivial with ident
+

Variant: trivial with *

Variant: trivial using lemma
+

Variant: debug trivial
Variant: info_trivial

Variant: info_
?
trivial using lemma

+
?

with ident
+

?

Note: auto and trivial either solve completely the goal or else succeed without changing the goal. Use solve
[ auto ] and solve [ trivial ] if you would prefer these tactics to fail when they do not manage to solve the
goal.

Flag: Info Auto
Flag: Debug Auto
Flag: Info Trivial
Flag: Debug Trivial

These options enable printing of informative or debug information for the auto and trivial tactics.
eauto

This tactic generalizes auto. While auto does not try resolution hints which would leave existential variables in
the goal, eauto does try them (informally speaking, it internally uses a tactic close to simple eapply instead
of a tactic close to simple apply in the case of auto). As a consequence, eauto can solve such a goal:

Example

Hint Resolve ex_intro : core.
The hint ex_intro will only be used by eauto, because applying ex_intro would
leave variable x as unresolved existential variable.

Goal forall P:nat -> Prop, P 0 -> exists n, P n.
1 subgoal

============================
forall P : nat -> Prop, P 0 -> exists n : nat, P n

eauto.
No more subgoals.

Note that ex_intro should be declared as a hint.

Variant: info_
?
eauto num

?
using lemma

+
?

with ident
+

?

The various options for eauto are the same as for auto.
eauto also obeys the following options:
Flag: Info Eauto
Flag: Debug Eauto

See also:
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The Hints Databases for auto and eauto

autounfold with ident
+

This tactic unfolds constants that were declared through a Hint Unfold in the given databases.

Variant: autounfold with ident
+

in clause
Performs the unfolding in the given clause.

Variant: autounfold with *
Uses the unfold hints declared in all the hint databases.

autorewrite with ident
+

This tactic4 carries out rewritings according to the rewriting rule bases ident + .
Each rewriting rule from the base ident is applied to the main subgoal until it fails. Once all the rules have been
processed, if the main subgoal has progressed (e.g., if it is distinct from the initial main goal) then the rules of this
base are processed again. If the main subgoal has not progressed then the next base is processed. For the bases,
the behavior is exactly similar to the processing of the rewriting rules.
The rewriting rule bases are built with the Hint Rewrite command.

Warning: This tactic may loop if you build non terminating rewriting systems.

Variant: autorewrite with ident
+

using tactic

Performs, in the same way, all the rewritings of the bases ident + applying tactic to the main subgoal after each
rewriting step.

Variant: autorewrite with ident
+

in qualid
Performs all the rewritings in hypothesis qualid.

Variant: autorewrite with ident
+

in qualid using tactic
Performs all the rewritings in hypothesis qualid applying tactic to the main subgoal after each rewriting step.

Variant: autorewrite with ident
+

in clause
Performs all the rewriting in the clause clause. The clause argument must not contain any type of nor value
of.

See also:
Hint-Rewrite for feeding the database of lemmas used by autorewrite and autorewrite for examples showing
the use of this tactic.
easy

This tactic tries to solve the current goal by a number of standard closing steps. In particular, it tries to close
the current goal using the closing tactics trivial, reflexivity, symmetry, contradiction and
inversion of hypothesis. If this fails, it tries introducing variables and splitting and-hypotheses, using the
closing tactics afterwards, and splitting the goal using split and recursing.
This tactic solves goals that belong to many common classes; in particular, many cases of unsatisfiable hypotheses,
and simple equality goals are usually solved by this tactic.

Variant: now tactic
Run tactic followed by easy. This is a notation for tactic; easy.

4 The behavior of this tactic has changed a lot compared to the versions available in the previous distributions (V6). This may cause significant
changes in your theories to obtain the same result. As a drawback of the re-engineering of the code, this tactic has also been completely revised to get
a very compact and readable version.
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4.3.9 Controlling automation

The hints databases for auto and eauto

The hints for auto and eauto are stored in databases. Each database maps head symbols to a list of hints.
Command: Print Hint ident

Use this command to display the hints associated to the head symbol ident (see Print Hint). Each hint has a cost
that is a nonnegative integer, and an optional pattern. The hints with lower cost are tried first. A hint is tried by
auto when the conclusion of the current goal matches its pattern or when it has no pattern.

Creating Hint databases

One can optionally declare a hint database using the command Create HintDb. If a hint is added to an unknown
database, it will be automatically created.

Command: Create HintDb ident discriminated
?

This command creates a new database named ident. The database is implemented by a Discrimination Tree (DT)
that serves as an index of all the lemmas. The DT can use transparency information to decide if a constant should
be indexed or not (c.f. The hints databases for auto and eauto), making the retrieval more efficient. The legacy
implementation (the default one for new databases) uses the DT only on goals without existentials (i.e., auto goals),
for non-Immediate hints and does not make use of transparency hints, putting more work on the unification that is
run after retrieval (it keeps a list of the lemmas in case the DT is not used). The new implementation enabled by
the discriminated option makes use of DTs in all cases and takes transparency information into account. However,
the order in which hints are retrieved from the DT may differ from the order in which they were inserted, making
this implementation observationally different from the legacy one.

The general command to add a hint to some databases ident + is

Command: Hint hint_definition : ident
+

Variant: Hint hint_definition
No database name is given: the hint is registered in the core database.

Variant: Local Hint hint_definition : ident
+

This is used to declare hints that must not be exported to the other modules that require and import the
current module. Inside a section, the option Local is useless since hints do not survive anyway to the closure
of sections.

Variant: Local Hint hint_definition
Idem for the core database.

Variant: Hint Resolve term | num
?

pattern
?

?

This command adds simple apply term to the hint list with the head symbol of the type of term.
The cost of that hint is the number of subgoals generated by simple apply term or num if specified.
The associated pattern is inferred from the conclusion of the type of term or the given pattern if
specified. In case the inferred type of term does not start with a product the tactic added in the hint list is
exact term. In case this type can however be reduced to a type starting with a product, the tactic simple
apply term is also stored in the hints list. If the inferred type of term contains a dependent quantification
on a variable which occurs only in the premisses of the type and not in its conclusion, no instance could be
inferred for the variable by unification with the goal. In this case, the hint is added to the hint list of eauto
instead of the hint list of auto and a warning is printed. A typical example of a hint that is used only by
eauto is a transitivity lemma.
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Error: term cannot be used as a hint
The head symbol of the type of term is a bound variable such that this tactic cannot be associated to a
constant.

Variant: Hint Resolve term
+

Adds each Hint Resolve term.
Variant: Hint Resolve -> term

Adds the left-to-right implication of an equivalence as a hint (informally the hint will be used as apply <-
term, although as mentionned before, the tactic actually used is a restricted version of apply).

Variant: Resolve <- term
Adds the right-to-left implication of an equivalence as a hint.

Variant: Hint Immediate term
This command adds simple apply term; trivial to the hint list associated with the head symbol
of the type of ident in the given database. This tactic will fail if all the subgoals generated by simple
apply term are not solved immediately by the trivial tactic (which only tries tactics with cost 0).This
command is useful for theorems such as the symmetry of equality or n+1=m+1 -> n=m that we may like
to introduce with a limited use in order to avoid useless proof-search. The cost of this tactic (which never
generates subgoals) is always 1, so that it is not used by trivial itself.

Error: term cannot be used as a hint

Variant: Immediate term
+

Adds each Hint Immediate term.
Variant: Hint Constructors ident

If ident is an inductive type, this command adds all its constructors as hints of type Resolve. Then, when
the conclusion of current goal has the form (ident ...), auto will try to apply each constructor.

Error: ident is not an inductive type

Variant: Hint Constructors ident
+

Adds each Hint Constructors ident.
Variant: Hint Unfold qualid

This adds the tactic unfold qualid to the hint list that will only be used when the head constant of the
goal is ident. Its cost is 4.

Variant: Hint Unfold ident
+

Adds each Hint Unfold ident.

Variant: Hint Transparent qualid
+

Variant: Hint Opaque qualid
+

This adds transparency hints to the database, making qualid transparent or opaque constants during reso-
lution. This information is used during unification of the goal with any lemma in the database and inside the
discrimination network to relax or constrain it in the case of discriminated databases.

Variant: Hint Variables ( Transparent | Opaque )
Variant: Hint Constants ( Transparent | Opaque )

This sets the transparency flag used during unification of hints in the database for all constants or all variables,
overwritting the existing settings of opacity. It is advised to use this just after a Create HintDb command.

Variant: Hint Extern num pattern
?

=> tactic
This hint type is to extend auto with tactics other than apply and unfold. For that, we must specify a
cost, an optional pattern and a tactic to execute.
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Example

Hint Extern 4 (~(_ = _)) => discriminate.

Now, when the head of the goal is a disequality, auto will try discriminate if it does not manage to solve the
goal with hints with a cost less than 4.

One can even use some sub-patterns of the pattern in the tactic script. A sub-pattern is a question mark
followed by an identifier, like ?X1 or ?X2. Here is an example:

Example

Require Import List.
Hint Extern 5 ({?X1 = ?X2} + {?X1 <> ?X2}) => generalize X1, X2; decide␣

↪equality : eqdec.
Goal forall a b:list (nat * nat), {a = b} + {a <> b}.

1 subgoal

============================
forall a b : list (nat * nat), {a = b} + {a <> b}

Info 1 auto with eqdec.
<ltac_plugin::auto@0> eqdec
No more subgoals.

Variant: Hint Cut regexp

Warning: These hints currently only apply to typeclass proof search and the typeclasses eauto
tactic.

This command can be used to cut the proof-search tree according to a regular expression matching paths to
be cut. The grammar for regular expressions is the following. Beware, there is no operator precedence during
parsing, one can check with Print HintDb to verify the current cut expression:

e ::= ident hint or instance identifier
| _ any hint
| e\|e′ disjunction
| e e′ sequence
| e * Kleene star
| emp empty
| eps epsilon
| ( e )

The emp regexp does not match any search path while eps matches the empty path. During proof search,
the path of successive successful hints on a search branch is recorded, as a list of identifiers for the hints (note
that Hint Extern’s do not have an associated identifier). Before applying any hint ident the current path
p extended with ident is matched against the current cut expression c associated to the hint database. If
matching succeeds, the hint is not applied. The semantics of Hint Cut e is to set the cut expression to c
| e, the initial cut expression being emp.
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Variant: Hint Mode qualid (+ | ! | -)
*

This sets an optional mode of use of the identifier qualid. When proof-search faces a goal that ends in an
application of qualid to arguments term ... term, the mode tells if the hints associated to qualid
can be applied or not. A mode specification is a list of n +, ! or - items that specify if an argument of the
identifier is to be treated as an input (+), if its head only is an input (!) or an output (-) of the identifier. For
a mode to match a list of arguments, input terms and input heads must not contain existential variables or be
existential variables respectively, while outputs can be any term. Multiple modes can be declared for a single
identifier, in that case only one mode needs to match the arguments for the hints to be applied.The head of a
term is understood here as the applicative head, or the match or projection scrutinee’s head, recursively, casts
being ignored. Hint Mode is especially useful for typeclasses, when one does not want to support default
instances and avoid ambiguity in general. Setting a parameter of a class as an input forces proof-search to be
driven by that index of the class, with ! giving more flexibility by allowing existentials to still appear deeper
in the index but not at its head.

Note: One can use an Extern hint with no pattern to do pattern matching on hypotheses using match goal
with inside the tactic.

Hint databases defined in the Coq standard library

Several hint databases are defined in the Coq standard library. The actual content of a database is the collection of hints
declared to belong to this database in each of the various modules currently loaded. Especially, requiring new modules
may extend the database. At Coq startup, only the core database is nonempty and can be used.

core This special database is automatically used by auto, except when pseudo-database nocore is given
to auto. The core database contains only basic lemmas about negation, conjunction, and so on. Most
of the hints in this database come from the Init and Logic directories.

arith This database contains all lemmas about Peano’s arithmetic proved in the directories Init and Arith.
zarith contains lemmas about binary signed integers from the directories theories/ZArith. When required,

the module Omega also extends the database zarith with a high-cost hint that calls omega on equations
and inequalities in nat or Z.

bool contains lemmas about booleans, mostly from directory theories/Bool.
datatypes is for lemmas about lists, streams and so on that are mainly proved in the Lists subdirectory.
sets contains lemmas about sets and relations from the directories Sets and Relations.
typeclass_instances contains all the typeclass instances declared in the environment, including those used

for setoid_rewrite, from the Classes directory.
You are advised not to put your own hints in the core database, but use one or several databases specific to your develop-
ment.

Command: Remove Hints term
+

: ident
+

This command removes the hints associated to terms term + in databases ident + .
Command: Print Hint

This command displays all hints that apply to the current goal. It fails if no proof is being edited, while the two
variants can be used at every moment.

Variants:
Command: Print Hint ident

This command displays only tactics associated with ident in the hints list. This is independent of the goal being
edited, so this command will not fail if no goal is being edited.
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Command: Print Hint *
This command displays all declared hints.

Command: Print HintDb ident
This command displays all hints from database ident.

Command: Hint Rewrite term
+

: ident
+

This vernacular command adds the terms term
+ (their types must be equalities) in the rewriting bases

ident
+ with the default orientation (left to right). Notice that the rewriting bases are distinct from the auto

hint bases and thatauto does not take them into account.
This command is synchronous with the section mechanism (see Section mechanism): when closing a section,
all aliases created by Hint Rewrite in that section are lost. Conversely, when loading a module, all Hint
Rewrite declarations at the global level of that module are loaded.

Variants:

Command: Hint Rewrite -> term
+

: ident
+

This is strictly equivalent to the command above (we only make explicit the orientation which otherwise defaults to
->).

Command: Hint Rewrite <- term
+

: ident
+

Adds the rewriting rules term + with a right-to-left orientation in the bases ident + .

Command: Hint Rewrite term
+

using tactic : ident
+

When the rewriting rules term + in ident
+ will be used, the tactic tactic will be applied to the generated

subgoals, the main subgoal excluded.
Command: Print Rewrite HintDb ident

This command displays all rewrite hints contained in ident.

Hint locality

Hints provided by the Hint commands are erased when closing a section. Conversely, all hints of a module A that are
not defined inside a section (and not defined with option Local) become available when the module A is imported (using
e.g. Require Import A.).
As of today, hints only have a binary behavior regarding locality, as described above: either they disappear at the end of a
section scope, or they remain global forever. This causes a scalability issue, because hints coming from an unrelated part
of the code may badly influence another development. It can be mitigated to some extent thanks to the Remove Hints
command, but this is a mere workaround and has some limitations (for instance, external hints cannot be removed).
A proper way to fix this issue is to bind the hints to their module scope, as for most of the other objects Coq uses. Hints
should only be made available when the module they are defined in is imported, not just required. It is very difficult to
change the historical behavior, as it would break a lot of scripts. We propose a smooth transitional path by providing the
Loose Hint Behavior option which accepts three flags allowing for a fine-grained handling of non-imported hints.

Option: Loose Hint Behavior ( "Lax" | "Warn" | "Strict" )
This option accepts three values, which control the behavior of hints w.r.t. Import:

• ”Lax”: this is the default, and corresponds to the historical behavior, that is, hints defined outside of a section
have a global scope.
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• ”Warn”: outputs a warning when a non-imported hint is used. Note that this is an over-approximation, because
a hint may be triggered by a run that will eventually fail and backtrack, resulting in the hint not being actually
useful for the proof.

• ”Strict”: changes the behavior of an unloaded hint to a immediate fail tactic, allowing to emulate an import-
scoped hint mechanism.

Setting implicit automation tactics

Command: Proof with tactic
This command may be used to start a proof. It defines a default tactic to be used each time a tactic command
tactic1 is ended by .... In this case the tactic command typed by the user is equivalent to tactic1 ;tactic.
See also:
Proof in Switching on/off the proof editing mode.

Variant: Proof with tactic using ident
+

Combines in a single line Proof with and Proof using, see Switching on/off the proof editing mode

Variant: Proof using ident
+

with tactic
Combines in a single line Proof with and Proof using, see Switching on/off the proof editing mode

Command: Declare Implicit Tactic tactic
This command declares a tactic to be used to solve implicit arguments that Coq does not know how to solve
by unification. It is used every time the term argument of a tactic has one of its holes not fully resolved.
Deprecated since version 8.9: This command is deprecated. Use typeclasses or tactics-in-terms instead.

Example

Parameter quo : nat -> forall n:nat, n<>0 -> nat.
quo is declared

Notation "x // y" := (quo x y _) (at level 40).
Declare Implicit Tactic assumption.

Toplevel input, characters 0-35:
> Declare Implicit Tactic assumption.
> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Warning: Implicit tactics are deprecated

Goal forall n m, m<>0 -> { q:nat & { r | q * m + r = n } }.
1 subgoal

============================
forall n m : nat, m <> 0 -> {q : nat & {r : nat | q * m + r = n}}

intros.
1 subgoal

n, m : nat
H : m <> 0
============================
{q : nat & {r : nat | q * m + r = n}}

exists (n // m).
1 subgoal

(continues on next page)
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(continued from previous page)

n, m : nat
H : m <> 0
============================
{r : nat | n // m * m + r = n}

The tactic exists (n // m) did not fail. The hole was solved by assumption so that it behaved as
exists (quo n m H).

4.3.10 Decision procedures

tauto
This tactic implements a decision procedure for intuitionistic propositional calculus based on the contraction-free
sequent calculi LJT* of Roy Dyckhoff [Dyc92]. Note that tauto succeeds on any instance of an intuitionistic
tautological proposition. tauto unfolds negations and logical equivalence but does not unfold any other definition.

Example
The following goal can be proved by tauto whereas auto would fail:

Goal forall (x:nat) (P:nat -> Prop), x = 0 \/ P x -> x <> 0 -> P x.
1 subgoal

============================
forall (x : nat) (P : nat -> Prop), x = 0 \/ P x -> x <> 0 -> P x

intros.
1 subgoal

x : nat
P : nat -> Prop
H : x = 0 \/ P x
H0 : x <> 0
============================
P x

tauto.
No more subgoals.

Moreover, if it has nothing else to do, tauto performs introductions. Therefore, the use of intros in the previous
proof is unnecessary. tauto can for instance for:

Example

Goal forall (A:Prop) (P:nat -> Prop), A \/ (forall x:nat, ~ A -> P x) -> forall x:nat,
↪ ~ A -> P x.

1 subgoal

============================
forall (A : Prop) (P : nat -> Prop),
A \/ (forall x : nat, ~ A -> P x) -> forall x : nat, ~ A -> P x

(continues on next page)
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(continued from previous page)
tauto.

No more subgoals.

Note: In contrast, tauto cannot solve the following goal Goal forall (A:Prop) (P:nat -> Prop),
A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ ~ (A \/ P x). because (forall
x:nat, ~ A -> P x) cannot be treated as atomic and an instantiation of x is necessary.

Variant: dtauto
While tauto recognizes inductively defined connectives isomorphic to the standard connectives and, prod, or,
sum, False, Empty_set, unit, True, dtauto also recognizes all inductive types with one constructor and
no indices, i.e. record-style connectives.

intuition tactic
The tactic intuition takes advantage of the search-tree built by the decision procedure involved in the tactic
tauto. It uses this information to generate a set of subgoals equivalent to the original one (but simpler than it)
and applies the tactic tactic to them [Mun94]. If this tactic fails on some goals then intuition fails. In fact,
tauto is simply intuition fail.

Example
For instance, the tactic intuition auto applied to the goal:

(forall (x:nat), P x) /\ B -> (forall (y:nat), P y) /\ P O \/ B /\ P O

internally replaces it by the equivalent one:

(forall (x:nat), P x), B |- P O

and then uses auto which completes the proof.

Originally due to César Muñoz, these tactics (tauto and intuition) have been completely re-engineered by David
Delahaye using mainly the tactic language (see The tactic language). The code is now much shorter and a significant
increase in performance has been noticed. The general behavior with respect to dependent types, unfolding and introduc-
tions has slightly changed to get clearer semantics. This may lead to some incompatibilities.
Variant: intuition

Is equivalent to intuition auto with *.
Variant: dintuition

Whileintuition recognizes inductively defined connectives isomorphic to the standard connectivesand, prod,
or, sum, False, Empty_set, unit, True, dintuition also recognizes all inductive types with one con-
structor and no indices, i.e. record-style connectives.

Flag: Intuition Negation Unfolding
Controls whether intuition unfolds inner negations which do not need to be unfolded. This option is on by
default.

rtauto
The rtauto tactic solves propositional tautologies similarly to what tauto does. The main difference is that the
proof term is built using a reflection scheme applied to a sequent calculus proof of the goal. The search procedure
is also implemented using a different technique.
Users should be aware that this differencemay result in faster proof-search but slower proof-checking, and rtauto
might not solve goals that tauto would be able to solve (e.g. goals involving universal quantifiers).

4.3. Tactics 207



The Coq Reference Manual, Release 8.9.1

Note that this tactic is only available after a Require Import Rtauto.
firstorder

The tactic firstorder is an experimental extension of tauto to first- order reasoning, written by Pierre Cor-
bineau. It is not restricted to usual logical connectives but instead may reason about any first-order class inductive
definition.

Option: Firstorder Solver tactic
The default tactic used by firstorder when no rule applies is auto with *, it can be reset locally or globally
using this option.
Command: Print Firstorder Solver

Prints the default tactic used by firstorder when no rule applies.
Variant: firstorder tactic

Tries to solve the goal with tactic when no logical rule may apply.

Variant: firstorder using qualid
+

Adds lemmas qualid
+ to the proof-search environment. If qualid refers to an inductive type, it is the

collection of its constructors which are added to the proof-search environment.

Variant: firstorder with ident
+

Adds lemmas from auto hint bases ident + to the proof-search environment.

Variant: firstorder tactic using qualid
+

with ident
+

This combines the effects of the different variants of firstorder.
Option: Firstorder Depth num

This option controls the proof-search depth bound.
congruence

The tactic congruence, by Pierre Corbineau, implements the standard Nelson and Oppen congruence closure
algorithm, which is a decision procedure for ground equalities with uninterpreted symbols. It also includes con-
structor theory (see injection and discriminate). If the goal is a non-quantified equality, congruence tries
to prove it with non-quantified equalities in the context. Otherwise it tries to infer a discriminable equality from
those in the context. Alternatively, congruence tries to prove that a hypothesis is equal to the goal or to the negation
of another hypothesis.
congruence is also able to take advantage of hypotheses stating quantified equalities, but you have to provide a
bound for the number of extra equalities generated that way. Please note that one of the sides of the equality must
contain all the quantified variables in order for congruence to match against it.

Example

Theorem T (A:Type) (f:A -> A) (g: A -> A -> A) a b: a=(f a) -> (g b (f a))=(f (f a)) ->
↪ (g a b)=(f (g b a)) -> (g a b)=a.

1 subgoal

A : Type
f : A -> A
g : A -> A -> A
a, b : A
============================
a = f a -> g b (f a) = f (f a) -> g a b = f (g b a) -> g a b = a

intros.

(continues on next page)
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(continued from previous page)
1 subgoal

A : Type
f : A -> A
g : A -> A -> A
a, b : A
H : a = f a
H0 : g b (f a) = f (f a)
H1 : g a b = f (g b a)
============================
g a b = a

congruence.
No more subgoals.

Qed.
T is defined

Theorem inj (A:Type) (f:A -> A * A) (a c d: A) : f = pair a -> Some (f c) = Some (f␣
↪d) -> c=d.

1 subgoal

A : Type
f : A -> A * A
a, c, d : A
============================
f = pair a -> Some (f c) = Some (f d) -> c = d

intros.
1 subgoal

A : Type
f : A -> A * A
a, c, d : A
H : f = pair a
H0 : Some (f c) = Some (f d)
============================
c = d

congruence.
No more subgoals.

Qed.
inj is defined

Variant: congruence n
Tries to add at most n instances of hypotheses stating quantified equalities to the problem in order to solve it. A
bigger value ofn does not make success slower, only failure. Youmight consider adding some lemmas as hypotheses
using assert in order for congruence to use them.

Variant: congruence with term
+

Adds term
+ to the pool of terms used by congruence. This helps in case you have partially applied con-

structors in your goal.
Error: I don’t know how to handle dependent equality.
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The decision procedure managed to find a proof of the goal or of a discriminable equality but this proof could not
be built in Coq because of dependently-typed functions.

Error: Goal is solvable by congruence but some arguments are missing. Try congruence with term
+
, replacing metavariables by arbitrary terms.

The decision procedure could solve the goal with the provision that additional arguments are supplied for some
partially applied constructors. Any term of an appropriate type will allow the tactic to successfully solve the goal.
Those additional arguments can be given to congruence by filling in the holes in the terms given in the error message,
using the congruence with variant described above.

Flag: Congruence Verbose
This option makes congruence print debug information.

4.3.11 Checking properties of terms

Each of the following tactics acts as the identity if the check succeeds, and results in an error otherwise.
constr_eq term term

This tactic checks whether its arguments are equal modulo alpha conversion, casts and universe constraints. It may
unify universes.

Error: Not equal.

Error: Not equal (due to universes).

constr_eq_strict term term
This tactic checks whether its arguments are equal modulo alpha conversion, casts and universe constraints. It does
not add new constraints.

Error: Not equal.

Error: Not equal (due to universes).

unify term term
This tactic checks whether its arguments are unifiable, potentially instantiating existential variables.

Error: Unable to unify term with term.

Variant: unify term term with ident
Unification takes the transparency information defined in the hint database ident into account (see the hints
databases for auto and eauto).

is_evar term
This tactic checks whether its argument is a current existential variable. Existential variables are uninstantiated
variables generated by eapply and some other tactics.

Error: Not an evar.

has_evar term
This tactic checks whether its argument has an existential variable as a subterm. Unlike context patterns combined
with is_evar, this tactic scans all subterms, including those under binders.

Error: No evars.

is_var term
This tactic checks whether its argument is a variable or hypothesis in the current goal context or in the opened
sections.

Error: Not a variable or hypothesis.
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4.3.12 Equality

f_equal
This tactic applies to a goal of the form f a1 ... an = f′a′1 ... a′n. Using f_equal on such a goal
leads to subgoals f=f′ and a1 = a′1 and so on up to an = a′n. Amongst these subgoals, the simple ones (e.g.
provable by reflexivity or congruence) are automatically solved by f_equal.

reflexivity
This tactic applies to a goal that has the form t=u. It checks that t and u are convertible and then solves the goal.
It is equivalent to apply refl_equal.
Error: The conclusion is not a substitutive equation.

Error: Unable to unify ... with ...

symmetry
This tactic applies to a goal that has the form t=u and changes it into u=t.

Variant: symmetry in ident
If the statement of the hypothesis ident has the form t=u, the tactic changes it to u=t.

transitivity term
This tactic applies to a goal that has the form t=u and transforms it into the two subgoals t=term and term=u.

4.3.13 Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets or types. These tactics
use the equality eq:forall (A:Type), A->A->Prop, simply written with the infix symbol =.
decide equality

This tactic solves a goal of the form forall x y : R, {x = y} + {~ x = y}, where R is an inductive
type such that its constructors do not take proofs or functions as arguments, nor objects in dependent types. It solves
goals of the form {x = y} + {~ x = y} as well.

compare term term
This tactic compares two given objects term and term of an inductive datatype. If G is the current goal, it leaves
the sub- goals term =term -> G and ~ term = term -> G. The type of term and term must satisfy
the same restrictions as in the tactic decide equality.

simplify_eq term
Let term be the proof of a statement of conclusion term = term. If term and term are structurally
different (in the sense described for the tactic discriminate), then the tactic simplify_eq behaves as
discriminate term, otherwise it behaves as injection term.

Note: If some quantified hypothesis of the goal is named ident, then simplify_eq ident first introduces the
hypothesis in the local context using intros until ident.

Variant: simplify_eq num
This does the same thing as intros until num then simplify_eq ident where ident is the identifier
for the last introduced hypothesis.

Variant: simplify_eq term with bindings_list
This does the same as simplify_eq term but using the given bindings to instantiate parameters or hypotheses
of term.

Variant: esimplify_eq num
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Variant: esimplify_eq term with bindings_list
?

This works the same as simplify_eq but if the type of term, or the type of the hypothesis referred to by num,
has uninstantiated parameters, these parameters are left as existential variables.

Variant: simplify_eq
If the current goal has form t1 <> t2, it behaves as intro ident; simplify_eq ident.

dependent rewrite -> ident
This tactic applies to any goal. If ident has type (existT B a b)=(existT B a' b') in the local
context (i.e. each term of the equality has a sigma type { a:A & (B a)}) this tactic rewrites a into a' and
b into b' in the current goal. This tactic works even if B is also a sigma type. This kind of equalities between
dependent pairs may be derived by the injection and inversion tactics.

Variant: dependent rewrite <- ident
Analogous to dependent rewrite -> but uses the equality from right to left.

4.3.14 Inversion

functional inversion ident
functional inversion is a tactic that performs inversion on hypothesis ident of the form qualid

term
+

= term or term = qualid term
+ where qualid must have been defined using Function

(see Advanced recursive functions). Note that this tactic is only available after a Require Import FunInd.
Error: Hypothesis ident must contain at least one Function.

Error: Cannot find inversion information for hypothesis ident.
This error may be raised when some inversion lemma failed to be generated by Function.

Variant: functional inversion num
This does the same thing as intros until num folowed by functional inversion ident
where ident is the identifier for the last introduced hypothesis.

Variant: functional inversion ident qualid
Variant: functional inversion num qualid

If the hypothesis ident (or num) has a type of the form qualid1 termi
+

= qualid2 termj
+

where qualid1 and qualid2 are valid candidates to functional inversion, this variant allows choosing
which qualid is inverted.

quote ident

This kind of inversion has nothing to do with the tactic inversion above. This tactic does change (@ident t),
where t is a term built in order to ensure the convertibility. In other words, it does inversion of the function ident. This
function must be a fixpoint on a simple recursive datatype: see quote for the full details.
Error: quote: not a simple fixpoint.

Happens when quote is not able to perform inversion properly.

Variant: quote ident ident
*

All terms that are built only with ident
* will be considered by quote as constants rather than variables.

4.3.15 Classical tactics

In order to ease the proving process, when the Classical module is loaded. A few more tactics are available. Make sure
to load the module using the Require Import command.
classical_left
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classical_right
These tactics are the analog of left and right but using classical logic. They can only be used for disjunctions.
Use classical_left to prove the left part of the disjunction with the assumption that the negation of right part
holds. Use classical_right to prove the right part of the disjunction with the assumption that the negation
of left part holds.

4.3.16 Automating

btauto
The tactic btauto implements a reflexive solver for boolean tautologies. It solves goals of the form t = u where
t and u are constructed over the following grammar:

t ::= x
∣ true
∣ false
∣ orb t1 t2
∣ andb t1 t2
∣ xorb t1 t2
∣ negb t
∣ if t1 then t2 else t3

Whenever the formula supplied is not a tautology, it also provides a counter-example.
Internally, it uses a system very similar to the one of the ring tactic.
Note that this tactic is only available after a Require Import Btauto.
Error: Cannot recognize a boolean equality.

The goal is not of the form t = u. Especially note that btauto doesn’t introduce variables into the context
on its own.

omega
The tactic omega, due to Pierre Crégut, is an automatic decision procedure for Presburger arithmetic. It solves
quantifier-free formulas built with ~, /, /`, `-> on top of equalities, inequalities and disequalities on both the
type nat of natural numbers and Z of binary integers. This tactic must be loaded by the command Require
Import Omega. See the additional documentation about omega (see ChapterOmega: a solver for quantifier-free
problems in Presburger Arithmetic).

ring
This tactic solves equations upon polynomial expressions of a ring (or semiring) structure. It proceeds by normal-
izing both hand sides of the equation (w.r.t. associativity, commutativity and distributivity, constant propagation)
and comparing syntactically the results.

ring_simplify term
*

This tactic applies the normalization procedure described above to the given terms. The tactic then replaces all
occurrences of the terms given in the conclusion of the goal by their normal forms. If no term is given, then the
conclusion should be an equation and both hand sides are normalized.

See The ring and field tactic families for more information on the tactic and how to declare new ring structures. All
declared field structures can be printed with the Print Rings command.
field

field_simplify term
*

field_simplify_eq
The field tactic is built on the same ideas as ring: this is a reflexive tactic that solves or simplifies equations in a field
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structure. The main idea is to reduce a field expression (which is an extension of ring expressions with the inverse
and division operations) to a fraction made of two polynomial expressions.

Tactic field is used to solve subgoals, whereas field_simplify term
+ replaces the provided terms by

their reduced fraction. field_simplify_eq applies when the conclusion is an equation: it simplifies both
hand sides and multiplies so as to cancel denominators. So it produces an equation without division nor inverse.
All of these 3 tactics may generate a subgoal in order to prove that denominators are different from zero.
See The ring and field tactic families for more information on the tactic and how to declare new field structures. All
declared field structures can be printed with the Print Fields command.

Example

Require Import Reals.
[Loading ML file r_syntax_plugin.cmxs ... done]
[Loading ML file quote_plugin.cmxs ... done]
[Loading ML file newring_plugin.cmxs ... done]
[Loading ML file omega_plugin.cmxs ... done]
[Loading ML file micromega_plugin.cmxs ... done]

Goal forall x y:R,
(x * y > 0)%R ->
(x * (1 / x + x / (x + y)))%R =
((- 1 / y) * y * (- x * (x / (x + y)) - 1))%R.

1 subgoal

============================
forall x y : R,
(x * y > 0)%R ->
(x * (1 / x + x / (x + y)))%R = (-1 / y * y * (- x * (x / (x + y)) - 1))%R

intros; field.
1 subgoal

x, y : R
H : (x * y > 0)%R
============================
(x + y)%R <> 0%R /\ y <> 0%R /\ x <> 0%R

See also:
File plugins/setoid_ring/RealField.v for an example of instantiation, theory theories/Reals for many examples of use of
field.

4.3.17 Non-logical tactics

cycle num
This tactic puts the num first goals at the end of the list of goals. If num is negative, it will put the last |𝑛𝑢𝑚| goals
at the beginning of the list.

Example

Parameter P : nat -> Prop.
P is declared

(continues on next page)
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(continued from previous page)

Goal P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5.
1 subgoal

============================
P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5

repeat split.
5 subgoals

============================
P 1

subgoal 2 is:
P 2

subgoal 3 is:
P 3

subgoal 4 is:
P 4

subgoal 5 is:
P 5

all: cycle 2.
5 subgoals

============================
P 3

subgoal 2 is:
P 4

subgoal 3 is:
P 5

subgoal 4 is:
P 1

subgoal 5 is:
P 2

all: cycle -3.
5 subgoals

============================
P 5

subgoal 2 is:
P 1

subgoal 3 is:
P 2

subgoal 4 is:
P 3

subgoal 5 is:
P 4

swap num num
This tactic switches the position of the goals of indices num and num. If either num or num is negative then goals
are counted from the end of the focused goal list. Goals are indexed from 1, there is no goal with position 0.

4.3. Tactics 215



The Coq Reference Manual, Release 8.9.1

Example

Parameter P : nat -> Prop.
P is declared

Goal P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5.
1 subgoal

============================
P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5

repeat split.
5 subgoals

============================
P 1

subgoal 2 is:
P 2

subgoal 3 is:
P 3

subgoal 4 is:
P 4

subgoal 5 is:
P 5

all: swap 1 3.
5 subgoals

============================
P 3

subgoal 2 is:
P 2

subgoal 3 is:
P 1

subgoal 4 is:
P 4

subgoal 5 is:
P 5

all: swap 1 -1.
5 subgoals

============================
P 5

subgoal 2 is:
P 2

subgoal 3 is:
P 1

subgoal 4 is:
P 4

subgoal 5 is:
P 3

revgoals
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This tactics reverses the list of the focused goals.

Example

Parameter P : nat -> Prop.
P is declared

Goal P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5.
1 subgoal

============================
P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5

repeat split.
5 subgoals

============================
P 1

subgoal 2 is:
P 2

subgoal 3 is:
P 3

subgoal 4 is:
P 4

subgoal 5 is:
P 5

all: revgoals.
5 subgoals

============================
P 5

subgoal 2 is:
P 4

subgoal 3 is:
P 3

subgoal 4 is:
P 2

subgoal 5 is:
P 1

shelve
This tactic moves all goals under focus to a shelf. While on the shelf, goals will not be focused on. They can be
solved by unification, or they can be called back into focus with the command Unshelve.
Variant: shelve_unifiable

Shelves only the goals under focus that are mentioned in other goals. Goals that appear in the type of other
goals can be solved by unification.

Example

Goal exists n, n=0.
1 subgoal

(continues on next page)
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(continued from previous page)
============================
exists n : nat, n = 0

refine (ex_intro _ _ _).
1 focused subgoal
(shelved: 1)

============================
?Goal = 0

all: shelve_unifiable.
reflexivity.

No more subgoals.

Command: Unshelve
This command moves all the goals on the shelf (see shelve) from the shelf into focus, by appending them to the
end of the current list of focused goals.

give_up
This tactic removes the focused goals from the proof. They are not solved, and cannot be solved later in the proof.
As the goals are not solved, the proof cannot be closed.
The give_up tactic can be used while editing a proof, to choose to write the proof script in a non-sequential
order.

4.3.18 Simple tactic macros

A simple example has more value than a long explanation:

Example

Ltac Solve := simpl; intros; auto.
Solve is defined

Ltac ElimBoolRewrite b H1 H2 :=
elim b; [ intros; rewrite H1; eauto | intros; rewrite H2; eauto ].

ElimBoolRewrite is defined

The tactics macros are synchronous with the Coq section mechanism: a tactic definition is deleted from the current
environment when you close the section (see also Section mechanism) where it was defined. If you want that a tactic
macro defined in a module is usable in the modules that require it, you should put it outside of any section.
The tactic language gives examples of more complex user-defined tactics.

4.4 The tactic language

This chapter gives a compact documentation of Ltac, the tactic language available in Coq. We start by giving the syntax,
and next, we present the informal semantics. If you want to know more regarding this language and especially about its
foundations, you can refer to [Del00]. Chapter Detailed examples of tactics is devoted to giving small but nontrivial use
examples of this language.
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4.4.1 Syntax

The syntax of the tactic language is given below. See Chapter The Gallina specification language for a description of
the BNF metasyntax used in these grammar rules. Various already defined entries will be used in this chapter: entries
natural, integer, ident, qualid, term, cpattern and atomic_tactic represent respectively the natural
and integer numbers, the authorized identificators and qualified names, Coq terms and patterns and all the atomic tactics
described in Chapter Tactics. The syntax of cpattern is the same as that of terms, but it is extended with pattern
matching metavariables. In cpattern, a pattern matching metavariable is represented with the syntax ?id where id is
an ident. The notation _ can also be used to denote metavariable whose instance is irrelevant. In the notation ?id, the
identifier allows us to keep instantiations and to make constraints whereas _ shows that we are not interested in what will
be matched. On the right hand side of pattern matching clauses, the named metavariables are used without the question
mark prefix. There is also a special notation for second-order pattern matching problems: in an applicative pattern of the
form @?id id1 … idn, the variable id matches any complex expression with (possible) dependencies in the variables
id1 … idn and returns a functional term of the form fun id1 … idn => term.
The main entry of the grammar is expr. This language is used in proof mode but it can also be used in toplevel definitions
as shown below.

Note:
• The infix tacticals  … || … ,  … + … , and  … ; …  are associative.

Example
If you want that tactic2; tactic3 be fully run on the first subgoal generated by tactic1, before running
on the other subgoals, then you should not write tactic1; (tactic2; tactic3) but rather tactic1;
[> tactic2; tactic3 .. ].

• In tacarg, there is an overlap between qualid as a direct tactic argument and qualid as a particular case of
term. The resolution is done by first looking for a reference of the tactic language and if it fails, for a reference
to a term. To force the resolution as a reference of the tactic language, use the form ltac:(qualid). To force
the resolution as a reference to a term, use the syntax (qualid).

• As shown by the figure, tactical  … || …  binds more than the prefix tacticals try, repeat, do and abstract
which themselves bind more than the postfix tactical  … ;[ … ] which binds at the same level as  … ; … .

Example

try repeat tactic1 || tactic2; tactic3; [ tactic
+

|
]; tactic4

is understood as:

((try (repeat (tactic1 || tactic2)); tactic3); [ tactic
+

|
]); tactic4

expr ::= expr ; expr
| [> expr | ... | expr ]
| expr ; [ expr | ... | expr ]
| tacexpr3

tacexpr3 ::= do (natural | ident) tacexpr3
| progress tacexpr3
| repeat tacexpr3
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| try tacexpr3
| once tacexpr3
| exactly_once tacexpr3
| timeout (natural | ident) tacexpr3
| time [string] tacexpr3
| only selector: tacexpr3
| tacexpr2

tacexpr2 ::= tacexpr1 || tacexpr3
| tacexpr1 + tacexpr3
| tryif tacexpr1 then tacexpr1 else tacexpr1
| tacexpr1

tacexpr1 ::= fun name ... name => atom
| let [rec] let_clause with ... with let_clause in atom
| match goal with context_rule | ... | context_rule end
| match reverse goal with context_rule | ... | context_rule end
| match expr with match_rule | ... | match_rule end
| lazymatch goal with context_rule | ... | context_rule end
| lazymatch reverse goal with context_rule | ... | context_rule end
| lazymatch expr with match_rule | ... | match_rule end
| multimatch goal with context_rule | ... | context_rule end
| multimatch reverse goal with context_rule | ... | context_rule end
| multimatch expr with match_rule | ... | match_rule end
| abstract atom
| abstract atom using ident
| first [ expr | ... | expr ]
| solve [ expr | ... | expr ]
| idtac [ message_token ... message_token]
| fail [natural] [message_token ... message_token]
| fresh [ component … component ]
| context ident [term]
| eval redexpr in term
| type of term
| constr : term
| uconstr : term
| type_term term
| numgoals
| guard test
| assert_fails tacexpr3
| assert_succeeds tacexpr3
| atomic_tactic
| qualid tacarg ... tacarg
| atom

atom ::= qualid
| ()
| integer
| ( expr )

component ::= string | qualid
message_token ::= string | ident | integer
tacarg ::= qualid

| ()
| ltac : atom
| term

let_clause ::= ident [name ... name] := expr
context_rule ::= context_hyp, ..., context_hyp |- cpattern => expr
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| cpattern => expr
| |- cpattern => expr
| _ => expr

context_hyp ::= name : cpattern
| name := cpattern [: cpattern]

match_rule ::= cpattern => expr
| context [ident] [ cpattern ] => expr
| _ => expr

test ::= integer = integer
| integer (< | <= | > | >=) integer

selector ::= [ident]
| integer
| (integer | integer - integer), ..., (integer | integer - integer)

toplevel_selector ::= selector
| all
| par
| !

top ::= [Local] Ltac ltac_def with ... with ltac_def
ltac_def ::= ident [ident ... ident] := expr

| qualid [ident ... ident] ::= expr

4.4.2 Semantics

Tactic expressions can only be applied in the context of a proof. The evaluation yields either a term, an integer or a tactic.
Intermediate results can be terms or integers but the final result must be a tactic which is then applied to the focused goals.
There is a special case for match goal expressions of which the clauses evaluate to tactics. Such expressions can only
be used as end result of a tactic expression (never as argument of a non-recursive local definition or of an application).
The rest of this section explains the semantics of every construction of Ltac.

Sequence

A sequence is an expression of the following form:
expr1 ; expr2

The expression expr1 is evaluated to v1, which must be a tactic value. The tactic v1 is applied to the current goal,
possibly producing more goals. Then expr2 is evaluated to produce v2, which must be a tactic value. The tactic
v2 is applied to all the goals produced by the prior application. Sequence is associative.

Local application of tactics

Different tactics can be applied to the different goals using the following form:

[> expr
*

|
]

The expressions expri are evaluated to vi, for i = 1, ..., n and all have to be tactics. The vi is applied to the i-th
goal, for i = 1, ..., n. It fails if the number of focused goals is not exactly n.
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Note: If no tactic is given for the i-th goal, it behaves as if the tactic idtac were given. For instance, [> | auto]
is a shortcut for [> idtac | auto ].

Variant: [> expri
*

|
| expr .. | exprj

*

|
]

In this variant, expr is used for each goal coming after those covered by the list of expri but before those
covered by the list of exprj.

Variant: [> expr
*

|
| .. | expr

*

|
]

In this variant, idtac is used for the goals not covered by the two lists of expr.
Variant: [> expr .. ]

In this variant, the tactic expr is applied independently to each of the goals, rather than globally. In particular,
if there are no goals, the tactic is not run at all. A tactic which expects multiple goals, such as swap, would
act as if a single goal is focused.

Variant: expr0 ; [ expri
*

|
]

This variant of local tactic application is paired with a sequence. In this variant, there must be as many expri
as goals generated by the application of expr0 to each of the individual goals independently. All the above
variants work in this form too. Formally, expr ; [ ... ] is equivalent to [> expr ; [> ... ]
.. ].

Goal selectors

We can restrict the application of a tactic to a subset of the currently focused goals with:
toplevel_selector : expr

We can also use selectors as a tactical, which allows to use them nested in a tactic expression, by using the keyword
only:
Variant: only selector : expr

When selecting several goals, the tactic expr is applied globally to all selected goals.
Variant: [ident] : expr

In this variant, expr is applied locally to a goal previously named by the user (see Existential variables).
Variant: num : expr

In this variant, expr is applied locally to the num-th goal.

Variant: num-num
+
, : expr

In this variant, expr is applied globally to the subset of goals described by the given ranges. You can write
a single n as a shortcut for n-n when specifying multiple ranges.

Variant: all: expr
In this variant, expr is applied to all focused goals. all: can only be used at the toplevel of a tactic
expression.

Variant: !: expr
In this variant, if exactly one goal is focused, expr is applied to it. Otherwise the tactic fails. !: can only
be used at the toplevel of a tactic expression.

Variant: par: expr
In this variant, expr is applied to all focused goals in parallel. The number of workers can be controlled via
the command line option -async-proofs-tac-j taking as argument the desired number of workers.
Limitations: par: only works on goals containing no existential variables and expr must either solve the
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goal completely or do nothing (i.e. it cannot make some progress). par: can only be used at the toplevel of
a tactic expression.

Error: No such goal.

For loop

There is a for loop that repeats a tactic num times:
do num expr

expr is evaluated to v which must be a tactic value. This tactic value v is applied num times. Supposing num
> 1, after the first application of v, v is applied, at least once, to the generated subgoals and so on. It fails if the
application of v fails before the num applications have been completed.

Repeat loop

We have a repeat loop with:
repeat expr

expr is evaluated to v. If v denotes a tactic, this tactic is applied to each focused goal independently. If the
application succeeds, the tactic is applied recursively to all the generated subgoals until it eventually fails. The
recursion stops in a subgoal when the tactic has failed to make progress. The tactic repeat expr itself never
fails.

Error catching

We can catch the tactic errors with:
try expr

expr is evaluated tovwhichmust be a tactic value. The tactic valuev is applied to each focused goal independently.
If the application of v fails in a goal, it catches the error and leaves the goal unchanged. If the level of the exception
is positive, then the exception is re-raised with its level decremented.

Detecting progress

We can check if a tactic made progress with:
progress expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied to each focued subgoal inde-
pendently. If the application of v to one of the focused subgoal produced subgoals equal to the initial goals (up to
syntactical equality), then an error of level 0 is raised.
Error: Failed to progress.

Backtracking branching

We can branch with the following structure:
expr1 + expr2

expr1 and expr2 are evaluated respectively to v1 and v2 which must be tactic values. The tactic value v1 is
applied to each focused goal independently and if it fails or a later tactic fails, then the proof backtracks to the
current goal and v2 is applied.
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Tactics can be seen as having several successes. When a tactic fails it asks for more successes of the prior tactics.
expr1 + expr2 has all the successes of v1 followed by all the successes of v2. Algebraically, (expr1 +
expr2); expr3 = (expr1; expr3) + (expr2; expr3).
Branching is left-associative.

First tactic to work

Backtracking branching may be too expensive. In this case we may restrict to a local, left biased, branching and consider
the first tactic to work (i.e. which does not fail) among a panel of tactics:

first [ expr
*

|
]

The expri are evaluated to vi and vi must be tactic values for i = 1, ..., n. Supposing n > 1, first [expr1 |
... | exprn] applies v1 in each focused goal independently and stops if it succeeds; otherwise it tries to apply
v2 and so on. It fails when there is no applicable tactic. In other words, first [expr1 | ... | exprn]
behaves, in each goal, as the first vi to have at least one success.
Error: No applicable tactic.

Variant: first expr
This is an Ltac alias that gives a primitive access to the first tactical as an Ltac definition without going through
a parsing rule. It expects to be given a list of tactics through a Tactic Notation, allowing to write
notations of the following form:

Example

Tactic Notation "foo" tactic_list(tacs) := first tacs.

Left-biased branching

Yet another way of branching without backtracking is the following structure:
expr1 || expr2

expr1 and expr2 are evaluated respectively to v1 and v2 which must be tactic values. The tactic value v1
is applied in each subgoal independently and if it fails to progress then v2 is applied. expr1 || expr2 is
equivalent to first [ progress expr1 | expr2 ] (except that if it fails, it fails like v2). Branching is
left-associative.

Generalized biased branching

The tactic
tryif expr1 then expr2 else expr3

is a generalization of the biased-branching tactics above. The expression expr1 is evaluated to v1, which is then
applied to each subgoal independently. For each goal where v1 succeeds at least once, expr2 is evaluated to v2
which is then applied collectively to the generated subgoals. The v2 tactic can trigger backtracking points in v1:
where v1 succeeds at least once, tryif expr1 then expr2 else expr3 is equivalent to v1; v2. In
each of the goals where v1 does not succeed at least once, expr3 is evaluated in v3 which is is then applied to the
goal.
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Soft cut

Another way of restricting backtracking is to restrict a tactic to a single success a posteriori:
once expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied but only its first success is used.
If v fails, once expr fails like v. If v has at least one success, once expr succeeds once, but cannot produce
more successes.

Checking the successes

Coq provides an experimental way to check that a tactic has exactly one success:
exactly_once expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied if it has at most one success. If
v fails, exactly_once expr fails like v. If v has a exactly one success, exactly_once expr succeeds
like v. If v has two or more successes, exactly_once expr fails.

Warning: The experimental status of this tactic pertains to the fact if v performs side effects, they may occur
in an unpredictable way. Indeed, normally v would only be executed up to the first success until backtracking is
needed, however exactly_once needs to look ahead to see whether a second success exists, and may run further
effects immediately.

Error: This tactic has more than one success.

Checking the failure

Coq provides a derived tactic to check that a tactic fails:
assert_fails expr

This behaves like tryif expr then fail 0 tac "succeeds" else idtac.

Checking the success

Coq provides a derived tactic to check that a tactic has at least one success:
assert_succeeds expr

This behaves like tryif (assert_fails tac) then fail 0 tac "fails" else idtac.

Solving

We may consider the first to solve (i.e. which generates no subgoal) among a panel of tactics:

solve [ expr
*

|
]

The expri are evaluated to vi and vi must be tactic values, for i = 1, ..., n. Supposing n > 1, solve [expr1
| ... | exprn] applies v1 to each goal independently and stops if it succeeds; otherwise it tries to apply v2
and so on. It fails if there is no solving tactic.
Error: Cannot solve the goal.
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Variant: solve expr
This is an Ltac alias that gives a primitive access to the solve: tactical. See the first tactical for more
information.

Identity

The constant idtac is the identity tactic: it leaves any goal unchanged but it appears in the proof script.

idtac message_token
*

This prints the given tokens. Strings and integers are printed literally. If a (term) variable is given, its contents are
printed.

Failing

fail
This is the always-failing tactic: it does not solve any goal. It is useful for defining other tacticals since it can be
caught by try, repeat, match goal, or the branching tacticals.
Variant: fail num

The number is the failure level. If no level is specified, it defaults to 0. The level is used by try, repeat,
match goal and the branching tacticals. If 0, it makes match goal consider the next clause (backtrack-
ing). If nonzero, the current match goal block, try, repeat, or branching command is aborted and
the level is decremented. In the case of +, a nonzero level skips the first backtrack point, even if the call to
fail num is not enclosed in a + command, respecting the algebraic identity.

Variant: fail message_token
*

The given tokens are used for printing the failure message.

Variant: fail num message_token
*

This is a combination of the previous variants.
Variant: gfail

This variant fails even when used after ; and there are no goals left. Similarly, gfail fails even when used
after all: and there are no goals left. See the example for clarification.

Variant: gfail message_token
*

Variant: gfail num message_token
*

These variants fail with an error message or an error level even if there are no goals left. Be careful however
if Coq terms have to be printed as part of the failure: term construction always forces the tactic into the goals,
meaning that if there are no goals when it is evaluated, a tactic call like let x := H in fail 0 x will
succeed.

Error: Tactic Failure message (level num).

Error: No such goal.

Example

Goal True.
1 subgoal

============================
True

(continues on next page)
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(continued from previous page)

Proof.
fail.

Toplevel input, characters 0-5:
> fail.
> ^^^^^
Error: Tactic failure.

Abort.
Goal True.

1 subgoal

============================
True

Proof.
trivial; fail.

No more subgoals.

Qed.
Unnamed_thm is defined

Goal True.
1 subgoal

============================
True

Proof.
trivial.

No more subgoals.

fail.
Toplevel input, characters 0-5:
> fail.
> ^^^^^
Error: No such goal.

Abort.
Goal True.

1 subgoal

============================
True

Proof.
trivial.

No more subgoals.

all: fail.
Qed.

Unnamed_thm0 is defined

Goal True.
1 subgoal

============================
(continues on next page)
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(continued from previous page)
True

Proof.
gfail.

Toplevel input, characters 0-6:
> gfail.
> ^^^^^^
Error: Tactic failure.

Abort.
Goal True.

1 subgoal

============================
True

Proof.
trivial; gfail.

Toplevel input, characters 0-15:
> trivial; gfail.
> ^^^^^^^^^^^^^^^
Error: Tactic failure.

Abort.
Goal True.

1 subgoal

============================
True

Proof.
trivial.

No more subgoals.

gfail.
Toplevel input, characters 0-6:
> gfail.
> ^^^^^^
Error: No such goal.

Abort.
Goal True.

1 subgoal

============================
True

Proof.
trivial.

No more subgoals.

all: gfail.
Toplevel input, characters 0-11:
> all: gfail.
> ^^^^^^^^^^^
Error: Tactic failure.

(continues on next page)
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(continued from previous page)
Abort.

Timeout

We can force a tactic to stop if it has not finished after a certain amount of time:
timeout num expr

expr is evaluated to v which must be a tactic value. The tactic value v is applied normally, except that it is
interrupted after num seconds if it is still running. In this case the outcome is a failure.

Warning: For the moment, timeout is based on elapsed time in seconds, which is very machine-dependent:
a script that works on a quick machine may fail on a slow one. The converse is even possible if you combine
a timeout with some other tacticals. This tactical is hence proposed only for convenience during debugging or
other development phases, we strongly advise you to not leave any timeout in final scripts. Note also that this
tactical isn’t available on the native Windows port of Coq.

Timing a tactic

A tactic execution can be timed:
time string expr

evaluates expr and displays the running time of the tactic expression, whether it fails or succeeds. In case of
several successes, the time for each successive run is displayed. Time is in seconds and is machine-dependent. The
string argument is optional. When provided, it is used to identify this particular occurrence of time.

Timing a tactic that evaluates to a term

Tactic expressions that produce terms can be timed with the experimental tactic
time_constr expr

which evaluates expr () and displays the time the tactic expression evaluated, assuming successful evaluation.
Time is in seconds and is machine-dependent.
This tactic currently does not support nesting, and will report times based on the innermost execution. This is due
to the fact that it is implemented using the following internal tactics:
restart_timer string

Reset a timer

finish_timing (string)
?

string
Display an optionally named timer. The parenthesized string argument is also optional, and determines the
label associated with the timer for printing.

By copying the definition of time_constr from the standard library, users can achive support for a fixed pattern
of nesting by passing different string parameters to restart_timer and finish_timing at each level
of nesting.

Example
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Ltac time_constr1 tac :=
let eval_early := match goal with _ => restart_timer "(depth 1)" end in
let ret := tac () in
let eval_early := match goal with _ => finish_timing ( "Tactic evaluation" )

↪"(depth 1)" end in
ret.
time_constr1 is defined

Goal True.
1 subgoal

============================
True

let v := time_constr
ltac:(fun _ =>

let x := time_constr1 ltac:(fun _ => constr:(10 * 10)) in
let y := time_constr1 ltac:(fun _ => eval compute in x) in
y) in

pose v.
Tactic evaluation (depth 1) ran for 0. secs (0.u,0.s)
Tactic evaluation (depth 1) ran for 0. secs (0.u,0.s)
Tactic evaluation ran for 0. secs (0.u,0.s)
1 subgoal

n := 100 : nat
============================
True

Abort.

Local definitions

Local definitions can be done as follows:

let ident1 := expr1 with identi := expri
*

in expr
each expri is evaluated to vi, then, expr is evaluated by substituting vi to each occurrence of identi, for i =
1, ..., n. There are no dependencies between the expri and the identi.
Local definitions can be made recursive by using let rec instead of let. In this latter case, the definitions are
evaluated lazily so that the rec keyword can be used also in non-recursive cases so as to avoid the eager evaluation
of local definitions.

Application

An application is an expression of the following form:

qualid tacarg
+

The reference qualid must be bound to some defined tactic definition expecting at least as many arguments as
the provided tacarg. The expressions expri are evaluated to vi, for i = 1, ..., n.
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Function construction

A parameterized tactic can be built anonymously (without resorting to local definitions) with:

fun ident
+

=> expr
Indeed, local definitions of functions are a syntactic sugar for binding a fun tactic to an identifier.

Pattern matching on terms

We can carry out pattern matching on terms with:

match expr with cpatterni => expri
+

|
end

The expression expr is evaluated and should yield a term which is matched against cpattern1. The matching is
non-linear: if a metavariable occurs more than once, it should match the same expression every time. It is first-order
except on the variables of the form @?id that occur in head position of an application. For these variables, the
matching is second-order and returns a functional term.
Alternatively, when a metavariable of the form ?id occurs under binders, say x1, …, xn and the expression
matches, the metavariable is instantiated by a term which can then be used in any context which also binds the
variables x1, …, xn with same types. This provides with a primitive form of matching under context which does
not require manipulating a functional term.
If the matching with cpattern1 succeeds, then expr1 is evaluated into some value by substituting the pattern
matching instantiations to the metavariables. If expr1 evaluates to a tactic and the match expression is in position
to be applied to a goal (e.g. it is not bound to a variable by a let in), then this tactic is applied. If the tactic
succeeds, the list of resulting subgoals is the result of the match expression. If expr1 does not evaluate to a tactic
or if the match expression is not in position to be applied to a goal, then the result of the evaluation of expr1 is
the result of the match expression.
If the matching with cpattern1 fails, or if it succeeds but the evaluation of expr1 fails, or if the evaluation
of expr1 succeeds but returns a tactic in execution position whose execution fails, then cpattern2 is used and
so on. The pattern _ matches any term and shadows all remaining patterns if any. If all clauses fail (in particular,
there is no pattern _) then a no-matching-clause error is raised.
Failures in subsequent tactics do not cause backtracking to select new branches or inside the right-hand side of the
selected branch even if it has backtracking points.
Error: No matching clauses for match.

No pattern can be used and, in particular, there is no _ pattern.
Error: Argument of match does not evaluate to a term.

This happens when expr does not denote a term.

Variant: multimatch expr with cpatterni => expri
+

|
end

Using multimatch instead of match will allow subsequent tactics to backtrack into a right-hand side tactic
which has backtracking points left and trigger the selection of a new matching branch when all the backtrack-
ing points of the right-hand side have been consumed.
The syntax match … is, in fact, a shorthand for once multimatch ….

Variant: lazymatch expr with cpatterni => expri
+

|
end

Using lazymatch instead of match will perform the same pattern matching procedure but will commit to the
first matching branch rather than trying a new matching if the right-hand side fails. If the right-hand side of
the selected branch is a tactic with backtracking points, then subsequent failures cause this tactic to backtrack.
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Variant: context ident [cpattern]
This special form of patterns matches any term with a subterm matching cpattern. If there is a match, the
optional ident is assigned the ”matched context”, i.e. the initial termwhere the matched subterm is replaced
by a hole. The example below will show how to use such term contexts.
If the evaluation of the right-hand-side of a valid match fails, the next matching subterm is tried. If no further
subtermmatches, the next clause is tried. Matching subterms are considered top-bottom and from left to right
(with respect to the raw printing obtained by setting option Printing All).

Example

Ltac f x :=
match x with
context f [S ?X] =>
idtac X; (* To display the evaluation order *)
assert (p := eq_refl 1 : X=1); (* To filter the case X=1 *)
let x:= context f[O] in assert (x=O) (* To observe the context *)

end.
f is defined

Goal True.
1 subgoal

============================
True

f (3+4).
2
1
2 subgoals

p : 1 = 1
============================
1 + 4 = 0

subgoal 2 is:
True

Pattern matching on goals

We can perform pattern matching on goals using the following expression:

match goal with hyp
+

|- cpattern => expr

+

|
| _ => expr end

If each hypothesis pattern hyp1,i, with i = 1, ..., m1 is matched (non-linear first-order unification) by a hypothesis
of the goal and if cpattern_1 is matched by the conclusion of the goal, then expr1 is evaluated to v1 by sub-
stituting the pattern matching to the metavariables and the real hypothesis names bound to the possible hypothesis
names occurring in the hypothesis patterns. If v1 is a tactic value, then it is applied to the goal. If this application
fails, then another combination of hypotheses is tried with the same proof context pattern. If there is no other
combination of hypotheses then the second proof context pattern is tried and so on. If the next to last proof context
pattern fails then the last expr is evaluated to v and v is applied. Note also that matching against subterms (using
the context ident [ cpattern ]) is available and is also subject to yielding several matchings.
Failures in subsequent tactics do not cause backtracking to select new branches or combinations of hypotheses, or
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inside the right-hand side of the selected branch even if it has backtracking points.
Error: No matching clauses for match goal.

No clause succeeds, i.e. all matching patterns, if any, fail at the application of the right-hand-side.

Note: It is important to know that each hypothesis of the goal can be matched by at most one hypothesis pattern.
The order of matching is the following: hypothesis patterns are examined from right to left (i.e. hypi,mi‘ before
hypi,1). For each hypothesis pattern, the goal hypotheses are matched in order (newest first), but it possible to
reverse this order (oldest first) with the match reverse goal with variant.

Variant: multimatch goal with hyp
+

|- cpattern => expr

+

|
| _ => expr end

Using multimatch instead of match will allow subsequent tactics to backtrack into a right-hand side
tactic which has backtracking points left and trigger the selection of a new matching branch or combination
of hypotheses when all the backtracking points of the right-hand side have been consumed.
The syntax match [reverse] goal … is, in fact, a shorthand for once multimatch
[reverse] goal ….

Variant: lazymatch goal with hyp
+

|- cpattern => expr

+

|
| _ => expr end

Using lazymatch instead of match will perform the same pattern matching procedure but will commit to the
first matching branch with the first matching combination of hypotheses rather than trying a new matching
if the right-hand side fails. If the right-hand side of the selected branch is a tactic with backtracking points,
then subsequent failures cause this tactic to backtrack.

Filling a term context

The following expression is not a tactic in the sense that it does not produce subgoals but generates a term to be used in
tactic expressions:
context ident [expr]

identmust denote a context variable bound by a context pattern of a match expression. This expression evaluates
replaces the hole of the value of ident by the value of expr.
Error: Not a context variable.

Error: Unbound context identifier ident.

Generating fresh hypothesis names

Tactics sometimes have to generate new names for hypothesis. Letting the system decide a name with the intro tactic is
not so good since it is very awkward to retrieve the name the system gave. The following expression returns an identifier:

fresh component
*

It evaluates to an identifier unbound in the goal. This fresh identifier is obtained by concatenating the value of the
components (each of them is, either a qualid which has to refer to a (unqualified) name, or directly a name
denoted by a string).
If the resulting name is already used, it is padded with a number so that it becomes fresh. If no component is given,
the name is a fresh derivative of the name H.
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Computing in a constr

Evaluation of a term can be performed with:
eval redexpr in term

where redexpr is a reduction tactic among red, hnf, compute, simpl, cbv, lazy, unfold, fold,
pattern.

Recovering the type of a term

type of term
This tactic returns the type of term.

Manipulating untyped terms

uconstr : term
The terms built in Ltac are well-typed by default. It may not be appropriate for building large terms using a recursive
Ltac function: the term has to be entirely type checked at each step, resulting in potentially very slow behavior. It
is possible to build untyped terms using Ltac with the uconstr : term syntax.

type_term term
An untyped term, inLtac, can contain references to hypotheses or toLtac variables containing typed or untyped terms.
An untyped term can be type checked using the function type_term whose argument is parsed as an untyped term
and returns a well-typed term which can be used in tactics.

Untyped terms built using uconstr : can also be used as arguments to the refine tactic. In that case the untyped
term is type checked against the conclusion of the goal, and the holes which are not solved by the typing procedure are
turned into new subgoals.

Counting the goals

numgoals
The number of goals under focus can be recovered using the numgoals function. Combined with the guard
command below, it can be used to branch over the number of goals produced by previous tactics.

Example

Ltac pr_numgoals := let n := numgoals in idtac "There are" n "goals".
Goal True /\ True /\ True.
split;[|split].

all:pr_numgoals.
There are 3 goals

Testing boolean expressions

guard test
Theguard tactic tests a boolean expression, and fails if the expression evaluates to false. If the expression evaluates
to true, it succeeds without affecting the proof.
The accepted tests are simple integer comparisons.
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Example

Goal True /\ True /\ True.
split;[|split].

all:let n:= numgoals in guard n<4.
Fail all:let n:= numgoals in guard n=2.

The command has indeed failed with message:
Ltac call to "guard (test)" failed.
Condition not satisfied: 3=2

Error: Condition not satisfied.

Proving a subgoal as a separate lemma

abstract expr
From the outside, abstract expr is the same as solve expr. Internally it saves an auxiliary lemma called
ident_subproofn where ident is the name of the current goal and n is chosen so that this is a fresh name.
Such an auxiliary lemma is inlined in the final proof term.
This tactical is useful with tactics such as omega or discriminate that generate huge proof terms. With that
tool the user can avoid the explosion at time of the Save command without having to cut manually the proof in
smaller lemmas.
It may be useful to generate lemmas minimal w.r.t. the assumptions they depend on. This can be obtained thanks
to the option below.
Variant: abstract expr using ident

Give explicitly the name of the auxiliary lemma.

Warning: Use this feature at your own risk; explicitly named and reused subterms don’t play well with
asynchronous proofs.

Variant: transparent_abstract expr
Save the subproof in a transparent lemma rather than an opaque one.

Warning: Use this feature at your own risk; building computationally relevant terms with tactics is
fragile.

Variant: transparent_abstract expr using ident
Give explicitly the name of the auxiliary transparent lemma.

Warning: Use this feature at your own risk; building computationally relevant terms with tactics is
fragile, and explicitly named and reused subterms don’t play well with asynchronous proofs.

Error: Proof is not complete.

4.4.3 Tactic toplevel definitions

4.4. The tactic language 235



The Coq Reference Manual, Release 8.9.1

Defining Ltac functions

Basically, Ltac toplevel definitions are made as follows:

Command: Ltac ident ident
*

:= expr
This defines a new Ltac function that can be used in any tactic script or new Ltac toplevel definition.

Note: The preceding definition can equivalently be written:

Ltac ident := fun ident
+

=> expr

Recursive and mutual recursive function definitions are also possible with the syntax:

Variant: Ltac ident ident
*

with ident ident
*

*

:= expr
It is also possible to redefine an existing user-defined tactic using the syntax:

Variant: Ltac qualid ident
*

::= expr
A previous definition of qualid must exist in the environment. The new definition will always be used instead
of the old one and it goes across module boundaries.

If preceded by the keyword Local the tactic definition will not be exported outside the current module.

Printing Ltac tactics

Command: Print Ltac qualid
Defined Ltac functions can be displayed using this command.

Command: Print Ltac Signatures
This command displays a list of all user-defined tactics, with their arguments.

4.4.4 Debugging Ltac tactics

Info trace

Command: Info num expr
This command can be used to print the trace of the path eventually taken by an Ltac script. That is, the list of
executed tactics, discarding all the branches which have failed. To that end the Info command can be used with
the following syntax.
The number num is the unfolding level of tactics in the trace. At level 0, the trace contains a sequence of tactics in
the actual script, at level 1, the trace will be the concatenation of the traces of these tactics, etc…

Example

Ltac t x := exists x; reflexivity.
Goal exists n, n=0.

Info 0 t 1||t 0.
t <constr:(0)>
No more subgoals.
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Undo.

Info 1 t 1||t 0.
exists with 0;reflexivity
No more subgoals.

The trace produced byInfo tries its best to be a reparsableLtac script, but this goal is not achievable in all generality.
So some of the output traces will contain oddities.
As an additional help for debugging, the trace produced by Info contains (in comments) the messages produced
by the idtac tactical at the right position in the script. In particular, the calls to idtac in branches which failed are
not printed.
Option: Info Level num

This option is an alternative to the Info command.
This will automatically print the same trace as Info num at each tactic call. The unfolding level can be
overridden by a call to the Info command.

Interactive debugger

Flag: Ltac Debug
This option governs the step-by-step debugger that comes with the Ltac interpreter

When the debugger is activated, it stops at every step of the evaluation of the current Ltac expression and prints information
on what it is doing. The debugger stops, prompting for a command which can be one of the following:

simple newline: go to the next step
h: get help
x: exit current evaluation
s: continue current evaluation without stopping
r n: advance n steps further
r string: advance up to the next call to “idtac string”

Error: Debug mode not available in the IDE

A non-interactive mode for the debugger is available via the option:
Flag: Ltac Batch Debug

This option has the effect of presenting a newline at every prompt, when the debugger is on. The debug log thus
created, which does not require user input to generate when this option is set, can then be run through external tools
such as diff.

Profiling Ltac tactics

It is possible to measure the time spent in invocations of primitive tactics as well as tactics defined in Ltac and their inner
invocations. The primary use is the development of complex tactics, which can sometimes be so slow as to impede
interactive usage. The reasons for the performence degradation can be intricate, like a slowly performing Ltac match or a
sub-tactic whose performance only degrades in certain situations. The profiler generates a call tree and indicates the time
spent in a tactic depending on its calling context. Thus it allows to locate the part of a tactic definition that contains the
performance issue.
Flag: Ltac Profiling

This option enables and disables the profiler.
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Command: Show Ltac Profile
Prints the profile
Variant: Show Ltac Profile string

Prints a profile for all tactics that start with string. Append a period (.) to the string if you only want
exactly that name.

Command: Reset Ltac Profile
Resets the profile, that is, deletes all accumulated information.

Warning: Backtracking across a Reset Ltac Profile will not restore the information.

Require Import Coq.omega.Omega.
Ltac mytauto := tauto.
Ltac tac := intros; repeat split; omega || mytauto.
Notation max x y := (x + (y - x)) (only parsing).
Goal forall x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z,

max x (max y z) = max (max x y) z /\ max x (max y z) = max (max x y) z
/\
(A /\ B /\ C /\ D /\ E /\ F /\ G /\ H /\ I /\ J /\ K /\ L /\ M /\
N /\ O /\ P /\ Q /\ R /\ S /\ T /\ U /\ V /\ W /\ X /\ Y /\ Z
->
Z /\ Y /\ X /\ W /\ V /\ U /\ T /\ S /\ R /\ Q /\ P /\ O /\ N /\
M /\ L /\ K /\ J /\ I /\ H /\ G /\ F /\ E /\ D /\ C /\ B /\ A).

Proof.

Set Ltac Profiling.
tac.

No more subgoals.

Show Ltac Profile.
total time: 2.139s

tactic local total calls max
────────────────────────────────────────┴──────┴──────┴───────┴─────────┘
─tac ----------------------------------- 0.1% 100.0% 1 2.139s
─<Coq.Init.Tauto.with_uniform_flags> --- 0.0% 75.3% 26 0.120s
─<Coq.Init.Tauto.tauto_gen> ------------ 0.0% 75.2% 26 0.120s
─<Coq.Init.Tauto.tauto_intuitionistic> - 0.0% 75.2% 26 0.120s
─t_tauto_intuit ------------------------ 0.1% 75.1% 26 0.119s
─<Coq.Init.Tauto.simplif> -------------- 52.9% 72.2% 26 0.117s
─omega --------------------------------- 24.4% 24.4% 28 0.201s
─<Coq.Init.Tauto.is_conj> -------------- 12.8% 12.8% 28756 0.016s
─elim id ------------------------------- 4.0% 4.0% 650 0.015s
─<Coq.Init.Tauto.axioms> --------------- 2.2% 2.8% 0 0.009s

tactic local total calls max
────────────────────────────────────────┴──────┴──────┴───────┴─────────┘
─tac ----------------------------------- 0.1% 100.0% 1 2.139s
├─<Coq.Init.Tauto.with_uniform_flags> - 0.0% 75.3% 26 0.120s
│└<Coq.Init.Tauto.tauto_gen> ---------- 0.0% 75.2% 26 0.120s
│└<Coq.Init.Tauto.tauto_intuitionistic> 0.0% 75.2% 26 0.120s
│└t_tauto_intuit ---------------------- 0.1% 75.1% 26 0.119s
│ ├─<Coq.Init.Tauto.simplif> ---------- 52.9% 72.2% 26 0.117s
│ │ ├─<Coq.Init.Tauto.is_conj> -------- 12.8% 12.8% 28756 0.016s
│ │ └─elim id ------------------------- 4.0% 4.0% 650 0.015s

(continues on next page)
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(continued from previous page)
│ └─<Coq.Init.Tauto.axioms> ----------- 2.2% 2.8% 0 0.009s
└─omega ------------------------------- 24.4% 24.4% 28 0.201s

Show Ltac Profile "omega".
total time: 2.139s

tactic local total calls max
────────────────────────────────────────┴──────┴──────┴───────┴─────────┘
─omega --------------------------------- 24.4% 24.4% 28 0.201s

tactic local total calls max

Abort.
Unset Ltac Profiling.

start ltac profiling
This tactic behaves like idtac but enables the profiler.

stop ltac profiling
Similarly to start ltac profiling, this tactic behaves like idtac. Together, they allow you to exclude
parts of a proof script from profiling.

reset ltac profile
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

show ltac profile
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

show ltac profile string
This tactic behaves like the corresponding vernacular command and allow displaying and resetting the profile from
tactic scripts for benchmarking purposes.

You can also pass the -profile-ltac command line option to coqc, which turns the Ltac Profiling option
on at the beginning of each document, and performs a Show Ltac Profile at the end.

Warning: Note that the profiler currently does not handle backtracking into multi-success tactics, and issues a
warning to this effect in many cases when such backtracking occurs.

Run-time optimization tactic

optimize_heap
This tactic behaves like idtac, except that running it compacts the heap in the OCaml run-time system. It is
analogous to the Vernacular command Optimize Heap.

4.5 Detailed examples of tactics

This chapter presents detailed examples of certain tactics, to illustrate their behavior.
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4.5.1 dependent induction

The tactics dependent induction and dependent destruction are another solution for inverting induc-
tive predicate instances and potentially doing induction at the same time. It is based on the BasicElim tactic of Conor
McBride which works by abstracting each argument of an inductive instance by a variable and constraining it by equal-
ities afterwards. This way, the usual induction and destruct tactics can be applied to the abstracted instance and after
simplification of the equalities we get the expected goals.
The abstracting tactic is called generalize_eqs and it takes as argument a hypothesis to generalize. It uses the JMeq
datatype defined in Coq.Logic.JMeq, hence we need to require it before. For example, revisiting the first example of the
inversion documentation:

Require Import Coq.Logic.JMeq.
Inductive Le : nat -> nat -> Set :=

| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).

Variable P : nat -> nat -> Prop.
Goal forall n m:nat, Le (S n) m -> P n m.
intros n m H.

generalize_eqs H.
1 subgoal

n, m, gen_x : nat
H : Le gen_x m
============================
gen_x = S n -> P n m

The index S n gets abstracted by a variable here, but a corresponding equality is added under the abstract instance so
that no information is actually lost. The goal is now almost amenable to do induction or case analysis. One should indeed
first move n into the goal to strengthen it before doing induction, or n will be fixed in the inductive hypotheses (this does
not matter for case analysis). As a rule of thumb, all the variables that appear inside constructors in the indices of the
hypothesis should be generalized. This is exactly what the generalize_eqs_vars variant does:

generalize_eqs_vars H.
induction H.

2 subgoals

n, n0 : nat
============================
0 = S n -> P n n0

subgoal 2 is:
S n0 = S n -> P n (S m)

As the hypothesis itself did not appear in the goal, we did not need to use an heterogeneous equality to relate the new
hypothesis to the old one (which just disappeared here). However, the tactic works just as well in this case, e.g.:

Variable Q : forall (n m : nat), Le n m -> Prop.
Goal forall n m (p : Le (S n) m), Q (S n) m p.

intros n m p.
1 subgoal

n, m : nat
p : Le (S n) m
============================

(continues on next page)
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(continued from previous page)
Q (S n) m p

generalize_eqs_vars p.
1 subgoal

m, gen_x : nat
p : Le gen_x m
============================
forall (n : nat) (p0 : Le (S n) m),
gen_x = S n -> JMeq p p0 -> Q (S n) m p0

One drawback of this approach is that in the branches one will have to substitute the equalities back into the instance
to get the right assumptions. Sometimes injection of constructors will also be needed to recover the needed equalities.
Also, some subgoals should be directly solved because of inconsistent contexts arising from the constraints on indexes.
The nice thing is that we can make a tactic based on discriminate, injection and variants of substitution to automatically
do such simplifications (which may involve the axiom K). This is what the simplify_dep_elim tactic from Coq.
Program.Equality does. For example, we might simplify the previous goals considerably:

Require Import Coq.Program.Equality.

induction p ; simplify_dep_elim.
1 subgoal

n, m : nat
p : Le n m
IHp : forall (n0 : nat) (p0 : Le (S n0) m),

n = S n0 -> p ~= p0 -> Q (S n0) m p0
============================
Q (S n) (S m) (LeS n m p)

The higher-order tactic do_depind defined in Coq.Program.Equality takes a tactic and combines the building
blocks we have seen with it: generalizing by equalities calling the given tactic with the generalized induction hypothesis
as argument and cleaning the subgoals with respect to equalities. Its most important instantiations are dependent
induction and dependent destruction that do induction or simply case analysis on the generalized hypothesis.
For example we can redo what we’ve done manually with dependent destruction:

Lemma ex : forall n m:nat, Le (S n) m -> P n m.

intros n m H.

dependent destruction H.
1 subgoal

n, m : nat
H : Le n m
============================
P n (S m)

This gives essentially the same result as inversion. Now if the destructed hypothesis actually appeared in the goal, the
tactic would still be able to invert it, contrary to dependent inversion. Consider the following example on vectors:

Set Implicit Arguments.

Variable A : Set.
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Inductive vector : nat -> Type :=
| vnil : vector 0
| vcons : A -> forall n, vector n -> vector (S n).

Goal forall n, forall v : vector (S n),
exists v' : vector n, exists a : A, v = vcons a v'.

intros n v.

dependent destruction v.
1 subgoal

n : nat
a : A
v : vector n
============================
exists (v' : vector n) (a0 : A), vcons a v = vcons a0 v'

In this case, the v variable can be replaced in the goal by the generalized hypothesis only when it has a type of the form
vector (S n), that is only in the second case of the destruct. The first one is dismissed because S n <> 0.

A larger example

Let’s see how the technique works with induction on inductive predicates on a real example. We will develop an example
application to the theory of simply-typed lambda-calculus formalized in a dependently-typed style:

Inductive type : Type :=
| base : type
| arrow : type -> type -> type.

Notation " t --> t' " := (arrow t t') (at level 20, t' at next level).

Inductive ctx : Type :=
| empty : ctx
| snoc : ctx -> type -> ctx.

Notation " G , tau " := (snoc G tau) (at level 20, tau at next level).

Fixpoint conc (G D : ctx) : ctx :=
match D with
| empty => G
| snoc D' x => snoc (conc G D') x
end.

Notation " G ; D " := (conc G D) (at level 20).

Inductive term : ctx -> type -> Type :=
| ax : forall G tau, term (G, tau) tau
| weak : forall G tau,

term G tau -> forall tau', term (G, tau') tau
| abs : forall G tau tau',

term (G , tau) tau' -> term G (tau --> tau')
| app : forall G tau tau',

term G (tau --> tau') -> term G tau -> term G tau'.
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We have defined types and contexts which are snoc-lists of types. We also have a conc operation that concatenates two
contexts. The term datatype represents in fact the possible typing derivations of the calculus, which are isomorphic to
the well-typed terms, hence the name. A term is either an application of:

• the axiom rule to type a reference to the first variable in a context
• the weakening rule to type an object in a larger context
• the abstraction or lambda rule to type a function
• the application to type an application of a function to an argument

Once we have this datatype we want to do proofs on it, like weakening:

Lemma weakening : forall G D tau, term (G ; D) tau ->
forall tau', term (G , tau' ; D) tau.

The problem here is that we can’t just use induction on the typing derivation because it will forget about the G ; D
constraint appearing in the instance. A solution would be to rewrite the goal as:

Lemma weakening' : forall G' tau, term G' tau ->
forall G D, (G ; D) = G' ->
forall tau', term (G, tau' ; D) tau.

With this proper separation of the index from the instance and the right induction loading (putting G and D after the
inducted-on hypothesis), the proof will go through, but it is a very tedious process. One is also forced to make a wrapper
lemma to get back the more natural statement. The dependent induction tactic alleviates this trouble by doing all
of this plumbing of generalizing and substituting back automatically. Indeed we can simply write:

Require Import Coq.Program.Tactics.
Require Import Coq.Program.Equality.

Lemma weakening : forall G D tau, term (G ; D) tau ->
forall tau', term (G , tau' ; D) tau.

Proof with simpl in * ; simpl_depind ; auto.

intros G D tau H.
dependent induction H generalizing G D ; intros.

This call to dependent induction has an additional arguments which is a list of variables appearing in the instance that
should be generalized in the goal, so that they can vary in the induction hypotheses. By default, all variables appearing
inside constructors (except in a parameter position) of the instantiated hypothesis will be generalized automatically but
one can always give the list explicitly.

Show.
4 subgoals

G0 : ctx
tau : type
G, D : ctx
x : G0, tau = G; D
tau' : type
============================
term ((G, tau'); D) tau

subgoal 2 is:
term ((G, tau'0); D) tau

(continues on next page)
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(continued from previous page)
subgoal 3 is:
term ((G, tau'0); D) (tau --> tau')

subgoal 4 is:
term ((G, tau'0); D) tau'

The simpl_depind tactic includes an automatic tactic that tries to simplify equalities appearing at the beginning of
induction hypotheses, generally using trivial applications of reflexivity. In cases where the equality is not between
constructor forms though, one must help the automation by giving some arguments, using the specialize tactic for
example.

destruct D... apply weak; apply ax.
apply ax.

destruct D...

Show.
4 subgoals

G0 : ctx
tau : type
H : term G0 tau
tau' : type
IHterm : forall G D : ctx,

G0 = G; D -> forall tau' : type, term ((G, tau'); D) tau
tau'0 : type
============================
term ((G0, tau'), tau'0) tau

subgoal 2 is:
term (((G, tau'0); D), t) tau

subgoal 3 is:
term ((G, tau'0); D) (tau --> tau')

subgoal 4 is:
term ((G, tau'0); D) tau'

specialize (IHterm G0 empty eq_refl).
4 subgoals

G0 : ctx
tau : type
H : term G0 tau
tau' : type
IHterm : forall tau' : type, term ((G0, tau'); empty) tau
tau'0 : type
============================
term ((G0, tau'), tau'0) tau

subgoal 2 is:
term (((G, tau'0); D), t) tau

subgoal 3 is:
term ((G, tau'0); D) (tau --> tau')

subgoal 4 is:
term ((G, tau'0); D) tau'

Once the induction hypothesis has been narrowed to the right equality, it can be used directly.
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apply weak, IHterm.
3 subgoals

tau : type
G, D : ctx
IHterm : forall G0 D0 : ctx,

G; D = G0; D0 -> forall tau' : type, term ((G0, tau'); D0) tau
H : term (G; D) tau
t, tau'0 : type
============================
term (((G, tau'0); D), t) tau

subgoal 2 is:
term ((G, tau'0); D) (tau --> tau')

subgoal 3 is:
term ((G, tau'0); D) tau'

Now concluding this subgoal is easy.

constructor; apply IHterm; reflexivity.

See also:
The induction, case, and inversion tactics.

4.5.2 autorewrite

Here are two examples of autorewrite use. The first one ( Ackermann function) shows actually a quite basic use
where there is no conditional rewriting. The second one (Mac Carthy function) involves conditional rewritings and shows
how to deal with them using the optional tactic of the Hint Rewrite command.

Example: Ackermann function

Require Import Arith.

Variable Ack : nat -> nat -> nat.

Axiom Ack0 : forall m:nat, Ack 0 m = S m.
Axiom Ack1 : forall n:nat, Ack (S n) 0 = Ack n 1.
Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m).

Hint Rewrite Ack0 Ack1 Ack2 : base0.

Lemma ResAck0 : Ack 3 2 = 29.
1 subgoal

============================
Ack 3 2 = 29

autorewrite with base0 using try reflexivity.
No more subgoals.

Example: MacCarthy function
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Require Import Omega.

Variable g : nat -> nat -> nat.

Axiom g0 : forall m:nat, g 0 m = m.
Axiom g1 : forall n m:nat, (n > 0) -> (m > 100) -> g n m = g (pred n) (m - 10).
Axiom g2 : forall n m:nat, (n > 0) -> (m <= 100) -> g n m = g (S n) (m + 11).

Hint Rewrite g0 g1 g2 using omega : base1.

Lemma Resg0 : g 1 110 = 100.

1 subgoal

============================
g 1 110 = 100

autorewrite with base1 using reflexivity || simpl.
No more subgoals.

Lemma Resg1 : g 1 95 = 91.
1 subgoal

============================
g 1 95 = 91

autorewrite with base1 using reflexivity || simpl.
No more subgoals.

4.5.3 quote

The tactic quote allows using Barendregt’s so-called 2-level approach without writing any ML code. Suppose you have
a language L of ’abstract terms’ and a type A of ’concrete terms’ and a function f : L -> A. If L is a simple inductive
datatype and f a simple fixpoint, quote f will replace the head of current goal by a convertible term of the form (f
t). L must have a constructor of type: A -> L.
Here is an example:

Require Import Quote.

Parameters A B C : Prop.
A is declared
B is declared
C is declared

Inductive formula : Type :=
| f_and : formula -> formula -> formula (* binary constructor *)
| f_or : formula -> formula -> formula
| f_not : formula -> formula (* unary constructor *)
| f_true : formula (* 0-ary constructor *)
| f_const : Prop -> formula (* constructor for constants *).

(continues on next page)
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formula is defined
formula_rect is defined
formula_ind is defined
formula_rec is defined

Fixpoint interp_f (f:formula) : Prop :=
match f with
| f_and f1 f2 => interp_f f1 /\ interp_f f2
| f_or f1 f2 => interp_f f1 \/ interp_f f2
| f_not f1 => ~ interp_f f1
| f_true => True
| f_const c => c
end.

interp_f is defined
interp_f is recursively defined (decreasing on 1st argument)

Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A).
1 subgoal

============================
A /\ (A \/ True) /\ ~ B /\ (A <-> A)

quote interp_f.
1 subgoal

============================
interp_f

(f_and (f_const A)
(f_and (f_or (f_const A) f_true)

(f_and (f_not (f_const B)) (f_const (A <-> A)))))

The algorithm to perform this inversion is: try to match the term with right-hand sides expression of f. If there is a match,
apply the corresponding left-hand side and call yourself recursively on sub- terms. If there is no match, we are at a leaf:
return the corresponding constructor (here f_const) applied to the term.
When quote is not able to perform inversion properly, it will error out with quote: not a simple fixpoint.

Introducing variables map

The normal use of quote is to make proofs by reflection: one defines a function simplify : formula
-> formula and proves a theorem simplify_ok: (f:formula)(interp_f (simplify f)) ->
(interp_f f). Then, one can simplify formulas by doing:

quote interp_f.
apply simplify_ok.
compute.

But there is a problem with leafs: in the example above one cannot write a function that implements, for example, the
logical simplifications 𝐴 ∧ 𝐴 → 𝐴 or 𝐴 ∧ ¬𝐴 → False. This is because Prop is impredicative.
It is better to use that type of formulas:

Require Import Quote.
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Parameters A B C : Prop.

Inductive formula : Set :=
| f_and : formula -> formula -> formula
| f_or : formula -> formula -> formula
| f_not : formula -> formula
| f_true : formula
| f_atom : index -> formula.

formula is defined
formula_rect is defined
formula_ind is defined
formula_rec is defined

index is defined in module Quote. Equality on that type is decidable so we are able to simplify 𝐴 ∧ 𝐴 into 𝐴 at the
abstract level.
When there are variables, there are bindings, and quote also provides a type (varmap A) of bindings from index to
any set A, and a function varmap_find to search in such maps. The interpretation function also has another argument,
a variables map:

Fixpoint interp_f (vm:varmap Prop) (f:formula) {struct f} : Prop :=
match f with
| f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
| f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
| f_not f1 => ~ interp_f vm f1
| f_true => True
| f_atom i => varmap_find True i vm
end.

interp_f is defined
interp_f is recursively defined (decreasing on 2nd argument)

quote handles this second case properly:

Goal A /\ (B \/ A) /\ (A \/ ~ B).
1 subgoal

============================
A /\ (B \/ A) /\ (A \/ ~ B)

quote interp_f.
1 subgoal

============================
interp_f

(Node_vm B (Node_vm A (Empty_vm Prop) (Empty_vm Prop)) (Empty_vm Prop))
(f_and (f_atom (Left_idx End_idx))

(f_and (f_or (f_atom End_idx) (f_atom (Left_idx End_idx)))
(f_or (f_atom (Left_idx End_idx)) (f_not (f_atom End_idx)))))

It builds vm and t such that (f vm t) is convertible with the conclusion of current goal.

Combining variables and constants

One can have both variables and constants in abstracts terms; for example, this is the case for the ring tactic. Then one
must provide to quote a list of constructors of constants. For example, if the list is [O S] then closed natural numbers
will be considered as constants and other terms as variables.
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Require Import Quote.

Parameters A B C : Prop.

Inductive formula : Type :=
| f_and : formula -> formula -> formula
| f_or : formula -> formula -> formula
| f_not : formula -> formula
| f_true : formula
| f_const : Prop -> formula (* constructor for constants *)
| f_atom : index -> formula.

Fixpoint interp_f (vm:varmap Prop) (f:formula) {struct f} : Prop :=
match f with
| f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
| f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
| f_not f1 => ~ interp_f vm f1
| f_true => True
| f_const c => c
| f_atom i => varmap_find True i vm
end.

Goal A /\ (A \/ True) /\ ~ B /\ (C <-> C).

quote interp_f [ A B ].
1 subgoal

============================
interp_f (Node_vm (C <-> C) (Empty_vm Prop) (Empty_vm Prop))

(f_and (f_const A)
(f_and (f_or (f_const A) f_true)

(f_and (f_not (f_const B)) (f_atom End_idx))))

Undo.
1 subgoal

============================
A /\ (A \/ True) /\ ~ B /\ (C <-> C)

quote interp_f [ B C iff ].
1 subgoal

============================
interp_f (Node_vm A (Empty_vm Prop) (Empty_vm Prop))

(f_and (f_atom End_idx)
(f_and (f_or (f_atom End_idx) f_true)

(f_and (f_not (f_const B)) (f_const (C <-> C)))))

Warning: Since functional inversion is undecidable in the general case, don’t expect miracles from it!

Variant: quote ident in term using tactic
tacticmust be a functional tactic (starting with fun x =>) and will be called with the quoted version of term
according to ident.
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Variant: quote ident [ ident
+
] in term using tactic

Same as above, but will use the additional ident list to chose which subterms are constants (see above).
See also:
Comments from the source file plugins/quote/quote.ml
See also:
The ring tactic.

4.5.4 Using the tactic language

About the cardinality of the set of natural numbers

The first example which shows how to use pattern matching over the proof context is a proof of the fact that natural
numbers have more than two elements. This can be done as follows:

Lemma card_nat :
~ exists x : nat, exists y : nat, forall z:nat, x = z \/ y = z.

Proof.

red; intros (x, (y, Hy)).

elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;

match goal with
| _ : ?a = ?b, _ : ?a = ?c |- _ =>

cut (b = c); [ discriminate | transitivity a; auto ]
end.

Qed.

We can notice that all the (very similar) cases coming from the three eliminations (with three distinct natural numbers)
are successfully solved by a match goal structure and, in particular, with only one pattern (use of non-linear matching).

Permutations of lists

Amore complex example is the problem of permutations of lists. The aim is to show that a list is a permutation of another
list.

Section Sort.

Variable A : Set.

Inductive perm : list A -> list A -> Prop :=
| perm_refl : forall l, perm l l
| perm_cons : forall a l0 l1, perm l0 l1 -> perm (a :: l0) (a :: l1)
| perm_append : forall a l, perm (a :: l) (l ++ a :: nil)
| perm_trans : forall l0 l1 l2, perm l0 l1 -> perm l1 l2 -> perm l0 l2.

End Sort.

First, we define the permutation predicate as shown above.
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Ltac perm_aux n :=
match goal with

| |- (perm _ ?l ?l) => apply perm_refl
| |- (perm _ (?a :: ?l1) (?a :: ?l2)) =>

let newn := eval compute in (length l1) in
(apply perm_cons; perm_aux newn)

| |- (perm ?A (?a :: ?l1) ?l2) =>
match eval compute in n with

| 1 => fail
| _ =>

let l1' := constr:(l1 ++ a :: nil) in
(apply (perm_trans A (a :: l1) l1' l2);
[ apply perm_append | compute; perm_aux (pred n) ])

end
end.

Next we define an auxiliary tactic perm_aux which takes an argument used to control the recursion depth. This tactic
behaves as follows. If the lists are identical (i.e. convertible), it concludes. Otherwise, if the lists have identical heads, it
proceeds to look at their tails. Finally, if the lists have different heads, it rotates the first list by putting its head at the end
if the new head hasn’t been the head previously. To check this, we keep track of the number of performed rotations using
the argument n. We do this by decrementing n each time we perform a rotation. It works because for a list of length
n we can make exactly n - 1 rotations to generate at most n distinct lists. Notice that we use the natural numbers of
Coq for the rotation counter. From Syntax we know that it is possible to use the usual natural numbers, but they are only
used as arguments for primitive tactics and they cannot be handled, so, in particular, we cannot make computations with
them. Thus the natural choice is to use Coq data structures so that Coq makes the computations (reductions) by eval
compute in and we can get the terms back by match.

Ltac solve_perm :=
match goal with

| |- (perm _ ?l1 ?l2) =>
match eval compute in (length l1 = length l2) with

| (?n = ?n) => perm_aux n
end

end.

The main tactic is solve_perm. It computes the lengths of the two lists and uses them as arguments to call perm_aux
if the lengths are equal (if they aren’t, the lists cannot be permutations of each other). Using this tactic we can now prove
lemmas as follows:

Lemma solve_perm_ex1 :
perm nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).

Proof.
solve_perm.
Qed.

Lemma solve_perm_ex2 :
perm nat
(0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil)

(0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil).
Proof.
solve_perm.
Qed.
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Deciding intuitionistic propositional logic

Pattern matching on goals allows a powerful backtracking when returning tactic values. An interesting application is
the problem of deciding intuitionistic propositional logic. Considering the contraction-free sequent calculi LJT* of Roy
Dyckhoff [Dyc92], it is quite natural to code such a tactic using the tactic language as shown below.

Ltac basic :=
match goal with

| |- True => trivial
| _ : False |- _ => contradiction
| _ : ?A |- ?A => assumption

end.

Ltac simplify :=
repeat (intros;

match goal with
| H : ~ _ |- _ => red in H
| H : _ /\ _ |- _ =>

elim H; do 2 intro; clear H
| H : _ \/ _ |- _ =>

elim H; intro; clear H
| H : ?A /\ ?B -> ?C |- _ =>

cut (A -> B -> C);
[ intro | intros; apply H; split; assumption ]

| H: ?A \/ ?B -> ?C |- _ =>
cut (B -> C);

[ cut (A -> C);
[ intros; clear H
| intro; apply H; left; assumption ]

| intro; apply H; right; assumption ]
| H0 : ?A -> ?B, H1 : ?A |- _ =>

cut B; [ intro; clear H0 | apply H0; assumption ]
| |- _ /\ _ => split
| |- ~ _ => red

end).

Ltac my_tauto :=
simplify; basic ||
match goal with

| H : (?A -> ?B) -> ?C |- _ =>
cut (B -> C);

[ intro; cut (A -> B);
[ intro; cut C;

[ intro; clear H | apply H; assumption ]
| clear H ]

| intro; apply H; intro; assumption ]; my_tauto
| H : ~ ?A -> ?B |- _ =>

cut (False -> B);
[ intro; cut (A -> False);

[ intro; cut B;
[ intro; clear H | apply H; assumption ]

| clear H ]
| intro; apply H; red; intro; assumption ]; my_tauto

| |- _ \/ _ => (left; my_tauto) || (right; my_tauto)
end.

The tactic basic tries to reason using simple rules involving truth, falsity and available assumptions. The tactic
simplify applies all the reversible rules of Dyckhoff’s system. Finally, the tactic my_tauto (the main tactic to
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be called) simplifies with simplify, tries to conclude with basic and tries several paths using the backtracking rules
(one of the four Dyckhoff’s rules for the left implication to get rid of the contraction and the right or).
Having defined my_tauto, we can prove tautologies like these:

Lemma my_tauto_ex1 :
forall A B : Prop, A /\ B -> A \/ B.

Proof.
my_tauto.
Qed.

Lemma my_tauto_ex2 :
forall A B : Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.

Proof.
my_tauto.
Qed.

Deciding type isomorphisms

A more tricky problem is to decide equalities between types modulo isomorphisms. Here, we choose to use the isomor-
phisms of the simply typed λ-calculus with Cartesian product and unit type (see, for example, [dC95]). The axioms of
this λ-calculus are given below.

Open Scope type_scope.

Section Iso_axioms.

Variables A B C : Set.

Axiom Com : A * B = B * A.
Axiom Ass : A * (B * C) = A * B * C.
Axiom Cur : (A * B -> C) = (A -> B -> C).
Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).
Axiom P_unit : A * unit = A.
Axiom AR_unit : (A -> unit) = unit.
Axiom AL_unit : (unit -> A) = A.

Lemma Cons : B = C -> A * B = A * C.
Proof.
intro Heq; rewrite Heq; reflexivity.
Qed.

End Iso_axioms.

Ltac simplify_type ty :=
match ty with

| ?A * ?B * ?C =>
rewrite <- (Ass A B C); try simplify_type_eq

| ?A * ?B -> ?C =>
rewrite (Cur A B C); try simplify_type_eq

| ?A -> ?B * ?C =>
rewrite (Dis A B C); try simplify_type_eq

| ?A * unit =>
rewrite (P_unit A); try simplify_type_eq

(continues on next page)
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(continued from previous page)
| unit * ?B =>

rewrite (Com unit B); try simplify_type_eq
| ?A -> unit =>

rewrite (AR_unit A); try simplify_type_eq
| unit -> ?B =>

rewrite (AL_unit B); try simplify_type_eq
| ?A * ?B =>

(simplify_type A; try simplify_type_eq) ||
(simplify_type B; try simplify_type_eq)

| ?A -> ?B =>
(simplify_type A; try simplify_type_eq) ||
(simplify_type B; try simplify_type_eq)

end
with simplify_type_eq :=
match goal with

| |- ?A = ?B => try simplify_type A; try simplify_type B
end.

Ltac len trm :=
match trm with

| _ * ?B => let succ := len B in constr:(S succ)
| _ => constr:(1)

end.

Ltac assoc := repeat rewrite <- Ass.

Ltac solve_type_eq n :=
match goal with

| |- ?A = ?A => reflexivity
| |- ?A * ?B = ?A * ?C =>

apply Cons; let newn := len B in solve_type_eq newn
| |- ?A * ?B = ?C =>

match eval compute in n with
| 1 => fail
| _ =>

pattern (A * B) at 1; rewrite Com; assoc; solve_type_eq (pred n)
end

end.

Ltac compare_structure :=
match goal with

| |- ?A = ?B =>
let l1 := len A
with l2 := len B in

match eval compute in (l1 = l2) with
| ?n = ?n => solve_type_eq n

end
end.

Ltac solve_iso := simplify_type_eq; compare_structure.

The tactic to judge equalities modulo this axiomatization is shown above. The algorithm is quite simple. First types
are simplified using axioms that can be oriented (this is done by simplify_type and simplify_type_eq). The
normal forms are sequences of Cartesian products without Cartesian product in the left component. These normal forms
are then compared modulo permutation of the components by the tactic compare_structure. If they have the same
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lengths, the tactic solve_type_eq attempts to prove that the types are equal. The main tactic that puts all these
components together is called solve_iso.
Here are examples of what can be solved by solve_iso.

Lemma solve_iso_ex1 :
forall A B : Set, A * unit * B = B * (unit * A).

Proof.
intros; solve_iso.
Qed.

Lemma solve_iso_ex2 :
forall A B C : Set,
(A * unit -> B * (C * unit)) =
(A * unit -> (C -> unit) * C) * (unit -> A -> B).

Proof.
intros; solve_iso.
Qed.

4.6 The SSReflect proof language

Authors Georges Gonthier, Assia Mahboubi, Enrico Tassi

4.6.1 Introduction

This chapter describes a set of tactics known as SSReflect originally designed to provide support for the so-called small
scale reflection proof methodology. Despite the original purpose this set of tactic is of general interest and is available in
Coq starting from version 8.7.
SSReflect was developed independently of the tactics described in Chapter Tactics. Indeed the scope of the tactics part
of SSReflect largely overlaps with the standard set of tactics. Eventually the overlap will be reduced in future releases of
Coq.
Proofs written in SSReflect typically look quite different from the ones written using only tactics as per Chapter Tactics.
We try to summarise here the most “visible” ones in order to help the reader already accustomed to the tactics described
in Chapter Tactics to read this chapter.
The first difference between the tactics described in this chapter and the tactics described in Chapter Tactics is the way
hypotheses are managed (we call this bookkeeping). In Chapter Tactics the most common approach is to avoid moving
explicitly hypotheses back and forth between the context and the conclusion of the goal. On the contrary in SSReflect all
bookkeeping is performed on the conclusion of the goal, using for that purpose a couple of syntactic constructions behaving
similar to tacticals (and often named as such in this chapter). The : tactical moves hypotheses from the context to the
conclusion, while => moves hypotheses from the conclusion to the context, and in moves back and forth a hypothesis
from the context to the conclusion for the time of applying an action to it.
While naming hypotheses is commonly done by means of an as clause in the basic model of Chapter Tactics, it is here
to => that this task is devoted. Tactics frequently leave new assumptions in the conclusion, and are often followed by =>
to explicitly name them. While generalizing the goal is normally not explicitly needed in Chapter Tactics, it is an explicit
operation performed by :.
See also:
Bookkeeping

Beside the difference of bookkeeping model, this chapter includes specific tactics which have no explicit counterpart in
Chapter Tactics such as tactics to mix forward steps and generalizations as generally have or without loss.
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SSReflect adopts the point of view that rewriting, definition expansion and partial evaluation participate all to a same
concept of rewriting a goal in a larger sense. As such, all these functionalities are provided by the rewrite tactic.
SSReflect includes a little language of patterns to select subterms in tactics or tacticals where it matters. Its most notable
application is in the rewrite tactic, where patterns are used to specify where the rewriting step has to take place.
Finally, SSReflect supports so-called reflection steps, typically allowing to switch back and forth between the computa-
tional view and logical view of a concept.
To conclude it is worth mentioning that SSReflect tactics can be mixed with non SSReflect tactics in the same proof, or
in the same Ltac expression. The few exceptions to this statement are described in section Compatibility issues.

Acknowledgments

The authors would like to thank Frédéric Blanqui, François Pottier and Laurence Rideau for their comments and sugges-
tions.

4.6.2 Usage

Getting started

To be available, the tactics presented in this manual need the followingminimal set of libraries to be loaded: ssreflect.
v, ssrfun.v and ssrbool.v. Moreover, these tactics come with a methodology specific to the authors of SSReflect
and which requires a few options to be set in a different way than in their default way. All in all, this corresponds to
working in the following context:

From Coq Require Import ssreflect ssrfun ssrbool.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

See also:
Implicit Arguments, Strict Implicit, Printing Implicit Defensive

Compatibility issues

Requiring the above modules creates an environment which is mostly compatible with the rest of Coq, up to a few
discrepancies:

• New keywords (is) might clash with variable, constant, tactic or tactical names, or with quasi-keywords in tactic
or vernacular notations.

• New tactic(al)s names (last, done, have, suffices, suff, without loss, wlog, congr, unlock)
might clash with user tactic names.

• Identifiers with both leading and trailing _, such as _x_, are reserved by SSReflect and cannot appear in scripts.
• The extensions to the rewrite tactic are partly incompatible with those available in current versions of Coq; in
particular: rewrite .. in (type of k) or rewrite .. in * or any other variant of rewrite will
not work, and the SSReflect syntax and semantics for occurrence selection and rule chaining is different. Use an
explicit rewrite direction (rewrite <- … or rewrite -> …) to access the Coq rewrite tactic.

• New symbols (//, /=, //=) might clash with adjacent existing symbols. This can be avoided by inserting white
spaces.

256 Chapter 4. The proof engine



The Coq Reference Manual, Release 8.9.1

• New constant and theorem names might clash with the user theory. This can be avoided by not importing all of
SSReflect:

From Coq Require ssreflect.
Import ssreflect.SsrSyntax.

Note that the full syntax of SSReflect’s rewrite and reserved identifiers are enabled only if the ssreflect module has
been required and if SsrSyntax has been imported. Thus a file that requires (without importing) ssreflect
and imports SsrSyntax, can be required and imported without automatically enabling SSReflect’s extended
rewrite syntax and reserved identifiers.

• Some user notations (in particular, defining an infix ;) might interfere with the ”open term”, parenthesis free, syntax
of tactics such as have, set and pose.

• The generalization of if statements to non-Boolean conditions is turned off by SSReflect, because it is mostly sub-
sumed by Coercion to bool of the sumXXX types (declared in ssrfun.v) and the if term is pattern
then term else term construct (see Pattern conditional). To use the generalized form, turn off the SSRe-
flect Boolean if notation using the command: Close Scope boolean_if_scope.

• The following two options can be unset to disable the incompatible rewrite syntax and allow reserved identifiers to
appear in scripts.

Unset SsrRewrite.
Unset SsrIdents.

4.6.3 Gallina extensions

Small-scale reflection makes an extensive use of the programming subset of Gallina, Coq’s logical specification language.
This subset is quite suited to the description of functions on representations, because it closely follows the well-established
design of the ML programming language. The SSReflect extension provides three additions to Gallina, for pattern assign-
ment, pattern testing, and polymorphism; these mitigate minor but annoying discrepancies between Gallina and ML.

Pattern assignment

The SSReflect extension provides the following construct for irrefutable pattern matching, that is, destructuring assign-
ment:
term += let: pattern := term in term

Note the colon : after the let keyword, which avoids any ambiguity with a function definition or Coq’s basic destruc-
turing let. The let: construct differs from the latter in that

• The pattern can be nested (deep pattern matching), in particular, this allows expression of the form:

let: exist (x, y) p_xy := Hp in … .

• The destructured constructor is explicitly given in the pattern, and is used for type inference.

Example

Definition f u := let: (m, n) := u in m + n.
f is defined

Check f.
f

: nat * nat -> nat
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Using let: Coq infers a type for f, whereas with a usual let the same term requires an extra type annotation in
order to type check.

Fail Definition f u := let (m, n) := u in m + n.
The command has indeed failed with message:
Cannot infer a type for this expression.

The let: construct is just (more legible) notation for the primitive Gallina expression match term with
pattern => term end.
The SSReflect destructuring assignment supports all the dependent match annotations; the full syntax is

term += let: pattern as ident
?

in pattern
?

:= term return term
?

in term

where the second pattern and the second term are types.
When the as and return keywords are both present, then ident is bound in both the second pattern and the
second term; variables in the optional type pattern are bound only in the second term, and other variables in the first
pattern are bound only in the third term, however.

Pattern conditional

The following construct can be used for a refutable pattern matching, that is, pattern testing:
term += if term is pattern then term else term

Although this construct is not strictly ML (it does exist in variants such as the pattern calculus or the ρ-calculus), it turns
out to be very convenient for writing functions on representations, because most such functions manipulate simple data
types such as Peano integers, options, lists, or binary trees, and the pattern conditional above is almost always the right
construct for analyzing such simple types. For example, the null and all list function(al)s can be defined as follows:

Example

Variable d: Set.
d is declared

Fixpoint null (s : list d) :=
if s is nil then true else false.
null is defined
null is recursively defined (decreasing on 1st argument)

Variable a : d -> bool.
a is declared

Fixpoint all (s : list d) : bool :=
if s is cons x s' then a x && all s' else true.
all is defined
all is recursively defined (decreasing on 1st argument)

The pattern conditional also provides a notation for destructuring assignment with a refutable pattern, adapted to the pure
functional setting of Gallina, which lacks a Match_Failure exception.
Likelet: above, theif…is construct is just (more legible) notation for the primitive Gallina expressionmatch term
with pattern => term | _ => term end.
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Similarly, it will always be displayed as the expansion of this form in terms of primitive match expressions (where the
default expression may be replicated).
Explicit pattern testing also largely subsumes the generalization of the if construct to all binary data types; compare if
term is inl _ then term else term and if term then term else term.
The latter appears to be marginally shorter, but it is quite ambiguous, and indeed often requires an explicit annotation
(term : {_} + {_}) to type check, which evens the character count.
Therefore, SSReflect restricts by default the condition of a plain if construct to the standard bool type; this avoids
spurious type annotations.

Example

Definition orb b1 b2 := if b1 then true else b2.
orb is defined

As pointed out in section Compatibility issues, this restriction can be removed with the command:
Close Scope boolean_if_scope.

Like let: above, the if-is-then-else construct supports the dependent match annotations:
term += if term is pattern as ident in pattern return term then term else term

As in let: the variable ident (and those in the type pattern) are bound in the second term; ident is also bound in
the third term (but not in the fourth term), while the variables in the first pattern are bound only in the third term.
Another variant allows to treat the else case first:
term += if term isn't pattern then term else term

Note that pattern eventually binds variables in the third term and not in the second term.

Parametric polymorphism

Unlike ML, polymorphism in core Gallina is explicit: the type parameters of polymorphic functions must be declared
explicitly, and supplied at each point of use. However, Coq provides two features to suppress redundant parameters:

• Sections are used to provide (possibly implicit) parameters for a set of definitions.
• Implicit arguments declarations are used to tell Coq to use type inference to deduce some parameters from the
context at each point of call.

The combination of these features provides a fairly good emulation of ML-style polymorphism, but unfortunately this
emulation breaks down for higher-order programming. Implicit arguments are indeed not inferred at all points of use, but
only at points of call, leading to expressions such as

Example

Definition all_null (s : list T) := all (@null T) s.
all_null is defined

Unfortunately, such higher-order expressions are quite frequent in representation functions, especially those which use
Coq’s Structures to emulate Haskell typeclasses.
Therefore, SSReflect provides a variant of Coq’s implicit argument declaration, which causes Coq to fill in some implicit
parameters at each point of use, e.g., the above definition can be written:
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Example

Prenex Implicits null.
Definition all_null (s : list T) := all null s.

all_null is defined

Better yet, it can be omitted entirely, since all_null s isn’t much of an improvement over all null s.
The syntax of the new declaration is

Command: Prenex Implicits ident
+

Let us denote 𝑐1 … 𝑐𝑛 the list of identifiers given to a Prenex Implicits command. The command checks that
each ci is the name of a functional constant, whose implicit arguments are prenex, i.e., the first 𝑛𝑖 > 0 arguments of 𝑐𝑖
are implicit; then it assigns Maximal Implicit status to these arguments.
As these prenex implicit arguments are ubiquitous and have often large display strings, it is strongly recommended to
change the default display settings of Coq so that they are not printed (except after a Set Printing All command).
All SSReflect library files thus start with the incantation

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Anonymous arguments

When in a definition, the type of a certain argument is mandatory, but not its name, one usually uses “arrow” abstractions
for prenex arguments, or the (_ : term) syntax for inner arguments. In SSReflect, the latter can be replaced by the
open syntax of term or (equivalently) & term, which are both syntactically equivalent to a (_ : term) expression.
This feature almost behaves as the following extension of the binder syntax:
binder += & term | of term

Caveat: & T and of T abbreviations have to appear at the end of a binder list. For instance, the usual two-constructor
polymorphic type list, i.e. the one of the standard List library, can be defined by the following declaration:

Example

Inductive list (A : Type) : Type := nil | cons of A & list A.
list is defined
list_rect is defined
list_ind is defined
list_rec is defined

Wildcards

The terms passed as arguments to SSReflect tactics can contain holes, materialized by wildcards _. Since SSReflect allows
a more powerful form of type inference for these arguments, it enhances the possibilities of using such wildcards. These
holes are in particular used as a convenient shorthand for abstractions, especially in local definitions or type expressions.
Wildcards may be interpreted as abstractions (see for example sections Definitions and ref:structure_ssr), or their
content can be inferred from the whole context of the goal (see for example section Abbreviations).
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Definitions

pose
This tactic allows to add a defined constant to a proof context. SSReflect generalizes this tactic in several ways. In
particular, the SSReflect pose tactic supports open syntax: the body of the definition does not need surrounding
parentheses. For instance:

pose t := x + y.

is a valid tactic expression.
The pose tactic is also improved for the local definition of higher order terms. Local definitions of functions can use the
same syntax as global ones. For example, the tactic pose supoprts parameters:

Example

Lemma test : True.
1 subgoal

============================
True

pose f x y := x + y.
1 subgoal

f := fun x y : nat => x + y : nat -> nat -> nat
============================
True

The SSReflect pose tactic also supports (co)fixpoints, by providing the local counterpart of the Fixpoint f := …
and CoFixpoint f := … constructs. For instance, the following tactic:

pose fix f (x y : nat) {struct x} : nat :=
if x is S p then S (f p y) else 0.

defines a local fixpoint f, which mimics the standard plus operation on natural numbers.
Similarly, local cofixpoints can be defined by a tactic of the form:

pose cofix f (arg : T) := … .

The possibility to include wildcards in the body of the definitions offers a smooth way of defining local abstractions. The
type of “holes” is guessed by type inference, and the holes are abstracted. For instance the tactic:

pose f := _ + 1.

is shorthand for:

pose f n := n + 1.

When the local definition of a function involves both arguments and holes, hole abstractions appear first. For instance, the
tactic:

pose f x := x + _.

is shorthand for:
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pose f n x := x + n.

The interaction of the pose tactic with the interpretation of implicit arguments results in a powerful and concise syntax
for local definitions involving dependent types. For instance, the tactic:

pose f x y := (x, y).

adds to the context the local definition:

pose f (Tx Ty : Type) (x : Tx) (y : Ty) := (x, y).

The generalization of wildcards makes the use of the pose tactic resemble ML-like definitions of polymorphic functions.

Abbreviations

The SSReflect set tactic performs abbreviations: it introduces a defined constant for a subterm appearing in the goal and/or
in the context.
SSReflect extends the set tactic by supplying:

• an open syntax, similarly to the pose tactic;
• a more aggressive matching algorithm;
• an improved interpretation of wildcards, taking advantage of the matching algorithm;
• an improved occurrence selection mechanism allowing to abstract only selected occurrences of a term.

The general syntax of this tactic is

set ident : term
?

:= occ_switch
?

term

occ_switch ::= { + | -
?

num
*

}

where:
• ident is a fresh identifier chosen by the user.
• term 1 is an optional type annotation. The type annotation term 1 can be given in open syntax (no surrounding
parentheses). If no occ_switch (described hereafter) is present, it is also the case for the second term. On the
other hand, in presence of occ_switch, parentheses surrounding the second term are mandatory.

• In the occurrence switch occ_switch, if the first element of the list is a natural, this element should be a number,
and not an Ltac variable. The empty list {} is not interpreted as a valid occurrence switch, it is rather used as a
flag to signal the intent of the user to clear the name following it (see Occurrence switches and redex switches and
Introduction in the context)

The tactic:

Example

Lemma test x : f x + f x = f x.
1 subgoal

x : nat
============================
f x + f x = f x

(continues on next page)
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(continued from previous page)
set t := f _.

1 subgoal

x : nat
t := f x : nat
============================
t + t = t

set t := {2}(f _).
1 subgoal

x : nat
t := f x : nat
============================
f x + t = f x

The type annotation may contain wildcards, which will be filled with the appropriate value by the matching process.
The tactic first tries to find a subterm of the goal matching the second term (and its type), and stops at the first subterm
it finds. Then the occurrences of this subterm selected by the optional occ_switch are replaced by ident and a
definition ident := term is added to the context. If no occ_switch is present, then all the occurrences are
abstracted.

Matching

The matching algorithm compares a pattern term with a subterm of the goal by comparing their heads and then pairwise
unifying their arguments (modulo conversion). Head symbols match under the following conditions:

• If the head of term is a constant, then it should be syntactically equal to the head symbol of the subterm.
• If this head is a projection of a canonical structure, then canonical structure equations are used for the matching.
• If the head of term is not a constant, the subterm should have the same structure (λ abstraction,let…in structure
…).

• If the head of term is a hole, the subterm should have at least as many arguments as term.

Example

Lemma test (x y z : nat) : x + y = z.
1 subgoal

x, y, z : nat
============================
x + y = z

set t := _ x.
1 subgoal

x, y, z : nat
t := Nat.add x : nat -> nat
============================
t y = z
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• In the special case where term is of the form (let f := t0 in f) t1 … tn , then the pattern term
is treated as (_ t1 … tn). For each subterm in the goal having the form (A u1 … um) with m ≥ n, the
matching algorithm successively tries to find the largest partial application (A u1 … uj) convertible to the head
t0 of term.

Example

Lemma test : (let f x y z := x + y + z in f 1) 2 3 = 6.
1 subgoal

============================
(let f := fun x y z : nat => x + y + z in f 1) 2 3 = 6

set t := (let g y z := S y + z in g) 2.
1 subgoal

t := (unkeyed (fun y z : nat => S y + z)) 2 : nat -> nat
============================
t 3 = 6

The notation unkeyed defined in ssreflect.v is a shorthand for the degenerate term let x := … in x.
Moreover:

• Multiple holes in term are treated as independent placeholders.

Example

Lemma test x y z : x + y = z.
1 subgoal

x, y, z : nat
============================
x + y = z

set t := _ + _.
1 subgoal

x, y, z : nat
t := x + y : nat
============================
t = z

• The type of the subterm matched should fit the type (possibly casted by some type annotations) of the pattern
term.

• The replacement of the subterm found by the instantiated pattern should not capture variables. In the example
above x is bound and should not be captured.

Example

Lemma test : forall x : nat, x + 1 = 0.
1 subgoal

(continues on next page)
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(continued from previous page)
============================
forall x : nat, x + 1 = 0

Fail set t := _ + 1.
The command has indeed failed with message:
Ltac call to "set (ssrfwdid) (ssrsetfwd) (ssrclauses)" failed.
The pattern (_ + 1) did not match and has holes. Did you mean pose?

• Typeclass inference should fill in any residual hole, but matching should never assign a value to a global existential
variable.

Occurrence selection

SSReflect provides a generic syntax for the selection of occurrences by their position indexes. These occurrence switches
are shared by all SSReflect tactics which require control on subterm selection like rewriting, generalization, …
An occurrence switch can be:

• A list natural numbers {+ n1 … nm} of occurrences affected by the tactic.

Example

Lemma test : f 2 + f 8 = f 2 + f 2.
1 subgoal

============================
f 2 + f 8 = f 2 + f 2

set x := {+1 3}(f 2).
1 subgoal

x := f 2 : nat
============================
x + f 8 = f 2 + x

Notice that some occurrences of a given term may be hidden to the user, for example because of a notation. The
vernacular Set Printing All command displays all these hidden occurrences and should be used to find the
correct coding of the occurrences to be selected8.

Example

Notation "a < b":= (le (S a) b).
Lemma test x y : x < y -> S x < S y.

1 subgoal

x, y : nat
============================
x < y -> S x < S y

(continues on next page)
8 Unfortunately, even after a call to the Set Printing All command, some occurrences are still not displayed to the user, essentially the ones possibly

hidden in the predicate of a dependent match structure.
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set t := S x.

1 subgoal

x, y : nat
t := S x : nat
============================
t <= y -> t < S y

• A list of natural numbers between {n1 … nm}. This is equivalent to the previous {+ n1 … nm} but the list
should start with a number, and not with an Ltac variable.

• A list {- n1 … nm} of occurrences not to be affected by the tactic.

Example

Lemma test : f 2 + f 8 = f 2 + f 2.
1 subgoal

============================
f 2 + f 8 = f 2 + f 2

set x := {-2}(f 2).
1 subgoal

x := f 2 : nat
============================
x + f 8 = f 2 + x

Note that, in this goal, it behaves like set x := {1 3}(f 2).

• In particular, the switch {+} selects all the occurrences. This switch is useful to turn off the default behavior of a
tactic which automatically clears some assumptions (see section Discharge for instance).

• The switch {-} imposes that no occurrences of the term should be affected by the tactic. The tactic: set x :=
{-}(f 2). leaves the goal unchanged and adds the definition x := f 2 to the context. This kind of tactic may
be used to take advantage of the power of the matching algorithm in a local definition, instead of copying large
terms by hand.

It is important to remember that matching preceeds occurrence selection.

Example

Lemma test x y z : x + y = x + y + z.
1 subgoal

x, y, z : nat
============================
x + y = x + y + z

set a := {2}(_ + _).
1 subgoal

x, y, z : nat
a := x + y : nat

(continues on next page)
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============================
x + y = a + z

Hence, in the following goal, the same tactic fails since there is only one occurrence of the selected term.

Example

Lemma test x y z : (x + y) + (z + z) = z + z.
1 subgoal

x, y, z : nat
============================
x + y + (z + z) = z + z

Fail set a := {2}(_ + _).
The command has indeed failed with message:
Ltac call to "set (ssrfwdid) (ssrsetfwd) (ssrclauses)" failed.
Only 1 < 2 occurrence of (x + y + (z + z))

Basic localization

It is possible to define an abbreviation for a term appearing in the context of a goal thanks to the in tactical.
A tactic of the form:

Variant: set ident := term in ident
+

introduces a defined constant called x in the context, and folds it in the context entries mentioned on the right hand side
of in. The body of x is the first subterm matching these context entries (taken in the given order).
A tactic of the form:

Variant: set ident := term in ident
+

*

matches term and then folds x similarly in all the given context entries but also folds x in the goal.

Example

Lemma test x t (Hx : x = 3) : x + t = 4.
1 subgoal

x, t : nat
Hx : x = 3
============================
x + t = 4

set z := 3 in Hx.
1 subgoal

x, t : nat
z := 3 : nat
Hx : x = z

(continues on next page)
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============================
x + t = 4

If the localization also mentions the goal, then the result is the following one:

Example

Lemma test x t (Hx : x = 3) : x + t = 4.
1 subgoal

x, t : nat
Hx : x = 3
============================
x + t = 4

set z := 3 in Hx * .
1 subgoal

x, t : nat
z := 3 : nat
Hx : x = z
============================
x + t = S z

Indeed, remember that 4 is just a notation for (S 3).
The use of the in tactical is not limited to the localization of abbreviations: for a complete description of the in tactical,
see section Bookkeeping and Localization.

4.6.4 Basic tactics

A sizable fraction of proof scripts consists of steps that do not ”prove” anything new, but instead perform menial book-
keeping tasks such as selecting the names of constants and assumptions or splitting conjuncts. Although they are logically
trivial, bookkeeping steps are extremely important because they define the structure of the data-flow of a proof script.
This is especially true for reflection-based proofs, which often involve large numbers of constants and assumptions. Good
bookkeeping consists in always explicitly declaring (i.e., naming) all new constants and assumptions in the script, and sys-
tematically pruning irrelevant constants and assumptions in the context. This is essential in the context of an interactive
development environment (IDE), because it facilitates navigating the proof, allowing to instantly ”jump back” to the point
at which a questionable assumption was added, and to find relevant assumptions by browsing the pruned context. While
novice or casual Coq users may find the automatic name selection feature convenient, the usage of such a feature severely
undermines the readability and maintainability of proof scripts, much like automatic variable declaration in programming
languages. The SSReflect tactics are therefore designed to support precise bookkeeping and to eliminate name generation
heuristics. The bookkeeping features of SSReflect are implemented as tacticals (or pseudo-tacticals), shared across most
SSReflect tactics, and thus form the foundation of the SSReflect proof language.

Bookkeeping

During the course of a proof Coq always present the user with a sequent whose general form is:
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ci : Ti
…
dj := ej : Tj
…
Fk : Pk
…
=================
forall (xl : Tl ) …,
let ym := bm in … in
Pn -> … -> C

The goal to be proved appears below the double line; above the line is the context of the sequent, a set of declarations of
constants ci , defined constants d i , and facts Fk that can be used to prove the goal (usually, Ti , Tj : Type and Pk
: Prop). The various kinds of declarations can come in any order. The top part of the context consists of declarations
produced by the Section commands Variable, Let, and Hypothesis. This section context is never affected by
the SSReflect tactics: they only operate on the lower part — the proof context. As in the figure above, the goal often
decomposes into a series of (universally) quantified variables (xl : Tl), local definitions let ym := bm in, and
assumptions P n ->, and a conclusion C (as in the context, variables, definitions, and assumptions can appear in any
order). The conclusion is what actually needs to be proved — the rest of the goal can be seen as a part of the proof
context that happens to be “below the line”.
However, although they are logically equivalent, there are fundamental differences between constants and facts on the one
hand, and variables and assumptions on the others. Constants and facts are unordered, but named explicitly in the proof
text; variables and assumptions are ordered, but unnamed: the display names of variables may change at any time because
of α-conversion.
Similarly, basic deductive steps such as apply can only operate on the goal because the Gallina terms that control their
action (e.g., the type of the lemma used by apply) only provide unnamed bound variables.9 Since the proof script
can only refer directly to the context, it must constantly shift declarations from the goal to the context and conversely in
between deductive steps.
In SSReflect these moves are performed by two tacticals => and :, so that the bookkeeping required by a deductive
step can be directly associated to that step, and that tactics in an SSReflect script correspond to actual logical steps in
the proof rather than merely shuffle facts. Still, some isolated bookkeeping is unavoidable, such as naming variables and
assumptions at the beginning of a proof. SSReflect provides a specific move tactic for this purpose.
Now move does essentially nothing: it is mostly a placeholder for => and :. The => tactical moves variables, local
definitions, and assumptions to the context, while the : tactical moves facts and constants to the goal.

Example
For example, the proof of10

Lemma subnK : forall m n, n <= m -> m - n + n = m.
1 subgoal

============================
forall m n : nat, n <= m -> m - n + n = m

might start with

move=> m n le_n_m.
1 subgoal

(continues on next page)
9 Thus scripts that depend on bound variable names, e.g., via intros or with, are inherently fragile.
10 The name subnK reads as “right cancellation rule for nat subtraction”.

4.6. The SSReflect proof language 269



The Coq Reference Manual, Release 8.9.1

(continued from previous page)
m, n : nat
le_n_m : n <= m
============================
m - n + n = m

where move does nothing, but => m n le_m_n changes the variables and assumption of the goal in the constants m
n : nat and the fact le_n_m : n <= m, thus exposing the conclusion m - n + n = m.
The : tactical is the converse of =>, indeed it removes facts and constants from the context by turning them into variables
and assumptions.

move: m le_n_m.
1 subgoal

n : nat
============================
forall m : nat, n <= m -> m - n + n = m

turns back m and le_m_n into a variable and an assumption, removing them from the proof context, and changing the
goal to forall m, n <= m -> m - n + n = m which can be proved by induction on n using elim: n.

Because they are tacticals, : and => can be combined, as in

move: m le_n_m => p le_n_p.

simultaneously renames m and le_m_n into p and le_n_p, respectively, by first turning them into unnamed variables,
then turning these variables back into constants and facts.
Furthermore, SSReflect redefines the basic Coq tactics case, elim, and apply so that they can take better advantage
of : and =>. In there SSReflect variants, these tactic operate on the first variable or constant of the goal and they do not
use or change the proof context. The : tactical is used to operate on an element in the context.

Example
For instance the proof of subnK could continue with elim: n. Instead of elim n (note, no colon), this
has the advantage of removing n from the context. Better yet, thiselim can be combined with previous move
and with the branching version of the => tactical (described in Introduction in the context), to encapsulate
the inductive step in a single command:

Lemma subnK : forall m n, n <= m -> m - n + n = m.
1 subgoal

============================
forall m n : nat, n <= m -> m - n + n = m

move=> m n le_n_m.
1 subgoal

m, n : nat
le_n_m : n <= m
============================
m - n + n = m

elim: n m le_n_m => [|n IHn] m => [_ | lt_n_m].
2 subgoals

(continues on next page)
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m : nat
============================
m - 0 + 0 = m

subgoal 2 is:
m - S n + S n = m

which breaks down the proof into two subgoals, the second one having in its context lt_n_m : S n <= m and IHn
: forall m, n <= m -> m - n + n = m.

The : and => tacticals can be explained very simply if one views the goal as a stack of variables and assumptions piled
on a conclusion:

• tactic : a b c pushes the context constants a, b, c as goal variables before performing tactic.
• tactic => a b c pops the top three goal variables as context constants a, b, c, after tactic has been per-
formed.

These pushes and pops do not need to balance out as in the examples above, so move: m le_n_m => p would
rename m into p, but leave an extra assumption n <= p in the goal.
Basic tactics like apply and elim can also be used without the ’:’ tactical: for example we can directly start a proof of
subnK by induction on the top variable m with

elim=> [|m IHm] n le_n.

The general form of the localization tactical in is also best explained in terms of the goal stack:

tactic in a H1 H2 *.

is basically equivalent to

move: a H1 H2; tactic => a H1 H2.

with two differences: the in tactical will preserve the body of a ifa is a defined constant, and if the * is omitted it will use
a temporary abbreviation to hide the statement of the goal from tactic.
The general form of the in tactical can be used directly with the move, case and elim tactics, so that one can write

elim: n => [|n IHn] in m le_n_m *.

instead of

elim: n m le_n_m => [|n IHn] m le_n_m.

This is quite useful for inductive proofs that involve many facts.
See section Localization for the general syntax and presentation of the in tactical.

The defective tactics

In this section we briefly present the three basic tactics performing context manipulations and the main backward chaining
tool.
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The move tactic.

The move tactic, in its defective form, behaves like the primitive hnf Coq tactic. For example, such a defective:
move

exposes the first assumption in the goal, i.e. its changes the goal not False into False -> False.
More precisely, the move tactic inspects the goal and does nothing (idtac) if an introduction step is possible, i.e. if the
goal is a product or a let…in, and performs hnf otherwise.
Of course this tactic is most often used in combination with the bookkeeping tacticals (see section Introduction in the
context and Discharge). These combinations mostly subsume the intros, generalize, revert, rename, clear
and pattern tactics.

The case tactic

The case tactic performs primitive case analysis on (co)inductive types; specifically, it destructs the top variable or
assumption of the goal, exposing its constructor(s) and its arguments, as well as setting the value of its type family indices
if it belongs to a type family (see section Type families).
The SSReflect case tactic has a special behavior on equalities. If the top assumption of the goal is an equality, the case
tactic “destructs” it as a set of equalities between the constructor arguments of its left and right hand sides, as per the
tactic injection. For example, case changes the goal:

(x, y) = (1, 2) -> G.

into:

x = 1 -> y = 2 -> G.

Note also that the case of SSReflect performs False elimination, even if no branch is generated by this case operation.
Hence the command: case. on a goal of the form False -> G will succeed and prove the goal.

The elim tactic

The elim tactic performs inductive elimination on inductive types. The defective:
elim

tactic performs inductive elimination on a goal whose top assumption has an inductive type.

Example

Lemma test m : forall n : nat, m <= n.
1 subgoal

m : nat
============================
forall n : nat, m <= n

elim.
2 subgoals

m : nat
============================

(continues on next page)
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m <= 0

subgoal 2 is:
forall n : nat, m <= n -> m <= S n

The apply tactic

The apply tactic is the main backward chaining tactic of the proof system. It takes as argument any term and applies
it to the goal. Assumptions in the type of term that don’t directly match the goal may generate one or more subgoals.
In fact the SSReflect tactic:
apply

is a synonym for:

intro top; first [refine top | refine (top _) | refine (top _ _) | …]; clear top.

where top is a fresh name, and the sequence of refine tactics tries to catch the appropriate number of wildcards to be
inserted. Note that this use of the refine tactic implies that the tactic tries to match the goal up to expansion of constants
and evaluation of subterms.
SSReflect’s apply has a special behavior on goals containing existential metavariables of sort Prop.

Example

Lemma test : forall y, 1 < y -> y < 2 -> exists x : { n | n < 3 }, 0 < proj1_sig x.
1 subgoal

============================
forall y : nat,
1 < y -> y < 2 -> exists x : {n : nat | n < 3}, 0 < proj1_sig x

move=> y y_gt1 y_lt2; apply: (ex_intro _ (exist _ y _)).
2 focused subgoals
(shelved: 2)

y : nat
y_gt1 : 1 < y
y_lt2 : y < 2
============================
y < 3

subgoal 2 is:
forall Hyp0 : y < 3, 0 < proj1_sig (exist (fun n : nat => n < 3) y Hyp0)

by apply: lt_trans y_lt2 _.
1 focused subgoal
(shelved: 1)

y : nat
y_gt1 : 1 < y
y_lt2 : y < 2
============================

(continues on next page)
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forall Hyp0 : y < 3, 0 < proj1_sig (exist (fun n : nat => n < 3) y Hyp0)

by move=> y_lt3; apply: lt_trans y_gt1.
No more subgoals.

Note that the last _ of the tactic apply: (ex_intro _ (exist _ y _)) represents a proof that y < 3. In-
stead of generating the goal:

0 < proj1_sig (exist (fun n : nat => n < 3) y ?Goal).

the system tries to prove y < 3 calling the trivial tactic. If it succeeds, let’s say because the context contains H : y <
3, then the system generates the following goal:

0 < proj1_sig (exist (fun n => n < 3) y H).

Otherwise the missing proof is considered to be irrelevant, and is thus discharged generating the two goals shown above.
Last, the user can replace the trivial tactic by defining an Ltac expression named ssrautoprop.

Discharge

The general syntax of the discharging tactical : is:

tactic ident
?

: d_item
+

clear_switch
?

d_item ::= occ_switch | clear_switch
?

term

clear_switch ::= { ident
+

}

with the following requirements:
• tactic must be one of the four basic tactics described in The defective tactics, i.e., move, case, elim or
apply, the exact tactic (section Terminators), the congr tactic (section Congruence), or the application of the
view tactical ‘/’ (section Interpreting assumptions) to one of move, case, or elim.

• The optional ident specifies equation generation (section Generation of equations), and is only allowed if tactic
is move, case or elim, or the application of the view tactical ‘/’ (section Interpreting assumptions) to case or
elim.

• An occ_switch selects occurrences of term, as in Abbreviations; occ_switch is not allowed if tactic is
apply or exact.

• A clear item clear_switch specifies facts and constants to be deleted from the proof context (as per the clear
tactic).

The : tactical first discharges all the d_item, right to left, and then performs tactic, i.e., for each d_item, starting with
the last one :

1. The SSReflect matching algorithm described in section Abbreviations is used to find occurrences of term in the
goal, after filling any holes ‘_’ in term; however if tactic is apply or exact a different matching algorithm, described
below, is used11.

2. These occurrences are replaced by a new variable; in particular, if term is a fact, this adds an assumption to the
goal.

11 Also, a slightly different variant may be used for the first d_item of case and elim; see section Type families.
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3. If term is exactly the name of a constant or fact in the proof context, it is deleted from the context, unless there is
an occ_switch.

Finally, tactic is performed just after the first d_item has been generalized— that is, between steps 2 and 3. The names
listed in the final clear_switch (if it is present) are cleared first, before d_item n is discharged.
Switches affect the discharging of a d_item as follows:

• An occ_switch restricts generalization (step 2) to a specific subset of the occurrences of term, as per section
Abbreviations, and prevents clearing (step 3).

• All the names specified by a clear_switch are deleted from the context in step 3, possibly in addition to term.
For example, the tactic:

move: n {2}n (refl_equal n).

• first generalizes (refl_equal n : n = n);
• then generalizes the second occurrence of n.
• finally generalizes all the other occurrences of n, and clears n from the proof context (assuming n is a proof
constant).

Therefore this tactic changes any goal G into

forall n n0 : nat, n = n0 -> G.

where the name n0 is picked by the Coq display function, and assuming n appeared only in G.
Finally, note that a discharge operation generalizes defined constants as variables, and not as local definitions. To override
this behavior, prefix the name of the local definition with a @, like in move: @n.
This is in contrast with the behavior of the in tactical (see section Localization), which preserves local definitions by
default.

Clear rules

The clear step will fail if term is a proof constant that appears in other facts; in that case either the facts should be
cleared explicitly with a clear_switch, or the clear step should be disabled. The latter can be done by adding an
occ_switch or simply by putting parentheses around term: both move: (n). and move: {+}n. generalize n
without clearing n from the proof context.
The clear step will also fail if the clear_switch contains a ident that is not in the proof context. Note that SSReflect
never clears a section constant.
If tactic is move or case and an equation ident is given, then clear (step 3) for d_item is suppressed (see section
Generation of equations).

Matching for apply and exact

The matching algorithm for d_item of the SSReflect apply and exact tactics exploits the type of the first d_item to
interpret wildcards in the other d_item and to determine which occurrences of these should be generalized. Therefore,
occur switches are not needed for apply and exact.
Indeed, the SSReflect tactic apply: H x is equivalent to refine (@H _ … _ x); clear H x with an appro-
priate number of wildcards between H and x.
Note that this means that matching for apply and exact has much more context to interpret wildcards; in particular it
can accommodate the _ d_item, which would always be rejected after move:.

4.6. The SSReflect proof language 275



The Coq Reference Manual, Release 8.9.1

Example

Lemma test (Hfg : forall x, f x = g x) a b : f a = g b.
1 subgoal

Hfg : forall x : nat, f x = g x
a, b : nat
============================
f a = g b

apply: trans_equal (Hfg _) _.
1 focused subgoal
(shelved: 1)

Hfg : forall x : nat, f x = g x
a, b : nat
============================
g a = g b

This tactic is equivalent (see section Bookkeeping) to: refine (trans_equal (Hfg _) _). and this is a com-
mon idiom for applying transitivity on the left hand side of an equation.

The abstract tactic

abstract: d_item
+

This tactic assigns an abstract constant previously introduced with the [: name ] intro pattern (see section Introduction
in the context).
In a goal like the following:

m : nat
abs : <hidden>
n : nat
=============
m < 5 + n

The tactic abstract: abs n first generalizes the goal with respect ton (that is not visible to the abstract constant abs)
and then assigns abs. The resulting goal is:

m : nat
n : nat
=============
m < 5 + n

Once this subgoal is closed, all other goals having abs in their context see the type assigned to abs. In this case:

m : nat
abs : forall n, m < 5 + n
=============
…

For a more detailed example the reader should refer to section Structure.
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Introduction in the context

The application of a tactic to a given goal can generate (quantified) variables, assumptions, or definitions, which the user
may want to introduce as new facts, constants or defined constants, respectively. If the tactic splits the goal into several
subgoals, each of them may require the introduction of different constants and facts. Furthermore it is very common
to immediately decompose or rewrite with an assumption instead of adding it to the context, as the goal can often be
simplified and even proved after this.
All these operations are performed by the introduction tactical =>, whose general syntax is

tactic => i_item
+

i_item ::= i_pattern | s_item | clear_switch | {}
?

/term

s_item ::= /= | // | //=

i_pattern ::= ident | _ | ? | * | occ_switch
?

-> | occ_switch
?
<- | [ i_item

?

|
] | - | [: ident

+
]

The => tactical first executes tactic, then the i_item s, left to right. An s_item specifies a simplification operation;
a clear_switch h specifies context pruning as in Discharge. The i_pattern s can be seen as a variant of intro
patterns Tactics: each performs an introduction operation, i.e., pops some variables or assumptions from the goal.
An s_item can simplify the set of subgoals or the subgoals themselves:

• // removes all the “trivial” subgoals that can be resolved by the SSReflect tactic done described in Terminators,
i.e., it executes try done.

• /= simplifies the goal by performing partial evaluation, as per the tactic simpl12.
• //= combines both kinds of simplification; it is equivalent to /= //, i.e., simpl; try done.

When an s_item bears a clear_switch, then the clear_switch is executed after the s_item, e.g., {IHn}//
will solve some subgoals, possibly using the fact IHn, and will erase IHn from the context of the remaining subgoals.
The last entry in the i_item grammar rule, /term, represents a view (see section Views and reflection). If the next
i_item is a view, then the view is applied to the assumption in top position once all the previous i_item have been
performed.
The view is applied to the top assumption.
SSReflect supports the following i_pattern s:
ident pops the top variable, assumption, or local definition into a new constant, fact, or defined constant ident,

respectively. Note that defined constants cannot be introduced when δ-expansion is required to expose the top
variable or assumption.

? pops the top variable into an anonymous constant or fact, whose name is picked by the tactic interpreter. SSReflect
only generates names that cannot appear later in the user script13.

_ pops the top variable into an anonymous constant that will be deleted from the proof context of all the subgoals produced
by the => tactical. They should thus never be displayed, except in an error message if the constant is still actually
used in the goal or context after the last i_item has been executed (s_item can erase goals or terms where the
constant appears).

* pops all the remaining apparent variables/assumptions as anonymous constants/facts. Unlike ? and move the *
i_item does not expand definitions in the goal to expose quantifiers, so it may be useful to repeat a move=> *
tactic, e.g., on the goal:

12 Except /= does not expand the local definitions created by the SSReflect in tactical.
13 SSReflect reserves all identifiers of the form “_x_”, which is used for such generated names.
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forall a b : bool, a <> b

a first move=> * adds only _a_ : bool and _b_ : bool to the context; it takes a second move=> * to
add _Hyp_ : _a_ = _b_.

occ_switch -> (resp. occ_switch <-) pops the top assumption (which should be a rewritable proposition) into
an anonymous fact, rewrites (resp. rewrites right to left) the goal with this fact (using the SSReflect rewrite tactic
described in section Rewriting, and honoring the optional occurrence selector), and finally deletes the anonymous
fact from the context.

[ i_item * | … | i_item * ] when it is the very first i_pattern after tactic => tactical and tactic is not a
move, is a branchingi_pattern. It executes the sequence i_item𝑖 on the i-th subgoal produced by tactic. The
execution of tactic should thus generate exactly m subgoals, unless the […] i_pattern comes after an initial
// or //= s_item that closes some of the goals produced by tactic, in which case exactly m subgoals should
remain after thes- item, or we have the trivial branching i_pattern [], which always does nothing, regardless of
the number of remaining subgoals.

[ i_item * | … | i_item * ] when it is not the first i_pattern or when tactic is a move, is a destructing
i_pattern. It starts by destructing the top variable, using the SSReflect case tactic described in The defective
tactics. It then behaves as the corresponding branching i_pattern, executing the sequence:token:i_item𝑖 in
the i-th subgoal generated by the case analysis; unless we have the trivial destructing i_pattern [], the latter
should generate exactly m subgoals, i.e., the top variable should have an inductive type with exactly m construc-
tors14. While it is good style to use the i_item i * to pop the variables and assumptions corresponding to each
constructor, this is not enforced by SSReflect.

/ term Interprets the top of the stack with the view term. It is equivalent to move/term. The optional flag {} can
be used to signal that the term, when it is a context entry, has to be cleared.

- does nothing, but counts as an intro pattern. It can also be used to force the interpretation of [ i_item * | … |
i_item * ] as a case analysis like in move=> -[H1 H2]. It can also be used to indicate explicitly the link
between a view and a name like in move=> /eqP-H1. Last, it can serve as a separator between views. Section
Views and reflection16 explains in which respect the tactic move=> /v1/v2 differs from the tactic move=>
/v1-/v2.

[: ident …] introduces in the context an abstract constant for each ident. Its type has to be fixed later on by using
the abstract tactic. Before then the type displayed is <hidden>.

Note that SSReflect does not support the syntax (ipat, …, ipat) for destructing intro-patterns.
Clears are deferred until the end of the intro pattern.

Example

Lemma test x y : Nat.leb 0 x = true -> (Nat.leb 0 x) && (Nat.leb y 2) = true.
1 subgoal

x, y : nat
============================
Nat.leb 0 x = true -> Nat.leb 0 x && Nat.leb y 2 = true

move=> {x} ->.
1 subgoal

y : nat
============================
true && Nat.leb y 2 = true

14 More precisely, it should have a quantified inductive type with a assumptions and m − a constructors.
16 The current state of the proof shall be displayed by the Show Proof command of Coq proof mode.
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If the cleared names are reused in the same intro pattern, a renaming is performed behind the scenes.
Facts mentioned in a clear switch must be valid names in the proof context (excluding the section context).
The rules for interpreting branching and destructing i_pattern are motivated by the fact that it would be pointless to
have a branching pattern if tactic is a move, and in most of the remaining cases tactic is case or elim, which implies
destruction. The rules above imply that:

• move=> [a b].

• case=> [a b].

• case=> a b.

are all equivalent, so which one to use is a matter of style; move should be used for casual decomposition, such as splitting
a pair, and case should be used for actual decompositions, in particular for type families (see Type families) and proof
by contradiction.
The trivial branching i_pattern can be used to force the branching interpretation, e.g.:

• case=> [] [a b] c.

• move=> [[a b] c].

• case; case=> a b c.

are all equivalent.

Generation of equations

The generation of named equations option stores the definition of a new constant as an equation. The tactic:

move En: (size l) => n.

where l is a list, replaces size l by n in the goal and adds the fact En : size l = n to the context. This is quite
different from:

pose n := (size l).

which generates a definition n := (size l). It is not possible to generalize or rewrite such a definition; on the other
hand, it is automatically expanded during computation, whereas expanding the equation En requires explicit rewriting.
The use of this equation name generation option with a case or an elim tactic changes the status of the first i_item,
in order to deal with the possible parameters of the constants introduced.

Example

Lemma test (a b :nat) : a <> b.
1 subgoal

a, b : nat
============================
a <> b

case E : a => [|n].
2 subgoals

a, b : nat

(continues on next page)
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(continued from previous page)
E : a = 0
============================
0 <> b

subgoal 2 is:
S n <> b

If the user does not provide a branching i_item as first i_item, or if the i_item does not provide enough names
for the arguments of a constructor, then the constants generated are introduced under fresh SSReflect names.

Example

Lemma test (a b :nat) : a <> b.
1 subgoal

a, b : nat
============================
a <> b

case E : a => H.
2 subgoals

a, b : nat
E : a = 0
H : 0 = b
============================
False

subgoal 2 is:
False

Show 2.
subgoal 2 is:

a, b, _n_ : nat
E : a = S _n_
H : S _n_ = b
============================
False

Combining the generation of named equations mechanism with thecase tactic strengthens the power of a case analysis.
On the other hand, when combined with the elim tactic, this feature is mostly useful for debug purposes, to trace the
values of decomposed parameters and pinpoint failing branches.

Type families

When the top assumption of a goal has an inductive type, two specific operations are possible: the case analysis performed
by thecase tactic, and the application of an induction principle, performed by theelim tactic. When this top assumption
has an inductive type, which is moreover an instance of a type family, Coq may need help from the user to specify which
occurrences of the parameters of the type should be substituted.
A specific / switch indicates the type family parameters of the type of a d_item immediately following this / switch,
using the syntax:
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Variant: case: d_item
+

/ d_item
+

Variant: elim: d_item
+

/ d_item
+

The d_item on the right side of the / switch are discharged as described in section Discharge. The case analysis or
elimination will be done on the type of the top assumption after these discharge operations.
Every d_item preceding the / is interpreted as arguments of this type, which should be an instance of an inductive type
family. These terms are not actually generalized, but rather selected for substitution. Occurrence switches can be used to
restrict the substitution. If a term is left completely implicit (e.g. writing just _), then a pattern is inferred looking at the
type of the top assumption. This allows for the compact syntax:

case: {2}_ / eqP.

where _ is interpreted as (_ == _) since eqP T a b : reflect (a = b) (a == b) and reflect is a type
family with one index.
Moreover if the d_item list is too short, it is padded with an initial sequence of _ of the right length.

Example
Here is a small example on lists. We define first a function which adds an element at the end of a given list.

Require Import List.
Section LastCases.
Variable A : Type.

A is declared

Implicit Type l : list A.
Fixpoint add_last a l : list A :=

match l with
| nil => a :: nil
| hd :: tl => hd :: (add_last a tl) end.
add_last is defined
add_last is recursively defined (decreasing on 2nd argument)

Then we define an inductive predicate for case analysis on lists according to their last element:

Inductive last_spec : list A -> Type :=
| LastSeq0 : last_spec nil
| LastAdd s x : last_spec (add_last x s).

last_spec is defined
last_spec_rect is defined
last_spec_ind is defined
last_spec_rec is defined

Theorem lastP : forall l : list A, last_spec l.
1 subgoal

A : Type
============================
forall l : list A, last_spec l

Admitted.
lastP is declared

We are now ready to use lastP in conjunction with case.
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Lemma test l : (length l) * 2 = length (l ++ l).
1 subgoal

A : Type
l : list A
============================
length l * 2 = length (l ++ l)

case: (lastP l).
2 subgoals

A : Type
l : list A
============================
length nil * 2 = length (nil ++ nil)

subgoal 2 is:
forall (s : list A) (x : A),
length (add_last x s) * 2 = length (add_last x s ++ add_last x s)

Applied to the same goal, the command: case: l / (lastP l). generates the same subgoals but l has been
cleared from both contexts.
Again applied to the same goal, the command.

Lemma test l : (length l) * 2 = length (l ++ l).
1 subgoal

A : Type
l : list A
============================
length l * 2 = length (l ++ l)

case: {1 3}l / (lastP l).
2 subgoals

A : Type
l : list A
============================
length nil * 2 = length (l ++ nil)

subgoal 2 is:
forall (s : list A) (x : A),
length (add_last x s) * 2 = length (l ++ add_last x s)

Note that selected occurrences on the left of the / switch have been substituted with l instead of being affected by the
case analysis.

The equation name generation feature combined with a type family / switch generates an equation for the first dependent
d_item specified by the user. Again starting with the above goal, the command:

Example

Lemma test l : (length l) * 2 = length (l ++ l).
1 subgoal

(continues on next page)
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(continued from previous page)
A : Type
l : list A
============================
length l * 2 = length (l ++ l)

case E: {1 3}l / (lastP l) => [|s x].
2 subgoals

A : Type
l : list A
E : l = nil
============================
length nil * 2 = length (l ++ nil)

subgoal 2 is:
length (add_last x s) * 2 = length (l ++ add_last x s)

Show 2.
subgoal 2 is:

A : Type
l, s : list A
x : A
E : l = add_last x s
============================
length (add_last x s) * 2 = length (l ++ add_last x s)

There must be at least one d_item to the left of the / switch; this prevents any confusion with the view feature. However,
the d_item to the right of the / are optional, and if they are omitted the first assumption provides the instance of the
type family.
The equation always refers to the first d_item in the actual tactic call, before any padding with initial _. Thus, if an
inductive type has two family parameters, it is possible to have|SSR| generate an equation for the second one by omitting
the pattern for the first; note however that this will fail if the type of the second parameter depends on the value of the
first parameter.

4.6.5 Control flow

Indentation and bullets

A linear development of Coq scripts gives little information on the structure of the proof. In addition, replaying a proof
after some changes in the statement to be proved will usually not display information to distinguish between the various
branches of case analysis for instance.
To help the user in this organization of the proof script at development time, SSReflect provides some bullets to highlight
the structure of branching proofs. The available bullets are -, + and *. Combined with tabulation, this lets us highlight
four nested levels of branching; the most we have ever needed is three. Indeed, the use of “simpl and closing” switches,
of terminators (see above section Terminators) and selectors (see section Selectors) is powerful enough to avoid most of
the time more than two levels of indentation.
Here is a fragment of such a structured script:

case E1: (abezoutn _ _) => [[| k1] [| k2]].
- rewrite !muln0 !gexpn0 mulg1 => H1.

(continues on next page)
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(continued from previous page)
move/eqP: (sym_equal F0); rewrite -H1 orderg1 eqn_mul1.
by case/andP; move/eqP.

- rewrite muln0 gexpn0 mulg1 => H1.
have F1: t %| t * S k2.+1 - 1.
apply: (@dvdn_trans (orderg x)); first by rewrite F0; exact: dvdn_mull.
rewrite orderg_dvd; apply/eqP; apply: (mulgI x).
rewrite -{1}(gexpn1 x) mulg1 gexpn_add leq_add_sub //.
by move: P1; case t.

rewrite dvdn_subr in F1; last by exact: dvdn_mulr.
+ rewrite H1 F0 -{2}(muln1 (p ^ l)); congr (_ * _).
by apply/eqP; rewrite -dvdn1.

+ by move: P1; case: (t) => [| [| s1]].
- rewrite muln0 gexpn0 mul1g => H1.
...

Terminators

To further structure scripts, SSReflect supplies terminating tacticals to explicitly close off tactics. When replaying scripts,
we then have the nice property that an error immediately occurs when a closed tactic fails to prove its subgoal.
It is hence recommended practice that the proof of any subgoal should end with a tactic which fails if it does not solve the
current goal, like discriminate, contradiction or assumption.
In fact, SSReflect provides a generic tactical which turns any tactic into a closing one (similar to now). Its general syntax
is:
by tactic

The Ltac expression by [tactic | tactic | …] is equivalent to do [done | by tactic | by
tactic | …], which corresponds to the standard Ltac expression first [done | tactic; done |
tactic; done | …].
In the script provided as example in section Indentation and bullets, the paragraph corresponding to each sub-case ends
with a tactic line prefixed with a by, like in:

by apply/eqP; rewrite -dvdn1.

done

The by tactical is implemented using the user-defined, and extensible done tactic. This done tactic tries to solve the
current goal by some trivial means and fails if it doesn’t succeed. Indeed, the tactic expression by tactic is equivalent
to tactic; done.
Conversely, the tactic

by [ ].

is equivalent to:

done.

The default implementation of the done tactic, in the ssreflect.v file, is:

Ltac done :=
trivial; hnf; intros; solve
[ do ![solve [trivial | apply: sym_equal; trivial]

| discriminate | contradiction | split]

(continues on next page)
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(continued from previous page)
| case not_locked_false_eq_true; assumption
| match goal with H : ~ _ |- _ => solve [case H; trivial] end ].

The lemma not_locked_false_eq_true is needed to discriminate locked boolean predicates (see section Locking,
unlocking). The iterator tactical do is presented in section Iteration. This tactic can be customized by the user, for instance
to include an auto tactic.
A natural and common way of closing a goal is to apply a lemma which is the exact one needed for the goal to be solved.
The defective form of the tactic:

exact.

is equivalent to:

do [done | by move=> top; apply top].

where top is a fresh name assigned to the top assumption of the goal. This applied form is supported by the : discharge
tactical, and the tactic:

exact: MyLemma.

is equivalent to:

by apply: MyLemma.

(see section Discharge for the documentation of the apply: combination).

Warning: The list of tactics (possibly chained by semicolons) that follows the by keyword is considered to be a
parenthesized block applied to the current goal. Hence for example if the tactic:
by rewrite my_lemma1.

succeeds, then the tactic:
by rewrite my_lemma1; apply my_lemma2.

usually fails since it is equivalent to:
by (rewrite my_lemma1; apply my_lemma2).

Selectors

When composing tactics, the two tacticals first and last let the user restrict the application of a tactic to only one of
the subgoals generated by the previous tactic. This covers the frequent cases where a tactic generates two subgoals one of
which can be easily disposed of.
This is another powerful way of linearization of scripts, since it happens very often that a trivial subgoal can be solved in
a less than one line tactic. For instance, the tactic:
tactic ; last by tactic

tries to solve the last subgoal generated by the first tactic using the given second tactic, and fails if it does not succeed. Its
analogue
tactic ; first by tactic
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tries to solve the first subgoal generated by the first tactic using the second given tactic, and fails if it does not succeed.
SSReflect also offers an extension of this facility, by supplying tactics to permute the subgoals generated by a tactic. The
tactic:
Variant: tactic; last first

inverts the order of the subgoals generated by tactic. It is equivalent to:
Variant: tactic; first last

More generally, the tactic:
tactic; last num first

where num is a Coq numeral, or an Ltac variable denoting a Coq numeral, having the value k. It rotates the n subgoals G1
, …, Gn generated by tactic. The first subgoal becomes Gn + 1 − k and the circular order of subgoals remains unchanged.
Conversely, the tactic:
tactic; first num last

rotates the n subgoals G1 , …, Gn generated by tactic in order that the first subgoal becomes Gk .
Finally, the tactics last and first combine with the branching syntax of Ltac: if the tactic generates n subgoals on a
given goal, then the tactic

tactic ; last k [ tactic1 |…| tacticm ] || tacticn.

where natural denotes the integer k as above, applies tactic1 to the n −k + 1-th goal, … tacticm to the n −k + 2 − m-th
goal and tactic n to the others.

Example
Here is a small example on lists. We define first a function which adds an element at the end of a given list.

Inductive test : nat -> Prop :=
| C1 n of n = 1 : test n
| C2 n of n = 2 : test n
| C3 n of n = 3 : test n
| C4 n of n = 4 : test n.

test is defined
test_ind is defined

Lemma example n (t : test n) : True.
1 subgoal

n : nat
t : test n
============================
True

case: t; last 2 [move=> k| move=> l]; idtac.
4 subgoals

n : nat
============================
forall n0 : nat, n0 = 1 -> True

subgoal 2 is:
k = 2 -> True

(continues on next page)
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(continued from previous page)
subgoal 3 is:
l = 3 -> True

subgoal 4 is:
forall n0 : nat, n0 = 4 -> True

Iteration

SSReflect offers an accurate control on the repetition of tactics, thanks to the do tactical, whose general syntax is:

do mult
?

( tactic | [ tactic
+

|
] )

where mult is a multiplier.
Brackets can only be omitted if a single tactic is given and a multiplier is present.
A tactic of the form:

do [ tactic 1 | … | tactic n ].

is equivalent to the standard Ltac expression:

first [ tactic 1 | … | tactic n ].

The optional multiplier mult specifies how many times the action of tactic should be repeated on the current subgoal.
There are four kinds of multipliers:
mult ::= num ! | ! | num ? | ?

Their meaning is:
• n! the step tactic is repeated exactly n times (where n is a positive integer argument).
• ! the step tactic is repeated as many times as possible, and done at least once.
• ? the step tactic is repeated as many times as possible, optionally.
• n? the step tactic is repeated up to n times, optionally.

For instance, the tactic:

tactic; do 1? rewrite mult_comm.

rewrites at most one time the lemma mult_comm in all the subgoals generated by tactic , whereas the tactic:

tactic; do 2! rewrite mult_comm.

rewrites exactly two times the lemma mult_comm in all the subgoals generated by tactic, and fails if this rewrite is not
possible in some subgoal.
Note that the combination of multipliers and rewrite is so often used that multipliers are in fact integrated to the syntax
of the SSReflect rewrite tactic, see section Rewriting.

Localization

In sections Basic localization and Bookkeeping, we have already presented the localization tactical in, whose general syntax
is:
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tactic in ident
+

*
?

where ident is a name in the context. On the left side of in, tactic can be move, case, elim, rewrite, set,
or any tactic formed with the general iteration tactical do (see section Iteration).
The operation described by tactic is performed in the facts listed after in and in the goal if a * ends the list of names.
The in tactical successively:

• generalizes the selected hypotheses, possibly “protecting” the goal if * is not present,
• performs tactic, on the obtained goal,
• reintroduces the generalized facts, under the same names.

This defective form of the do tactical is useful to avoid clashes between standard Ltac in and the SSReflect tactical in.

Example

Ltac mytac H := rewrite H.
mytac is defined

Lemma test x y (H1 : x = y) (H2 : y = 3) : x + y = 6.
1 subgoal

x, y : nat
H1 : x = y
H2 : y = 3
============================
x + y = 6

do [mytac H2] in H1 *.
1 subgoal

x, y : nat
H2 : y = 3
H1 : x = 3
============================
x + 3 = 6

the last tactic rewrites the hypothesis H2 : y = 3 both in H1 : x = y and in the goal x + y = 6.

By default in keeps the body of local definitions. To erase the body of a local definition during the generalization phase,
the name of the local definition must be written between parentheses, like in rewrite H in H1 (def_n) H2.

From SSReflect 1.5 the grammar for the in tactical has been extended to the following one:

Variant: tactic in clear_switch | @
?

ident | ( ident ) | ( @
?

ident := c_pattern )

+

*
?

In its simplest form the last option lets one rename hypotheses that can’t be cleared (like section variables). For example,
(y := x) generalizes over x and reintroduces the generalized variable under the name y (and does not clear x). For a
more precise description of this form of localization refer to Advanced generalization.

Structure

Forward reasoning structures the script by explicitly specifying some assumptions to be added to the proof context. It
is closely associated with the declarative style of proof, since an extensive use of these highlighted statements make the
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script closer to a (very detailed) textbook proof.
Forward chaining tactics allow to state an intermediate lemma and start a piece of script dedicated to the proof of this
statement. The use of closing tactics (see section Terminators) and of indentation makes syntactically explicit the portion
of the script building the proof of the intermediate statement.

The have tactic.

The main SSReflect forward reasoning tactic is the have tactic. It can be use in two modes: one starts a new (sub)proof
for an intermediate result in the main proof, and the other provides explicitly a proof term for this intermediate step.
In the first mode, the syntax of have in its defective form is:
have : term

This tactic supports open syntax for term. Applied to a goal G, it generates a first subgoal requiring a proof of term in
the context of G. The second generated subgoal is of the form term -> G, where term becomes the new top assumption,
instead of being introduced with a fresh name. At the proof-term level, the have tactic creates a β redex, and introduces
the lemma under a fresh name, automatically chosen.
Like in the case of the pose tactic (see section Definitions), the types of the holes are abstracted in term.

Example

Lemma test : True.
1 subgoal

============================
True

have: _ * 0 = 0.
2 subgoals

============================
forall n : nat, n * 0 = 0

subgoal 2 is:
(forall n : nat, n * 0 = 0) -> True

The invokation of have is equivalent to:

have: forall n : nat, n * 0 = 0.
2 subgoals

============================
forall n : nat, n * 0 = 0

subgoal 2 is:
(forall n : nat, n * 0 = 0) -> True

The have tactic also enjoys the same abstraction mechanism as the pose tactic for the non-inferred implicit arguments.
For instance, the tactic:

Example
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have: forall x y, (x, y) = (x, y + 0).
2 subgoals

============================
forall (T : Type) (x : T) (y : nat), (x, y) = (x, y + 0)

subgoal 2 is:
(forall (T : Type) (x : T) (y : nat), (x, y) = (x, y + 0)) -> True

opens a new subgoal where the type of x is quantified.

The behavior of the defective have tactic makes it possible to generalize it in the following general construction:

have i_item
*

i_pattern
?

s_item | ssr_binder
+

?

: term
?

:= term | by tactic
?

Open syntax is supported for both term. For the description of i_item and s_item see section Introduction in the
context. The first mode of the have tactic, which opens a sub-proof for an intermediate result, uses tactics of the form:
Variant: have clear_switch i_item : term by tactic

which behave like:

have: term ; first by tactic.
move=> clear_switch i_item.

Note that the clear_switch precedes the:token:i_item, which allows to reuse a name of the context, possibly used
by the proof of the assumption, to introduce the new assumption itself.
The‘‘by‘‘ feature is especially convenient when the proof script of the statement is very short, basically when it fits in one
line like in:

have H23 : 3 + 2 = 2 + 3 by rewrite addnC.

The possibility of using i_item supplies a very concise syntax for the further use of the intermediate step. For instance,

Example

Lemma test a : 3 * a - 1 = a.
1 subgoal

a : nat
============================
3 * a - 1 = a

have -> : forall x, x * a = a.
2 subgoals

a : nat
============================
forall x : nat, x * a = a

subgoal 2 is:
a - 1 = a

Note how the second goal was rewritten using the stated equality. Also note that in this last subgoal, the intermediate
result does not appear in the context.
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Thanks to the deferred execution of clears, the following idiom is also supported (assuming x occurs in the goal only):

have {x} -> : x = y.

Another frequent use of the intro patterns combined with have is the destruction of existential assumptions like in the
tactic:

Example

Lemma test : True.
1 subgoal

============================
True

have [x Px]: exists x : nat, x > 0; last first.
2 subgoals

x : nat
Px : x > 0
============================
True

subgoal 2 is:
exists x : nat, x > 0

An alternative use of the have tactic is to provide the explicit proof term for the intermediate lemma, using tactics of
the form:

Variant: have ident
?

:= term

This tactic creates a new assumption of type the type of term. If the optional ident is present, this assumption is
introduced under the name ident. Note that the body of the constant is lost for the user.
Again, non inferred implicit arguments and explicit holes are abstracted.

Example

Lemma test : True.
1 subgoal

============================
True

have H := forall x, (x, x) = (x, x).
1 subgoal

H : Type -> Prop
============================
True

adds to the context H : Type -> Prop. This is a schematic example but the feature is specially useful when the
proof term to give involves for instance a lemma with some hidden implicit arguments.

After the i_pattern, a list of binders is allowed.
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Example

Lemma test : True.
1 subgoal

============================
True

have H x (y : nat) : 2 * x + y = x + x + y by omega.
1 subgoal

H : forall x y : nat, 2 * x + y = x + x + y
============================
True

A proof term provided after := can mention these bound variables (that are automatically introduced with the given
names). Since the i_pattern can be omitted, to avoid ambiguity, bound variables can be surrounded with parentheses
even if no type is specified:

have (x) : 2 * x = x + x by omega.

The i_item and s_item can be used to interpret the asserted hypothesis with views (see section Views and reflection)
or simplify the resulting goals.
The have tactic also supports a suffmodifier which allows for asserting that a given statement implies the current goal
without copying the goal itself.

Example

Lemma test : True.
1 subgoal

============================
True

have suff H : 2 + 2 = 3; last first.
2 subgoals

H : 2 + 2 = 3 -> True
============================
True

subgoal 2 is:
2 + 2 = 3 -> True

Note that H is introduced in the second goal.

The suff modifier is not compatible with the presence of a list of binders.

Generating let in context entries with have

Since SSReflect 1.5 the have tactic supports a “transparent” modifier to generate let in context entries: the @ symbol in
front of the context entry name.
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Example

Inductive Ord n := Sub x of x < n.
Ord is defined
Ord_rect is defined
Ord_ind is defined
Ord_rec is defined

Notation "'I_ n" := (Ord n) (at level 8, n at level 2, format "''I_' n").
Arguments Sub {_} _ _.
Lemma test n m (H : m + 1 < n) : True.

1 subgoal

n, m : nat
H : m + 1 < n
============================
True

have @i : 'I_n by apply: (Sub m); omega.
1 subgoal

n, m : nat
H : m + 1 < n
i := Sub m

(Decidable.dec_not_not (m < n) (dec_lt m n) (fun ... => ... ...))
: 'I_n

============================
True

Note that the sub-term produced by omega is in general huge and uninteresting, and hence one may want to hide it. For
this purpose the [: name ] intro pattern and the tactic abstract (see The abstract tactic) are provided.

Example

Lemma test n m (H : m + 1 < n) : True.
1 subgoal

n, m : nat
H : m + 1 < n
============================
True

have [:pm] @i : 'I_n by apply: (Sub m); abstract: pm; omega.
1 subgoal

n, m : nat
H : m + 1 < n
pm : m < n (*1*)
i := Sub m pm : 'I_n
============================
True

The type of pm can be cleaned up by its annotation (*1*) by just simplifying it. The annotations are there for technical
reasons only.
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When intro patterns for abstract constants are used in conjunction with have and an explicit term, they must be used as
follows:

Example

Lemma test n m (H : m + 1 < n) : True.
1 subgoal

n, m : nat
H : m + 1 < n
============================
True

have [:pm] @i : 'I_n := Sub m pm.
2 subgoals

n, m : nat
H : m + 1 < n
============================
S m <= n

subgoal 2 is:
True

by omega.
1 subgoal

n, m : nat
H : m + 1 < n
pm : S m <= n (*1*)
i := Sub m pm : 'I_n : 'I_n
============================
True

In this case the abstract constant pm is assigned by using it in the term that follows := and its corresponding goal is left
to be solved. Goals corresponding to intro patterns for abstract constants are opened in the order in which the abstract
constants are declared (not in the “order” in which they are used in the term).
Note that abstract constants do respect scopes. Hence, if a variable is declared after their introduction, it has to be properly
generalized (i.e. explicitly passed to the abstract constant when one makes use of it).

Example

Lemma test n m (H : m + 1 < n) : True.
1 subgoal

n, m : nat
H : m + 1 < n
============================
True

have [:pm] @i k : 'I_(n+k) by apply: (Sub m); abstract: pm k; omega.
1 subgoal

n, m : nat
H : m + 1 < n

(continues on next page)
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(continued from previous page)
pm : (forall k : nat, m < n + k) (*1*)
i := fun k : nat => Sub m (pm k) : forall k : nat, 'I_(n + k)
============================
True

Last, notice that the use of intro patterns for abstract constants is orthogonal to the transparent flag @ for have.

The have tactic and typeclass resolution

Since SSReflect 1.5 the have tactic behaves as follows with respect to typeclass inference.

have foo : ty.

Full inference for ty. The first subgoal demands a proof of such instantiated statement.

have foo : ty := .

No inference for ty. Unresolved instances are quantified in ty. The first subgoal demands a proof of such
quantified statement. Note that no proof term follows :=, hence two subgoals are generated.

have foo : ty := t.

No inference for ty and t.

have foo := t.

No inference for t. Unresolved instances are quantified in the (inferred) type of t and abstracted in t.
Flag: SsrHave NoTCResolution

This option restores the behavior of SSReflect 1.4 and below (never resolve typeclasses).

Variants: the suff and wlog tactics

As it is often the case in mathematical textbooks, forward reasoning may be used in slightly different variants. One of
these variants is to show that the intermediate step L easily implies the initial goal G. By easily we mean here that the
proof of L ⇒ G is shorter than the one of L itself. This kind of reasoning step usually starts with: “It suffices to show that
…”.
This is such a frequent way of reasoning that SSReflect has a variant of the have tactic called suffices (whose
abridged name is suff). The have and suff tactics are equivalent and have the same syntax but:

• the order of the generated subgoals is inversed
• but the optional clear item is still performed in the second branch. This means that the tactic:

suff {H} H : forall x : nat, x >= 0.

fails if the context of the current goal indeed contains an assumption named H.
The rationale of this clearing policy is to make possible “trivial” refinements of an assumption, without changing its name
in the main branch of the reasoning.
The have modifier can follow the suff tactic.

Example
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Lemma test : G.
1 subgoal

============================
G

suff have H : P.
2 subgoals

H : P
============================
G

subgoal 2 is:
(P -> G) -> G

Note that, in contrast with have suff, the name H has been introduced in the first goal.

Another useful construct is reduction, showing that a particular case is in fact general enough to prove a general property.
This kind of reasoning step usually starts with: “Without loss of generality, we can suppose that …”. Formally, this
corresponds to the proof of a goal G by introducing a cut wlog_statement -> G. Hence the user shall provide a
proof for both (wlog_statement -> G) -> G and wlog_statement -> G. However, such cuts are usually
rather painful to perform by hand, because the statement wlog_statement is tedious to write by hand, and sometimes
even to read.
SSReflect implements this kind of reasoning step through the without loss tactic, whose short name is wlog. It
offers support to describe the shape of the cut statements, by providing the simplifying hypothesis and by pointing at the
elements of the initial goals which should be generalized. The general syntax of without loss is:

wlog suff
?

clear_switch
?

i_item
?

: ident
*

/ term

Variant: without loss suff
?

clear_switch
?

i_item
?

: ident
*

/ term

where each ident is a constant in the context of the goal. Open syntax is supported for term.
In its defective form:
Variant: wlog: / term

Variant: without loss: / term

on a goal G, it creates two subgoals: a first one to prove the formula (term -> G) -> G and a second one to prove the
formula term -> G.
If the optional list of ident is present on the left side of /, these constants are generalized in the premise (term -> G) of
the first subgoal. By default bodies of local definitions are erased. This behavior can be inhibited by prefixing the name
of the local definition with the @ character.
In the second subgoal, the tactic:

move=> clear_switch i_item.

is performed if at least one of these optional switches is present in the wlog tactic.
The wlog tactic is specially useful when a symmetry argument simplifies a proof. Here is an example showing the
beginning of the proof that quotient and reminder of natural number euclidean division are unique.

Example
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Lemma quo_rem_unicity d q1 q2 r1 r2 :
q1*d + r1 = q2*d + r2 -> r1 < d -> r2 < d -> (q1, r1) = (q2, r2).
1 subgoal

d, q1, q2, r1, r2 : nat
============================
q1 * d + r1 = q2 * d + r2 -> r1 < d -> r2 < d -> (q1, r1) = (q2, r2)

wlog: q1 q2 r1 r2 / q1 <= q2.
2 subgoals

d, q1, q2, r1, r2 : nat
============================
(forall q3 q4 r3 r4 : nat,
q3 <= q4 ->
q3 * d + r3 = q4 * d + r4 -> r3 < d -> r4 < d -> (q3, r3) = (q4, r4)) ->

q1 * d + r1 = q2 * d + r2 -> r1 < d -> r2 < d -> (q1, r1) = (q2, r2)

subgoal 2 is:
q1 <= q2 ->
q1 * d + r1 = q2 * d + r2 -> r1 < d -> r2 < d -> (q1, r1) = (q2, r2)

by case (le_gt_dec q1 q2)=> H; last symmetry; eauto with arith.
1 subgoal

d, q1, q2, r1, r2 : nat
============================
q1 <= q2 ->
q1 * d + r1 = q2 * d + r2 -> r1 < d -> r2 < d -> (q1, r1) = (q2, r2)

The wlog suff variant is simpler, since it cuts wlog_statement instead of wlog_statement -> G. It thus
opens the goals wlog_statement -> G and wlog_statement.
In its simplest form the generally have : … tactic is equivalent to wlog suff : … followed by last first. When
the have tactic is used with the generally (or gen) modifier it accepts an extra identifier followed by a comma before
the usual intro pattern. The identifier will name the new hypothesis in its more general form, while the intro pattern will
be used to process its instance.

Example

Lemma simple n (ngt0 : 0 < n ) : P n.
1 subgoal

n : nat
ngt0 : 0 < n
============================
P n

gen have ltnV, /andP[nge0 neq0] : n ngt0 / (0 <= n) && (n != 0); last first.
2 subgoals

n : nat
ngt0 : 0 < n
ltnV : forall n : nat, 0 < n -> (0 <= n) && (n != 0)
nge0 : 0 <= n
neq0 : n != 0

(continues on next page)
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(continued from previous page)
============================
P n

subgoal 2 is:
(0 <= n) && (n != 0)

Advanced generalization

The complete syntax for the items on the left hand side of the / separator is the following one:

Variant: wlog … : clear_switch | @
?

ident | ( @
?

ident := c_pattern)

?

/ term

Clear operations are intertwined with generalization operations. This helps in particular avoiding dependency issues while
generalizing some facts.
If an ident is prefixed with the @mark, then a let-in redex is created, which keeps track if its body (if any). The syntax
( ident := c_pattern) allows to generalize an arbitrary term using a given name. Note that its simplest form
(x := y) is just a renaming of y into x. In particular, this can be useful in order to simulate the generalization of a
section variable, otherwise not allowed. Indeed renaming does not require the original variable to be cleared.
The syntax (@x := y) generates a let-in abstraction but with the following caveat: x will not bind y, but its body,
whenever y can be unfolded. This covers the case of both local and global definitions, as illustrated in the following
example.

Example

Section Test.
Variable x : nat.

x is declared

Definition addx z := z + x.
addx is defined

Lemma test : x <= addx x.
1 subgoal

x : nat
============================
x <= addx x

wlog H : (y := x) (@twoy := addx x) / twoy = 2 * y.
2 subgoals

x : nat
============================
(forall y : nat, let twoy := y + y in twoy = 2 * y -> y <= twoy) ->
x <= addx x

subgoal 2 is:
y <= twoy

To avoid unfolding the term captured by the pattern add x one can use the pattern id (addx x), that would produce
the following first subgoal
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wlog H : (y := x) (@twoy := id (addx x)) / twoy = 2 * y.
2 subgoals

x : nat
============================
(forall y : nat, let twoy := addx y in twoy = 2 * y -> y <= addx y) ->
x <= addx x

subgoal 2 is:
y <= addx y

4.6.6 Rewriting

The generalized use of reflection implies that most of the intermediate results handled are properties of effectively com-
putable functions. The most efficient mean of establishing such results are computation and simplification of expressions
involving such functions, i.e., rewriting. SSReflect therefore includes an extended rewrite tactic, that unifies and
combines most of the rewriting functionalities.

An extended rewrite tactic

The main features of the rewrite tactic are:
• It can perform an entire series of such operations in any subset of the goal and/or context;
• It allows to perform rewriting, simplifications, folding/unfolding of definitions, closing of goals;
• Several rewriting operations can be chained in a single tactic;
• Control over the occurrence at which rewriting is to be performed is significantly enhanced.

The general form of an SSReflect rewrite tactic is:

rewrite rstep
+

The combination of a rewrite tactic with the in tactical (see section Localization) performs rewriting in both the context
and the goal.
A rewrite step rstep has the general form:

rstep ::= r_prefix
?

r_item

r_prefix ::= - ? mult
?

occ_switch | clear_switch
?

[ r_pattern ]
?

r_pattern ::= term | in ident in
?

term | ( term in | term as ) ident in term

r_item ::= /
?

term | s_item

An r_prefix contains annotations to qualify where and how the rewrite operation should be performed:
• The optional initial - indicates the direction of the rewriting of r_item: if present the direction is right-to-left
and it is left-to-right otherwise.

• The multiplier mult (see section Iteration) specifies if and how the rewrite operation should be repeated.
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• A rewrite operation matches the occurrences of a rewrite pattern, and replaces these occurrences by another term,
according to the given r_item. The optional redex switch [r_pattern], which should always be surrounded
by brackets, gives explicitly this rewrite pattern. In its simplest form, it is a regular term. If no explicit redex switch
is present the rewrite pattern to be matched is inferred from the r_item.

• This optional term, or the r_item, may be preceded by an occurrence switch (see section Selectors) or a clear
item (see section Discharge), these two possibilities being exclusive. An occurrence switch selects the occurrences
of the rewrite pattern which should be affected by the rewrite operation.

An r_item can be:
• A simplification r_item, represented by a s_item (see section Introduction in the context). Simplification oper-
ations are intertwined with the possible other rewrite operations specified by the list of r_item.

• A folding/unfolding r_item. The tactic: rewrite /term unfolds the head constant of term in every occur-
rence of the first matching of term in the goal. In particular, if my_def is a (local or global) defined constant,
the tactic: rewrite /my_def. is analogous to: unfold my_def. Conversely: rewrite -/my_def.
is equivalent to: fold my_def. When an unfold r_item is combined with a redex pattern, a conversion oper-
ation is performed. A tactic of the form: rewrite -[term1]/term2. is equivalent to: change term1
with term2. If term2 is a single constant and term1 head symbol is not term2, then the head symbol of
term1 is repeatedly unfolded until term2 appears.

• A term, which can be:
– A term whose type has the form: forall (x1 : A1 )…(xn : An ), eq term1 term2
where eq is the Leibniz equality or a registered setoid equality.

– A list of terms (t1 ,…,tn), each ti having a type above. The tactic: rewrite r_prefix (t1
,…,tn ). is equivalent to: do [rewrite r_prefix t1 | … | rewrite r_prefix
tn ].

– An anonymous rewrite lemma (_ : term), where term has a type as above. tactic: rewrite (_
: term) is in fact synonym of: cutrewrite (term)..

Example

Definition double x := x + x.
double is defined

Definition ddouble x := double (double x).
ddouble is defined

Lemma test x : ddouble x = 4 * x.
1 subgoal

x : nat
============================
ddouble x = 4 * x

rewrite [ddouble _]/double.
1 subgoal

x : nat
============================
double x + double x = 4 * x
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Warning: The SSReflect terms containing holes are not typed as abstractions in this context. Hence the
following script fails.
Definition f := fun x y => x + y.

f is defined

Lemma test x y : x + y = f y x.
1 subgoal

x, y : nat
============================
x + y = f y x

Fail rewrite -[f y]/(y + _).
The command has indeed failed with message:
Ltac call to "rewrite (ssrrwargs) (ssrclauses)" failed.
fold pattern (y + _) does not match redex (f y)

but the following script succeeds
rewrite -[f y x]/(y + _).

1 subgoal

x, y : nat
============================
x + y = y + x

Remarks and examples

Rewrite redex selection

The general strategy of SSReflect is to grasp as many redexes as possible and to let the user select the ones to be rewritten
thanks to the improved syntax for the control of rewriting.
This may be a source of incompatibilities between the two rewrite tactics.
In a rewrite tactic of the form:

rewrite occ_switch [term1]term2.

term1 is the explicit rewrite redex and term2 is the rewrite rule. This execution of this tactic unfolds as follows:
• First term1 and term2 are βι normalized. Then term2 is put in head normal form if the Leibniz equality
constructor eq is not the head symbol. This may involve ζ reductions.

• Then, the matching algorithm (see section Abbreviations) determines the first subterm of the goal matching the
rewrite pattern. The rewrite pattern is given by term1, if an explicit redex pattern switch is provided, or by the
type of term2 otherwise. However, matching skips over matches that would lead to trivial rewrites. All the
occurrences of this subterm in the goal are candidates for rewriting.

• Then only the occurrences coded by occ_switch (see again section Abbreviations) are finally selected for rewrit-
ing.

• The left hand side of term2 is unified with the subterm found by the matching algorithm, and if this succeeds, all
the selected occurrences in the goal are replaced by the right hand side of term2.

• Finally the goal is βι normalized.
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In the case term2 is a list of terms, the first top-down (in the goal) left-to-right (in the list) matching rule gets selected.

Chained rewrite steps

The possibility to chain rewrite operations in a single tactic makes scripts more compact and gathers in a single command
line a bunch of surgical operations which would be described by a one sentence in a pen and paper proof.
Performing rewrite and simplification operations in a single tactic enhances significantly the concision of scripts. For
instance the tactic:

rewrite /my_def {2}[f _]/= my_eq //=.

unfolds my_def in the goal, simplifies the second occurrence of the first subterm matching pattern [f _], rewrites
my_eq, simplifies the goals and closes trivial goals.
Here are some concrete examples of chained rewrite operations, in the proof of basic results on natural numbers arithmetic.

Example

Axiom addn0 : forall m, m + 0 = m.
addn0 is declared

Axiom addnS : forall m n, m + S n = S (m + n).
addnS is declared

Axiom addSnnS : forall m n, S m + n = m + S n.
addSnnS is declared

Lemma addnCA m n p : m + (n + p) = n + (m + p).
1 subgoal

m, n, p : nat
============================
m + (n + p) = n + (m + p)

by elim: m p => [ | m Hrec] p; rewrite ?addSnnS -?addnS.
No more subgoals.

Qed.
addnCA is defined

Lemma addnC n m : m + n = n + m.
1 subgoal

n, m : nat
============================
m + n = n + m

by rewrite -{1}[n]addn0 addnCA addn0.
No more subgoals.

Qed.
addnC is defined

Note the use of the ? switch for parallel rewrite operations in the proof of addnCA.

302 Chapter 4. The proof engine



The Coq Reference Manual, Release 8.9.1

Explicit redex switches are matched first

If an r_prefix involves a redex switch, the first step is to find a subterm matching this redex pattern, independently
from the left hand side of the equality the user wants to rewrite.

Example

Lemma test (H : forall t u, t + u = u + t) x y : x + y = y + x.
1 subgoal

H : forall t u : nat, t + u = u + t
x, y : nat
============================
x + y = y + x

rewrite [y + _]H.
1 subgoal

H : forall t u : nat, t + u = u + t
x, y : nat
============================
x + y = x + y

Note that if this first pattern matching is not compatible with the r_item, the rewrite fails, even if the goal contains a
correct redex matching both the redex switch and the left hand side of the equality.

Example

Lemma test (H : forall t u, t + u * 0 = t) x y : x + y * 4 + 2 * 0 = x + 2 * 0.
1 subgoal

H : forall t u : nat, t + u * 0 = t
x, y : nat
============================
x + y * 4 + 2 * 0 = x + 2 * 0

Fail rewrite [x + _]H.
The command has indeed failed with message:
Ltac call to "rewrite (ssrrwargs) (ssrclauses)" failed.
pattern (x + y * 4) does not match LHS of H

Indeed the left hand side of H does not match the redex identified by the pattern x + y * 4.

Occurrence switches and redex switches

Example

Lemma test x y : x + y + 0 = x + y + y + 0 + 0 + (x + y + 0).
1 subgoal

x, y : nat

(continues on next page)
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(continued from previous page)
============================
x + y + 0 = x + y + y + 0 + 0 + (x + y + 0)

rewrite {2}[_ + y + 0](_: forall z, z + 0 = z).
2 subgoals

x, y : nat
============================
forall z : nat, z + 0 = z

subgoal 2 is:
x + y + 0 = x + y + y + 0 + 0 + (x + y)

The second subgoal is generated by the use of an anonymous lemma in the rewrite tactic. The effect of the tactic on the
initial goal is to rewrite this lemma at the second occurrence of the first matching x + y + 0 of the explicit rewrite
redex _ + y + 0.
An empty occurrence switch {} is not interpreted as a valid occurrence switch. It has the effect of clearing the r_item
(when it is the name of a context entry).

Occurrence selection and repetition

Occurrence selection has priority over repetition switches. This means the repetition of a rewrite tactic specified by a
multiplier will perform matching each time an elementary rewrite operation is performed. Repeated rewrite tactics apply
to every subgoal generated by the previous tactic, including the previous instances of the repetition.

Example

Lemma test x y (z : nat) : x + 1 = x + y + 1.
1 subgoal

x, y, z : nat
============================
x + 1 = x + y + 1

rewrite 2!(_ : _ + 1 = z).
4 subgoals

x, y, z : nat
============================
x + 1 = z

subgoal 2 is:
z = z

subgoal 3 is:
x + y + 1 = z

subgoal 4 is:
z = z

This last tactic generates three subgoals because the second rewrite operation specified with the 2! multiplier applies to
the two subgoals generated by the first rewrite.
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Multi-rule rewriting

The rewrite tactic can be provided a tuple of rewrite rules, or more generally a tree of such rules, since this tuple can
feature arbitrary inner parentheses. We call multirule such a generalized rewrite rule. This feature is of special interest
when it is combined with multiplier switches, which makes the rewrite tactic iterate the rewrite operations prescribed by
the rules on the current goal.

Example

Variables (a b c : nat).
a is declared
b is declared
c is declared

Hypothesis eqab : a = b.
eqab is declared

Hypothesis eqac : a = c.
eqac is declared

Lemma test : a = a.
1 subgoal

a, b, c : nat
eqab : a = b
eqac : a = c
============================
a = a

rewrite (eqab, eqac).
1 subgoal

a, b, c : nat
eqab : a = b
eqac : a = c
============================
b = b

Indeed rule eqab is the first to apply among the ones gathered in the tuple passed to the rewrite tactic. This multirule
(eqab, eqac) is actually a Coq term and we can name it with a definition:

Definition multi1 := (eqab, eqac).
multi1 is defined

In this case, the tactic rewrite multi1 is a synonym for rewrite (eqab, eqac).

More precisely, a multirule rewrites the first subterm to which one of the rules applies in a left-to-right traversal of the
goal, with the first rule from the multirule tree in left-to-right order. Matching is performed according to the algorithm
described in Section Abbreviations, but literal matches have priority.

Example

Definition d := a.
d is defined

(continues on next page)
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(continued from previous page)
Hypotheses eqd0 : d = 0.

eqd0 is declared

Definition multi2 := (eqab, eqd0).
multi2 is defined

Lemma test : d = b.
1 subgoal

a, b, c : nat
eqab : a = b
eqac : a = c
eqd0 : d = 0
============================
d = b

rewrite multi2.
1 subgoal

a, b, c : nat
eqab : a = b
eqac : a = c
eqd0 : d = 0
============================
0 = b

Indeed rule eqd0 applies without unfolding the definition of d.

For repeated rewrites the selection process is repeated anew.

Example

Hypothesis eq_adda_b : forall x, x + a = b.
eq_adda_b is declared

Hypothesis eq_adda_c : forall x, x + a = c.
eq_adda_c is declared

Hypothesis eqb0 : b = 0.
eqb0 is declared

Definition multi3 := (eq_adda_b, eq_adda_c, eqb0).
multi3 is defined

Lemma test : 1 + a = 12 + a.
1 subgoal

a, b, c : nat
eqab : a = b
eqac : a = c
eqd0 : d = 0
eq_adda_b : forall x : nat, x + a = b
eq_adda_c : forall x : nat, x + a = c
eqb0 : b = 0
============================

(continues on next page)
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(continued from previous page)
1 + a = 12 + a

rewrite 2!multi3.
1 subgoal

a, b, c : nat
eqab : a = b
eqac : a = c
eqd0 : d = 0
eq_adda_b : forall x : nat, x + a = b
eq_adda_c : forall x : nat, x + a = c
eqb0 : b = 0
============================
0 = 12 + a

It uses eq_adda_b then eqb0 on the left-hand side only. Without the bound 2 one would obtain 0 = 0.

The grouping of rules inside a multirule does not affect the selection strategy but can make it easier to include one rule
set in another or to (universally) quantify over the parameters of a subset of rules (as there is special code that will omit
unnecessary quantifiers for rules that can be syntactically extracted). It is also possible to reverse the direction of a rule
subset, using a special dedicated syntax: the tactic rewrite (=~ multi1) is equivalent to rewrite multi1_rev.

Example

Hypothesis eqba : b = a.
eqba is declared

Hypothesis eqca : c = a.
eqca is declared

Definition multi1_rev := (eqba, eqca).
multi1_rev is defined

except that the constants eqba, eqab, mult1_rev have not been created.
Rewriting with multirules is useful to implement simplification or transformation procedures, to be applied on terms of
small to medium size. For instance the library ssrnat (Mathematical Components library) provides two implemen-
tations for arithmetic operations on natural numbers: an elementary one and a tail recursive version, less inefficient but
also less convenient for reasoning purposes. The library also provides one lemma per such operation, stating that both
versions return the same values when applied to the same arguments:

Lemma addE : add =2 addn.
Lemma doubleE : double =1 doublen.
Lemma add_mulE n m s : add_mul n m s = addn (muln n m) s.
Lemma mulE : mul =2 muln.
Lemma mul_expE m n p : mul_exp m n p = muln (expn m n) p.
Lemma expE : exp =2 expn.
Lemma oddE : odd =1 oddn.

The operation on the left hand side of each lemma is the efficient version, and the corresponding naive implementation
is on the right hand side. In order to reason conveniently on expressions involving the efficient operations, we gather all
these rules in the definition trecE:
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Definition trecE := (addE, (doubleE, oddE), (mulE, add_mulE, (expE, mul_expE))).

The tactic: rewrite !trecE. restores the naive versions of each operation in a goal involving the efficient ones, e.g.
for the purpose of a correctness proof.

Wildcards vs abstractions

The rewrite tactic supports r_items containing holes. For example, in the tactic rewrite (_ : _ * 0 = 0).
the term _ * 0 = 0 is interpreted as forall n : nat, n * 0 = 0. Anyway this tactic is not equivalent to
rewrite (_ : forall x, x * 0 = 0)..

Example

Lemma test y z : y * 0 + y * (z * 0) = 0.
1 subgoal

y, z : nat
============================
y * 0 + y * (z * 0) = 0

rewrite (_ : _ * 0 = 0).
2 subgoals

y, z : nat
============================
y * 0 = 0

subgoal 2 is:
0 + y * (z * 0) = 0

while the other tactic results in

rewrite (_ : forall x, x * 0 = 0).
2 subgoals

y, z : nat
============================
forall x : nat, x * 0 = 0

subgoal 2 is:
0 + y * (z * 0) = 0

The first tactic requires you to prove the instance of the (missing) lemma that was used, while the latter requires you prove
the quantified form.

When SSReflect rewrite fails on standard Coq licit rewrite

In a few cases, the SSReflect rewrite tactic fails rewriting some redexes which standard Coq successfully rewrites. There
are two main cases:

• SSReflect never accepts to rewrite indeterminate patterns like:
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Lemma foo (x : unit) : x = tt.

SSReflect will however accept the ηζ expansion of this rule:

Lemma fubar (x : unit) : (let u := x in u) = tt.

• The standard rewrite tactic provided by Coq uses a different algorithm to find instances of the rewrite rule.

Example

Variable g : nat -> nat.
g is declared

Definition f := g.
f is defined

Axiom H : forall x, g x = 0.
H is declared

Lemma test : f 3 + f 3 = f 6.
1 subgoal

g : nat -> nat
============================
f 3 + f 3 = f 6

(* we call the standard rewrite tactic here *)
rewrite -> H.

1 subgoal

g : nat -> nat
============================
0 + 0 = f 6

This rewriting is not possible in SSReflect because there is no occurrence of the head symbol f of the rewrite rule
in the goal.

Fail rewrite H.
The command has indeed failed with message:
Ltac call to "rewrite (ssrrwargs) (ssrclauses)" failed.
The LHS of H

(g _)
does not match any subterm of the goal

Rewriting with H first requires unfolding the occurrences of f where the substitution is to be performed (here
there is a single such occurrence), using tactic rewrite /f (for a global replacement of f by g) or rewrite
pattern/f, for a finer selection.

rewrite /f H.
1 subgoal

g : nat -> nat
============================
0 + 0 = g 6

alternatively one can override the pattern inferred from H
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rewrite [f _]H.
1 subgoal

g : nat -> nat
============================
0 + 0 = f 6

Existential metavariables and rewriting

The rewrite tactic will not instantiate existing existential metavariables when matching a redex pattern.
If a rewrite rule generates a goal with new existential metavariables in the Prop sort, these will be generalized as for
apply (see The apply tactic) and corresponding new goals will be generated.

Example

Axiom leq : nat -> nat -> bool.
leq is declared

Notation "m <= n" := (leq m n) : nat_scope.
Notation "m < n" := (S m <= n) : nat_scope.
Inductive Ord n := Sub x of x < n.

Ord is defined
Ord_rect is defined
Ord_ind is defined
Ord_rec is defined

Notation "'I_ n" := (Ord n) (at level 8, n at level 2, format "''I_' n").
Arguments Sub {_} _ _.
Definition val n (i : 'I_n) := let: Sub a _ := i in a.

val is defined

Definition insub n x :=
if @idP (x < n) is ReflectT _ Px then Some (Sub x Px) else None.
insub is defined

Axiom insubT : forall n x Px, insub n x = Some (Sub x Px).
insubT is declared

Lemma test (x : 'I_2) y : Some x = insub 2 y.
1 subgoal

x : 'I_2
y : nat
============================
Some x = insub 2 y

rewrite insubT.
2 subgoals

x : 'I_2
y : nat
============================
forall Hyp0 : y < 2, Some x = Some (Sub y Hyp0)

(continues on next page)
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(continued from previous page)

subgoal 2 is:
y < 2

Since the argument corresponding to Px is not supplied by the user, the resulting goal should be Some x = Some
(Sub y ?Goal). Instead, SSReflect rewrite tactic hides the existential variable.
As in The apply tactic, the ssrautoprop tactic is used to try to solve the existential variable.

Lemma test (x : 'I_2) y (H : y < 2) : Some x = insub 2 y.
1 subgoal

x : 'I_2
y : nat
H : y < 2
============================
Some x = insub 2 y

rewrite insubT.
1 subgoal

x : 'I_2
y : nat
H : y < 2
============================
Some x = Some (Sub y H)

As a temporary limitation, this behavior is available only if the rewriting rule is stated using Leibniz equality (as opposed
to setoid relations). It will be extended to other rewriting relations in the future.

Locking, unlocking

As program proofs tend to generate large goals, it is important to be able to control the partial evaluation performed
by the simplification operations that are performed by the tactics. These evaluations can for example come from a /=
simplification switch, or from rewrite steps which may expand large terms while performing conversion. We definitely
want to avoid repeating large subterms of the goal in the proof script. We do this by “clamping down” selected function
symbols in the goal, which prevents them from being considered in simplification or rewriting steps. This clamping is
accomplished by using the occurrence switches (see section:ref:abbreviations_ssr) together with “term tagging”
operations.
SSReflect provides two levels of tagging.
The first one uses auxiliary definitions to introduce a provably equal copy of any term t. However this copy is (on purpose)
not convertible to t in the Coq system15. The job is done by the following construction:

Lemma master_key : unit. Proof. exact tt. Qed.
Definition locked A := let: tt := master_key in fun x : A => x.
Lemma lock : forall A x, x = locked x :> A.

Note that the definition of master_key is explicitly opaque. The equation t = locked t given by the lock lemma
can be used for selective rewriting, blocking on the fly the reduction in the term t.

Example
15 This is an implementation feature: there is no such obstruction in the metatheory
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Variable A : Type.
A is declared

Fixpoint has (p : A -> bool) (l : list A) : bool :=
if l is cons x l then p x || (has p l) else false.
has is defined
has is recursively defined (decreasing on 2nd argument)

Lemma test p x y l (H : p x = true) : has p ( x :: y :: l) = true.
1 subgoal

A : Type
p : A -> bool
x, y : A
l : list A
H : p x = true
============================
has p (x :: y :: l) = true

rewrite {2}[cons]lock /= -lock.
1 subgoal

A : Type
p : A -> bool
x, y : A
l : list A
H : p x = true
============================
p x || has p (y :: l) = true

It is sometimes desirable to globally prevent a definition from being expanded by simplification; this is done by adding
locked in the definition.

Example

Definition lid := locked (fun x : nat => x).
lid is defined

Lemma test : lid 3 = 3.
1 subgoal

============================
lid 3 = 3

rewrite /=.
1 subgoal

============================
lid 3 = 3

unlock lid.
1 subgoal

============================
3 = 3
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We provide a special tactic unlock for unfolding such definitions while removing “locks”, e.g., the tactic:

unlock occ_switch
?

ident

replaces the occurrence(s) of ident coded by the occ_switch with the corresponding body.
We found that it was usually preferable to prevent the expansion of some functions by the partial evaluation switch /=,
unless this allowed the evaluation of a condition. This is possible thanks to another mechanism of term tagging, resting
on the following Notation:

Notation "'nosimpl' t" := (let: tt := tt in t).

The term (nosimpl t) simplifies to t except in a definition. More precisely, given:

Definition foo := (nosimpl bar).

the term foo (or (foo t’)) will not be expanded by the simpl tactic unless it is in a forcing context (e.g., in match
foo t’ with … end, foo t’ will be reduced if this allows match to be reduced). Note that nosimpl bar is
simply notation for a term that reduces to bar; hence unfold foo will replace foo by bar, and fold foo will
replace bar by foo.

Warning: The nosimpl trick only works if no reduction is apparent in t; in particular, the declaration:
Definition foo x := nosimpl (bar x).

will usually not work. Anyway, the common practice is to tag only the function, and to use the following definition,
which blocks the reduction as expected:
Definition foo x := nosimpl bar x.

A standard example making this technique shine is the case of arithmetic operations. We define for instance:

Definition addn := nosimpl plus.

The operation addn behaves exactly like plus, except that (addn (S n) m) will not simplify spontaneously to
(S (addn n m)) (the two terms, however, are convertible). In addition, the unfolding step: rewrite /addn will
replace addn directly with plus, so the nosimpl form is essentially invisible.

Congruence

Because of the way matching interferes with parameters of type families, the tactic:

apply: my_congr_property.

will generally fail to perform congruence simplification, even on rather simple cases. We therefore provide a more robust
alternative in which the function is supplied:

congr num
?

term

This tactic:
• checks that the goal is a Leibniz equality;
• matches both sides of this equality with “term applied to some arguments”, inferring the right number of arguments
from the goal and the type of term. This may expand some definitions or fixpoints;

• generates the subgoals corresponding to pairwise equalities of the arguments present in the goal.
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The goal can be a non dependent product P -> Q. In that case, the system asserts the equation P = Q, uses it to solve
the goal, and calls the congr tactic on the remaining goal P = Q. This can be useful for instance to perform a transitivity
step, like in the following situation.

Example

Lemma test (x y z : nat) (H : x = y) : x = z.
1 subgoal

x, y, z : nat
H : x = y
============================
x = z

congr (_ = _) : H.
1 focused subgoal
(shelved: 1)

x, y, z : nat
============================
y = z

Abort.
Lemma test (x y z : nat) : x = y -> x = z.

1 subgoal

x, y, z : nat
============================
x = y -> x = z

congr (_ = _).
1 focused subgoal
(shelved: 1)

x, y, z : nat
============================
y = z

The optional num forces the number of arguments for which the tactic should generate equality proof obligations.
This tactic supports equalities between applications with dependent arguments. Yet dependent arguments should have
exactly the same parameters on both sides, and these parameters should appear as first arguments.

Example

Definition f n :=
if n is 0 then plus else mult.
f is defined

Definition g (n m : nat) := plus.
g is defined

Lemma test x y : f 0 x y = g 1 1 x y.
1 subgoal

x, y : nat
(continues on next page)
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(continued from previous page)
============================
f 0 x y = g 1 1 x y

congr plus.
No more subgoals.

This script shows that the congr tactic matches plus with f 0 on the left hand side and g 1 1 on the right hand side,
and solves the goal.

Example

Lemma test n m (Hnm : m <= n) : S m + (S n - S m) = S n.
1 subgoal

n, m : nat
Hnm : m <= n
============================
S m + (S n - S m) = S n

congr S; rewrite -/plus.
1 subgoal

n, m : nat
Hnm : m <= n
============================
m + (S n - S m) = n

The tactic rewrite -/plus folds back the expansion of plus which was necessary for matching both sides of the
equality with an application of S.

Like most SSReflect arguments, term can contain wildcards.

Example

Lemma test x y : x + (y * (y + x - x)) = x * 1 + (y + 0) * y.
1 subgoal

x, y : nat
============================
x + y * (y + x - x) = x * 1 + (y + 0) * y

congr ( _ + (_ * _)).
3 focused subgoals
(shelved: 3)

x, y : nat
============================
x = x * 1

subgoal 2 is:
y = y + 0

subgoal 3 is:
y + x - x = y

4.6. The SSReflect proof language 315



The Coq Reference Manual, Release 8.9.1

4.6.7 Contextual patterns

The simple form of patterns used so far, terms possibly containing wild cards, often require an additional occ_switch
to be specified. While this may work pretty fine for small goals, the use of polymorphic functions and dependent types
may lead to an invisible duplication of function arguments. These copies usually end up in types hidden by the implicit
arguments machinery or by user-defined notations. In these situations computing the right occurrence numbers is very
tedious because they must be counted on the goal as printed after setting the Printing All flag. Moreover the
resulting script is not really informative for the reader, since it refers to occurrence numbers he cannot easily see.
Contextual patterns mitigate these issues allowing to specify occurrences according to the context they occur in.

Syntax

The following table summarizes the full syntax of c_pattern and the corresponding subterm(s) identified by the pattern.
In the third column we use s.m.r. for “the subterms matching the redex” specified in the second column.

c_pattern redex subterms affected
term term all occurrences of term
ident in term subterm of term se-

lected by ident
all the subterms identified by ident in all the occurrences of term

term1 in
ident in
term2

term1 in all s.m.r. in all the subterms identified by ident in all the occurrences of
term2

term1 as
ident in
term2

term 1 in all the subterms identified by ident` in all the
occurrences of ``term2[term 1 /ident]

The rewrite tactic supports two more patterns obtained prefixing the first two with in. The intended meaning is that the
pattern identifies all subterms of the specified context. The rewrite tactic will infer a pattern for the redex looking at
the rule used for rewriting.

r_pattern redex subterms affected
in term inferred from

rule
in all s.m.r. in all occurrences of term

in ident in
term

inferred from
rule

in all s.m.r. in all the subterms identified by ident in all the occurrences
of term

The first c_pattern is the simplest form matching any context but selecting a specific redex and has been described
in the previous sections. We have seen so far that the possibility of selecting a redex using a term with holes is already a
powerfulmeans of redex selection. Similarly, any terms provided by the user in themore complex forms ofc_patterns
presented in the tables above can contain holes.
For a quick glance at what can be expressed with the last r_pattern consider the goal a = b and the tactic

rewrite [in X in _ = X]rule.

It rewrites all occurrences of the left hand side of rule inside b only (a, and the hidden type of the equality, are ignored).
Note that the variant rewrite [X in _ = X]rule would have rewritten b exactly (i.e., it would only work if b
and the left hand side of rule can be unified).
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Matching contextual patterns

The c_pattern and r_pattern involving terms with holes are matched against the goal in order to find a closed
instantiation. This matching proceeds as follows:

c_pattern instantiation order and place for term_i and redex
term term is matched against the goal, redex is unified with the instantiation of term
ident in
term

term is matched against the goal, redex is unified with the subterm of the instantiation of term
identified by ident

term1 in
ident in
term2

term2 is matched against the goal, term1 is matched against the subterm of the instantiation
of term1 identified by ident, redex is unified with the instantiation of term1

term1 as
ident in
term2

term2[term1/ident] is matched against the goal, redex is unified with the instantiation
of term1

In the following patterns, the redex is intended to be inferred from the rewrite rule.

r_pattern instantiation order and place for term_i and redex
in ident in
term

term is matched against the goal, the redex is matched against the subterm of the instantiation
of term identified by ident

in term term is matched against the goal, redex is matched against the instantiation of term

Examples

Contextual pattern in set and the : tactical

As already mentioned in section Abbreviations the set tactic takes as an argument a term in open syntax. This term is
interpreted as the simplest form of c_pattern. To avoid confusion in the grammar, open syntax is supported only for
the simplest form of patterns, while parentheses are required around more complex patterns.

Example

Lemma test a b : a + b + 1 = b + (a + 1).
1 subgoal

a, b : nat
============================
a + b + 1 = b + (a + 1)

set t := (X in _ = X).
1 subgoal

a, b : nat
t := b + (a + 1) : nat
============================
a + b + 1 = t

rewrite {}/t.
1 subgoal

a, b : nat

(continues on next page)
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(continued from previous page)
============================
a + b + 1 = b + (a + 1)

set t := (a + _ in X in _ = X).
1 subgoal

a, b : nat
t := a + 1 : nat
============================
a + b + 1 = b + t

Since the user may define an infix notation for in the result of the former tactic may be ambiguous. The disambiguation
rule implemented is to prefer patterns over simple terms, but to interpret a pattern with double parentheses as a simple
term. For example, the following tactic would capture any occurrence of the term a in A.

set t := ((a in A)).

Contextual patterns can also be used as arguments of the : tactical. For example:

elim: n (n in _ = n) (refl_equal n).

Contextual patterns in rewrite

Example

Notation "n .+1" := (Datatypes.S n) (at level 2, left associativity,
format "n .+1") : nat_scope.

Axiom addSn : forall m n, m.+1 + n = (m + n).+1.
addSn is declared

Axiom addn0 : forall m, m + 0 = m.
addn0 is declared

Axiom addnC : forall m n, m + n = n + m.
addnC is declared

Lemma test x y z f : (x.+1 + y) + f (x.+1 + y) (z + (x + y).+1) = 0.
1 subgoal

x, y, z : nat
f : nat -> nat -> nat
============================
x.+1 + y + f (x.+1 + y) (z + (x + y).+1) = 0

rewrite [in f _ _]addSn.
1 subgoal

x, y, z : nat
f : nat -> nat -> nat
============================
x.+1 + y + f (x + y).+1 (z + (x + y).+1) = 0

Note: the simplification rule addSn is applied only under the f symbol. Then we simplify also the first addition and
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expand 0 into 0+0.

rewrite addSn -[X in _ = X]addn0.
1 subgoal

x, y, z : nat
f : nat -> nat -> nat
============================
(x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + 0

Note that the right hand side of addn0 is undetermined, but the rewrite pattern specifies the redex explicitly. The right
hand side of addn0 is unified with the term identified by X, here 0.
The following pattern does not specify a redex, since it identifies an entire region, hence the rewrite rule has to be instan-
tiated explicitly. Thus the tactic:

rewrite -{2}[in X in _ = X](addn0 0).
1 subgoal

x, y, z : nat
f : nat -> nat -> nat
============================
(x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + (0 + 0)

The following tactic is quite tricky:

rewrite [_.+1 in X in f _ X](addnC x.+1).
1 subgoal

x, y, z : nat
f : nat -> nat -> nat
============================
(x + y).+1 + f (x + y).+1 (z + (y + x.+1)) = 0 + (0 + 0)

The explicit redex _.+1 is important since its head constant S differs from the head constant inferred from (addnC
x.+1) (that is +). Moreover, the pattern f _ X is important to rule out the first occurrence of (x + y).+1. Last,
only the subterms of f _ X identified by X are rewritten, thus the first argument of f is skipped too. Also note the pattern
_.+1 is interpreted in the context identified by X, thus it gets instantiated to (y + x).+1 and not (x + y).+1.
The last rewrite pattern allows to specify exactly the shape of the term identified by X, that is thus unified with the left
hand side of the rewrite rule.

rewrite [x.+1 + y as X in f X _]addnC.
1 subgoal

x, y, z : nat
f : nat -> nat -> nat
============================
(x + y).+1 + f (y + x.+1) (z + (y + x.+1)) = 0 + (0 + 0)

Patterns for recurrent contexts

The user can define shortcuts for recurrent contexts corresponding to the ident in term part. The notation scope
identified with%pattern provides a special notation(X in t) the user must adopt in order to define context shortcuts.
The following example is taken from ssreflect.v where the LHS and RHS shortcuts are defined.
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Notation RHS := (X in _ = X)%pattern.
Notation LHS := (X in X = _)%pattern.

Shortcuts defined this way can be freely used in place of the trailing ident in term part of any contextual pattern.
Some examples follow:

set rhs := RHS.
rewrite [in RHS]rule.
case: (a + _ in RHS).

4.6.8 Views and reflection

The bookkeeping facilities presented in section Basic tactics are crafted to ease simultaneous introductions and general-
izations of facts and operations of casing, naming etc. It also a common practice to make a stack operation immediately
followed by an interpretation of the fact being pushed, that is, to apply a lemma to this fact before passing it to a tactic for
decomposition, application and so on.
SSReflect provides a convenient, unified syntax to combine these interpretation operations with the proof stack operations.
This view mechanism relies on the combination of the / view switch with bookkeeping tactics and tacticals.

Interpreting eliminations

The view syntax combined with the elim tactic specifies an elimination scheme to be used instead of the default, gener-
ated, one. Hence the SSReflect tactic:

elim/V.

is a synonym for:

intro top; elim top using V; clear top.

where top is a fresh name and V any second-order lemma.
Since an elimination view supports the two bookkeeping tacticals of discharge and introduction (see section Basic tactics),
the SSReflect tactic:

elim/V: x => y.

is a synonym for:

elim x using V; clear x; intro y.

where x is a variable in the context, y a fresh name and V any second order lemma; SSReflect relaxes the syntactic
restrictions of the Coq elim. The first pattern following : can be a _ wildcard if the conclusion of the view V specifies
a pattern for its last argument (e.g., if V is a functional induction lemma generated by the Function command).
The elimination view mechanism is compatible with the equation name generation (see section Generation of equations).

Example
The following script illustrates a toy example of this feature. Let us define a function adding an element at
the end of a list:

320 Chapter 4. The proof engine



The Coq Reference Manual, Release 8.9.1

Variable d : Type.
d is declared

Fixpoint add_last (s : list d) (z : d) {struct s} : list d :=
if s is cons x s' then cons x (add_last s' z) else z :: nil.
add_last is defined
add_last is recursively defined (decreasing on 1st argument)

One can define an alternative, reversed, induction principle on inductively defined lists, by proving the following lemma:

Axiom last_ind_list : forall P : list d -> Prop,
P nil -> (forall s (x : d), P s -> P (add_last s x)) ->
forall s : list d, P s.
last_ind_list is declared

Then the combination of elimination views with equation names result in a concise syntax for reasoning inductively using
the user-defined elimination scheme.

Lemma test (x : d) (l : list d): l = l.
1 subgoal

d : Type
x : d
l : list d
============================
l = l

elim/last_ind_list E : l=> [| u v]; last first.
2 subgoals

d : Type
x : d
u : list d
v : d
l : list d
E : l = add_last u v
============================
u = u -> add_last u v = add_last u v

subgoal 2 is:
nil = nil

User-provided eliminators (potentially generated with Coq’sFunction command) can be combined with the type family
switches described in section Type families. Consider an eliminator foo_ind of type:

foo_ind : forall …, forall x : T, P p1 … pm.

and consider the tactic:

elim/foo_ind: e1 … / en.

The elim/ tactic distinguishes two cases:
truncated eliminator when x does not occur in P p1 … pm and the type of en unifies with T and en is

not _. In that case, en is passed to the eliminator as the last argument (x in foo_ind) and en−1 …
e1 are used as patterns to select in the goal the occurrences that will be bound by the predicate P, thus
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it must be possible to unify the sub-term of the goal matched by en−1 with pm , the one matched by
en−2 with pm−1 and so on.

regular eliminator in all the other cases. Here it must be possible to unify the term matched by en with
pm , the one matched by en−1 with pm−1 and so on. Note that standard eliminators have the shape
…forall x, P … x, thus en is the pattern identifying the eliminated term, as expected.

As explained in section Type families, the initial prefix of ei can be omitted.
Here is an example of a regular, but nontrivial, eliminator.

Example
Here is a toy example illustrating this feature.

Function plus (m n : nat) {struct n} : nat :=
if n is S p then S (plus m p) else m.
plus is defined
plus is recursively defined (decreasing on 2nd argument)
plus_equation is defined
plus_ind is defined
plus_rec is defined
plus_rect is defined
R_plus_correct is defined
R_plus_complete is defined

About plus_ind.
plus_ind :
forall (m : nat) (P : nat -> nat -> Prop),
(forall n p : nat, n = S p -> P p (plus m p) -> P (S p) (S (plus m p))) ->
(forall n _x : nat,
n = _x -> match _x with

| 0 => True
| S _ => False
end -> P _x m) -> forall n : nat, P n (plus m n)

Arguments m, P are implicit
Argument scopes are [nat_scope function_scope function_scope function_scope

nat_scope]
plus_ind is transparent
Expands to: Constant Top.Test.plus_ind

Lemma test x y z : plus (plus x y) z = plus x (plus y z).
1 subgoal

x, y, z : nat
============================
plus (plus x y) z = plus x (plus y z)

The following tactics are all valid and perform the same elimination on this goal.

elim/plus_ind: z / (plus _ z).
elim/plus_ind: {z}(plus _ z).
elim/plus_ind: {z}_.
elim/plus_ind: z / _.

elim/plus_ind: z / _.
2 subgoals

(continues on next page)
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(continued from previous page)

x, y : nat
============================
forall n p : nat,
n = S p ->
plus (plus x y) p = plus x (plus y p) ->
S (plus (plus x y) p) = plus x (plus y (S p))

subgoal 2 is:
forall n _x : nat,
n = _x ->
match _x with
| 0 => True
| S _ => False
end -> plus x y = plus x (plus y _x)

The two latter examples feature a wildcard pattern: in this case, the resulting pattern is inferred from the type of the
eliminator. In both these examples, it is (plus _ _), which matches the subterm plus (plus x y) z thus
instantiating the last _ with z. Note that the tactic:

Fail elim/plus_ind: y / _.
The command has indeed failed with message:
Ltac call to "elim (ssrarg) (ssrclauses)" failed.
The given pattern matches the term y while the inferred pattern z doesn't

triggers an error: in the conclusion of the plus_ind eliminator, the first argument of the predicate P should be the same
as the second argument of plus, in the second argument of P, but y and z do no unify.

Here is an example of a truncated eliminator:

Example
Consider the goal:

Lemma test p n (n_gt0 : 0 < n) (pr_p : prime p) :
p %| \prod_(i <- prime_decomp n | i \in prime_decomp n) i.1 ^ i.2 ->
exists2 x : nat * nat, x \in prime_decomp n & p = x.1.

Proof.
elim/big_prop: _ => [| u v IHu IHv | [q e] /=].

where the type of the big_prop eliminator is

big_prop: forall (R : Type) (Pb : R -> Type)
(idx : R) (op1 : R -> R -> R), Pb idx ->
(forall x y : R, Pb x -> Pb y -> Pb (op1 x y)) ->
forall (I : Type) (r : seq I) (P : pred I) (F : I -> R),
(forall i : I, P i -> Pb (F i)) ->
Pb (\big[op1/idx]_(i <- r | P i) F i).

Since the pattern for the argument of Pb is not specified, the inferred one is used instead: big[_/_]_(i <- _ | _
i) _ i, and after the introductions, the following goals are generated:

subgoal 1 is:
p %| 1 -> exists2 x : nat * nat, x \in prime_decomp n & p = x.1

subgoal 2 is:

(continues on next page)
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(continued from previous page)
p %| u * v -> exists2 x : nat * nat, x \in prime_decomp n & p = x.1

subgoal 3 is:
(q, e) \in prime_decomp n -> p %| q ^ e ->
exists2 x : nat * nat, x \in prime_decomp n & p = x.1.

Note that the pattern matching algorithm instantiated all the variables occurring in the pattern.

Interpreting assumptions

Interpreting an assumption in the context of a proof consists in applying to it a lemma before generalizing, and/or decom-
posing this assumption. For instance, with the extensive use of boolean reflection (see section Views and reflection.4), it
is quite frequent to need to decompose the logical interpretation of (the boolean expression of) a fact, rather than the fact
itself. This can be achieved by a combination of move : _ => _ switches, like in the following example, where ||
is a notation for the boolean disjunction.

Example

Variables P Q : bool -> Prop.
P is declared
Q is declared

Hypothesis P2Q : forall a b, P (a || b) -> Q a.
P2Q is declared

Lemma test a : P (a || a) -> True.
1 subgoal

P, Q : bool -> Prop
P2Q : forall a b : bool, P (a || b) -> Q a
a : bool
============================
P (a || a) -> True

move=> HPa; move: {HPa}(P2Q HPa) => HQa.
1 subgoal

P, Q : bool -> Prop
P2Q : forall a b : bool, P (a || b) -> Q a
a : bool
HQa : Q a
============================
True

which transforms the hypothesis HPa : P a which has been introduced from the initial statement into HQa : Q a.
This operation is so common that the tactic shell has specific syntax for it. The following scripts:

move=> HPa; move/P2Q: HPa => HQa.
1 subgoal

P, Q : bool -> Prop
P2Q : forall a b : bool, P (a || b) -> Q a
a : bool
HQa : Q a

(continues on next page)
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(continued from previous page)
============================
True

or more directly:

move/P2Q=> HQa.
1 subgoal

P, Q : bool -> Prop
P2Q : forall a b : bool, P (a || b) -> Q a
a : bool
HQa : Q a
============================
True

are equivalent to the former one. The former script shows how to interpret a fact (already in the context), thanks to
the discharge tactical (see section Discharge) and the latter, how to interpret the top assumption of a goal. Note that
the number of wildcards to be inserted to find the correct application of the view lemma to the hypothesis has been
automatically inferred.

The view mechanism is compatible with the case tactic and with the equation name generation mechanism (see section
Generation of equations):

Example

Variables P Q: bool -> Prop.
P is declared
Q is declared

Hypothesis Q2P : forall a b, Q (a || b) -> P a \/ P b.
Q2P is declared

Lemma test a b : Q (a || b) -> True.
1 subgoal

P, Q : bool -> Prop
Q2P : forall a b : bool, Q (a || b) -> P a \/ P b
a, b : bool
============================
Q (a || b) -> True

case/Q2P=> [HPa | HPb].
2 subgoals

P, Q : bool -> Prop
Q2P : forall a b : bool, Q (a || b) -> P a \/ P b
a, b : bool
HPa : P a
============================
True

subgoal 2 is:
True

This view tactic performs:
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move=> HQ; case: {HQ}(Q2P HQ) => [HPa | HPb].

The term on the right of the / view switch is called a view lemma. Any SSReflect term coercing to a product type can be
used as a view lemma.
The examples we have given so far explicitly provide the direction of the translation to be performed. In fact, view lemmas
need not to be oriented. The view mechanism is able to detect which application is relevant for the current goal.

Example

Variables P Q: bool -> Prop.
P is declared
Q is declared

Hypothesis PQequiv : forall a b, P (a || b) <-> Q a.
PQequiv is declared

Lemma test a b : P (a || b) -> True.
1 subgoal

P, Q : bool -> Prop
PQequiv : forall a b : bool, P (a || b) <-> Q a
a, b : bool
============================
P (a || b) -> True

move/PQequiv=> HQab.
1 subgoal

P, Q : bool -> Prop
PQequiv : forall a b : bool, P (a || b) <-> Q a
a, b : bool
HQab : Q a
============================
True

has the same behavior as the first example above.
The view mechanism can insert automatically a view hint to transform the double implication into the expected simple
implication. The last script is in fact equivalent to:

Lemma test a b : P (a || b) -> True.
move/(iffLR (PQequiv _ _)).

where:

Lemma iffLR P Q : (P <-> Q) -> P -> Q.

Specializing assumptions

The special case when the head symbol of the view lemma is a wildcard is used to interpret an assumption by specializing
it. The view mechanism hence offers the possibility to apply a higher-order assumption to some given arguments.
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Example

Lemma test z : (forall x y, x + y = z -> z = x) -> z = 0.
1 subgoal

z : nat
============================
(forall x y : nat, x + y = z -> z = x) -> z = 0

move/(_ 0 z).
1 subgoal

z : nat
============================
(0 + z = z -> z = 0) -> z = 0

Interpreting goals

In a similar way, it is also often convenient to changing a goal by turning it into an equivalent proposition. The view
mechanism of SSReflect has a special syntax apply/ for combining in a single tactic simultaneous goal interpretation
operations and bookkeeping steps.

Example
The following example use the ~~ prenex notation for boolean negation:

Variables P Q: bool -> Prop.
P is declared
Q is declared

Hypothesis PQequiv : forall a b, P (a || b) <-> Q a.
PQequiv is declared

Lemma test a : P ((~~ a) || a).
1 subgoal

P, Q : bool -> Prop
PQequiv : forall a b : bool, P (a || b) <-> Q a
a : bool
============================
P (~~ a || a)

apply/PQequiv.
1 focused subgoal
(shelved: 1)

P, Q : bool -> Prop
PQequiv : forall a b : bool, P (a || b) <-> Q a
a : bool
============================
Q (~~ a)

thus in this case, the tactic apply/PQequiv is equivalent to apply: (iffRL (PQequiv _ _)), where iffRL
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is tha analogue of iffRL for the converse implication.

Any SSReflect term whose type coerces to a double implication can be used as a view for goal interpretation.
Note that the goal interpretation view mechanism supports both apply and exact tactics. As expected, a goal inter-
pretation view command exact/term should solve the current goal or it will fail.

Warning: Goal interpretation view tactics are not compatible with the bookkeeping tactical => since this would be
redundant with the apply: term => _ construction.

Boolean reflection

In the Calculus of Inductive Constructions, there is an obvious distinction between logical propositions and boolean values.
On the one hand, logical propositions are objects of sort Prop which is the carrier of intuitionistic reasoning. Logical
connectives in Prop are types, which give precise information on the structure of their proofs; this information is auto-
matically exploited by Coq tactics. For example, Coq knows that a proof of A \/ B is either a proof of A or a proof of
B. The tactics left and right change the goal A \/ B to A and B, respectively; dually, the tactic case reduces the
goal A \/ B => G to two subgoals A => G and B => G.
On the other hand, bool is an inductive datatype with two constructors true and false. Logical connectives on bool are
computable functions, defined by their truth tables, using case analysis:

Example

Definition orb (b1 b2 : bool) := if b1 then true else b2.
orb is defined

Properties of such connectives are also established using case analysis

Example

Lemma test b : b || ~~ b = true.
1 subgoal

b : bool
============================
b || ~~ b = true

by case: b.
No more subgoals.

Once b is replaced by true in the first goal and by false in the second one, the goals reduce by computations to the
trivial true = true.

Thus, Prop and bool are truly complementary: the former supports robust natural deduction, the latter allows brute-
force evaluation. SSReflect supplies a generic mechanism to have the best of the two worlds and move freely from a
propositional version of a decidable predicate to its boolean version.
First, booleans are injected into propositions using the coercion mechanism:

Coercion is_true (b : bool) := b = true.
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This allows any boolean formula b to be used in a context where Coq would expect a proposition, e.g., after Lemma …
: ``. It is then interpreted as ``(is_true b), i.e., the proposition b = true. Coercions are
elided by the pretty-printer, so they are essentially transparent to the user.

The reflect predicate

To get all the benefits of the boolean reflection, it is in fact convenient to introduce the following inductive predicate
reflect to relate propositions and booleans:

Inductive reflect (P: Prop): bool -> Type :=
| Reflect_true : P -> reflect P true
| Reflect_false : ~P -> reflect P false.

The statement (reflect P b) asserts that (is_true b) and P are logically equivalent propositions.
For instance, the following lemma:

Lemma andP: forall b1 b2, reflect (b1 /\ b2) (b1 && b2).

relates the boolean conjunction to the logical one /\. Note that in andP, b1 and b2 are two boolean variables and the
proposition b1 /\ b2 hides two coercions. The conjunction of b1 and b2 can then be viewed as b1 /\ b2 or as b1
&& b2.
Expressing logical equivalences through this family of inductive types makes possible to take benefit from rewritable
equations associated to the case analysis of Coq’s inductive types.
Since the equivalence predicate is defined in Coq as:

Definition iff (A B:Prop) := (A -> B) /\ (B -> A).

where /\ is a notation for and:

Inductive and (A B:Prop) : Prop := conj : A -> B -> and A B.

This make case analysis very different according to the way an equivalence property has been defined.

Lemma andE (b1 b2 : bool) : (b1 /\ b2) <-> (b1 && b2).

Let us compare the respective behaviors of andE and andP.

Example

Lemma test (b1 b2 : bool) : if (b1 && b2) then b1 else ~~(b1||b2).
1 subgoal

b1, b2 : bool
============================
if b1 && b2 then b1 else ~~ (b1 || b2)

case: (@andE b1 b2).
1 subgoal

b1, b2 : bool
============================
(b1 /\ b2 -> b1 && b2) ->
(b1 && b2 -> b1 /\ b2) -> if b1 && b2 then b1 else ~~ (b1 || b2)
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case: (@andP b1 b2).
2 subgoals

b1, b2 : bool
============================
b1 /\ b2 -> (b1 /\ b2 -> true) -> (true -> b1 /\ b2) -> b1

subgoal 2 is:
~ (b1 /\ b2) -> (b1 /\ b2 -> false) -> (false -> b1 /\ b2) -> ~~ (b1 || b2)

Expressing reflection relation through the reflect predicate is hence a very convenient way to deal with classical
reasoning, by case analysis. Using the reflect predicate allows moreover to program rich specifications inside its two
constructors, which will be automatically taken into account during destruction. This formalisation style gives far more
efficient specifications than quantified (double) implications.
A naming convention in SSReflect is to postfix the name of view lemmas with P. For example, orP relates || and \/,
negP relates ~~ and ~.
The view mechanism is compatible with reflect predicates.

Example

Lemma test (a b : bool) (Ha : a) (Hb : b) : a /\ b.
1 subgoal

a, b : bool
Ha : a
Hb : b
============================
a /\ b

apply/andP.
1 focused subgoal
(shelved: 1)

a, b : bool
Ha : a
Hb : b
============================
a && b

Conversely

Lemma test (a b : bool) : a /\ b -> a.
1 subgoal

a, b : bool
============================
a /\ b -> a

move/andP.
1 subgoal

a, b : bool
============================
a && b -> a
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The same tactics can also be used to perform the converse operation, changing a boolean conjunction into a logical one.
The view mechanism guesses the direction of the transformation to be used i.e., the constructor of the reflect predicate
which should be chosen.

General mechanism for interpreting goals and assumptions

Specializing assumptions

The SSReflect tactic:

move/(_ term1 … termn).

is equivalent to the tactic:

intro top; generalize (top term1 … termn); clear top.

where top is a fresh name for introducing the top assumption of the current goal.

Interpreting assumptions

The general form of an assumption view tactic is:
Variant: [move | case] / term

The term , called the view lemma can be:
• a (term coercible to a) function;
• a (possibly quantified) implication;
• a (possibly quantified) double implication;
• a (possibly quantified) instance of the reflect predicate (see section Views and reflection).

Let top be the top assumption in the goal.
There are three steps in the behavior of an assumption view tactic:

• It first introduces top.
• If the type of term is neither a double implication nor an instance of the reflect predicate, then the tactic automat-
ically generalises a term of the form: term term1 … termn where the terms term1 … termn instantiate
the possible quantified variables of term , in order for (term term1 … termn top) to be well typed.

• If the type of term is an equivalence, or an instance of the reflect predicate, it generalises a term of the form:
(termvh (term term1 … termn )) where the term termvh inserted is called an assumption interpreta-
tion view hint.

• It finally clears top.
For a case/term tactic, the generalisation step is replaced by a case analysis step.
View hints are declared by the user (see section:ref:views_and_reflection_ssr.8) and are stored in the Hint
View database. The proof engine automatically detects from the shape of the top assumption top and of the view lemma
term provided to the tactic the appropriate view hint in the database to be inserted.
If term is a double implication, then the view hint will be one of the defined view hints for implication. These hints are
by default the ones present in the file ssreflect.v:
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Lemma iffLR : forall P Q, (P <-> Q) -> P -> Q.

which transforms a double implication into the left-to-right one, or:

Lemma iffRL : forall P Q, (P <-> Q) -> Q -> P.

which produces the converse implication. In both cases, the two first Prop arguments are implicit.
Ifterm is an instance of thereflect predicate, thenAwill be one of the defined view hints for thereflect predicate,
which are by default the ones present in the file ssrbool.v. These hints are not only used for choosing the appropriate
direction of the translation, but they also allow complex transformation, involving negations.

Example

Check introN.
introN

: forall (P : Prop) (b : bool), reflect P b -> ~ P -> ~~ b

Lemma test (a b : bool) (Ha : a) (Hb : b) : ~~ (a && b).
1 subgoal

a, b : bool
Ha : a
Hb : b
============================
~~ (a && b)

apply/andP.
1 focused subgoal
(shelved: 1)

a, b : bool
Ha : a
Hb : b
============================
~ (a /\ b)

In fact this last script does not exactly use the hint introN, but the more general hint:

Check introNTF.
introNTF

: forall (P : Prop) (b c : bool),
reflect P b -> (if c then ~ P else P) -> ~~ b = c

The lemma introN is an instantiation of introNF using c := true.

Note that views, being part of i_pattern, can be used to interpret assertions too. For example the following script
asserts a && b but actually uses its propositional interpretation.

Example

Lemma test (a b : bool) (pab : b && a) : b.
1 subgoal

a, b : bool

(continues on next page)
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(continued from previous page)
pab : b && a
============================
b

have /andP [pa ->] : (a && b) by rewrite andbC.
1 subgoal

a, b : bool
pab : b && a
pa : a
============================
true

Interpreting goals
A goal interpretation view tactic of the form:
Variant: apply/term
applied to a goal top is interpreted in the following way:

• If the type of term is not an instance of the reflect predicate, nor an equivalence, then the term term is
applied to the current goal top, possibly inserting implicit arguments.

• If the type of term is an instance of the reflect predicate or an equivalence, then a goal interpretation view hint can
possibly be inserted, which corresponds to the application of a term (termvh (term _ … _)) to the current
goal, possibly inserting implicit arguments.

Like assumption interpretation view hints, goal interpretation ones are user-defined lemmas stored (see section Views and
reflection) in the Hint View database bridging the possible gap between the type of term and the type of the goal.

Interpreting equivalences

Equivalent boolean propositions are simply equal boolean terms. A special construction helps the user to prove boolean
equalities by considering them as logical double implications (between their coerced versions), while performing at the
same time logical operations on both sides.
The syntax of double views is:
Variant: apply/term/term
The first term is the view lemma applied to the left hand side of the equality, while the second term is the one applied to
the right hand side.
In this context, the identity view can be used when no view has to be applied:

Lemma idP : reflect b1 b1.

Example

Lemma test (b1 b2 b3 : bool) : ~~ (b1 || b2) = b3.
1 subgoal

b1, b2, b3 : bool
============================
~~ (b1 || b2) = b3

(continues on next page)
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(continued from previous page)

apply/idP/idP.
2 focused subgoals
(shelved: 2)

b1, b2, b3 : bool
============================
~~ (b1 || b2) -> b3

subgoal 2 is:
b3 -> ~~ (b1 || b2)

The same goal can be decomposed in several ways, and the user may choose the most convenient interpretation.

Lemma test (b1 b2 b3 : bool) : ~~ (b1 || b2) = b3.
1 subgoal

b1, b2, b3 : bool
============================
~~ (b1 || b2) = b3

apply/norP/idP.
2 focused subgoals
(shelved: 2)

b1, b2, b3 : bool
============================
~~ b1 /\ ~~ b2 -> b3

subgoal 2 is:
b3 -> ~~ b1 /\ ~~ b2

Declaring new Hint Views

The database of hints for the view mechanism is extensible via a dedicated vernacular command. As library ssrbool.v
already declares a corpus of hints, this feature is probably useful only for users who define their own logical connectives.
Users can declare their own hints following the syntax used in ssrbool.v:

Command: Hint View for move / ident | num
?

Command: Hint View for apply / ident | num
?

The ident is the name of the lemma to be declared as a hint. If move is used as tactic, the hint is declared for assumption
interpretation tactics, apply declares hints for goal interpretations. Goal interpretation view hints are declared for both
simple views and left hand side views. The optional natural number is the number of implicit arguments to be considered
for the declared hint view lemma.
The command:

Command: Hint View for apply//ident | num
?

with a double slash //, declares hint views for right hand sides of double views.
See the files ssreflect.v and ssrbool.v for examples.
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Multiple views

The hypotheses and the goal can be interpreted by applying multiple views in sequence. Both move and apply can be
followed by an arbitrary number of /term. The main difference between the following two tactics

apply/v1/v2/v3.
apply/v1; apply/v2; apply/v3.

is that the former applies all the views to the principal goal. Applying a view with hypotheses generates new goals, and
the second line would apply the view v2 to all the goals generated by apply/v1.
Note that the NO-OP intro pattern - can be used to separate two views, making the two following examples equivalent:

move=> /v1; move=> /v2.
move=> /v1 - /v2.

The tactic move can be used together with the in tactical to pass a given hypothesis to a lemma.

Example

Variable P2Q : P -> Q.
P2Q is declared

Variable Q2R : Q -> R.
Q2R is declared

Lemma test (p : P) : True.
1 subgoal

P, Q, R : Prop
P2Q : P -> Q
Q2R : Q -> R
p : P
============================
True

move/P2Q/Q2R in p.
1 subgoal

P, Q, R : Prop
P2Q : P -> Q
Q2R : Q -> R
p : R
============================
True

If the list of views is of length two, Hint Views for interpreting equivalences are indeed taken into account, otherwise
only single Hint Views are used.

4.6.9 SSReflect searching tool

SSReflect proposes an extension of the Search command. Its syntax is:

Command: Search pattern
?

- ? ( string | pattern ) % ident
?

*

in - ? qualid
+

?
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where qualid is the name of an open module. This command returns the list of lemmas:
• whose conclusion contains a subterm matching the optional first pattern. A - reverses the test, producing the list of
lemmas whose conclusion does not contain any subterm matching the pattern;

• whose name contains the given string. A - prefix reverses the test, producing the list of lemmas whose name does
not contain the string. A string that contains symbols or is followed by a scope key, is interpreted as the constant
whose notation involves that string (e.g., + for addn), if this is unambiguous; otherwise the diagnostic includes the
output of the Locate vernacular command.

• whose statement, including assumptions and types, contains a subterm matching the next patterns. If a pattern is
prefixed by -, the test is reversed;

• contained in the given list of modules, except the ones in the modules prefixed by a -.
Note that:

• As for regular terms, patterns can feature scope indications. For instance, the command: Search _ (_ +
_)%N. lists all the lemmas whose statement (conclusion or hypotheses) involves an application of the binary oper-
ation denoted by the infix + symbol in the N scope (which is SSReflect scope for natural numbers).

• Patterns with holes should be surrounded by parentheses.
• Search always volunteers the expansion of the notation, avoiding the need to execute Locate independently. More-
over, a string fragment looks for any notation that contains fragment as a substring. If the ssrbool.v library is
imported, the command: Search "~~". answers :

Example

Search "~~".
"~~" is part of notation ("~~ _")
In bool_scope, ("~~ b") denotes negb b
Toplevel input, characters 0-12:
> Search "~~".
> ^^^^^^^^^^^^
Warning: Listing only lemmas with conclusion matching (~~ ?b)
negbT forall b : bool, b = false -> ~~ b

contra forall c b : bool, (c -> b) -> ~~ b -> ~~ c

contraNN forall c b : bool, (c -> b) -> ~~ b -> ~~ c

contraL forall c b : bool, (c -> ~~ b) -> b -> ~~ c

contraTN forall c b : bool, (c -> ~~ b) -> b -> ~~ c

contraFN forall c b : bool, (c -> b) -> b = false -> ~~ c

introN forall (P : Prop) (b : bool), reflect P b -> ~ P -> ~~ b

• A diagnostic is issued if there are different matching notations; it is an error if all matches are partial.
• Similarly, a diagnostic warns about multiple interpretations, and signals an error if there is no default one.
• The command Search in M. is a way of obtaining the complete signature of the module M.
• Strings and pattern indications can be interleaved, but the first indication has a special status if it is a pattern, and
only filters the conclusion of lemmas:
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– The command : Search (_ =1 _) "bij". lists all the lemmas whose conclusion features a =1 and
whose name contains the string bij.

– The command : Search "bij" (_ =1 _). lists all the lemmas whose statement, including hypotheses,
features a =1 and whose name contains the string bij.

4.6.10 Synopsis and Index

Parameters

SSReflect tactics
d_tactic ::= elim | case | congr | apply | exact | move

Notation scope
key ::= ident

Module name
modname ::= qualid

Natural number
natural ::= num | ident

where ident is an Ltac variable denoting a standard Coq numeral (should not be the name of a tactic which can be
followed by a bracket [, like do, have,…)

Items and switches

ssr_binder ::= ident | ( ident : term
?

)

binder see Abbreviations.

clear_switch ::= { ident
+

}

clear switch see Discharge

c_pattern ::= term in | term as
?

ident in term

context pattern see Contextual patterns

d_item ::= occ_switch | clear_switch
?

term | ( c_pattern )
?

discharge item see Discharge

gen_item ::= @
?

ident | ( ident ) | ( @
?

ident := c_pattern )

generalization item see Structure

i_pattern ::= ident | _ | ? | * | occ_switch
?

-> | occ_switch
?

<- | [ i_item
*

*

|
| - | [: ident

+
]

intro pattern Introduction in the context

i_item ::= clear_switch | s_item | i_pattern | {}
?

/ term

intro item see Introduction in the context
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int_mult ::= num
?

mult_mark

multiplier see Iteration

occ_switch ::= { + | -
?

num
*

}

occur. switch see Occurrence selection

mult ::= num
?

mult_mark

multiplier see Iteration
mult_mark ::= ? | !

multiplier mark see Iteration

r_item ::= /
?

term | s_item

rewrite item see Rewriting

r_prefix ::= - ? int_mult
?

occ_switch | clear_switch
?

[ r_pattern ]
?

rewrite prefix see Rewriting

r_pattern ::= term | c_pattern | in ident in
?

term

rewrite pattern see Rewriting

r_step ::= r_prefix
?

r_item

rewrite step see Rewriting
s_item ::= /= | // | //=

simplify switch see Introduction in the context

Tactics

Note: without loss and suffices are synonyms for wlog and suff respectively.
move

idtac or hnf see Bookkeeping
apply

exact

application see The defective tactics
abstract

see The abstract tactic and Generating let in context entries with have
elim

induction see The defective tactics
case

case analysis see The defective tactics

rewrite r_step
+

rewrite see Rewriting
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have i_item
*

i_pattern
?

s_item | ssr_binder
+

?

: term
?

:= term

Variant: have i_item
*

i_pattern
?

s_item | ssr_binder
+

?

: term by tactic
?

have suff clear_switch
?

i_pattern
?

: term
?

:= term

Variant: have suff clear_switch
?

i_pattern
?

: term by tactic
?

Variant: gen have ident ,
?

i_pattern
?

: gen_item
+

/ term by tactic
?

Variant: generally have ident ,
?

i_pattern
?

: gen_item
+

/ term by tactic
?

forward chaining see Structure

wlog suff
?

i_item
?

: gen_item | clear_switch
*

/ term

specializing see Structure

suff i_item
*

i_pattern
?

ssr_binder
+

: term by tactic
?

Variant: suffices i_item
*

i_pattern
?

ssr_binder
+

: term by tactic
?

Variant: suff have
?

clear_switch
?

i_pattern
?

: term by tactic
?

Variant: suffices have
?

clear_switch
?

i_pattern
?

: term by tactic
?

backchaining see Structure
pose ident := term

local definition Definitions

Variant: pose ident ssr_binder
+

:= term

local function definition
Variant: pose fix fix_body

local fix definition
Variant: pose cofix fix_body

local cofix definition

set ident : term
?

:= occ_switch
?

( term | ( c_pattern) )

abbreviation see Abbreviations

unlock r_prefix
?

ident

*

unlock see Locking, unlocking

congr num
?

term

congruence Congruence
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Tacticals

tactic += d_tactic ident
?

: d_item
+

clear_switch
?

discharge Discharge

tactic += tactic => i_item
+

introduction see Introduction in the context

tactic += tactic in gen_item | clear_switch
+

*
?

localization see Localization

tactic += do mult
?

( tactic | [ tactic
+

|
] )

iteration see Iteration

tactic += tactic ; ( first | last ) num
?

( tactic | [ tactic
+

|
] )

selector see Selectors

tactic += tactic ; ( first | last ) num
?

rotation see Selectors

tactic += by ( tactic | [ tactic
*

|
] )

closing see Terminators

Commands

Command: Hint View for ( move | apply ) / ident | num
?

view hint declaration see Declaring new Hint Views

Command: Hint View for apply // ident num
?

right hand side double , view hint declaration see Declaring new Hint Views

Command: Prenex Implicits ident
+

prenex implicits declaration see Parametric polymorphism
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CHAPTER

FIVE

USER EXTENSIONS

5.1 Syntax extensions and interpretation scopes

In this chapter, we introduce advanced commands to modify the way Coq parses and prints objects, i.e. the translations
between the concrete and internal representations of terms and commands.
The main commands to provide custom symbolic notations for terms are Notation and Infix; they will be described
in the next section. There is also a variant of Notation which does not modify the parser; this provides a form of
abbreviation. It is sometimes expected that the same symbolic notation has different meanings in different contexts; to
achieve this form of overloading, Coq offers a notion of interpretation scopes. The main command to provide custom
notations for tactics is Tactic Notation.

5.1.1 Notations

Basic notations

Command: Notation
A notation is a symbolic expression denoting some term or term pattern.

A typical notation is the use of the infix symbol /\ to denote the logical conjunction (and). Such a notation is declared
by

Notation "A /\ B" := (and A B).

The expression (and A B) is the abbreviated term and the string "A /\ B" (called a notation) tells how it is symbol-
ically written.
A notation is always surrounded by double quotes (except when the abbreviation has the form of an ordinary applicative
expression; see Abbreviations). The notation is composed of tokens separated by spaces. Identifiers in the string (such
as A and B) are the parameters of the notation. Each of them must occur at least once in the denoted term. The other
elements of the string (such as /\) are the symbols.
An identifier can be used as a symbol but it must be surrounded by single quotes to avoid the confusion with a parameter.
Similarly, every symbol of at least 3 characters and starting with a simple quote must be quoted (then it starts by two
single quotes). Here is an example.

Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3).

A notation binds a syntactic expression to a term. Unless the parser and pretty-printer of Coq already know how to deal
with the syntactic expression (see Reserving notations), explicit precedences and associativity rules have to be given.
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Note: The right-hand side of a notation is interpreted at the time the notation is given. In particular, disambiguation of
constants, implicit arguments and other notations are resolved at the time of the declaration of the notation.

Precedences and associativity

Mixing different symbolic notations in the same text may cause serious parsing ambiguity. To deal with the ambiguity of
notations, Coq uses precedence levels ranging from 0 to 100 (plus one extra level numbered 200) and associativity rules.
Consider for example the new notation

Notation "A \/ B" := (or A B).

Clearly, an expression such as forall A:Prop, True /\ A \/ A \/ False is ambiguous. To tell the Coq
parser how to interpret the expression, a priority between the symbols /\ and \/ has to be given. Assume for instance
that we want conjunction to bind more than disjunction. This is expressed by assigning a precedence level to each notation,
knowing that a lower level binds more than a higher level. Hence the level for disjunction must be higher than the level
for conjunction.
Since connectives are not tight articulation points of a text, it is reasonable to choose levels not so far from the highest
level which is 100, for example 85 for disjunction and 80 for conjunction17.
Similarly, an associativity is needed to decide whether True /\ False /\ False defaults to True /\ (False
/\ False) (right associativity) or to (True /\ False) /\ False (left associativity). We may even consider
that the expression is not well-formed and that parentheses are mandatory (this is a “no associativity”)18. We do not know
of a special convention of the associativity of disjunction and conjunction, so let us apply for instance a right associativity
(which is the choice of Coq).
Precedence levels and associativity rules of notations have to be given between parentheses in a list of modifiers that the
Notation command understands. Here is how the previous examples refine.

Notation "A /\ B" := (and A B) (at level 80, right associativity).
Notation "A \/ B" := (or A B) (at level 85, right associativity).

By default, a notation is considered nonassociative, but the precedence level is mandatory (except for special cases whose
level is canonical). The level is either a number or the phrase next level whose meaning is obvious. Some associa-
tivities are predefined in the Notations module.

Complex notations

Notations can be made from arbitrarily complex symbols. One can for instance define prefix notations.

Notation "~ x" := (not x) (at level 75, right associativity).

One can also define notations for incomplete terms, with the hole expected to be inferred during type checking.

Notation "x = y" := (@eq _ x y) (at level 70, no associativity).

One can define closed notations whose both sides are symbols. In this case, the default precedence level for the inner
sub-expression is 200, and the default level for the notation itself is 0.

17 which are the levels effectively chosen in the current implementation of Coq
18 Coq accepts notations declared as nonassociative but the parser on which Coq is built, namely Camlp5, currently does not implement no

associativity and replaces it with left associativity; hence it is the same for Coq: no associativity is in fact left
associativity for the purposes of parsing
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Notation "( x , y )" := (@pair _ _ x y).

One can also define notations for binders.

Notation "{ x : A | P }" := (sig A (fun x => P)).

In the last case though, there is a conflict with the notation for type casts. The notation for types casts, as shown by the
command Print Grammar constr is at level 100. To avoid x : A being parsed as a type cast, it is necessary to
put x at a level below 100, typically 99. Hence, a correct definition is the following:

Notation "{ x : A | P }" := (sig A (fun x => P)) (x at level 99).
Setting notation at level 0.

More generally, it is required that notations are explicitly factorized on the left. See the next section for more about
factorization.

Simple factorization rules

Coq extensible parsing is performed by Camlp5 which is essentially a LL1 parser: it decides which notation to parse by
looking at tokens from left to right. Hence, some care has to be taken not to hide already existing rules by new rules.
Some simple left factorization work has to be done. Here is an example.

Notation "x < y" := (lt x y) (at level 70).
Fail Notation "x < y < z" := (x < y /\ y < z) (at level 70).

The command has indeed failed with message:
Notation "_ < _ < _" is already defined at level 70 with arguments constr
at next level, constr at next level, constr at next level
while it is now required to be at level 70 with arguments constr
at next level, constr at level 200, constr at next level.

In order to factorize the left part of the rules, the subexpression referred to by y has to be at the same level in both rules.
However the default behavior puts y at the next level below 70 in the first rule (no associativity is the default),
and at level 200 in the second rule (level 200 is the default for inner expressions). To fix this, we need to force the
parsing level of y, as follows.

Notation "x < y" := (lt x y) (at level 70).
Notation "x < y < z" := (x < y /\ y < z) (at level 70, y at next level).

For the sake of factorization with Coq predefined rules, simple rules have to be observed for notations starting with a
symbol, e.g., rules starting with “{” or “(” should be put at level 0. The list of Coq predefined notations can be found in
the chapter on The Coq library.
Command: Print Grammar constr.

This command displays the current state of the Coq term parser.
Command: Print Grammar pattern.

This displays the state of the subparser of patterns (the parser used in the grammar of the match with construc-
tions).

Displaying symbolic notations

The command Notation has an effect both on the Coq parser and on the Coq printer. For example:
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Check (and True True).
True /\ True

: Prop

However, printing, especially pretty-printing, also requires some care. We may want specific indentations, line breaks,
alignment if on several lines, etc. For pretty-printing, Coq relies on OCaml formatting library, which provides indentation
and automatic line breaks depending on page width by means of formatting boxes.
The default printing of notations is rudimentary. For printing a notation, a formatting box is opened in such a way that if
the notation and its arguments cannot fit on a single line, a line break is inserted before the symbols of the notation and
the arguments on the next lines are aligned with the argument on the first line.
A first, simple control that a user can have on the printing of a notation is the insertion of spaces at some places of the
notation. This is performed by adding extra spaces between the symbols and parameters: each extra space (other than
the single space needed to separate the components) is interpreted as a space to be inserted by the printer. Here is an
example showing how to add spaces around the bar of the notation.

Notation "{{ x : A | P }}" := (sig (fun x : A => P)) (at level 0, x at level 99).

Check (sig (fun x : nat => x=x)).
{{x : nat | x = x}}

: Set

The second, more powerful control on printing is by using the format modifier. Here is an example

Notation "'If' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3)
(at level 200, right associativity, format
"'[v ' 'If' c1 '/' '[' 'then' c2 ']' '/' '[' 'else' c3 ']' ']'").

Identifier 'If' now a keyword

Check
(IF_then_else (IF_then_else True False True)
(IF_then_else True False True)
(IF_then_else True False True)).
If If True

then False
else True

then If True
then False
else True

else If True
then False
else True

: Prop

A format is an extension of the string denoting the notation with the possible following elements delimited by single
quotes:

• extra spaces are translated into simple spaces
• tokens of the form '/ ' are translated into breaking point, in case a line break occurs, an indentation of the
number of spaces after the “ /” is applied (2 spaces in the given example)

• token of the form '//' force writing on a new line
• well-bracketed pairs of tokens of the form '[ ' and ']' are translated into printing boxes; in case a line break
occurs, an extra indentation of the number of spaces given after the “ [” is applied (4 spaces in the example)
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• well-bracketed pairs of tokens of the form '[hv ' and ']' are translated into horizontal-or-else-vertical printing
boxes; if the content of the box does not fit on a single line, then every breaking point forces a newline and an extra
indentation of the number of spaces given after the “ [” is applied at the beginning of each newline (3 spaces in
the example)

• well-bracketed pairs of tokens of the form '[v ' and ']' are translated into vertical printing boxes; every break-
ing point forces a newline, even if the line is large enough to display the whole content of the box, and an extra
indentation of the number of spaces given after the “[” is applied at the beginning of each newline

Notations disappear when a section is closed. No typing of the denoted expression is performed at definition time. Type
checking is done only at the time of use of the notation.

Note: Sometimes, a notation is expected only for the parser. To do so, the option only parsing is allowed in the list
of modifiers of Notation. Conversely, the only printing modifier can be used to declare that a notation should
only be used for printing and should not declare a parsing rule. In particular, such notations do not modify the parser.

The Infix command

The Infix command is a shortening for declaring notations of infix symbols.

Command: Infix "symbol" := term ( modifier
+
, ).

This command is equivalent to

Notation "x symbol y" := (term x y) ( modifier
+
, ).

where x and y are fresh names. Here is an example.

Infix "/\" := and (at level 80, right associativity).

Reserving notations

A given notation may be used in different contexts. Coq expects all uses of the notation to be defined at the same
precedence and with the same associativity. To avoid giving the precedence and associativity every time, it is possible to
declare a parsing rule in advance without giving its interpretation. Here is an example from the initial state of Coq.

Reserved Notation "x = y" (at level 70, no associativity).

Reserving a notation is also useful for simultaneously defining an inductive type or a recursive constant and a notation for
it.

Note: The notations mentioned in the module Notations are reserved. Hence their precedence and associativity cannot
be changed.

Simultaneous definition of terms and notations

Thanks to reserved notations, the inductive, co-inductive, record, recursive and corecursive definitions can benefit from
customized notations. To do this, insert a where notation clause after the definition of the (co)inductive type or
(co)recursive term (or after the definition of each of them in case of mutual definitions). The exact syntax is given
by decl_notation for inductive, co-inductive, recursive and corecursive definitions and in Record types for records.
Here are examples:
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Reserved Notation "A & B" (at level 80).

Inductive and' (A B : Prop) : Prop := conj' : A -> B -> A & B
where "A & B" := (and' A B).

Fixpoint plus (n m : nat) {struct n} : nat :=
match n with

| O => m
| S p => S (p+m)

end
where "n + m" := (plus n m).

Displaying information about notations

Flag: Printing Notations
Controls whether to use notations for printing terms wherever possible. Default is on.

See also:
Printing All To disable other elements in addition to notations.

Locating notations

To know to which notations a given symbol belongs to, use the Locate command. You can call it on any (composite)
symbol surrounded by double quotes. To locate a particular notation, use a string where the variables of the notation are
replaced by “_” and where possible single quotes inserted around identifiers or tokens starting with a single quote are
dropped.

Locate "exists".
Notation
"'exists' x .. y , p" := ex (fun x => .. (ex (fun y => p)) ..) : type_scope
(default interpretation)
"'exists' ! x .. y , p" := ex

(unique
(fun x => .. (ex (unique (fun y => p))) ..))

: type_scope (default interpretation)

Locate "exists _ .. _ , _".
Notation
"'exists' x .. y , p" := ex (fun x => .. (ex (fun y => p)) ..) : type_scope
(default interpretation)

Notations and binders

Notations can include binders. This section lists different ways to deal with binders. For further examples, see also
Notations with recursive patterns involving binders.

Binders bound in the notation and parsed as identifiers

Here is the basic example of a notation using a binder:
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Notation "'sigma' x : A , B" := (sigT (fun x : A => B))
(at level 200, x ident, A at level 200, right associativity).

The binding variables in the right-hand side that occur as a parameter of the notation (here x) dynamically bind all the
occurrences in their respective binding scope after instantiation of the parameters of the notation. This means that the
term bound to B can refer to the variable name bound to x as shown in the following application of the notation:

Check sigma z : nat, z = 0.
sigma z : nat, z = 0

: Set

Notice the modifier x ident in the declaration of the notation. It tells to parse x as a single identifier.

Binders bound in the notation and parsed as patterns

In the same way as patterns can be used as binders, as in fun '(x,y) => x+y or fun '(existT _ x _) =>
x, notations can be defined so that any pattern can be used in place of the binder. Here is an example:

Notation "'subset' ' p , P " := (sig (fun p => P))
(at level 200, p pattern, format "'subset' ' p , P").

Check subset '(x,y), x+y=0.
subset '(x, y), x + y = 0

: Set

The modifier p pattern in the declaration of the notation tells to parse p as a pattern. Note that a single variable is
both an identifier and a pattern, so, e.g., the following also works:

Check subset 'x, x=0.
subset 'x, x = 0

: Set

If one wants to prevent such a notation to be used for printing when the pattern is reduced to a single identifier, one has to
use instead the modifier p strict pattern. For parsing, however, a strict pattern will continue to include
the case of a variable. Here is an example showing the difference:

Notation "'subset_bis' ' p , P" := (sig (fun p => P))
(at level 200, p strict pattern).

Notation "'subset_bis' p , P " := (sig (fun p => P))
(at level 200, p ident).

Check subset_bis 'x, x=0.
subset_bis x, x = 0

: Set

The default level for a pattern is 0. One can use a different level by using pattern at level 𝑛 where the scale
is the same as the one for terms (see Notations).

Binders bound in the notation and parsed as terms

Sometimes, for the sake of factorization of rules, a binder has to be parsed as a term. This is typically the case for a
notation such as the following:
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Notation "{ x : A | P }" := (sig (fun x : A => P))
(at level 0, x at level 99 as ident).

This is so because the grammar also contains rules starting with {} and followed by a term, such as the rule for the
notation { A } + { B } for the constant sumbool (see Specification).
Then, in the rule, x ident is replaced by x at level 99 as ident meaning that x is parsed as a term at level
99 (as done in the notation for sumbool), but that this term has actually to be an identifier.
The notation { x | P } is already defined in the standard library with the as ident modifier. We cannot redefine
it but one can define an alternative notation, say { p such that P }, using instead as pattern.

Notation "{ p 'such' 'that' P }" := (sig (fun p => P))
(at level 0, p at level 99 as pattern).

Then, the following works:

Check {(x,y) such that x+y=0}.
{(x, y) such that x + y = 0}

: Set

To enforce that the pattern should not be used for printing when it is just an identifier, one could have said p at level
99 as strict pattern.
Note also that in the absence of a as ident, as strict pattern or as pattern modifiers, the default is to
consider sub-expressions occurring in binding position and parsed as terms to be as ident.

Binders not bound in the notation

We can also have binders in the right-hand side of a notation which are not themselves bound in the notation. In this case,
the binders are considered up to renaming of the internal binder. E.g., for the notation

Notation "'exists_different' n" := (exists p:nat, p<>n) (at level 200).

the next command fails because p does not bind in the instance of n.

Fail Check (exists_different p).
The command has indeed failed with message:
The reference p was not found in the current environment.

Notation "[> a , .. , b <]" :=
(cons a .. (cons b nil) .., cons b .. (cons a nil) ..).

Notations with recursive patterns

A mechanism is provided for declaring elementary notations with recursive patterns. The basic example is:

Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..).
Setting notation at level 0.

On the right-hand side, an extra construction of the form .. t .. can be used. Notice that .. is part of the Coq syntax
and it must not be confused with the three-dots notation “…” used in this manual to denote a sequence of arbitrary size.
On the left-hand side, the part “x s .. s y” of the notation parses any number of times (but at least once) a sequence
of expressions separated by the sequence of tokens s (in the example, s is just “;”).
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The right-hand side must contain a subterm of the form either φ(x, .. φ(y,t) ..) or φ(y, .. φ(x,t) ..)
where 𝜑([ ]𝐸, [ ]𝐼), called the iterator of the recursive notation is an arbitrary expression with distinguished placeholders
and where 𝑡 is called the terminating expression of the recursive notation. In the example, we choose the names 𝑥 and 𝑦
but in practice they can of course be chosen arbitrarily. Note that the placeholder [ ]𝐼 has to occur only once but [ ]𝐸 can
occur several times.
Parsing the notation produces a list of expressions which are used to fill the first placeholder of the iterating pattern
which itself is repeatedly nested as many times as the length of the list, the second placeholder being the nesting point.
In the innermost occurrence of the nested iterating pattern, the second placeholder is finally filled with the terminating
expression.
In the example above, the iterator 𝜑([ ]𝐸, [ ]𝐼) is 𝑐𝑜𝑛𝑠[ ]𝐸[ ]𝐼 and the terminating expression is nil. Here are other
examples:

Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) (at level 0).
Notation "[| t * ( x , y , .. , z ) ; ( a , b , .. , c ) * u |]" :=

(pair (pair .. (pair (pair t x) (pair t y)) .. (pair t z))
(pair .. (pair (pair a u) (pair b u)) .. (pair c u)))

(t at level 39).

Notations with recursive patterns can be reserved like standard notations, they can also be declared within interpretation
scopes.

Notations with recursive patterns involving binders

Recursive notations can also be used with binders. The basic example is:

Notation "'exists' x .. y , p" :=
(ex (fun x => .. (ex (fun y => p)) ..))
(at level 200, x binder, y binder, right associativity).

The principle is the same as in Notations with recursive patterns except that in the iterator 𝜑([ ]𝐸, [ ]𝐼), the placeholder
[ ]𝐸 can also occur in position of the binding variable of a fun or a forall.
To specify that the part “x .. y” of the notation parses a sequence of binders, x and y must be marked as binder
in the list of modifiers of the notation. The binders of the parsed sequence are used to fill the occurrences of the first
placeholder of the iterating pattern which is repeatedly nested as many times as the number of binders generated. If
ever the generalization operator ' (see Implicit generalization) is used in the binding list, the added binders are taken into
account too.
There are two flavors of binder parsing. If x and y are marked as binder, then a sequence such as a b c : T will be
accepted and interpreted as the sequence of binders (a:T) (b:T) (c:T). For instance, in the notation above, the
syntax exists a b : nat, a = b is valid.
The variables x and y can also be marked as closed binder in which case only well-bracketed binders of the form (a b
c:T) or {a b c:T} etc. are accepted.
With closed binders, the recursive sequence in the left-hand side can be of the more general form x s .. s y where
s is an arbitrary sequence of tokens. With open binders though, s has to be empty. Here is an example of recursive
notation with closed binders:

Notation "'mylet' f x .. y := t 'in' u":=
(let f := fun x => .. (fun y => t) .. in u)
(at level 200, x closed binder, y closed binder, right associativity).

A recursive pattern for binders can be used in position of a recursive pattern for terms. Here is an example:
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Notation "'FUNAPP' x .. y , f" :=
(fun x => .. (fun y => (.. (f x) ..) y ) ..)
(at level 200, x binder, y binder, right associativity).

If an occurrence of the [ ]𝐸 is not in position of a binding variable but of a term, it is the name used in the binding which
is used. Here is an example:

Notation "'exists_non_null' x .. y , P" :=
(ex (fun x => x <> 0 /\ .. (ex (fun y => y <> 0 /\ P)) ..))
(at level 200, x binder).

Predefined entries

By default, sub-expressions are parsed as terms and the corresponding grammar entry is called constr. However, one
may sometimes want to restrict the syntax of terms in a notation. For instance, the following notation will accept to parse
only global reference in position of x:

Notation "'apply' f a1 .. an" := (.. (f a1) .. an)
(at level 10, f global, a1, an at level 9).

In addition to global, one can restrict the syntax of a sub-expression by using the entry names ident or pattern
already seen in Binders not bound in the notation, even when the corresponding expression is not used as a binder in the
right-hand side. E.g.:

Notation "'apply_id' f a1 .. an" := (.. (f a1) .. an)
(at level 10, f ident, a1, an at level 9).

Custom entries

Command: Declare Custom Entry ident
This command allows to define new grammar entries, called custom entries, that can later be referred to using the
entry name custom ident.

Example
For instance, we may want to define an ad hoc parser for arithmetical operations and proceed as follows:

Inductive Expr :=
| One : Expr
| Mul : Expr -> Expr -> Expr
| Add : Expr -> Expr -> Expr.

Expr is defined
Expr_rect is defined
Expr_ind is defined
Expr_rec is defined

Declare Custom Entry expr.
Notation "[ e ]" := e (e custom expr at level 2).

Setting notation at level 0.

Notation "1" := One (in custom expr at level 0).
Notation "x y" := (Mul x y) (in custom expr at level 1, left associativity).
Notation "x + y" := (Add x y) (in custom expr at level 2, left associativity).

(continues on next page)
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(continued from previous page)
Notation "( x )" := x (in custom expr, x at level 2).

Setting notation at level 0.

Notation "{ x }" := x (in custom expr, x constr).
Setting notation at level 0.

Notation "x" := x (in custom expr at level 0, x ident).
Axiom f : nat -> Expr.

f is declared

Check fun x y z => [1 + y z + {f x}].
fun (x : nat) (y z : Expr) => [1 + y z + {f x}]

: nat -> Expr -> Expr -> Expr

Unset Printing Notations.
Check fun x y z => [1 + y z + {f x}].

fun (x : nat) (y z : Expr) => Add (Add One (Mul y z)) (f x)
: forall (_ : nat) (_ : Expr) (_ : Expr), Expr

Set Printing Notations.
Check fun e => match e with
| [1 + 1] => [1]
| [x y + z] => [x + y z]
| y => [y + e]
end.

fun e : Expr =>
match e with
| [1 + 1] => [1]
| [x y + z] => [x + y z]
| _ => [e + e]
end

: Expr -> Expr

Custom entries have levels, like the main grammar of terms and grammar of patterns have. The lower level is 0 and this is
the level used by default to put rules delimited with tokens on both ends. The level is left to be inferred by Coq when using
in custom ident. The level is otherwise given explicitly by using the syntax in custom ident at level
num, where num refers to the level.
Levels are cumulative: a notation at level n of which the left end is a term shall use rules at level less than n to parse this sub-
term. More precisely, it shall use rules at level strictly less than n if the rule is declared with right associativity
and rules at level less or equal than n if the rule is declared with left associativity. Similarly, a notation at level
n of which the right end is a term shall use by default rules at level strictly less than n to parse this sub-term if the rule is
declared left associative and rules at level less or equal than n if the rule is declared right associative. This is what happens
for instance in the rule

Notation "x + y" := (Add x y) (in custom expr at level 2, left associativity).

where x is any expression parsed in entry expr at level less or equal than 2 (including, recursively, the given rule) and y
is any expression parsed in entry expr at level strictly less than 2.
Rules associated to an entry can refer different sub-entries. The grammar entry name constr can be used to refer to
the main grammar of term as in the rule

Notation "{ x }" := x (in custom expr at level 0, x constr).

which indicates that the subterm x should be parsed using the main grammar. If not indicated, the level is computed as
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for notations in constr, e.g. using 200 as default level for inner sub-expressions. The level can otherwise be indicated
explicitly by using constr at level n for some n, or constr at next level.
Conversely, custom entries can be used to parse sub-expressions of the main grammar, or from another custom entry as
is the case in

Notation "[ e ]" := e (e custom expr at level 2).

to indicate that e has to be parsed at level 2 of the grammar associated to the custom entry expr. The level can be
omitted, as in

Notation "[ e ]" := e (e custom expr).

in which case Coq tries to infer it.
In the absence of an explicit entry for parsing or printing a sub-expression of a notation in a custom entry, the default is to
consider that this sub-expression is parsed or printed in the same custom entry where the notation is defined. In particular,
if x at level n is used for a sub-expression of a notation defined in custom entry foo, it shall be understood the
same as x custom foo at level n.
In general, rules are required to be productive on the right-hand side, i.e. that they are bound to an expression which is
not reduced to a single variable. If the rule is not productive on the right-hand side, as it is the case above for

Notation "( x )" := x (in custom expr at level 0, x at level 2).

and

Notation "{ x }" := x (in custom expr at level 0, x constr).

it is used as a grammar coercion which means that it is used to parse or print an expression which is not available in the
current grammar at the current level of parsing or printing for this grammar but which is available in another grammar or
in another level of the current grammar. For instance,

Notation "( x )" := x (in custom expr at level 0, x at level 2).

tells that parentheses can be inserted to parse or print an expression declared at level 2 of expr whenever this expression
is expected to be used as a subterm at level 0 or 1. This allows for instance to parse and print Add x y as a subterm of
Mul (Add x y) z using the syntax (x + y) z. Similarly,

Notation "{ x }" := x (in custom expr at level 0, x constr).

gives a way to let any arbitrary expression which is not handled by the custom entry expr be parsed or printed by the
main grammar of term up to the insertion of a pair of curly brackets.
Command: Print Grammar ident.

This displays the state of the grammar for terms and grammar for patterns associated to the custom entry ident.

Summary

Syntax of notations

The different syntactic forms taken by the commands declaring notations are given below. The optional scope is de-
scribed in Interpretation scopes.

notation ::= [Local] Notation string := term [modifiers] [: scope].
| [Local] Infix string := qualid [modifiers] [: scope].
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| [Local] Reserved Notation string [modifiers] .
| Inductive ind_body [decl_notation] with … with ind_body [decl_notation].
| CoInductive ind_body [decl_notation] with … with ind_body [decl_notation].
| Fixpoint fix_body [decl_notation] with … with fix_body [decl_notation].
| CoFixpoint cofix_body [decl_notation] with … with cofix_body [decl_notation].
| [Local] Declare Custom Entry ident.

decl_notation ::= [where string := term [: scope] and … and string := term [: scope]].
modifiers ::= at level num

in custom ident
in custom ident at level num
| ident , … , ident at level num [binderinterp]
| ident , … , ident at next level [binderinterp]
| ident explicit_subentry
| left associativity
| right associativity
| no associativity
| only parsing
| only printing
| format string

explicit_subentry ::= ident
| global
| bigint
| [strict] pattern [at level num]
| binder
| closed binder
| constr [binderinterp]
| constr at level num [binderinterp]
| constr at next level [binderinterp]
| custom [binderinterp]
| custom at level num [binderinterp]
| custom at next level [binderinterp]

binderinterp ::= as ident
| as pattern
| as strict pattern

Note: No typing of the denoted expression is performed at definition time. Type checking is done only at the time of
use of the notation.

Note: Some examples of Notation may be found in the files composing the initial state of Coq (see directory $COQLIB/
theories/Init).

Note: The notation "{ x }" has a special status in the main grammars of terms and patterns so that complex notations
of the form "x + { y }" or "x * { y }" can be nested with correct precedences. Especially, every notation
involving a pattern of the form "{ x }" is parsed as a notation where the pattern "{ x }" has been simply replaced
by "x" and the curly brackets are parsed separately. E.g. "y + { z }" is not parsed as a term of the given form
but as a term of the form "y + z" where z has been parsed using the rule parsing "{ x }". Especially, level and
precedences for a rule including patterns of the form "{ x }" are relative not to the textual notation but to the notation
where the curly brackets have been removed (e.g. the level and the associativity given to some notation, say "{ y } &
{ z }" in fact applies to the underlying "{ x }"-free rule which is "y & z").
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Persistence of notations

Notations disappear when a section is closed.
Command: Local Notation notation

Notations survive modules unless the command Local Notation is used instead of Notation.
Command: Local Declare Custom Entry ident

Custom entries survive modules unless the command Local Declare Custom Entry is used instead of
Declare Custom Entry.

5.1.2 Interpretation scopes

An interpretation scope is a set of notations for termswith their interpretations. Interpretation scopes provide a weak, purely
syntactical form of notation overloading: the same notation, for instance the infix symbol +, can be used to denote distinct
definitions of the additive operator. Depending on which interpretation scopes are currently open, the interpretation is
different. Interpretation scopes can include an interpretation for numerals and strings. However, this is only made possible
at the Objective Caml level.
See above for the syntax of notations including the possibility to declare them in a given scope. Here is a typical example
which declares the notation for conjunction in the scope type_scope.

Notation "A /\ B" := (and A B) : type_scope.

Note: A notation not defined in a scope is called a lonely notation.

Global interpretation rules for notations

At any time, the interpretation of a notation for a term is done within a stack of interpretation scopes and lonely notations.
In case a notation has several interpretations, the actual interpretation is the one defined by (or in) the more recently
declared (or opened) lonely notation (or interpretation scope) which defines this notation. Typically if a given notation is
defined in some scope scope but has also an interpretation not assigned to a scope, then, if scope is open before the
lonely interpretation is declared, then the lonely interpretation is used (and this is the case even if the interpretation of
the notation in scope is given after the lonely interpretation: otherwise said, only the order of lonely interpretations and
opening of scopes matters, and not the declaration of interpretations within a scope).
The initial state of Coq declares three interpretation scopes and no lonely notations. These scopes, in opening order, are
core_scope, type_scope and nat_scope.
Command: Open Scope scope

The command to add a scope to the interpretation scope stack is Open Scope scope.
Command: Close Scope scope

It is also possible to remove a scope from the interpretation scope stack by using the command Close Scope
scope.
Notice that this command does not only cancel the last Open Scope scope but all its invocations.

Note: Open Scope and Close Scope do not survive the end of sections where they occur. When defined outside
of a section, they are exported to the modules that import the module where they occur.

Command: Local Open Scope scope.
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Command: Local Close Scope scope.
These variants are not exported to the modules that import the module where they occur, even if outside a section.

Command: Global Open Scope scope.
Command: Global Close Scope scope.

These variants survive sections. They behave as if Global were absent when not inside a section.

Local interpretation rules for notations

In addition to the global rules of interpretation of notations, some ways to change the interpretation of subterms are
available.

Local opening of an interpretation scope

It is possible to locally extend the interpretation scope stack using the syntax (term)%key (or simply term%key for
atomic terms), where key is a special identifier called delimiting key and bound to a given scope.
In such a situation, the term term, and all its subterms, are interpreted in the scope stack extended with the scope bound
tokey.
Command: Delimit Scope scope with ident

To bind a delimiting key to a scope, use the command Delimit Scope scope with ident

Command: Undelimit Scope scope
To remove a delimiting key of a scope, use the command Undelimit Scope scope

Binding arguments of a constant to an interpretation scope

Command: Arguments qualid name%scope
+

It is possible to set in advance that some arguments of a given constant have to be interpreted in a given scope. The
command is Arguments qualid name%scope

+ where the list is a prefix of the arguments of qualid
eventually annotated with their scope. Grouping round parentheses can be used to decorate multiple arguments
with the same scope. scope can be either a scope name or its delimiting key. For example the following command
puts the first two arguments of plus_fct in the scope delimited by the key F (Rfun_scope) and the last
argument in the scope delimited by the key R (R_scope).

Arguments plus_fct (f1 f2)%F x%R.

The Arguments command accepts scopes decoration to all grouping parentheses. In the following example
arguments A and B are marked as maximally inserted implicit arguments and are put into the type_scope scope.

Arguments respectful {A B}%type (R R')%signature _ _.

When interpreting a term, if some of the arguments of qualid are built from a notation, then this notation is inter-
preted in the scope stack extended by the scope bound (if any) to this argument. The effect of the scope is limited
to the argument itself. It does not propagate to subterms but the subterms that, after interpretation of the notation,
turn to be themselves arguments of a reference are interpreted accordingly to the argument scopes bound to this
reference.
Variant: Arguments qualid : clear scopes

This command can be used to clear argument scopes of qualid.
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Variant: Arguments qualid name%scope
+

: extra scopes
Defines extra argument scopes, to be used in case of coercion to Funclass (see the Implicit Coercions
chapter) or with a computed type.

Variant: Global Arguments qualid name%scope
+

This behaves like Arguments qualid name%scope
+ but survives when a section is closed instead

of stopping working at section closing. Without the Globalmodifier, the effect of the command stops when
the section it belongs to ends.

Variant: Local Arguments qualid name%scope
+

This behaves like Arguments qualid name%scope
+ but does not survive modules and files. With-

out the Local modifier, the effect of the command is visible from within other modules or files.
See also:
The command About can be used to show the scopes bound to the arguments of a function.

Note: In notations, the subterms matching the identifiers of the notations are interpreted in the scope in which the
identifiers occurred at the time of the declaration of the notation. Here is an example:

Parameter g : bool -> bool.
g is declared

Notation "@@" := true (only parsing) : bool_scope.
Setting notation at level 0.

Notation "@@" := false (only parsing): mybool_scope.
Bind Scope bool_scope with bool.
Notation "# x #" := (g x) (at level 40).
Check # @@ #.

# true #
: bool

Arguments g _%mybool_scope.
Check # @@ #.

# true #
: bool

Delimit Scope mybool_scope with mybool.
Check # @@%mybool #.

# false #
: bool

Binding types of arguments to an interpretation scope

Command: Bind Scope scope with qualid
When an interpretation scope is naturally associated to a type (e.g. the scope of operations on the natural numbers),
it may be convenient to bind it to this type. When a scope scope is bound to a type type, any new function
defined later on gets its arguments of type type interpreted by default in scope scope (this default behavior can
however be overwritten by explicitly using the command Arguments).
Whether the argument of a function has some typetype is determined statically. For instance, iff is a polymorphic
function of type forall X:Type, X -> X and type t is bound to a scope scope, then a of type t in f t
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a is not recognized as an argument to be interpreted in scope scope.
More generally, any coercion class (see the Implicit Coercions chapter) can be bound to an interpretation scope.
The command to do it is Bind Scope scope with class

Parameter U : Set.
Bind Scope U_scope with U.
Parameter Uplus : U -> U -> U.
Parameter P : forall T:Set, T -> U -> Prop.
Parameter f : forall T:Set, T -> U.
Infix "+" := Uplus : U_scope.
Unset Printing Notations.
Open Scope nat_scope.

Check (fun x y1 y2 z t => P _ (x + t) ((f _ (y1 + y2) + z))).
fun (x y1 y2 : nat) (z : U) (t : nat) =>
P nat (Nat.add x t) (Uplus (f nat (Nat.add y1 y2)) z)

: forall (_ : nat) (_ : nat) (_ : nat) (_ : U) (_ : nat), Prop

Note: The scopes type_scope and function_scope also have a local effect on interpretation. See the next
section.

The type_scope interpretation scope

The scope type_scope has a special status. It is a primitive interpretation scope which is temporarily activated each
time a subterm of an expression is expected to be a type. It is delimited by the key type, and bound to the coercion
class Sortclass. It is also used in certain situations where an expression is statically known to be a type, including
the conclusion and the type of hypotheses within an Ltac goal match (see Pattern matching on goals), the statement of a
theorem, the type of a definition, the type of a binder, the domain and codomain of implication, the codomain of products,
and more generally any type argument of a declared or defined constant.

The function_scope interpretation scope

The scope function_scope also has a special status. It is temporarily activated each time the argument of a global
reference is recognized to be a Funclass istance, i.e., of type forall x:A, B or A -> B.

Interpretation scopes used in the standard library of Coq

We give an overview of the scopes used in the standard library of Coq. For a complete list of notations in each scope, use
the commands Print Scopes or Print Scope.
type_scope This scope includes infix * for product types and infix + for sum types. It is delimited by the key type,

and bound to the coercion class Sortclass, as described above.
function_scope This scope is delimited by the key function, and bound to the coercion class Funclass, as

described above.
nat_scope This scope includes the standard arithmetical operators and relations on type nat. Positive numerals in this

scope are mapped to their canonical representent built from O and S. The scope is delimited by the key nat, and
bound to the type nat (see above).

N_scope This scope includes the standard arithmetical operators and relations on type N (binary natural numbers). It
is delimited by the key N and comes with an interpretation for numerals as closed terms of type N.
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Z_scope This scope includes the standard arithmetical operators and relations on type Z (binary integer numbers). It
is delimited by the key Z and comes with an interpretation for numerals as closed terms of type Z.

positive_scope This scope includes the standard arithmetical operators and relations on type positive (binary
strictly positive numbers). It is delimited by key positive and comes with an interpretation for numerals as
closed terms of type positive.

Q_scope This scope includes the standard arithmetical operators and relations on type Q (rational numbers defined
as fractions of an integer and a strictly positive integer modulo the equality of the numerator- denominator cross-
product). As for numerals, only 0 and 1 have an interpretation in scope Q_scope (their interpretations are 0/1
and 1/1 respectively).

Qc_scope This scope includes the standard arithmetical operators and relations on the type Qc of rational numbers
defined as the type of irreducible fractions of an integer and a strictly positive integer.

real_scope This scope includes the standard arithmetical operators and relations on type R (axiomatic real numbers).
It is delimited by the key R and comes with an interpretation for numerals using the IZR morphism from binary
integer numbers to R.

bool_scope This scope includes notations for the boolean operators. It is delimited by the key bool, and bound to
the type bool (see above).

list_scope This scope includes notations for the list operators. It is delimited by the key list, and bound to the
type list (see above).

core_scope This scope includes the notation for pairs. It is delimited by the key core.
string_scope This scope includes notation for strings as elements of the type string. Special characters and escaping

follow Coq conventions on strings (see Lexical conventions). Especially, there is no convention to visualize non
printable characters of a string. The file String.v shows an example that contains quotes, a newline and a beep
(i.e. the ASCII character of code 7).

char_scope This scope includes interpretation for all strings of the form "c"where c is an ASCII character, or of the
form "nnn" where nnn is a three-digits number (possibly with leading 0’s), or of the form """". Their respective
denotations are the ASCII code of c, the decimal ASCII code nnn, or the ascii code of the character " (i.e. the
ASCII code 34), all of them being represented in the type ascii.

Displaying information about scopes

Command: Print Visibility
This displays the current stack of notations in scopes and lonely notations that is used to interpret a notation. The
top of the stack is displayed last. Notations in scopes whose interpretation is hidden by the same notation in a more
recently opened scope are not displayed. Hence each notation is displayed only once.
Variant: Print Visibility scope

This displays the current stack of notations in scopes and lonely notations assuming that scope is pushed on
top of the stack. This is useful to know how a subterm locally occurring in the scope scope is interpreted.

Command: Print Scopes
This displays all the notations, delimiting keys and corresponding classes of all the existing interpretation scopes.
It also displays the lonely notations.
Variant: Print Scope scope

This displays all the notations defined in the interpretation scope scope. It also displays the delimiting key
if any and the class to which the scope is bound, if any.
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5.1.3 Abbreviations

Command: Local
?

Notation ident ident
+

:= term (only parsing)
?
.

An abbreviation is a name, possibly applied to arguments, that denotes a (presumably) more complex expression.
Here are examples:

Notation Nlist := (list nat).

Check 1 :: 2 :: 3 :: nil.
1 :: 2 :: 3 :: nil

: Nlist

Notation reflexive R := (forall x, R x x).

Check forall A:Prop, A <-> A.
reflexive iff

: Prop

Check reflexive iff.
reflexive iff

: Prop

An abbreviation expects no precedence nor associativity, since it is parsed as an usual application. Abbreviations
are used as much as possible by the Coq printers unless the modifier (only parsing) is given.
An abbreviation is bound to an absolute name as an ordinary definition is and it also can be referred to by a qualified
name.
Abbreviations are syntactic in the sense that they are bound to expressions which are not typed at the time of the
definition of the abbreviation but at the time they are used. Especially, abbreviations can be bound to terms with
holes (i.e. with “_”). For example:

Definition explicit_id (A:Set) (a:A) := a.

Notation id := (explicit_id _).

Check (id 0).
id 0

: nat

Abbreviations disappear when a section is closed. No typing of the denoted expression is performed at definition
time. Type checking is done only at the time of use of the abbreviation.

5.1.4 Numeral notations

Command: Numeral Notation ident1 ident2 ident3 : scope.
This command allows the user to customize the way numeral literals are parsed and printed.
The token ident1 should be the name of an inductive type, while ident2 and ident3 should be the names of
the parsing and printing functions, respectively. The parsing function ident2 should have one of the following
types:

• Decimal.int -> ident1

• Decimal.int -> option ident1
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• Decimal.uint -> ident1

• Decimal.uint -> option ident1

• Z -> ident1

• Z -> option ident1

And the printing function ident3 should have one of the following types:
• ident1 -> Decimal.int

• ident1 -> option Decimal.int

• ident1 -> Decimal.uint

• ident1 -> option Decimal.uint

• ident1 -> Z

• ident1 -> option Z

When parsing, the application of the parsing function ident2 to the number will be fully reduced, and
universes of the resulting term will be refreshed.

Variant: Numeral Notation ident1 ident2 ident3 : scope (warning after num).
When a literal larger than num is parsed, a warning message about possible stack overflow, resulting from
evaluating ident2, will be displayed.

Variant: Numeral Notation ident1 ident2 ident3 : scope (abstract after num).
When a literal m larger than num is parsed, the result will be (ident2 m), without reduction of this ap-
plication to a normal form. Here m will be a Decimal.int or Decimal.uint or Z, depending on the
type of the parsing function ident2. This allows for a more compact representation of literals in types such
as nat, and limits parse failures due to stack overflow. Note that a warning will be emitted when an integer
larger than num is parsed. Note that (abstract after num) has no effect when ident2 lands in an
option type.

Error: Cannot interpret this number as a value of type type
The numeral notation registered for type does not support the given numeral. This error is given when the
interpretation function returns None, or if the interpretation is registered for only non-negative integers, and
the given numeral is negative.

Error: ident should go from Decimal.int to type or (option type). Instead of Decimal.int, the types Decimal.uint or Z could be used (require BinNums first)
?
.

The parsing function given to the Numeral Notation vernacular is not of the right type.

Error: ident should go from type to Decimal.int or (option Decimal.int). Instead of Decimal.int, the types Decimal.uint or Z could be used (require BinNums first)
?
.

The printing function given to the Numeral Notation vernacular is not of the right type.
Error: type is not an inductive type.

Numeral notations can only be declared for inductive types with no arguments.
Error: Unexpected term term while parsing a numeral notation.

Parsing functions must always return ground terms, made up of applications of constructors and inductive
types. Parsing functions may not return terms containing axioms, bare (co)fixpoints, lambdas, etc.

Error: Unexpected non-option term term while parsing a numeral notation.
Parsing functions expected to return an optionmust always return a concrete Some or None when applied
to a concrete numeral expressed as a decimal. They may not return opaque constants.

Error: Cannot interpret in scope because ident could not be found in the current environment.
The inductive type used to register the numeral notation is no longer available in the environment. Most likely,
this is because the numeral notation was declared inside a functor for an inductive type inside the functor. This
use case is not currently supported.
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Alternatively, you might be trying to use a primitive token notation from a plugin which forgot to specify
which module you must Require for access to that notation.

Error: Syntax error: [prim:reference] expected after 'Notation' (in [vernac:command]).
The type passed to Numeral Notation must be a single identifier.

Error: Syntax error: [prim:reference] expected after [prim:reference] (in [vernac:command]).
Both functions passed to Numeral Notation must be single identifiers.

Error: The reference ident was not found in the current environment.
Identifiers passed to Numeral Notation must exist in the global environment.

Error: ident is bound to a notation that does not denote a reference.
Identifiers passed to Numeral Notation must be global references, or notations which denote to single
identifiers.

Warning: Stack overflow or segmentation fault happens when working with large numbers in type (threshold may vary depending on your system limits and on the command executed).
When a Numeral Notation is registered in the current scope with (warning after num), this
warning is emitted when parsing a numeral greater than or equal to num.

Warning: To avoid stack overflow, large numbers in type are interpreted as applications of ident2.
When a Numeral Notation is registered in the current scope with (abstract after num), this
warning is emitted when parsing a numeral greater than or equal to num. Typically, this indicates that the
fully computed representation of numerals can be so large that non-tail-recursive OCaml functions run out of
stack space when trying to walk them.
For example

Check 90000.
Toplevel input, characters 0-12:
> Check 90000.
> ^^^^^^^^^^^^
Warning: To avoid stack overflow, large numbers in nat are interpreted as
applications of Nat.of_uint. [abstract-large-number,numbers]
Nat.of_uint 90000

: nat

Warning: The 'abstract after' directive has no effect when the parsing function (ident2) targets an option type.
As noted above, the (abstract after num) directive has no effect when ident2 lands in an option
type.

5.1.5 Tactic Notations

Tactic notations allow to customize the syntax of tactics. They have the following syntax:

tacn ::= Tactic Notation [tactic_level] [prod_item … prod_item] := tactic.
prod_item ::= string | tactic_argument_type(ident)
tactic_level ::= (at level num)
tactic_argument_type ::= ident | simple_intropattern | reference

| hyp | hyp_list | ne_hyp_list
| constr | uconstr | constr_list | ne_constr_list
| integer | integer_list | ne_integer_list
| int_or_var | int_or_var_list | ne_int_or_var_list
| tactic | tactic0 | tactic1 | tactic2 | tactic3
| tactic4 | tactic5
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Command: Tactic Notation (at level level)
?

prod_item
+

:= tactic.
A tactic notation extends the parser and pretty-printer of tactics with a new rule made of the list of production
items. It then evaluates into the tactic expression tactic. For simple tactics, it is recommended to use a terminal
symbol, i.e. a string, for the first production item. The tactic level indicates the parsing precedence of the tactic
notation. This information is particularly relevant for notations of tacticals. Levels 0 to 5 are available (default is
5).
Command: Print Grammar tactic

To know the parsing precedences of the existing tacticals, use the command Print Grammar tactic.
Each type of tactic argument has a specific semantic regarding how it is parsed and how it is interpreted. The se-
mantic is described in the following table. The last command gives examples of tactics which use the corresponding
kind of argument.

Tactic argument type parsed as interpreted as as in tactic
ident identifier a user-given name intro
simple_intropattern intro_pattern an intro pattern intros
hyp identifier a hypothesis defined in context clear
reference qualified identifier a global reference of term unfold
constr term a term exact
uconstr term an untyped term refine
integer integer an integer
int_or_var identifier or integer an integer do
tactic tactic at level 5 a tactic
tacticn tactic at level n a tactic
entry_list list of entry a list of how entry is interpreted
ne_entry_list non-empty list of entry a list of how entry is interpreted

Note: In order to be bound in tactic definitions, each syntactic entry for argument type must include the case of a
simple Ltac identifier as part of what it parses. This is naturally the case for ident, simple_intropattern,
reference, constr, ... but not for integer. This is the reason for introducing a special entry int_or_var
which evaluates to integers only but which syntactically includes identifiers in order to be usable in tactic definitions.

Note: The entry_list and ne_entry_list entries can be used in primitive tactics or in other notations at places
where a list of the underlying entry can be used: entry is either constr, hyp, integer or int_or_var.

Variant: Local Tactic Notation
Tactic notations disappear when a section is closed. They survive when a module is closed unless the command
Local Tactic Notation is used instead of Tactic Notation.

5.2 Proof schemes

5.2.1 Generation of induction principles with Scheme

The Scheme command is a high-level tool for generating automatically (possibly mutual) induction principles for given
types and sorts. Its syntax follows the schema:

Command: Scheme ident := Induction for ident Sort sort with ident := Induction for ident Sort sort
*
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where each ident'� is a different inductive type identifier belonging to the same package of mutual inductive
definitions. This command generates the ident�`s to be mutually recursive definitions. Each
term `ident� proves a general principle of mutual induction for objects in type ident�.

Variant: Scheme ident := Minimality for ident Sort sort with ident := Minimality for ident' Sort sort
*

Same as before but defines a non-dependent elimination principle more natural in case of inductively defined rela-
tions.

Variant: Scheme Equality for ident
Tries to generate a Boolean equality and a proof of the decidability of the usual equality. If ident involves some
other inductive types, their equality has to be defined first.

Variant: Scheme Induction for ident Sort sort with Induction for ident Sort sort
*

If you do not provide the name of the schemes, they will be automatically computed from the sorts involved (works
also with Minimality).

Example
Induction scheme for tree and forest.
A mutual induction principle for tree and forest in sort Set can be defined using the command

Inductive tree : Set := node : A -> forest -> tree
with forest : Set :=

leaf : B -> forest
| cons : tree -> forest -> forest.
tree, forest are defined
tree_rect is defined
tree_ind is defined
tree_rec is defined
forest_rect is defined
forest_ind is defined
forest_rec is defined

Scheme tree_forest_rec := Induction for tree Sort Set
with forest_tree_rec := Induction for forest Sort Set.
forest_tree_rec is defined
tree_forest_rec is defined
tree_forest_rec, forest_tree_rec are recursively defined

You may now look at the type of tree_forest_rec:

Check tree_forest_rec.
tree_forest_rec

: forall (P : tree -> Set) (P0 : forest -> Set),
(forall (a : A) (f : forest), P0 f -> P (node a f)) ->
(forall b : B, P0 (leaf b)) ->
(forall t : tree, P t -> forall f1 : forest, P0 f1 -> P0 (cons t f1)) ->
forall t : tree, P t

This principle involves two different predicates for trees andforests; it also has three premises each one corresponding to
a constructor of one of the inductive definitions.
The principle forest_tree_rec shares exactly the same premises, only the conclusion now refers to the property of
forests.

Example
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Predicates odd and even on naturals.
Let odd and even be inductively defined as:

Inductive odd : nat -> Prop := oddS : forall n:nat, even n -> odd (S n)
with even : nat -> Prop :=
| evenO : even 0
| evenS : forall n:nat, odd n -> even (S n).
odd, even are defined
odd_ind is defined
even_ind is defined

The following command generates a powerful elimination principle:

Scheme odd_even := Minimality for odd Sort Prop
with even_odd := Minimality for even Sort Prop.

even_odd is defined
odd_even is defined
odd_even, even_odd are recursively defined

The type of odd_even for instance will be:

Check odd_even.
odd_even

: forall P P0 : nat -> Prop,
(forall n : nat, even n -> P0 n -> P (S n)) ->
P0 0 ->
(forall n : nat, odd n -> P n -> P0 (S n)) ->
forall n : nat, odd n -> P n

The type of even_odd shares the same premises but the conclusion is (n:nat)(even n)->(P0 n).

Automatic declaration of schemes

Flag: Elimination Schemes
Enables automatic declaration of induction principles when defining a new inductive type. Defaults to on.

Flag: Nonrecursive Elimination Schemes
Enables automatic declaration of induction principles for types declared with the Variant and Record com-
mands. Defaults to off.

Flag: Case Analysis Schemes
This flag governs the generation of case analysis lemmas for inductive types, i.e. corresponding to the pattern
matching term alone and without fixpoint.

Flag: Boolean Equality Schemes
Flag: Decidable Equality Schemes

These flags control the automatic declaration of those Boolean equalities (see the second variant of Scheme).

Warning: You have to be careful with this option since Coq may now reject well-defined inductive types because it
cannot compute a Boolean equality for them.

Flag: Rewriting Schemes
This flag governs generation of equality-related schemes such as congruence.
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Combined Scheme

The Combined Scheme command is a tool for combining induction principles generated by the Scheme command.
Its syntax follows the schema :

Command: Combined Scheme ident from ident
+
,

where each identᵢ after thefrom is a different inductive principle that must belong to the same package ofmutual inductive
principle definitions. This command generates the leftmost ident to be the conjunction of the principles: it is built from
the common premises of the principles and concluded by the conjunction of their conclusions.

Example
We can define the induction principles for trees and forests using:

Scheme tree_forest_ind := Induction for tree Sort Prop
with forest_tree_ind := Induction for forest Sort Prop.

forest_tree_ind is defined
tree_forest_ind is defined
tree_forest_ind, forest_tree_ind are recursively defined

Then we can build the combined induction principle which gives the conjunction of the conclusions of each individual
principle:

Combined Scheme tree_forest_mutind from tree_forest_ind,forest_tree_ind.
tree_forest_mutind is defined
tree_forest_mutind is recursively defined

The type of tree_forest_mutind will be:

Check tree_forest_mutind.
tree_forest_mutind

: forall (P : tree -> Prop) (P0 : forest -> Prop),
(forall (a : A) (f : forest), P0 f -> P (node a f)) ->
(forall b : B, P0 (leaf b)) ->
(forall t : tree, P t -> forall f1 : forest, P0 f1 -> P0 (cons t f1)) ->
(forall t : tree, P t) /\ (forall f2 : forest, P0 f2)

5.2.2 Generation of induction principles with Functional Scheme

Command: Functional Scheme ident0 := Induction for ident' Sort sort with identi := Induction for identi' Sort sort
*

This command is a high-level experimental tool for generating automatically induction principles corresponding to
(possibly mutually recursive) functions. First, it must be made available via Require Import FunInd. Each
identi is a different mutually defined function name (the names must be in the same order as when they were
defined). This command generates the induction principle for each identi, following the recursive structure and
case analyses of the corresponding function identi'.

Warning: There is a difference between induction schemes generated by the command Functional Scheme
and these generated by the Function. Indeed, Function generally produces smaller principles that are closer to
how a user would implement them. See Advanced recursive functions for details.
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Example
Induction scheme for div2.
We define the function div2 as follows:

Require Import FunInd.
[Loading ML file extraction_plugin.cmxs ... done]
[Loading ML file recdef_plugin.cmxs ... done]

Require Import Arith.
[Loading ML file quote_plugin.cmxs ... done]
[Loading ML file newring_plugin.cmxs ... done]

Fixpoint div2 (n:nat) : nat :=
match n with
| O => 0
| S O => 0
| S (S n') => S (div2 n')
end.

div2 is defined
div2 is recursively defined (decreasing on 1st argument)

The definition of a principle of induction corresponding to the recursive structure of div2 is defined by the command:

Functional Scheme div2_ind := Induction for div2 Sort Prop.
div2_equation is defined
div2_ind is defined

You may now look at the type of div2_ind:

Check div2_ind.
div2_ind

: forall P : nat -> nat -> Prop,
(forall n : nat, n = 0 -> P 0 0) ->
(forall n n0 : nat, n = S n0 -> n0 = 0 -> P 1 0) ->
(forall n n0 : nat,
n = S n0 ->
forall n' : nat,
n0 = S n' -> P n' (div2 n') -> P (S (S n')) (S (div2 n'))) ->

forall n : nat, P n (div2 n)

We can now prove the following lemma using this principle:

Lemma div2_le' : forall n:nat, div2 n <= n.
1 subgoal

============================
forall n : nat, div2 n <= n

intro n.
1 subgoal

n : nat
============================
div2 n <= n

pattern n, (div2 n).

(continues on next page)

366 Chapter 5. User extensions



The Coq Reference Manual, Release 8.9.1

(continued from previous page)
1 subgoal

n : nat
============================
(fun n0 n1 : nat => n1 <= n0) n (div2 n)

apply div2_ind; intros.
3 subgoals

n, n0 : nat
e : n0 = 0
============================
0 <= 0

subgoal 2 is:
0 <= 1

subgoal 3 is:
S (div2 n') <= S (S n')

auto with arith.
2 subgoals

n, n0, n1 : nat
e : n0 = S n1
e0 : n1 = 0
============================
0 <= 1

subgoal 2 is:
S (div2 n') <= S (S n')

auto with arith.
1 subgoal

n, n0, n1 : nat
e : n0 = S n1
n' : nat
e0 : n1 = S n'
H : div2 n' <= n'
============================
S (div2 n') <= S (S n')

simpl; auto with arith.
No more subgoals.

Qed.
div2_le' is defined

We can use directly the functional induction (function induction) tactic instead of the pattern/apply trick:

Reset div2_le'.
Lemma div2_le : forall n:nat, div2 n <= n.

1 subgoal

============================
forall n : nat, div2 n <= n

(continues on next page)
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(continued from previous page)
intro n.

1 subgoal

n : nat
============================
div2 n <= n

functional induction (div2 n).
3 subgoals

============================
0 <= 0

subgoal 2 is:
0 <= 1

subgoal 3 is:
S (div2 n') <= S (S n')

auto with arith.
2 subgoals

============================
0 <= 1

subgoal 2 is:
S (div2 n') <= S (S n')

auto with arith.
1 subgoal

n' : nat
IHn0 : div2 n' <= n'
============================
S (div2 n') <= S (S n')

auto with arith.
No more subgoals.

Qed.
div2_le is defined

Example
Induction scheme for tree_size.
We define trees by the following mutual inductive type:

Axiom A : Set.
A is declared

Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| empty : forest
| cons : tree -> forest -> forest.

(continues on next page)
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(continued from previous page)
tree, forest are defined
tree_rect is defined
tree_ind is defined
tree_rec is defined
forest_rect is defined
forest_ind is defined
forest_rec is defined

We define the function tree_size that computes the size of a tree or a forest. Note that we use Function which generally
produces better principles.

Require Import FunInd.
Function tree_size (t:tree) : nat :=
match t with
| node A f => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| empty => 0
| cons t f' => (tree_size t + forest_size f')
end.

tree_size is defined
forest_size is defined
tree_size, forest_size are recursively defined
(decreasing respectively on 1st, 1st arguments)
tree_size_equation is defined
tree_size_ind is defined
tree_size_rec is defined
tree_size_rect is defined
forest_size_equation is defined
forest_size_ind is defined
forest_size_rec is defined
forest_size_rect is defined
R_tree_size_correct is defined
R_forest_size_correct is defined
R_tree_size_complete is defined
R_forest_size_complete is defined

Notice that the induction principles tree_size_ind and forest_size_ind generated by Function are not
mutual.

Check tree_size_ind.
tree_size_ind

: forall P : tree -> nat -> Prop,
(forall (t : tree) (A : A) (f : forest),
t = node A f -> P (node A f) (S (forest_size f))) ->

forall t : tree, P t (tree_size t)

Mutual induction principles following the recursive structure of tree_size and forest_size can be generated by
the following command:

Functional Scheme tree_size_ind2 := Induction for tree_size Sort Prop
with forest_size_ind2 := Induction for forest_size Sort Prop.

tree_size_ind2 is defined
forest_size_ind2 is defined

You may now look at the type of tree_size_ind2:
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Check tree_size_ind2.
tree_size_ind2

: forall (P : tree -> nat -> Prop) (P0 : forest -> nat -> Prop),
(forall (t : tree) (A : A) (f : forest),
t = node A f ->
P0 f (forest_size f) -> P (node A f) (S (forest_size f))) ->

(forall f0 : forest, f0 = empty -> P0 empty 0) ->
(forall (f1 : forest) (t : tree) (f' : forest),
f1 = cons t f' ->
P t (tree_size t) ->
P0 f' (forest_size f') ->
P0 (cons t f') (tree_size t + forest_size f')) ->

forall t : tree, P t (tree_size t)

5.2.3 Generation of inversion principles with Derive Inversion

The syntax of Derive Inversion follows the schema:
Command: Derive Inversion ident with forall (x : T), I t Sort sort

This command generates an inversion principle for the inversion … using tactic. Let I be an inductive predicate
and x the variables occurring in t. This command generates and stocks the inversion lemma for the sort sort correspond-
ing to the instance ∀ (x:T), I t with the name ident in the global environment. When applied, it is equivalent to
having inverted the instance with the tactic inversion.
Variant: Derive Inversion_clear ident with forall (x:T), I t Sort sort

When applied, it is equivalent to having inverted the instance with the tactic inversion replaced by the tactic
inversion_clear.

Variant: Derive Dependent Inversion ident with forall (x:T), I t Sort sort
When applied, it is equivalent to having inverted the instance with the tactic dependent inversion.

Variant: Derive Dependent Inversion_clear ident with forall(x:T), I t Sort sort
When applied, it is equivalent to having inverted the instance with the tactic dependent inversion_clear.

Example
Consider the relation Le over natural numbers and the following parameter P:

Inductive Le : nat -> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).

Le is defined
Le_rect is defined
Le_ind is defined
Le_rec is defined

Parameter P : nat -> nat -> Prop.
P is declared

To generate the inversion lemma for the instance (Le (S n) m) and the sort Prop, we do:

Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort Prop.
Check leminv.

leminv

(continues on next page)
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(continued from previous page)
: forall (n m : nat) (P : nat -> nat -> Prop),

(forall m0 : nat, Le n m0 -> P n (S m0)) -> Le (S n) m -> P n m

Then we can use the proven inversion lemma:

Show.
1 subgoal

n, m : nat
H : Le (S n) m
============================
P n m

inversion H using leminv.
1 subgoal

n, m : nat
H : Le (S n) m
============================
forall m0 : nat, Le n m0 -> P n (S m0)
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CHAPTER

SIX

PRACTICAL TOOLS

6.1 The Coq commands

There are three Coq commands:
• coqtop: the Coq toplevel (interactive mode);
• coqc: the Coq compiler (batch compilation);
• coqchk: the Coq checker (validation of compiled libraries).

The options are (basically) the same for the first two commands, and roughly described below. You can also look at the
man pages of coqtop and coqc for more details.

6.1.1 Interactive use (coqtop)

In the interactive mode, also known as the Coq toplevel, the user can develop his theories and proofs step by step. The
Coq toplevel is run by the command coqtop.
There are two different binary images of Coq: the byte-code one and the native-code one (if OCaml provides a native-code
compiler for your platform, which is supposed in the following). By default, coqtop executes the native-code version;
run coqtop.byte to get the byte-code version.
The byte-code toplevel is based on an OCaml toplevel (to allow dynamic linking of tactics). You can switch to the OCaml
toplevel with the command Drop., and come back to the Coq toplevel with the command Coqloop.loop();;.

6.1.2 Batch compilation (coqc)

The coqc command takes a name file as argument. Then it looks for a vernacular file named file.v, and tries to compile
it into a file.vo file (See Compiled files).

Caution: The name file should be a regular Coq identifier as defined in Section Lexical conventions. It should contain
only letters, digits or underscores (_). For example /bar/foo/toto.v is valid, but /bar/foo/to-to.v is
not.

6.1.3 Customization at launch time
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By resource file

When Coq is launched, with either coqtop or coqc, the resource file $XDG_CONFIG_HOME/coq/coqrc.xxx,
if it exists, will be implicitly prepended to any document read by Coq, whether it is an interactive session or a file to
compile. Here, $XDG_CONFIG_HOME is the configuration directory of the user (by default it’s ~/.config) and xxx
is the version number (e.g. 8.8). If this file is not found, then the file $XDG_CONFIG_HOME/coqrc is searched. If not
found, it is the file ~/.coqrc.xxx which is searched, and, if still not found, the file ~/.coqrc. If the latter is also
absent, no resource file is loaded. You can also specify an arbitrary name for the resource file (see option -init-file
below).
The resource file may contain, for instance, Add LoadPath commands to add directories to the load path of Coq. It
is possible to skip the loading of the resource file with the option -q.

By environment variables

Load path can be specified to the Coq system by setting up $COQPATH environment variable. It is a list of directo-
ries separated by : (; on Windows). Coq will also honor $XDG_DATA_HOME and $XDG_DATA_DIRS (see Section
Libraries and filesystem).
Some Coq commands call other Coq commands. In this case, they look for the commands in directory specified by
$COQBIN. If this variable is not set, they look for the commands in the executable path.
The $COQ_COLORS environment variable can be used to specify the set of colors used by coqtop to highlight its output.
It uses the same syntax as the $LS_COLORS variable from GNU’s ls, that is, a colon-separated list of assignments of the
form name= attr

*
; where name is the name of the corresponding highlight tag and each attr is an ANSI escape

code. The list of highlight tags can be retrieved with the -list-tags command-line option of coqtop.
The string uses ANSI escape codes to represent attributes. For example:

export COQ_COLORS=”diff.added=4;48;2;0;0;240:diff.removed=41”

sets the highlights for added text in diffs to underlined (the 4) with a background RGB color (0, 0, 240) and for removed
text in diffs to a red background. Note that if you specify COQ_COLORS, the predefined attributes are ignored.

By command line options

The following command-line options are recognized by the commands coqc and coqtop, unless stated otherwise:
-I directory, -include directory Add physical path directory to the OCaml loadpath.

See also:
Names of libraries and the command Declare ML Module Section Compiled files.

-Q directory dirpath Add physical path directory to the list of directories where Coq looks for a file and
bind it to the logical directory dirpath. The subdirectory structure of directory is recursively available
from Coq using absolute names (extending the dirpath prefix) (see Section Qualified names).Note that
only those subdirectories and files which obey the lexical conventions of what is an ident are taken
into account. Conversely, the underlying file systems or operating systems may be more restrictive than
Coq. While Linux’s ext4 file system supports any Coq recursive layout (within the limit of 255 bytes
per filename), the default on NTFS (Windows) or HFS+ (MacOS X) file systems is on the contrary to
disallow two files differing only in the case in the same directory.
See also:
Section Names of libraries.
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-R directory dirpath Do as -Q directory dirpath but make the subdirectory structure of directory recursively
visible so that the recursive contents of physical directory is available from Coq using short or partially
qualified names.
See also:
Section Names of libraries.

-top dirpath Set the toplevel module name to dirpath instead of Top. Not valid for coqc as the toplevel
module name is inferred from the name of the output file.

-exclude-dir directory Exclude any subdirectory named directory while processing options such as -R and
-Q. By default, only the conventional version control management directories named CVS and_darcs
are excluded.

-nois Start from an empty state instead of loading the Init.Prelude module.
-init-file file Load file as the resource file instead of loading the default resource file from the standard

configuration directories.
-q Do not to load the default resource file.
-load-ml-source file Load the OCaml source file file.
-load-ml-object file Load the OCaml object file file.
-l file, -load-vernac-source file Load and execute the Coq script from file.v.
-lv file, -load-vernac-source-verbose file Load and execute the Coq script from file.v. Write its contents

to the standard output as it is executed.
-load-vernac-object dirpath Load Coq compiled library dirpath. This is equivalent to runningRequire

dirpath.
-require dirpath Load Coq compiled library dirpath and import it. This is equivalent to running Require

Import dirpath.
-batch Exit just after argument parsing. Available for coqtop only.
-compile file.v Compile file file.v into file.vo. This option implies -batch (exit just after argument parsing).

It is available only for coqtop, as this behavior is the purpose of coqc.
-compile-verbose file.v Same as -compile but also output the content of file.v as it is compiled.
-verbose Output the content of the input file as it is compiled. This option is available for coqc only; it is

the counterpart of -compile-verbose.
-w (all|none|w1,…,w2/7) Configure the display of warnings. This option expects all, none or a comma-

separated list of warning names or categories (see Section Controlling display).
-color (on|off|auto) Coqtop only. Enable or disable color output. Default is auto, meaning color is shown

only if the output channel supports ANSI escape sequences.
-diffs (on|off|removed) Coqtop only. Controls highlighting of differences between proof steps. on high-

lights added tokens, removed highlights both added and removed tokens. Requires that –color is
enabled. (see Section Showing differences between proof steps).

-beautify Pretty-print each command to file.beautified when compiling file.v, in order to get old-fashioned
syntax/definitions/notations.

-emacs, -ide-slave Start a special toplevel to communicate with a specific IDE.
-impredicative-set Change the logical theory of Coq by declaring the sort Set impredicative.
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Warning: This is known to be inconsistent with some standard axioms of classical mathematics
such as the functional axiom of choice or the principle of description.

-type-in-type Collapse the universe hierarchy of Coq.

Warning: This makes the logic inconsistent.

-mangle-names ident Experimental: Do not depend on this option. Replace Coq’s auto-generated name
scheme with names of the form ident0, ident1, etc. The command Set Mangle Names turns the
behavior on in a document, and Set Mangle Names Prefix "ident" changes the used pre-
fix. This feature is intended to be used as a linter for developments that want to be robust to changes
in the auto-generated name scheme. The options are provided to facilitate tracking down problems.

-compat version Attempt to maintain some backward-compatibility with a previous version.
-dump-glob file Dump references for global names in file file (to be used by coqdoc, see Documenting Coq

files with coqdoc). By default, if file.v is being compiled, file.glob is used.
-no-glob Disable the dumping of references for global names.
-image file Set the binary image to be used by coqc to be file instead of the standard one. Not of general

use.
-bindir directory Set the directory containing Coq binaries to be used by coqc. It is equivalent to doing

export COQBIN= directory before launching coqc.
-where Print the location of Coq’s standard library and exit.
-config Print the locations of Coq’s binaries, dependencies, and libraries, then exit.
-filteropts Print the list of command line arguments that coqtop has recognized as options and exit.
-v Print Coq’s version and exit.
-list-tags Print the highlight tags known by Coq as well as their currently associated color and exit.
-h, –help Print a short usage and exit.

6.1.4 Compiled libraries checker (coqchk)

The coqchk command takes a list of library paths as argument, described either by their logical name or by their physical
filename, hich must end in .vo. The corresponding compiled libraries (.vo files) are searched in the path, recursively
processing the libraries they depend on. The content of all these libraries is then type checked. The effect of coqchk
is only to return with normal exit code in case of success, and with positive exit code if an error has been found. Error
messages are not deemed to help the user understand what is wrong. In the current version, it does not modify the compiled
libraries to mark them as successfully checked.
Note that non-logical information is not checked. By logical information, we mean the type and optional body associated
to names. It excludes for instance anything related to the concrete syntax of objects (customized syntax rules, association
between short and long names), implicit arguments, etc.
This tool can be used for several purposes. One is to check that a compiled library provided by a third-party has not
been forged and that loading it cannot introduce inconsistencies19. Another point is to get an even higher level of security.

19 Ill-formed non-logical information might for instance bind Coq.Init.Logic.True to short name False, so apparently False is inhabited, but using
fully qualified names, Coq.Init.Logic.False will always refer to the absurd proposition, what we guarantee is that there is no proof of this latter constant.
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Since coqtop can be extended with custom tactics, possibly ill-typed code, it cannot be guaranteed that the produced
compiled libraries are correct. coqchk is a standalone verifier, and thus it cannot be tainted by such malicious code.
Command-line options -Q, -R, -where and -impredicative-set are supported by coqchk and have the same
meaning as for coqtop. As there is no notion of relative paths in object files -Q and -R have exactly the same meaning.

-norec module Check module but do not check its dependencies.
-admit module Do not check module and any of its dependencies, unless explicitly required.
-o At exit, print a summary about the context. List the names of all assumptions and variables (constants

without body).
-silent Do not write progress information to the standard output.

Environment variable $COQLIB can be set to override the location of the standard library.
The algorithm for deciding which modules are checked or admitted is the following: assuming that coqchk is called
with argument M, option -norec N, and -admit A. Let us write 𝑆 for the set of reflexive transitive dependencies of
set 𝑆. Then:

• Modules 𝐶 = 𝑀\𝐴 ∪ 𝑀 ∪ 𝑁 are loaded and type checked before being added to the context.
• And𝑀 ∪𝑁\𝐶 is the set of modules that are loaded and added to the context without type checking. Basic integrity
checks (checksums) are nonetheless performed.

As a rule of thumb, -admit can be used to tell Coq that some libraries have already been checked. So coqchk A B can
be split in coqchk A&& coqchk B -admit A without type checking any definition twice. Of course, the latter is
slightly slower since it makes more disk access. It is also less secure since an attacker might have replaced the compiled
library A after it has been read by the first command, but before it has been read by the second command.

6.2 Utilities

The distribution provides utilities to simplify some tedious works beside proof development, tactics writing or documen-
tation.

6.2.1 Using Coq as a library

In previous versions, coqmktop was used to build custom toplevels - for example for better debugging or custom static
linking. Nowadays, the preferred method is to use ocamlfind.
The most basic custom toplevel is built using:

% ocamlfind ocamlopt -thread -rectypes -linkall -linkpkg \
-package coq.toplevel \
topbin/coqtop_bin.ml -o my_toplevel.native

For example, to statically link Ltac, you can just do:

% ocamlfind ocamlopt -thread -rectypes -linkall -linkpkg \
-package coq.toplevel,coq.plugins.ltac \
topbin/coqtop_bin.ml -o my_toplevel.native

and similarly for other plugins.
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6.2.2 Building a Coq project with coq_makefile

The majority of Coq projects are very similar: a collection of .v files and eventually some .ml ones (a Coq plugin). The
main piece of metadata needed in order to build the project are the command line options to coqc (e.g. -R, Q, -I, see
command line options). Collecting the list of files and options is the job of the _CoqProject file.
A simple example of a _CoqProject file follows:

-R theories/ MyCode
-arg -w
-arg all
theories/foo.v
theories/bar.v
-I src/
src/baz.ml4
src/bazaux.ml
src/qux_plugin.mlpack

where options -R, -Q and -I are natively recognized, as well as file names. The lines of the form -arg foo are used
in order to tell to literally pass an argument foo to coqc: in the example, this allows to pass the two-word option -w
all (see command line options).
Currently, both CoqIDE and Proof-General (version ≥ 4.3pre) understand _CoqProject files and invoke Coq with
the desired options.
The coq_makefile utility can be used to set up a build infrastructure for the Coq project based on makefiles. The
recommended way of invoking coq_makefile is the following one:

coq_makefile -f _CoqProject -o CoqMakefile

Such command generates the following files:
CoqMakefile is a generic makefile for GNU Make that provides targets to build the project (both .v and .ml* files),

to install it system-wide in the coq-contrib directory (i.e. where Coq is installed) as well as to invoke coqdoc
to generate HTML documentation.

CoqMakefile.conf contains make variables assignments that reflect the contents of the _CoqProject file as well as
the path relevant to Coq.

An optional file CoqMakefile.local can be provided by the user in order to extend CoqMakefile. In particular
one can declare custom actions to be performed before or after the build process. Similarly one can customize the install
target or even provide new targets. Extension points are documented in paragraph CoqMakefile.local.
The extensions of the files listed in _CoqProject is used in order to decide how to build them. In particular:

• Coq files must use the .v extension
• OCaml files must use the .ml or .mli extension
• OCaml files that require pre processing for syntax extensions (like VERNAC EXTEND) must use the .ml4 exten-
sion

• In order to generate a plugin one has to list all OCaml modules (i.e. Baz for baz.ml) in a .mlpack file (or
.mllib file).

The use of .mlpack files has to be preferred over .mllib files, since it results in a “packed” plugin: All auxiliary
modules (as Baz and Bazaux) are hidden inside the plugin’s ”namespace” (Qux_plugin). This reduces the chances
of begin unable to load two distinct plugins because of a clash in their auxiliary module names.
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CoqMakefile.local

The optional file CoqMakefile.local is included by the generated file CoqMakefile. It can contain two kinds
of directives.
Variable assignment
The variable must belong to the variables listed in the Parameters section of the generated makefile. Here we describe
only few of them.

CAMLPKGS can be used to specify third party findlib packages, and is passed to the OCaml compiler on
building or linking of modules. Eg: -package yojson.

CAMLFLAGS can be used to specify additional flags to the OCaml compiler, like -bin-annot or -w....
COQC, COQDEP, COQDOC can be set in order to use alternative binaries (e.g. wrappers)
COQ_SRC_SUBDIRS can be extended by including other paths in which *.cm* files are searched.

For example COQ_SRC_SUBDIRS+=user-contrib/Unicoq lets you build a plugin containing
OCaml code that depends on the OCaml code of Unicoq

COQFLAGS override the flags passed to coqc. By default -q.
COQEXTRAFLAGS extend the flags passed to coqc
COQCHKFLAGS override the flags passed to coqchk. By default -silent -o.
COQCHKEXTRAFLAGS extend the flags passed to coqchk
COQDOCFLAGS override the flags passed to coqdoc. By default -interpolate -utf8.
COQDOCEXTRAFLAGS extend the flags passed to coqdoc

Rule extension
The following makefile rules can be extended.

Example

pre-all::
echo "This line is print before making the all target"

install-extra::
cp ThisExtraFile /there/it/goes

pre-all:: run before the all target. One can use this to configure the project, or initialize sub modules or check
dependencies are met.

post-all:: run after the all target. One can use this to run a test suite, or compile extracted code.
install-extra:: run after install. One can use this to install extra files.
install-doc:: One can use this to install extra doc.
uninstall::

uninstall-doc::

clean::

cleanall::

archclean::

merlin-hook:: One can append lines to the generated .merlin file extending this target.
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Timing targets and performance testing

The generated Makefile supports the generation of two kinds of timing data: per-file build-times, and per-line times
for an individual file.
The following targets and Makefile variables allow collection of per- file timing data:

• TIMED=1 passing this variable will cause make to emit a line describing the user-space build-time and peak
memory usage for each file built.

Note: On Mac OS, this works best if you’ve installed gnu-time.

Example
For example, the output of make TIMED=1 may look like this:

COQDEP Fast.v
COQDEP Slow.v
COQC Slow.v
Slow (user: 0.34 mem: 395448 ko)
COQC Fast.v
Fast (user: 0.01 mem: 45184 ko)

• pretty-timed this target stores the output of make TIMED=1 into time-of-build.log, and displays a
table of the times, sorted from slowest to fastest, which is also stored in time-of-build-pretty.log.
If you want to construct the log for targets other than the default one, you can pass them via the variable
TGTS, e.g., make pretty-timed TGTS="a.vo b.vo".

Note: This target will append to the timing log; if you want a fresh start, you must remove the
filetime-of-build.log or run make cleanall.

Example
For example, the output of make pretty-timed may look like this:

COQDEP Fast.v
COQDEP Slow.v
COQC Slow.v
Slow (user: 0.36 mem: 393912 ko)
COQC Fast.v
Fast (user: 0.05 mem: 45992 ko)
Time | File Name
--------------------
0m00.41s | Total
--------------------
0m00.36s | Slow
0m00.05s | Fast

• print-pretty-timed-diff this target builds a table of timing changes between two compilations;
run make make-pretty-timed-before to build the log of the “before” times, and run make
make-pretty-timed-after to build the log of the “after” times. The table is printed on the command
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line, and stored in time-of-build-both.log. This target is most useful for profiling the difference
between two commits in a repository.

Note: This target requires python to build the table.

Note: The make-pretty-timed-before and make-pretty-timed-after targets will append
to the timing log; if you want a fresh start, you must remove the files time-of-build-before.log and
time-of-build-after.log or run make cleanall before building either the “before” or “after”
targets.

Note: The table will be sorted first by absolute time differences rounded towards zero to a whole-number
of seconds, then by times in the “after” column, and finally lexicographically by file name. This will put the
biggest changes in either direction first, and will prefer sorting by build-time over subsecond changes in build
time (which are frequently noise); lexicographic sorting forces an order on files which take effectively no time
to compile.

Example
For example, the output table from make print-pretty-timed-diff may look like this:

After | File Name | Before || Change | % Change
--------------------------------------------------------
0m00.39s | Total | 0m00.35s || +0m00.03s | +11.42%
--------------------------------------------------------
0m00.37s | Slow | 0m00.01s || +0m00.36s | +3600.00%
0m00.02s | Fast | 0m00.34s || -0m00.32s | -94.11%

The following targets and Makefile variables allow collection of per- line timing data:
• TIMING=1 passing this variable will cause make to use coqc -time to write to a .v.timing file for each

.v file compiled, which contains line-by-line timing information.

Example
For example, running make all TIMING=1 may result in a file like this:

Chars 0 - 26 [Require~Coq.ZArith.BinInt.] 0.157 secs (0.128u,0.028s)
Chars 27 - 68 [Declare~Reduction~comp~:=~vm_c...] 0. secs (0.u,0.s)
Chars 69 - 162 [Definition~foo0~:=~Eval~comp~i...] 0.153 secs (0.136u,0.019s)
Chars 163 - 208 [Definition~foo1~:=~Eval~comp~i...] 0.239 secs (0.236u,0.s)

• print-pretty-single-time-diff

print-pretty-single-time-diff BEFORE=path/to/file.v.before-timing␣
↪AFTER=path/to/file.v.after-timing

this target will make a sorted table of the per-line timing differences between the timing
logs in the BEFORE and AFTER files, display it, and save it to the file specified by the
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TIME_OF_PRETTY_BUILD_FILE variable, which defaults to time-of-build-pretty.
log. To generate the .v.before-timing or .v.after-timing files, you should pass
TIMING=before or TIMING=after rather than TIMING=1.

Note: The sorting used here is the same as in the print-pretty-timed -diff target.

Note: This target requires python to build the table.

Example
For example, running print-pretty-single-time-diff might give a table like this:

After | Code | Before ␣
↪ || Change | % Change

--------------------------------------------------------------------------
↪-------------------------

0m00.50s | Total | 0m04.
↪17s || -0m03.66s | -87.96%

--------------------------------------------------------------------------
↪-------------------------

0m00.145s | Chars 069 - 162 [Definition~foo0~:=~Eval~comp~i...] | 0m00.
↪192s || -0m00.04s | -24.47%

0m00.126s | Chars 000 - 026 [Require~Coq.ZArith.BinInt.] | 0m00.
↪143s || -0m00.01s | -11.88%
N/A | Chars 027 - 068 [Declare~Reduction~comp~:=~nati...] | 0m00.s ␣

↪ || +0m00.00s | N/A
0m00.s | Chars 027 - 068 [Declare~Reduction~comp~:=~vm_c...] | N/A ␣

↪ || +0m00.00s | N/A
0m00.231s | Chars 163 - 208 [Definition~foo1~:=~Eval~comp~i...] | 0m03.

↪836s || -0m03.60s | -93.97%

• all.timing.diff, path/to/file.v.timing.diff The path/to/file.v.timing.diff tar-
get will make a .v.timing.diff file for the corresponding .v file, with a table as would be generated by
the print-pretty-single-time-diff target; it depends on having already made the corresponding
.v.before-timing and .v.after-timing files, which can be made by passing TIMING=before
and TIMING=after. The all.timing.diff target will make such timing difference files for all
of the .v files that the Makefile knows about. It will fail if some .v.before-timing or .v.
after-timing files don’t exist.

Note: This target requires python to build the table.

Reusing/extending the generated Makefile

Including the generated makefile with an include directive is discouraged. The contents of this file, including variable
names and status of rules shall change in the future. Users are advised to include Makefile.conf or call a target of
the generated Makefile as in make -f Makefile target from another Makefile.
One way to get access to all targets of the generated CoqMakefile is to have a generic target for invoking unknown
targets.
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Example

# KNOWNTARGETS will not be passed along to CoqMakefile
KNOWNTARGETS := CoqMakefile extra-stuff extra-stuff2
# KNOWNFILES will not get implicit targets from the final rule, and so
# depending on them won't invoke the submake
# Warning: These files get declared as PHONY, so any targets depending
# on them always get rebuilt
KNOWNFILES := Makefile _CoqProject

.DEFAULT_GOAL := invoke-coqmakefile

CoqMakefile: Makefile _CoqProject
$(COQBIN)coq_makefile -f _CoqProject -o CoqMakefile

invoke-coqmakefile: CoqMakefile
$(MAKE) --no-print-directory -f CoqMakefile $(filter-out $(KNOWNTARGETS),

↪$(MAKECMDGOALS))

.PHONY: invoke-coqmakefile $(KNOWNFILES)

####################################################################
## Your targets here ##
####################################################################

# This should be the last rule, to handle any targets not declared above
%: invoke-coqmakefile

@true

Building a subset of the targets with -j

To build, say, two targets foo.vo and bar.vo in parallel one can use make only TGTS="foo.vo bar.vo" -j.

Note: make foo.vo bar.vo -j has a different meaning for the make utility, in particular it may build a shared
prerequisite twice.

Note: For users of coq_makefile with version < 8.7
• Support for ”subdirectory” is deprecated. To perform actions before or after the build (like invoking make on a
subdirectory) one can hook in pre-all and post-all extension points.

• -extra-phony and -extra are deprecated. To provide additional target (.PHONY or not) please use
CoqMakefile.local.

6.2.3 Module dependencies

In order to compute module dependencies (so to use make), Coq comes with an appropriate tool, coqdep.
coqdep computes inter-module dependencies for Coq andOCaml programs, and prints the dependencies on the standard
output in a format readable by make. When a directory is given as argument, it is recursively looked at.
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Dependencies of Coq modules are computed by looking at Require commands (Require, Require Export,
Require Import), but also at the command Declare ML Module.
Dependencies of OCaml modules are computed by looking at open commands and the dot notation module.value. How-
ever, this is done approximately and you are advised to use ocamldep instead for the OCaml module dependencies.
See the man page of coqdep for more details and options.
The build infrastructure generated by coq_makefile uses coqdep to automatically compute the dependencies among
the files part of the project.

6.2.4 Documenting Coq files with coqdoc

coqdoc is a documentation tool for the proof assistant Coq, similar to javadoc or ocamldoc. The task of coqdoc is
1. to produce a nice LaTeX and/or HTML document from Coq source files, readable for a human and not only for

the proof assistant;
2. to help the user navigate his own (or third-party) sources.

Principles

Documentation is inserted into Coq files as special comments. Thus your files will compile as usual, whether you use
coqdoc or not. coqdoc presupposes that the given Coq files are well-formed (at least lexically). Documentation starts with
(**, followed by a space, and ends with *). The documentation format is inspired by Todd A. Coram’s Almost Free Text
(AFT) tool: it is mainly ASCII text with some syntax-light controls, described below. coqdoc is robust: it shouldn’t fail,
whatever the input is. But remember: “garbage in, garbage out”.

Coq material inside documentation.

Coq material is quoted between the delimiters [ and ]. Square brackets may be nested, the inner ones being understood
as being part of the quoted code (thus you can quote a term like fun x => u by writing [fun x => u]). Inside
quotations, the code is pretty-printed in the same way as it is in code parts.
Preformatted vernacular is enclosed by [[ and ]]. The former must be followed by a newline and the latter must follow
a newline.

Pretty-printing.

coqdoc uses different faces for identifiers and keywords. The pretty- printing of Coq tokens (identifiers or symbols) can
be controlled using one of the following commands:

(** printing *token* %...LATEX...% #...html...# *)

or

(** printing *token* $...LATEX math...$ #...html...# *)

It gives the LaTeX and HTML texts to be produced for the given Coq token. Either the LaTeX or the HTML rule may
be omitted, causing the default pretty-printing to be used for this token.
The printing for one token can be removed with
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(** remove printing *token* *)

Initially, the pretty-printing table contains the following mapping:

-> → <- ← * ×
<= ≤ >= ≥ => ⇒
<> ≠ <-> ↔ |- ⊢
\/ ∨ /\ ∧ ~ ¬

Any of these can be overwritten or suppressed using the printing commands.

Note: The recognition of tokens is done by a (ocaml) lex automaton and thus applies the longest-match rule. For
instance, ->~ is recognized as a single token, where Coq sees two tokens. It is the responsibility of the user to insert
space between tokens or to give pretty-printing rules for the possible combinations, e.g.

(** printing ->~ %\ensuremath{\rightarrow\lnot}% *)

Sections

Sections are introduced by 1 to 4 asterisks at the beginning of a line followed by a space and the title of the section. One
asterisk is a section, two a subsection, etc.

Example

(** * Well-founded relations

In this section, we introduce... *)

Lists.

List items are introduced by a leading dash. coqdoc uses whitespace to determine the depth of a new list item and which
text belongs in which list items. A list ends when a line of text starts at or before the level of indenting of the list’s dash.
A list item’s dash must always be the first non-space character on its line (so, in particular, a list can not begin on the first
line of a comment - start it on the second line instead).

Example

We go by induction on [n]:
- If [n] is 0...
- If [n] is [S n'] we require...

two paragraphs of reasoning, and two subcases:

- In the first case...
- In the second case...

So the theorem holds.
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Rules.

More than 4 leading dashes produce a horizontal rule.

Emphasis.

Text can be italicized by enclosing it in underscores. A non-identifier character must precede the leading underscore
and follow the trailing underscore, so that uses of underscores in names aren’t mistaken for emphasis. Usually, these are
spaces or punctuation.

This sentence contains some _emphasized text_.

Escaping to LaTeX and HTML.

Pure LaTeX or HTML material can be inserted using the following escape sequences:
• $...LATEX stuff...$ inserts some LaTeX material in math mode. Simply discarded in HTML output.
• %...LATEX stuff...% inserts some LaTeX material. Simply discarded in HTML output.
• #...HTML stuff...# inserts some HTML material. Simply discarded in LaTeX output.

Note: to simply output the characters $, % and # and escaping their escaping role, these characters must be doubled.

Verbatim

Verbatim material is introduced by a leading << and closed by >> at the beginning of a line.

Example

Here is the corresponding caml code:
<<

let rec fact n =
if n <= 1 then 1 else n * fact (n-1)

>>

Hyperlinks

Hyperlinks can be inserted into the HTML output, so that any identifier is linked to the place of its definition.
coqc file.v automatically dumps localization information in file.glob or appends it to a file specified using the
option --dump-glob file. Take care of erasing this global file, if any, when starting the whole compilation process.
Then invoke coqdoc or coqdoc --glob-from file to tell coqdoc to look for name resolutions in the file file
(it will look in file.glob by default).
Identifiers from the Coq standard library are linked to the Coq website http://coq.inria.fr/library/. This behavior can be
changed using command line options --no-externals and --coqlib; see below.
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Hiding / Showing parts of the source.

Some parts of the source can be hidden using command line options -g and -l (see below), or using such comments:

(* begin hide *)
*some Coq material*

(* end hide *)

Conversely, some parts of the source which would be hidden can be shown using such comments:

(* begin show *)
*some Coq material*

(* end show *)

The latter cannot be used around some inner parts of a proof, but can be used around a whole proof.

Usage

coqdoc is invoked on a shell command line as follows: coqdoc <options and files>. Any command line
argument which is not an option is considered to be a file (even if it starts with a -). Coq files are identified by the suffixes
.v and .g and LaTeX files by the suffix .tex.

HTML output This is the default output format. One HTML file is created for each Coq file given on
the command line, together with a file index.html (unless option-no-index is passed).
The HTML pages use a style sheet named style.css. Such a file is distributed with coqdoc.

LaTeX output A single LaTeX file is created, on standard output. It can be redirected to a file using the
option -o. The order of files on the command line is kept in the final document. LaTeX files given
on the command line are copied ‘as is’ in the final document . DVI and PostScript can be produced
directly with the options -dvi and -ps respectively.

TEXmacs output To translate the input files to TEXmacs format, to be used by the TEXmacs Coq interface.

Command line options

Overall options
–HTML Select a HTML output.
–LaTeX Select a LaTeX output.
–dvi Select a DVI output.
–ps Select a PostScript output.
–texmacs Select a TEXmacs output.
–stdout Write output to stdout.
-o file, –output file Redirect the output into the file ‘file’ (meaningless with -html).
-d dir, –directory dir Output files into directory ‘dir’ instead of the current directory (option -d

does not change the filename specified with the option -o, if any).
–body-only Suppress the header and trailer of the final document. Thus, you can insert the

resulting document into a larger one.
-p string, –preamble string Insert some material in the LaTeX preamble, right before

\begin{document} (meaningless with -html).
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–vernac-file file,–tex-file file Considers the file ‘file’ respectively as a .v (or .g) file or a .tex
file.

–files-from file Read filenames to be processed from the file ‘file’ as if they were given on the
command line. Useful for program sources split up into several directories.

-q, –quiet Be quiet. Do not print anything except errors.
-h, –help Give a short summary of the options and exit.
-v, –version Print the version and exit.

Index options
The default behavior is to build an index, for the HTML output only, into index.html.

–no-index Do not output the index.
–multi-index Generate one page for each category and each letter in the index, together with a

top page index.html.
–index string Make the filename of the index string instead of “index”. Useful since “in-

dex.html” is special.
Table of contents option

-toc, –table-of-contents Insert a table of contents. For a LaTeX output, it inserts a
\tableofcontents at the beginning of the document. For a HTML output, it builds a
table of contents into toc.html.

–toc-depth int Only include headers up to depth int in the table of contents.
Hyperlink options

–glob-from file Make references using Coq globalizations from file file. (Such globalizations are
obtained with Coq option -dump-glob).

–no-externals Do not insert links to the Coq standard library.
–external url coqdir Use given URL for linking references whose name starts with prefix

coqdir.
–coqlib url Set base URL for the Coq standard library (default is http://coq.inria.fr/library/).

This is equivalent to --external url Coq.
-R dir coqdir Map physical directory dir to Coq logical directory coqdir (similarly to Coq

option -R).

Note: option -R only has effect on the files following it on the command line, so you will
probably need to put this option first.

Title options
-s , –short Do not insert titles for the files. The default behavior is to insert a title like “Library

Foo” for each file.
–lib-name string Print “string Foo” instead of “Library Foo” in titles. For example “Chapter”

and “Module” are reasonable choices.
–no-lib-name Print just “Foo” instead of “Library Foo” in titles.
–lib-subtitles Look for library subtitles. When enabled, the beginning of each file is checked

for a comment of the form:
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(** * ModuleName : text *)

where ModuleName must be the name of the file. If it is present, the text is used as a
subtitle for the module in appropriate places.

-t string, –title string Set the document title.
Contents options

-g, –gallina Do not print proofs.
-l, –light Light mode. Suppress proofs (as with -g) and the following commands:

• [Recursive] Tactic Definition
• Hint / Hints
• Require
• Transparent / Opaque
• Implicit Argument / Implicits
• Section / Variable / Hypothesis / End

The behavior of options -g and -l can be locally overridden using the (* begin show
*) … (* end show *) environment (see above).
There are a few options that control the parsing of comments:

–parse-comments Parse regular comments delimited by (* and *) as well. They are typeset
inline.

–plain-comments Do not interpret comments, simply copy them as plain-text.
–interpolate Use the globalization information to typeset identifiers appearing in Coq escapings

inside comments.
Language options

The default behavior is to assume ASCII 7 bit input files.
-latin1, –latin1 Select ISO-8859-1 input files. It is equivalent to –inputenc latin1 –charset iso-

8859-1.
-utf8, –utf8 Set –inputenc utf8x for LaTeX output and–charset utf-8 for HTML output.

Also use Unicode replacements for a couple of standard plain ASCII notations such
as → for -> and ∀ for forall. LaTeX UTF-8 support can be found at http://
www.ctan.org/pkg/unicode. For the interpretation of Unicode characters by LaTeX, ex-
tra packages which coqdoc does not provide by default might be required, such as
textgreek for some Greek letters or stmaryrd for some mathematical symbols. If
a Unicode character is missing an interpretation in the utf8x input encoding, add
\DeclareUnicodeCharacter{code}{LATEX-interpretation}. Packages
and declarations can be added with option -p.

–inputenc string Give a LaTeX input encoding, as an option to LaTeX package inputenc.
–charset string Specify the HTML character set, to be inserted in the HTML header.

The coqdoc LaTeX style file

In case you choose to produce a document without the default LaTeX preamble (by using option --no-preamble),
then you must insert into your own preamble the command
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\usepackage{coqdoc}

The package optionally takes the argument [color] to typeset identifiers with colors (this requires the xcolor pack-
age).
Then you may alter the rendering of the document by redefining some macros:

coqdockw, coqdocid, … The one-argument macros for typesetting keywords and identifiers. Defaults are
sans-serif for keywords and italic for identifiers.For example, if you would like a slanted font for key-
words, you may insert

\renewcommand{\coqdockw}[1]{\textsl{#1}}

anywhere between \usepackage{coqdoc} and \begin{document}.
coqdocmodule One-argument macro for typesetting the title of a .v file. Default is

\newcommand{\coqdocmodule}[1]{\section*{Module #1}}

and you may redefine it using \renewcommand.

6.2.5 Embedded Coq phrases inside LaTeX documents

When writing documentation about a proof development, one may want to insert Coq phrases inside a LaTeX document,
possibly together with the corresponding answers of the system. We provide amechanical way to process such Coq phrases
embedded in LaTeX files: the coq-tex filter. This filter extracts Coq phrases embedded in LaTeX files, evaluates them,
and insert the outcome of the evaluation after each phrase.
Starting with a file file.tex containing Coq phrases, the coq-tex filter produces a file named file.v.tex with
the Coq outcome.
There are options to produce the Coq parts in smaller font, italic, between horizontal rules, etc. See the man page of
coq-tex for more details.

6.2.6 Man pages

There are man pages for the commands coqdep and coq-tex. Man pages are installed at installation time (see instal-
lation instructions in file INSTALL, step 6).

6.3 Coq Integrated Development Environment

The Coq Integrated Development Environment is a graphical tool, to be used as a user-friendly replacement to coqtop.
Its main purpose is to allow the user to navigate forward and backward into a Coq vernacular file, executing corresponding
commands or undoing them respectively.
CoqIDE is run by typing the command coqide on the command line. Without argument, the main screen is displayed
with an “unnamed buffer”, andwith a filename as argument, another buffer displaying the contents of that file. Additionally,
coqide accepts the same options as coqtop, given in The Coq commands, the ones having obviously no meaning for
CoqIDE being ignored.

6.3. Coq Integrated Development Environment 389



The Coq Reference Manual, Release 8.9.1

A sample CoqIDE main screen, while navigating into a file Fermat.v, is shown in the figure CoqIDE main screen. At
the top is a menu bar, and a tool bar below it. The large window on the left is displaying the various script buffers. The
upper right window is the goal window, where goals to be proven are displayed. The lower right window is the message
window, where various messages resulting from commands are displayed. At the bottom is the status bar.

6.3.1 Managing files and buffers, basic editing

In the script window, you may open arbitrarily many buffers to edit. The File menu allows you to open files or create
some, save them, print or export them into various formats. Among all these buffers, there is always one which is the
current running buffer, whose name is displayed on a background in the processed color (green by default), which is the
one where Coq commands are currently executed.
Buffers may be edited as in any text editor, and classical basic editing commands (Copy/Paste, …) are available in the Edit
menu. CoqIDE offers only basic editing commands, so if you need more complex editing commands, you may launch
your favorite text editor on the current buffer, using the Edit/External Editor menu.

6.3.2 Interactive navigation into Coq scripts

The running buffer is the one where navigation takes place. The toolbar offers five basic commands for this. The first
one, represented by a down arrow icon, is for going forward executing one command. If that command is successful, the
part of the script that has been executed is displayed on a background with the processed color. If that command fails,
the error message is displayed in the message window, and the location of the error is emphasized by an underline in the
error foreground color (red by default).
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In the figure CoqIDE main screen, the running buffer is Fermat.v, all commands until the Theorem have been already
executed, and the user tried to go forward executing Induction n. That command failed because no such tactic exists
(names of standard tactics are written in lowercase), and the failing command is underlined.
Notice that the processed part of the running buffer is not editable. If you ever want to modify something you have to
go backward using the up arrow tool, or even better, put the cursor where you want to go back and use the goto button.
Unlike with coqtop, you should never use Undo to go backward.
There are two additional buttons for navigation within the running buffer. The ”down” button with a line goes directly
to the end; the ”up” button with a line goes back to the beginning. The handling of errors when using the go-to-the-end
button depends on whether Coq is running in asynchronous mode or not (see Chapter Asynchronous and Parallel Proof
Processing). If it is not running in that mode, execution stops as soon as an error is found. Otherwise, execution continues,
and the error is marked with an underline in the error foreground color, with a background in the error background color
(pink by default). The same characterization of error-handling applies when running several commands using the ”goto”
button.
If you ever try to execute a command that runs for a long time and would like to abort it before it terminates, you may
use the interrupt button (the white cross on a red circle).
There are other buttons on the CoqIDE toolbar: a button to save the running buffer; a button to close the current buffer
(an ”X”); buttons to switch among buffers (left and right arrows); an ”information” button; and a ”gears” button.
The ”information” button is described in Section Trying tactics automatically.
The ”gears” button submits proof terms to the Coq kernel for type checking. When Coq uses asynchronous processing
(see Chapter Asynchronous and Parallel Proof Processing), proofs may have been completed without kernel-checking of
generated proof terms. The presence of unchecked proof terms is indicated by Qed statements that have a subdued being-
processed color (light blue by default), rather than the processed color, though their preceding proofs have the processed
color.
Notice that for all these buttons, except for the ”gears” button, their operations are also available in the menu, where their
keyboard shortcuts are given.

6.3.3 Trying tactics automatically

Themenu Try Tactics provides some features for automatically trying to solve the current goal using simple tactics. If such
a tactic succeeds in solving the goal, then its text is automatically inserted into the script. There is finally a combination
of these tactics, called the proof wizard which will try each of them in turn. This wizard is also available as a tool button
(the ”information” button). The set of tactics tried by the wizard is customizable in the preferences.
These tactics are general ones, in particular they do not refer to particular hypotheses. You may also try specific tactics
related to the goal or one of the hypotheses, by clicking with the right mouse button on the goal or the considered
hypothesis. This is the “contextual menu on goals” feature, that may be disabled in the preferences if undesirable.

6.3.4 Proof folding

As your script grows bigger and bigger, it might be useful to hide the proofs of your theorems and lemmas.
This feature is toggled via the Hide entry of the Navigation menu. The proof shall be enclosed between Proof. and
Qed., both with their final dots. The proof that shall be hidden or revealed is the first one whose beginning statement
(such as Theorem) precedes the insertion cursor.

6.3.5 Vernacular commands, templates

The Templates menu allows using shortcuts to insert vernacular commands. This is a nice way to proceed if you are not
sure of the syntax of the command you want.
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Moreover, from this menu you can automatically insert templates of complex commands like Fixpoint that you can
conveniently fill afterwards.

6.3.6 Queries

We call query any vernacular command that does not change the current state, such as Check, Search, etc. To run such
commands interactively, without writing them in scripts, CoqIDE offers a query pane. The query pane can be displayed
on demand by using the View menu, or using the shortcut F1. Queries can also be performed by selecting a particular
phrase, then choosing an item from the Queries menu. The response then appears in the message window. The image
above shows the result after selecting of the phrase Nat.mul in the script window, and choosing Print from the
Queries menu.

6.3.7 Compilation

The Compile menu offers direct commands to:
• compile the current buffer
• run a compilation using make
• go to the last compilation error
• create a Makefile using coq_makefile.
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6.3.8 Customizations

You may customize your environment using the menu Edit/Preferences. A new window will be displayed, with several
customization sections presented as a notebook.
The first section is for selecting the text font used for scripts, goal and message windows.
The second section is devoted to file management: you may configure automatic saving of files, by periodically saving
the contents into files named #f# for each opened file f. You may also activate the revert feature: in case a opened file
is modified on the disk by a third party, CoqIDE may read it again for you. Note that in the case you edited that same
file, you will be prompted to choose to either discard your changes or not. The File charset encoding choice is described
below in Character encoding for saved files.
The Externals section allows customizing the external commands for compilation, printing, web browsing.
In the browser command, you may use %s to denote the URL to open, for example: firefox -remote
"OpenURL(%s)".
The Tactics Wizard section allows defining the set of tactics that should be tried, in sequence, to solve the current
goal.
The last section is for miscellaneous boolean settings, such as the “contextual menu on goals” feature presented in the
section Try tactics automatically.
Notice that these settings are saved in the file .coqiderc of your home directory.
A Gtk2 accelerator keymap is saved under the name .coqide.keys. It is not recommended to edit this file manually:
to modify a given menu shortcut, go to the corresponding menu item without releasing the mouse button, press the key
you want for the new shortcut, and release the mouse button afterwards. If your system does not allow it, you may still
edit this configuration file by hand, but this is more involved.

6.3.9 Using Unicode symbols

CoqIDE is based on GTK+ and inherits from it support for Unicode in its text windows. Consequently a large set of
symbols is available for notations.

Displaying Unicode symbols

You just need to define suitable notations as described in the chapter Syntax extensions and interpretation scopes. For
example, to use the mathematical symbols ∀ and ∃, you may define:

Notation "∀ x .. y , P" := (forall x, .. (forall y, P) ..)
(at level 200, x binder, y binder, right associativity)
: type_scope.

Notation "∃ x .. y , P" := (exists x, .. (exists y, P) ..)
(at level 200, x binder, y binder, right associativity)
: type_scope.

There exists a small set of such notations already defined, in the file utf8.v of Coq library, so you may enable them
just by Require Import Unicode.Utf8 inside CoqIDE, or equivalently, by starting CoqIDE with coqide -l
utf8.
However, there are some issues when using such Unicode symbols: you of course need to use a character font which
supports them. In the Fonts section of the preferences, the Preview line displays some Unicode symbols, so you could
figure out if the selected font is OK. Related to this, one thing you may need to do is choosing whether GTK+ should use
antialiased fonts or not, by setting the environment variable GDK_USE_XFT to 1 or 0 respectively.
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Defining an input method for non-ASCII symbols

To input a Unicode symbol, a general method provided by GTK+ is to simultaneously press the Control, Shift and “u”
keys, release, then type the hexadecimal code of the symbol required, for example 2200 for the ∀ symbol. A list of
symbol codes is available at http://www.unicode.org.
An alternative method which does not require to know the hexadecimal code of the character is to use an Input Method
Editor. On POSIX systems (Linux distributions, BSD variants andMacOS X), you can use uim version 1.6 or later which
provides a LaTeX-style input method.
To configure uim, execute uim-pref-gtk as your regular user. In the ”Global Settings” group set the default Input Method
to ”ELatin” (don’t forget to tick the checkbox ”Specify default IM”). In the ”ELatin” group set the layout to ”TeX”, and
remember the content of the ”[ELatin] on” field (by default Control-\). You can now execute CoqIDE with the following
commands (assuming you use a Bourne-style shell):

$ export GTK_IM_MODULE=uim
$ coqide

Activate the ELatin Input Method with Control-\, then type the sequence \Gamma. You will see the sequence being
replaced by Γ as soon as you type the second ”a”.

Character encoding for saved files

In the Files section of the preferences, the encoding option is related to the way files are saved.
If you have no need to exchange files with non UTF-8 aware applications, it is better to choose the UTF-8 encoding, since
it guarantees that your files will be read again without problems. (This is because when CoqIDE reads a file, it tries to
automatically detect its character encoding.)
If you choose something else than UTF-8, then missing characters will be written encoded by x{....} or x{.......
.} where each dot is an hexadecimal digit: the number between braces is the hexadecimal Unicode index for the missing
character.
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SEVEN

ADDENDUM

7.1 Extended pattern matching

Authors Cristina Cornes and Hugo Herbelin
This section describes the full form of pattern matching in Coq terms.

7.1.1 Patterns

The full syntax ofmatch is presented in Figures 1.1 and 1.2. Identifiers in patterns are either constructor names or variables.
Any identifier that is not the constructor of an inductive or co-inductive type is considered to be a variable. A variable
name cannot occur more than once in a given pattern. It is recommended to start variable names by a lowercase letter.
If a pattern has the form (c x) where c is a constructor symbol and x is a linear vector of (distinct) variables, it is called
simple: it is the kind of pattern recognized by the basic version of match. On the opposite, if it is a variable x or has the
form (c p) with p not only made of variables, the pattern is called nested.
A variable pattern matches any value, and the identifier is bound to that value. The pattern “_” (called “don’t care” or
“wildcard” symbol) also matches any value, but does not bind anything. It may occur an arbitrary number of times in a
pattern. Alias patterns written (pattern as ident) are also accepted. This pattern matches the same values as
pattern does and ident is bound to the matched value. A pattern of the form pattern | pattern is called
disjunctive. A list of patterns separated with commas is also considered as a pattern and is calledmultiple pattern. However
multiple patterns can only occur at the root of pattern matching equations. Disjunctions of multiple patterns are allowed
though.
Since extended match expressions are compiled into the primitive ones, the expressiveness of the theory remains the
same. Once parsing has finished only simple patterns remain. The original nesting of the match expressions is recovered
at printing time. An easy way to see the result of the expansion is to toggle off the nesting performed at printing (use
here Printing Matching), then by printing the term with Print if the term is a constant, or using the command
Check.
The extended match still accepts an optional elimination predicate given after the keyword return. Given a pattern
matching expression, if all the right-hand-sides of => have the same type, then this type can be sometimes synthesized,
and so we can omit the return part. Otherwise the predicate after return has to be provided, like for the basicmatch.
Let us illustrate through examples the different aspects of extended pattern matching. Consider for example the function
that computes the maximum of two natural numbers. We can write it in primitive syntax by:

Fixpoint max (n m:nat) {struct m} : nat :=
match n with
| O => m
| S n' => match m with

| O => S n'

(continues on next page)
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(continued from previous page)
| S m' => S (max n' m')
end

end.

7.1.2 Multiple patterns

Using multiple patterns in the definition of max lets us write:

Fixpoint max (n m:nat) {struct m} : nat :=
match n, m with
| O, _ => m
| S n', O => S n'
| S n', S m' => S (max n' m')
end.

which will be compiled into the previous form.
The pattern matching compilation strategy examines patterns from left to right. A match expression is generated only
when there is at least one constructor in the column of patterns. E.g. the following example does not build a match
expression.

Check (fun x:nat => match x return nat with
| y => y
end).

fun x : nat => x
: nat -> nat

7.1.3 Aliasing subpatterns

We can also use as ident to associate a name to a sub-pattern:

Fixpoint max (n m:nat) {struct n} : nat :=
match n, m with
| O, _ => m
| S n' as p, O => p
| S n', S m' => S (max n' m')
end.

7.1.4 Nested patterns

Here is now an example of nested patterns:

Fixpoint even (n:nat) : bool :=
match n with
| O => true
| S O => false
| S (S n') => even n'
end.

This is compiled into:
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Unset Printing Matching.
Print even.

even =
fix even (n : nat) : bool :=

match n with
| 0 => true
| S n0 => match n0 with

| 0 => false
| S n' => even n'
end

end
: nat -> bool

Argument scope is [nat_scope]

In the previous examples patterns do not conflict with, but sometimes it is comfortable to write patterns that admit a non
trivial superposition. Consider the boolean function lef that given two natural numbers yields true if the first one is
less or equal than the second one and false otherwise. We can write it as follows:

Fixpoint lef (n m:nat) {struct m} : bool :=
match n, m with
| O, x => true
| x, O => false
| S n, S m => lef n m
end.

Note that the first and the second multiple pattern overlap because the couple of values O O matches both. Thus, what is
the result of the function on those values? To eliminate ambiguity we use the textual priority rule: we consider patterns to
be ordered from top to bottom. A value is matched by the pattern at the ith row if and only if it is not matched by some
pattern from a previous row. Thus in the example, O O is matched by the first pattern, and so (lef O O) yields true.
Another way to write this function is:

Fixpoint lef (n m:nat) {struct m} : bool :=
match n, m with
| O, x => true
| S n, S m => lef n m
| _, _ => false
end.

Here the last pattern superposes with the first two. Because of the priority rule, the last pattern will be used only for values
that do not match neither the first nor the second one.
Terms with useless patterns are not accepted by the system. Here is an example:

Fail Check (fun x:nat =>
match x with
| O => true
| S _ => false
| x => true
end).

The command has indeed failed with message:
Pattern "x" is redundant in this clause.
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7.1.5 Disjunctive patterns

Multiple patterns that share the same right-hand-side can be factorized using the notation mult_pattern
+

|
. For

instance, max can be rewritten as follows:

Fixpoint max (n m:nat) {struct m} : nat :=
match n, m with
| S n', S m' => S (max n' m')
| 0, p | p, 0 => p
end.

Similarly, factorization of (not necessarily multiple) patterns that share the same variables is possible by using the notation
pattern

+

|
. Here is an example:

Definition filter_2_4 (n:nat) : nat :=
match n with
| 2 as m | 4 as m => m
| _ => 0
end.

Here is another example using disjunctive subpatterns.

Definition filter_some_square_corners (p:nat*nat) : nat*nat :=
match p with
| ((2 as m | 4 as m), (3 as n | 5 as n)) => (m,n)
| _ => (0,0)
end.

7.1.6 About patterns of parametric types

Parameters in patterns

When matching objects of a parametric type, parameters do not bind in patterns. They must be substituted by “_”.
Consider for example the type of polymorphic lists:

Inductive List (A:Set) : Set :=
| nil : List A
| cons : A -> List A -> List A.

We can check the function tail:

Check
(fun l:List nat =>

match l with
| nil _ => nil nat
| cons _ _ l' => l'
end).

fun l : List nat => match l with
| nil _ => nil nat
| cons _ _ l' => l'
end

: List nat -> List nat

When we use parameters in patterns there is an error message:
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Fail Check
(fun l:List nat =>

match l with
| nil A => nil nat
| cons A _ l' => l'
end).

The command has indeed failed with message:
The parameters do not bind in patterns; they must be replaced by '_'.

Flag: Asymmetric Patterns
This flag (off by default) removes parameters from constructors in patterns:

Set Asymmetric Patterns.
Check (fun l:List nat =>

match l with
| nil => nil _
| cons _ l' => l'
end).
fun l : List nat => match l with

| @nil _ => nil nat
| @cons _ _ l' => l'
end

: List nat -> List nat

Unset Asymmetric Patterns.

7.1.7 Implicit arguments in patterns

By default, implicit arguments are omitted in patterns. So we write:

Arguments nil [A].
Arguments cons [A] _ _.
Check

(fun l:List nat =>
match l with
| nil => nil
| cons _ l' => l'
end).

fun l : List nat => match l with
| nil => nil
| cons _ l' => l'
end

: List nat -> List nat

But the possibility to use all the arguments is given by “@” implicit explicitations (as for terms, see Explicit applications).

Check
(fun l:List nat =>

match l with
| @nil _ => @nil nat
| @cons _ _ l' => l'
end).

fun l : List nat => match l with
| nil => nil
| cons _ l' => l'

(continues on next page)
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(continued from previous page)
end

: List nat -> List nat

7.1.8 Matching objects of dependent types

The previous examples illustrate pattern matching on objects of non- dependent types, but we can also use the expansion
strategy to destructure objects of dependent types. Consider the type listn of lists of a certain length:

Inductive listn : nat -> Set :=
| niln : listn 0
| consn : forall n:nat, nat -> listn n -> listn (S n).

7.1.9 Understanding dependencies in patterns

We can define the function length over listn by:

Definition length (n:nat) (l:listn n) := n.

Just for illustrating pattern matching, we can define it by case analysis:

Definition length (n:nat) (l:listn n) :=
match l with
| niln => 0
| consn n _ _ => S n
end.

We can understand the meaning of this definition using the same notions of usual pattern matching.

7.1.10 When the elimination predicate must be provided

Dependent pattern matching

The examples given so far do not need an explicit elimination predicate because all the right hand sides have the same
type and Coq succeeds to synthesize it. Unfortunately when dealing with dependent patterns it often happens that we need
to write cases where the types of the right hand sides are different instances of the elimination predicate. The function
concat for listn is an example where the branches have different types and we need to provide the elimination
predicate:

Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} :
listn (n + m) :=
match l in listn n return listn (n + m) with
| niln => l'
| consn n' a y => consn (n' + m) a (concat n' y m l')
end.

The elimination predicate is fun (n:nat) (l:listn n) => listn (n+m). In general if m has type (I q1
… qr t1 … ts) where q1, …, qr are parameters, the elimination predicate should be of the form fun y1 …
ys x : (I q1 … qr y1 … ys ) => Q.
In the concrete syntax, it should be written : match m as x in (I _ … _ y1 … ys) return Q with …
end. The variables which appear in the in and as clause are new and bounded in the property Q in the return clause.
The parameters of the inductive definitions should not be mentioned and are replaced by _.
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Multiple dependent pattern matching

Recall that a list of patterns is also a pattern. So, when we destructure several terms at the same time and the branches
have different types we need to provide the elimination predicate for this multiple pattern. It is done using the same
scheme: each term may be associated to an as clause and an in clause in order to introduce a dependent product.
For example, an equivalent definition for concat (even though the matching on the second term is trivial) would have
been:

Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} :
listn (n + m) :=
match l in listn n, l' return listn (n + m) with
| niln, x => x
| consn n' a y, x => consn (n' + m) a (concat n' y m x)
end.

Even without real matching over the second term, this construction can be used to keep types linked. If a and b are two
listn of the same length, by writing

Check (fun n (a b: listn n) =>
match a, b with
| niln, b0 => tt
| consn n' a y, bS => tt
end).

we have a copy of b in type listn 0 resp. listn (S n').

Patterns in in

If the type of the matched term is more precise than an inductive applied to variables, arguments of the inductive in the
in branch can be more complicated patterns than a variable.
Moreover, constructors whose types do not follow the same pattern will become impossible branches. In an impossible
branch, you can answer anything but False_rect unit has the advantage to be subterm of anything.
To be concrete: the tail function can be written:

Definition tail n (v: listn (S n)) :=
match v in listn (S m) return listn m with
| niln => False_rect unit
| consn n' a y => y
end.

and tail n v will be subterm of v.

7.1.11 Using pattern matching to write proofs

In all the previous examples the elimination predicate does not depend on the object(s) matched. But it may depend and
the typical case is when we write a proof by induction or a function that yields an object of a dependent type. An example
of a proof written using match is given in the description of the tactic refine.
For example, we can write the function buildlist that given a natural number n builds a list of length n containing
zeros as follows:
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Fixpoint buildlist (n:nat) : listn n :=
match n return listn n with
| O => niln
| S n => consn n 0 (buildlist n)
end.

We can also use multiple patterns. Consider the following definition of the predicate less-equal Le:

Inductive LE : nat -> nat -> Prop :=
| LEO : forall n:nat, LE 0 n
| LES : forall n m:nat, LE n m -> LE (S n) (S m).

We can use multiple patterns to write the proof of the lemma forall (n m:nat), (LE n m) \/ (LE m n):

Fixpoint dec (n m:nat) {struct n} : LE n m \/ LE m n :=
match n, m return LE n m \/ LE m n with
| O, x => or_introl (LE x 0) (LEO x)
| x, O => or_intror (LE x 0) (LEO x)
| S n as n', S m as m' =>

match dec n m with
| or_introl h => or_introl (LE m' n') (LES n m h)
| or_intror h => or_intror (LE n' m') (LES m n h)
end

end.

In the example of dec, the first match is dependent while the second is not.
The user can also use match in combination with the tactic refine (see Section 8.2.3) to build incomplete proofs
beginning with a match construction.

7.1.12 Pattern-matching on inductive objects involving local definitions

If local definitions occur in the type of a constructor, then there are two ways to match on this constructor. Either the
local definitions are skipped and matching is done only on the true arguments of the constructors, or the bindings for local
definitions can also be caught in the matching.

Example

Inductive list : nat -> Set :=
| nil : list 0
| cons : forall n:nat, let m := (2 * n) in list m -> list (S (S m)).

In the next example, the local definition is not caught.

Fixpoint length n (l:list n) {struct l} : nat :=
match l with
| nil => 0
| cons n l0 => S (length (2 * n) l0)
end.

But in this example, it is.

Fixpoint length' n (l:list n) {struct l} : nat :=
match l with
| nil => 0

(continues on next page)
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(continued from previous page)
| @cons _ m l0 => S (length' m l0)
end.

Note: For a given matching clause, either none of the local definitions or all of them can be caught.

Note: You can only catch let bindings in mode where you bind all variables and so you have to use @ syntax.

Note: this feature is incoherent with the fact that parameters cannot be caught and consequently is somehow hidden. For
example, there is no mention of it in error messages.

7.1.13 Pattern-matching and coercions

If a mismatch occurs between the expected type of a pattern and its actual type, a coercion made from constructors is
sought. If such a coercion can be found, it is automatically inserted around the pattern.

Example

Inductive I : Set :=
| C1 : nat -> I
| C2 : I -> I.

Coercion C1 : nat >-> I.

Check (fun x => match x with
| C2 O => 0
| _ => 0
end).

fun x : I => match x with
| C1 _ | _ => 0
end

: I -> nat

7.1.14 When does the expansion strategy fail?

The strategy works very like in ML languages when treating patterns of non-dependent types. But there are new cases of
failure that are due to the presence of dependencies.
The error messages of the current implementation may be sometimes confusing. When the tactic fails because patterns are
somehow incorrect then error messages refer to the initial expression. But the strategy may succeed to build an expression
whose sub-expressions are well typed when the whole expression is not. In this situation the message makes reference
to the expanded expression. We encourage users, when they have patterns with the same outer constructor in different
equations, to name the variable patterns in the same positions with the same name. E.g. to write (cons n O x)
=> e1 and (cons n _ x) => e2 instead of (cons n O x) => e1 and (cons n' _ x') => e2. This
helps to maintain certain name correspondence between the generated expression and the original.
Here is a summary of the error messages corresponding to each situation:
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Error: The constructor ident expects num arguments.
The variable ident is bound several times in pattern termFound a constructor of inductive type term while a con-
structor of term is expectedPatterns are incorrect (because constructors are not applied to the correct number of
the arguments, because they are not linear or they are wrongly typed).

Error: Non exhaustive pattern matching.
The pattern matching is not exhaustive.

Error: The elimination predicate term should be of arity num (for non dependent case) or num (for dependent case).
The elimination predicate provided to match has not the expected arity.

Error: Unable to infer a match predicate
Error: Either there is a type incompatibility or the problem involves dependencies.

There is a type mismatch between the different branches. The user should provide an elimination predicate.

7.2 Implicit Coercions

Author Amokrane Saïbi

7.2.1 General Presentation

This section describes the inheritance mechanism of Coq. In Coq with inheritance, we are not interested in adding any
expressive power to our theory, but only convenience. Given a term, possibly not typable, we are interested in the problem
of determining if it can be well typed modulo insertion of appropriate coercions. We allow to write:

• f a where f:(forall x:A,B) and a:A' when A' can be seen in some sense as a subtype of A.
• x:A when A is not a type, but can be seen in a certain sense as a type: set, group, category etc.
• f a when f is not a function, but can be seen in a certain sense as a function: bijection, functor, any structure
morphism etc.

7.2.2 Classes

A class with 𝑛 parameters is any defined name with a type forall (ident1 : type1)..(identn:typen),
sort. Thus a class with parameters is considered as a single class and not as a family of classes. An object of a class is
any term of type class term1 .. termn. In addition to these user-defined classes, we have two built-in classes:

• Sortclass, the class of sorts; its objects are the terms whose type is a sort (e.g. Prop or Type).
• Funclass, the class of functions; its objects are all the terms with a functional type, i.e. of form forall
x:A,B.

Formally, the syntax of classes is defined as:

class ::= qualid
| Sortclass
| Funclass
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7.2.3 Coercions

A name f can be declared as a coercion between a source user-defined class C with 𝑛 parameters and a target class D if
one of these conditions holds:

• D is a user-defined class, then the type of f must have the form forall (x1:A1)..(x�:A�)(y:C x1..
x�), D u1..u� where 𝑚 is the number of parameters of D.

• D is Funclass, then the type of f must have the form forall (x1:A1)..(x�:A�)(y:C x1..
x�)(x:A), B.

• D is Sortclass, then the type of f must have the form forall (x1:A1)..(x�:A�)(y:C x1..x�),
s with s a sort.

We then write f : C >-> D. The restriction on the type of coercions is called the uniform inheritance condition.

Note: The built-in class Sortclass can be used as a source class, but the built-in class Funclass cannot.

To coerce an object t:C t1..t� of C towards D, we have to apply the coercion f to it; the obtained term f t1..t�
t is then an object of D.

7.2.4 Identity Coercions

Identity coercions are special cases of coercions used to go around the uniform inheritance condition. Let C and D be two
classes with respectively n and m parameters and f:forall (x1:T1)..(x�:T�)(y:C u1..u�), D v1..v�
a function which does not verify the uniform inheritance condition. To declare f as coercion, one has first to declare a
subclass C' of C:

C' := fun (x1:T1)..(x�:T�) => C u1..u�

We then define an identity coercion between C' and C:
Id_C'_C := fun (x1:T1)..(x�:T�)(y:C' x1..x�) => (y:C u1..u�)

We can now declare f as coercion from C' to D, since we can ”cast” its type as forall (x1:T1)..(x�:T�)(y:C'
x1..x�),D v1..v�.
The identity coercions have a special status: to coerce an object t:C' t1..t� of C' towards C, we do not have to
insert explicitly Id_C'_C since Id_C'_C t1..t� t is convertible with t. However we ”rewrite” the type of t to
become an object of C; in this case, it becomes C u�'..u�' where each u�' is the result of the substitution in u� of
the variables x� by t�.

7.2.5 Inheritance Graph

Coercions form an inheritance graph with classes as nodes. We call coercion path an ordered list of coercions between
two nodes of the graph. A class C is said to be a subclass of D if there is a coercion path in the graph from C to D;
we also say that C inherits from D. Our mechanism supports multiple inheritance since a class may inherit from several
classes, contrary to simple inheritance where a class inherits from at most one class. However there must be at most one
path between two classes. If this is not the case, only the oldest one is valid and the others are ignored. So the order of
declaration of coercions is important.
We extend notations for coercions to coercion paths. For instance [f1;..;f�] : C >-> D is the coercion path
composed by the coercions f1..f�. The application of a coercion path to a term consists of the successive application
of its coercions.
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7.2.6 Declaring Coercions

Command: Coercion qualid : class >-> class
Declares the construction denoted by qualid as a coercion between the two given classes.
Error: qualid not declared.

Error: qualid is already a coercion.

Error: Funclass cannot be a source class.

Error: qualid is not a function.

Error: Cannot find the source class of qualid.

Error: Cannot recognize class as a source class of qualid.

Error: qualid does not respect the uniform inheritance condition.

Error: Found target class ... instead of ...

Warning: Ambiguous path.
When the coercion qualid is added to the inheritance graph, invalid coercion paths are ignored; they are
signaled by a warning displaying these paths of the form [f1;..;f�] : C >-> D.

Variant: Local Coercion qualid : class >-> class
Declares the construction denoted by qualid as a coercion local to the current section.

Variant: Coercion ident := term type
?

This defines ident just like Definition ident := term type
? , and then declares ident as

a coercion between it source and its target.

Variant: Local Coercion ident := term type
?

This defines ident just like Let ident := term type
? , and then declares ident as a coercion

between it source and its target.
Assumptions can be declared as coercions at declaration time. This extends the grammar of assumptions from Figure The
Vernacular as follows:

assumption ::= assumption_keyword assums .
assums ::= simple_assums

| (simple_assums) ... (simple_assums)
simple_assums ::= ident ... ident :[>] term

If the extra > is present before the type of some assumptions, these assumptions are declared as coercions.
Similarly, constructors of inductive types can be declared as coercions at definition time of the inductive type. This
extends and modifies the grammar of inductive types from Figure The Vernacular as follows:

inductive ::= Inductive ind_body with ... with ind_body
| CoInductive ind_body with ... with ind_body

ind_body ::= ident [ binders ] : term := [[|] constructor | ... | constructor ]
constructor ::= ident [ binders ] [:[>] term ]

Especially, if the extra > is present in a constructor declaration, this constructor is declared as a coercion.
Command: Identity Coercion ident : class >-> class
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If C is the source class and D the destination, we check that C is a constant with a body of the form fun
(x1:T1)..(x�:T�) => D t1..t� where m is the number of parameters of D. Then we define an identity
function with type forall (x1:T1)..(x�:T�)(y:C x1..x�),D t1..t�, and we declare it as an iden-
tity coercion between C and D.
Error: class must be a transparent constant.

Variant: Local Identity Coercion ident : ident >-> ident
Same as Identity Coercion but locally to the current section.

Variant: SubClass ident := type
If type is a class ident' applied to some arguments then ident is defined and an identity coercion of
name Id_ident_ident' is declared. Otherwise said, this is an abbreviation for
Definition ident := type. Identity Coercion Id_ident_ident' : ident >->
ident'.

Variant: Local SubClass ident := type
Same as before but locally to the current section.

7.2.7 Displaying Available Coercions

Command: Print Classes
Print the list of declared classes in the current context.

Command: Print Coercions
Print the list of declared coercions in the current context.

Command: Print Graph
Print the list of valid coercion paths in the current context.

Command: Print Coercion Paths class class
Print the list of valid coercion paths between the two given classes.

7.2.8 Activating the Printing of Coercions

Flag: Printing Coercions
When on, this option forces all the coercions to be printed. By default, coercions are not printed.

Table: Printing Coercion qualid
Specifies a set of qualids for which coercions are always displayed. Use the Add @table and Remove @table
commands to update the set of qualids.

7.2.9 Classes as Records

We allow the definition of Structures with Inheritance (or classes as records) by extending the existing Record macro.
Its new syntax is:

Variant: Record >
?

ident binders
?

: sort := ident
?

{ ident : >
?

term

+

;
}

The first identifier ident is the name of the defined record and sort is its type. The optional identifier after :=
is the name of the constructor (it will be Build_ident if not given). The other identifiers are the names of the
fields, and term are their respective types. If :> is used instead of : in the declaration of a field, then the name
of this field is automatically declared as a coercion from the record name to the class of this field type. Note that
the fields always verify the uniform inheritance condition. If the optional > is given before the record name, then
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the constructor name is automatically declared as a coercion from the class of the last field type to the record name
(this may fail if the uniform inheritance condition is not satisfied).

Variant: Structure >
?

ident binders
?

: sort := ident
?

{ ident : >
?

term

+

;
}

This is a synonym of Record.

7.2.10 Coercions and Sections

The inheritance mechanism is compatible with the section mechanism. The global classes and coercions defined inside a
section are redefined after its closing, using their new value and new type. The classes and coercions which are local to
the section are simply forgotten. Coercions with a local source class or a local target class, and coercions which do not
verify the uniform inheritance condition any longer are also forgotten.

7.2.11 Coercions and Modules

Flag: Automatic Coercions Import
Since Coq version 8.3, the coercions present in a module are activated only when the module is explicitly imported.
Formerly, the coercions were activated as soon as the module was required, whether it was imported or not.
This option makes it possible to recover the behavior of the versions of Coq prior to 8.3.

Warning: Coercion used but not in scope: qualid. If you want to use this coercion, please Import the module that contains it.
This warning is emitted when typechecking relies on a coercion contained in a module that has not been explicitely
imported. It helps migrating code and stop relying on the option above.

7.2.12 Examples

There are three situations:

Coercion at function application

f a is ill-typed where f:forall x:A,B and a:A'. If there is a coercion path between A' and A, then f a is
transformed into f a' where a' is the result of the application of this coercion path to a.
We first give an example of coercion between atomic inductive types

Definition bool_in_nat (b:bool) := if b then 0 else 1.
bool_in_nat is defined

Coercion bool_in_nat : bool >-> nat.
bool_in_nat is now a coercion

Check (0 = true).
0 = true

: Prop

Set Printing Coercions.
Check (0 = true).

0 = bool_in_nat true
: Prop

Unset Printing Coercions.
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Warning: Note that Check (true = O) would fail. This is ”normal” behavior of coercions. To validate
true=O, the coercion is searched from nat to bool. There is none.

We give an example of coercion between classes with parameters.

Parameters (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
C is declared
D is declared
E is declared

Parameter f : forall n:nat, C n -> D (S n) true.
f is declared

Coercion f : C >-> D.
f is now a coercion

Parameter g : forall (n:nat) (b:bool), D n b -> E b.
g is declared

Coercion g : D >-> E.
g is now a coercion

Parameter c : C 0.
c is declared

Parameter T : E true -> nat.
T is declared

Check (T c).
T c

: nat

Set Printing Coercions.
Check (T c).

T (g 1 true (f 0 c))
: nat

Unset Printing Coercions.

We give now an example using identity coercions.

Definition D' (b:bool) := D 1 b.
D' is defined

Identity Coercion IdD'D : D' >-> D.
Print IdD'D.

IdD'D =
(fun (b : bool) (x : D' b) => x) : forall b : bool, D' b -> D 1 b

: forall b : bool, D' b -> D 1 b

Argument scopes are [bool_scope _]
IdD'D is a coercion

Parameter d' : D' true.
d' is declared

(continues on next page)
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(continued from previous page)
Check (T d').

T d'
: nat

Set Printing Coercions.
Check (T d').

T (g 1 true d')
: nat

Unset Printing Coercions.

In the case of functional arguments, we use the monotonic rule of sub-typing. To coerce t : forall x : A, B
towards forall x : A', B', we have to coerce A' towards A and B towards B'. An example is given below:

Parameters (A B : Set) (h : A -> B).
A is declared
B is declared
h is declared

Coercion h : A >-> B.
h is now a coercion

Parameter U : (A -> E true) -> nat.
U is declared

Parameter t : B -> C 0.
t is declared

Check (U t).
U (fun x : A => t x)

: nat

Set Printing Coercions.
Check (U t).

U (fun x : A => g 1 true (f 0 (t (h x))))
: nat

Unset Printing Coercions.

Remark the changes in the result following the modification of the previous example.

Parameter U' : (C 0 -> B) -> nat.
U' is declared

Parameter t' : E true -> A.
t' is declared

Check (U' t').
U' (fun x : C 0 => t' x)

: nat

Set Printing Coercions.
Check (U' t').

U' (fun x : C 0 => h (t' (g 1 true (f 0 x))))
: nat

Unset Printing Coercions.
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Coercion to a type

An assumption x:A when A is not a type, is ill-typed. It is replaced by x:A' where A' is the result of the application
to A of the coercion path between the class of A and Sortclass if it exists. This case occurs in the abstraction fun
x:A => t, universal quantification forall x:A,B, global variables and parameters of (co-)inductive definitions and
functions. In forall x:A,B, such a coercion path may also be applied to B if necessary.

Parameter Graph : Type.
Graph is declared

Parameter Node : Graph -> Type.
Node is declared

Coercion Node : Graph >-> Sortclass.
Node is now a coercion

Parameter G : Graph.
G is declared

Parameter Arrows : G -> G -> Type.
Arrows is declared

Check Arrows.
Arrows

: G -> G -> Type

Parameter fg : G -> G.
fg is declared

Check fg.
fg

: G -> G

Set Printing Coercions.
Check fg.

fg
: Node G -> Node G

Unset Printing Coercions.

Coercion to a function

f a is ill-typed because f:A is not a function. The term f is replaced by the term obtained by applying to f the coercion
path between A and Funclass if it exists.

Parameter bij : Set -> Set -> Set.
bij is declared

Parameter ap : forall A B:Set, bij A B -> A -> B.
ap is declared

Coercion ap : bij >-> Funclass.
ap is now a coercion

Parameter b : bij nat nat.
b is declared

(continues on next page)
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(continued from previous page)

Check (b 0).
b 0

: nat

Set Printing Coercions.
Check (b 0).

ap nat nat b 0
: nat

Unset Printing Coercions.

Let us see the resulting graph after all these examples.

Print Graph.
[bool_in_nat] : bool >-> nat
[f] : C >-> D
[f; g] : C >-> E
[g] : D >-> E
[IdD'D] : D' >-> D
[IdD'D; g] : D' >-> E
[h] : A >-> B
[Node] : Graph >-> Sortclass
[ap] : bij >-> Funclass

7.3 Canonical Structures

Authors Assia Mahboubi and Enrico Tassi
This chapter explains the basics of canonical structures and how they can be used to overload notations and build a
hierarchy of algebraic structures. The examples are taken from [MT13]. We invite the interested reader to refer to
this paper for all the details that are omitted here for brevity. The interested reader shall also find in [GZND11] a
detailed description of another, complementary, use of canonical structures: advanced proof search. This latter papers
also presents many techniques one can employ to tune the inference of canonical structures.

7.3.1 Notation overloading

We build an infix notation == for a comparison predicate. Such notation will be overloaded, and its meaning will depend
on the types of the terms that are compared.

Module EQ.
Interactive Module EQ started

Record class (T : Type) := Class { cmp : T -> T -> Prop }.
class is defined
cmp is defined

Structure type := Pack { obj : Type; class_of : class obj }.
type is defined
obj is defined
class_of is defined

Definition op (e : type) : obj e -> obj e -> Prop :=
(continues on next page)
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(continued from previous page)
let 'Pack _ (Class _ the_cmp) := e in the_cmp.
op is defined

Check op.
op

: forall e : type, obj e -> obj e -> Prop

Arguments op {e} x y : simpl never.
Arguments Class {T} cmp.
Module theory.

Interactive Module theory started

Notation "x == y" := (op x y) (at level 70).
End theory.

Module theory is defined

End EQ.
Module EQ is defined

We use Coq modules as namespaces. This allows us to follow the same pattern and naming convention for the rest of the
chapter. The base namespace contains the definitions of the algebraic structure. To keep the example small, the algebraic
structure EQ.type we are defining is very simplistic, and characterizes terms on which a binary relation is defined,
without requiring such relation to validate any property. The inner theory module contains the overloaded notation ==
and will eventually contain lemmas holding all the instances of the algebraic structure (in this case there are no lemmas).
Note that in practice the user may want to declare EQ.obj as a coercion, but we will not do that here.
The following line tests that, when we assume a type e that is in theEQ class, we can relate two of its objects with ==.

Import EQ.theory.
Check forall (e : EQ.type) (a b : EQ.obj e), a == b.

forall (e : EQ.type) (a b : EQ.obj e), a == b
: Prop

Still, no concrete type is in the EQ class.

Fail Check 3 == 3.
The command has indeed failed with message:
The term "3" has type "nat" while it is expected to have type "EQ.obj ?e".

We amend that by equipping nat with a comparison relation.

Definition nat_eq (x y : nat) := Nat.compare x y = Eq.
nat_eq is defined

Definition nat_EQcl : EQ.class nat := EQ.Class nat_eq.
nat_EQcl is defined

Canonical Structure nat_EQty : EQ.type := EQ.Pack nat nat_EQcl.
nat_EQty is defined

Check 3 == 3.
3 == 3

: Prop

Eval compute in 3 == 4.
= Lt = Eq

: Prop

7.3. Canonical Structures 413



The Coq Reference Manual, Release 8.9.1

This last test shows that Coq is now not only able to type check 3 == 3, but also that the infix relation was bound to
the nat_eq relation. This relation is selected whenever == is used on terms of type nat. This can be read in the line
declaring the canonical structure nat_EQty, where the first argument to Pack is the key and its second argument a
group of canonical values associated to the key. In this case we associate to nat only one canonical value (since its class,
nat_EQcl has just one member). The use of the projection op requires its argument to be in the class EQ, and uses
such a member (function) to actually compare its arguments.
Similarly, we could equip any other type with a comparison relation, and use the == notation on terms of this type.

Derived Canonical Structures

We know how to use == `` on base types, like ``nat, bool, Z. Here we show how to deal with type
constructors, i.e. how to make the following example work:

Fail Check forall (e : EQ.type) (a b : EQ.obj e), (a, b) == (a, b).
The command has indeed failed with message:
In environment
e : EQ.type
a : EQ.obj e
b : EQ.obj e
The term "(a, b)" has type "(EQ.obj e * EQ.obj e)%type"
while it is expected to have type "EQ.obj ?e".

The error message is telling that Coq has no idea on how to compare pairs of objects. The following construction is telling
Coq exactly how to do that.

Definition pair_eq (e1 e2 : EQ.type) (x y : EQ.obj e1 * EQ.obj e2) :=
fst x == fst y /\ snd x == snd y.
pair_eq is defined

Definition pair_EQcl e1 e2 := EQ.Class (pair_eq e1 e2).
pair_EQcl is defined

Canonical Structure pair_EQty (e1 e2 : EQ.type) : EQ.type :=
EQ.Pack (EQ.obj e1 * EQ.obj e2) (pair_EQcl e1 e2).
pair_EQty is defined

Check forall (e : EQ.type) (a b : EQ.obj e), (a, b) == (a, b).
forall (e : EQ.type) (a b : EQ.obj e), (a, b) == (a, b)

: Prop

Check forall n m : nat, (3, 4) == (n, m).
forall n m : nat, (3, 4) == (n, m)

: Prop

Thanks to the pair_EQty declaration, Coq is able to build a comparison relation for pairs whenever it is able to build a
comparison relation for each component of the pair. The declaration associates to the key * (the type constructor of pairs)
the canonical comparison relation pair_eq whenever the type constructor * is applied to two types being themselves
in the EQ class.

7.3.2 Hierarchy of structures

To get to an interesting example we need another base class to be available. We choose the class of types that are equipped
with an order relation, to which we associate the infix <= notation.
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Module LE.
Interactive Module LE started

Record class T := Class { cmp : T -> T -> Prop }.
class is defined
cmp is defined

Structure type := Pack { obj : Type; class_of : class obj }.
type is defined
obj is defined
class_of is defined

Definition op (e : type) : obj e -> obj e -> Prop :=
let 'Pack _ (Class _ f) := e in f.
op is defined

Arguments op {_} x y : simpl never.
Arguments Class {T} cmp.
Module theory.

Interactive Module theory started

Notation "x <= y" := (op x y) (at level 70).
End theory.

Module theory is defined

End LE.
Module LE is defined

As before we register a canonical LE class for nat.

Import LE.theory.
Definition nat_le x y := Nat.compare x y <> Gt.

nat_le is defined

Definition nat_LEcl : LE.class nat := LE.Class nat_le.
nat_LEcl is defined

Canonical Structure nat_LEty : LE.type := LE.Pack nat nat_LEcl.
nat_LEty is defined

And we enable Coq to relate pair of terms with <=.

Definition pair_le e1 e2 (x y : LE.obj e1 * LE.obj e2) :=
fst x <= fst y /\ snd x <= snd y.
pair_le is defined

Definition pair_LEcl e1 e2 := LE.Class (pair_le e1 e2).
pair_LEcl is defined

Canonical Structure pair_LEty (e1 e2 : LE.type) : LE.type :=
LE.Pack (LE.obj e1 * LE.obj e2) (pair_LEcl e1 e2).
pair_LEty is defined

Check (3,4,5) <= (3,4,5).
(3, 4, 5) <= (3, 4, 5)

: Prop

At the current stage we can use == and <= on concrete types, like tuples of natural numbers, but we can’t develop an
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algebraic theory over the types that are equipped with both relations.

Check 2 <= 3 /\ 2 == 2.
2 <= 3 /\ 2 == 2

: Prop

Fail Check forall (e : EQ.type) (x y : EQ.obj e), x <= y -> y <= x -> x == y.
The command has indeed failed with message:
In environment
e : EQ.type
x : EQ.obj e
y : EQ.obj e
The term "x" has type "EQ.obj e" while it is expected to have type
"LE.obj ?e".

Fail Check forall (e : LE.type) (x y : LE.obj e), x <= y -> y <= x -> x == y.
The command has indeed failed with message:
In environment
e : LE.type
x : LE.obj e
y : LE.obj e
The term "x" has type "LE.obj e" while it is expected to have type
"EQ.obj ?e".

We need to define a new class that inherits from both EQ and LE.

Module LEQ.
Interactive Module LEQ started

Record mixin (e : EQ.type) (le : EQ.obj e -> EQ.obj e -> Prop) :=
Mixin { compat : forall x y : EQ.obj e, le x y /\ le y x <-> x == y }.
mixin is defined
compat is defined

Record class T := Class {
EQ_class : EQ.class T;
LE_class : LE.class T;
extra : mixin (EQ.Pack T EQ_class) (LE.cmp T LE_class) }.

class is defined
EQ_class is defined
LE_class is defined
extra is defined

Structure type := _Pack { obj : Type; class_of : class obj }.
type is defined
obj is defined
class_of is defined

Arguments Mixin {e le} _.
Arguments Class {T} _ _ _.

The mixin component of the LEQ class contains all the extra content we are adding to EQ and LE. In particular it contains
the requirement that the two relations we are combining are compatible.
Unfortunately there is still an obstacle to developing the algebraic theory of this new class.

Module theory.
Interactive Module theory started

(continues on next page)
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(continued from previous page)

Fail Check forall (le : type) (n m : obj le), n <= m -> n <= m -> n == m.
The command has indeed failed with message:
In environment
le : type
n : obj le
m : obj le
The term "n" has type "obj le" while it is expected to have type "LE.obj ?e".

The problem is that the two classes LE and LEQ are not yet related by a subclass relation. In other words Coq does not
see that an object of the LEQ class is also an object of the LE class.
The following two constructions tell Coq how to canonically build the LE.type and EQ.type structure given an LEQ.
type structure on the same type.

Definition to_EQ (e : type) : EQ.type :=
EQ.Pack (obj e) (EQ_class _ (class_of e)).
to_EQ is defined

Canonical Structure to_EQ.
Definition to_LE (e : type) : LE.type :=

LE.Pack (obj e) (LE_class _ (class_of e)).
to_LE is defined

Canonical Structure to_LE.

We can now formulate out first theorem on the objects of the LEQ structure.

Lemma lele_eq (e : type) (x y : obj e) : x <= y -> y <= x -> x == y.
1 subgoal

e : type
x, y : obj e
============================
x <= y -> y <= x -> x == y

now intros; apply (compat _ _ (extra _ (class_of e)) x y); split.
No more subgoals.

Qed.
lele_eq is defined

Arguments lele_eq {e} x y _ _.
End theory.

Module theory is defined

End LEQ.
Module LEQ is defined

Import LEQ.theory.
Check lele_eq.

lele_eq
: forall x y : LEQ.obj ?e, x <= y -> y <= x -> x == y

where
?e : [ |- LEQ.type]

Of course one would like to apply results proved in the algebraic setting to any concrete instate of the algebraic structure.
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Example test_algebraic (n m : nat) : n <= m -> m <= n -> n == m.
1 subgoal

n, m : nat
============================
n <= m -> m <= n -> n == m

Fail apply (lele_eq n m).
The command has indeed failed with message:
In environment
n, m : nat
The term "n" has type "nat" while it is expected to have type "LEQ.obj ?e".

Abort.
Example test_algebraic2 (l1 l2 : LEQ.type) (n m : LEQ.obj l1 * LEQ.obj l2) :

n <= m -> m <= n -> n == m.
1 subgoal

l1, l2 : LEQ.type
n, m : LEQ.obj l1 * LEQ.obj l2
============================
n <= m -> m <= n -> n == m

Fail apply (lele_eq n m).
The command has indeed failed with message:
In environment
l1, l2 : LEQ.type
n, m : LEQ.obj l1 * LEQ.obj l2
The term "n" has type "(LEQ.obj l1 * LEQ.obj l2)%type"
while it is expected to have type "LEQ.obj ?e".

Abort.

Again one has to tell Coq that the type nat is in the LEQ class, and how the type constructor * interacts with the LEQ
class. In the following proofs are omitted for brevity.

Lemma nat_LEQ_compat (n m : nat) : n <= m /\ m <= n <-> n == m.
1 subgoal

n, m : nat
============================
n <= m /\ m <= n <-> n == m

Admitted.
nat_LEQ_compat is declared

Definition nat_LEQmx := LEQ.Mixin nat_LEQ_compat.
nat_LEQmx is defined

Lemma pair_LEQ_compat (l1 l2 : LEQ.type) (n m : LEQ.obj l1 * LEQ.obj l2) :
n <= m /\ m <= n <-> n == m.
1 subgoal

l1, l2 : LEQ.type
n, m : LEQ.obj l1 * LEQ.obj l2
============================
n <= m /\ m <= n <-> n == m

(continues on next page)
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(continued from previous page)

Admitted.
pair_LEQ_compat is declared

Definition pair_LEQmx l1 l2 := LEQ.Mixin (pair_LEQ_compat l1 l2).
pair_LEQmx is defined

The following script registers an LEQ class for nat and for the type constructor *. It also tests that they work as expected.
Unfortunately, these declarations are very verbose. In the following subsection we show how to make themmore compact.

Module Add_instance_attempt.
Interactive Module Add_instance_attempt started

Canonical Structure nat_LEQty : LEQ.type :=
LEQ._Pack nat (LEQ.Class nat_EQcl nat_LEcl nat_LEQmx).
nat_LEQty is defined

Canonical Structure pair_LEQty (l1 l2 : LEQ.type) : LEQ.type :=
LEQ._Pack (LEQ.obj l1 * LEQ.obj l2)

(LEQ.Class
(EQ.class_of (pair_EQty (to_EQ l1) (to_EQ l2)))
(LE.class_of (pair_LEty (to_LE l1) (to_LE l2)))
(pair_LEQmx l1 l2)).

pair_LEQty is defined
Toplevel input, characters 0-264:
> Canonical Structure pair_LEQty (l1 l2 : LEQ.type) : LEQ.type := LEQ._Pack␣

↪(LEQ.obj l1 * LEQ.obj l2) (LEQ.Class (EQ.class_of (pair_EQty (to_EQ␣
↪l1) (to_EQ l2))) (LE.class_of (pair_LEty (to_LE l1) (to_LE l2))) ␣
↪(pair_LEQmx l1 l2)).

> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
↪^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
↪^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
↪^^^^^^^^^^^^^^^^

Warning: Ignoring canonical projection to LEQ.Class by LEQ.class_of in
pair_LEQty: redundant with nat_LEQty

Example test_algebraic (n m : nat) : n <= m -> m <= n -> n == m.
1 subgoal

n, m : nat
============================
n <= m -> m <= n -> n == m

now apply (lele_eq n m).
No more subgoals.

Qed.
test_algebraic is defined

Example test_algebraic2 (n m : nat * nat) : n <= m -> m <= n -> n == m.
1 subgoal

n, m : nat * nat
============================
n <= m -> m <= n -> n == m

(continues on next page)

7.3. Canonical Structures 419



The Coq Reference Manual, Release 8.9.1

(continued from previous page)
now apply (lele_eq n m).

No more subgoals.

Qed.
test_algebraic2 is defined

End Add_instance_attempt.
Module Add_instance_attempt is defined

Note that no direct proof of n <= m -> m <= n -> n == m is provided by the user for n and m of type nat *
nat. What the user provides is a proof of this statement for n and m of type nat and a proof that the pair constructor pre-
serves this property. The combination of these two facts is a simple form of proof search that Coq performs automatically
while inferring canonical structures.

Compact declaration of Canonical Structures

We need some infrastructure for that.

Require Import Strings.String.
[Loading ML file quote_plugin.cmxs ... done]
[Loading ML file newring_plugin.cmxs ... done]
[Loading ML file ascii_syntax_plugin.cmxs ... done]
[Loading ML file string_syntax_plugin.cmxs ... done]

Module infrastructure.
Interactive Module infrastructure started

Inductive phantom {T : Type} (t : T) : Type := Phantom.
phantom is defined
phantom_rect is defined
phantom_ind is defined
phantom_rec is defined

Definition unify {T1 T2} (t1 : T1) (t2 : T2) (s : option string) :=
phantom t1 -> phantom t2.
unify is defined

Definition id {T} {t : T} (x : phantom t) := x.
id is defined

Notation "[find v | t1 ~ t2 ] p" := (fun v (_ : unify t1 t2 None) => p)
(at level 50, v ident, only parsing).

Notation "[find v | t1 ~ t2 | s ] p" := (fun v (_ : unify t1 t2 (Some s)) => p)
(at level 50, v ident, only parsing).

Notation "'Error : t : s" := (unify _ t (Some s))
(at level 50, format "''Error' : t : s").

Open Scope string_scope.
End infrastructure.

Module infrastructure is defined

To explain the notation [find v | t1 ~ t2] let us pick one of its instances: [find e | EQ.obj e ~ T |
"is not an EQ.type" ]. It should be read as: “find a class e such that its objects have type T or fail with message
”T is not an EQ.type””.
The other utilities are used to ask Coq to solve a specific unification problem, that will in turn require the inference of
some canonical structures. They are explained in more details in [MT13].
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We now have all we need to create a compact “packager” to declare instances of the LEQ class.

Import infrastructure.
Definition packager T e0 le0 (m0 : LEQ.mixin e0 le0) :=

[find e | EQ.obj e ~ T | "is not an EQ.type" ]
[find o | LE.obj o ~ T | "is not an LE.type" ]
[find ce | EQ.class_of e ~ ce ]
[find co | LE.class_of o ~ co ]
[find m | m ~ m0 | "is not the right mixin" ]
LEQ._Pack T (LEQ.Class ce co m).
packager is defined

Notation Pack T m := (packager T _ _ m _ id _ id _ id _ id _ id).

The object Pack takes a type T (the key) and a mixin m. It infers all the other pieces of the class LEQ and declares them
as canonical values associated to the T key. All in all, the only new piece of information we add in the LEQ class is the
mixin, all the rest is already canonical for T and hence can be inferred by Coq.
Pack is a notation, hence it is not type checked at the time of its declaration. It will be type checked when it is used, an
in that case T is going to be a concrete type. The odd arguments _ and id we pass to the packager represent respectively
the classes to be inferred (like e, o, etc) and a token (id) to force their inference. Again, for all the details the reader can
refer to [MT13].
The declaration of canonical instances can now be way more compact:

Canonical Structure nat_LEQty := Eval hnf in Pack nat nat_LEQmx.
nat_LEQty is defined

Canonical Structure pair_LEQty (l1 l2 : LEQ.type) :=
Eval hnf in Pack (LEQ.obj l1 * LEQ.obj l2) (pair_LEQmx l1 l2).
pair_LEQty is defined
Toplevel input, characters 0-118:
> Canonical Structure pair_LEQty (l1 l2 : LEQ.type) := Eval hnf in Pack (LEQ.

↪obj l1 * LEQ.obj l2) (pair_LEQmx l1 l2).
> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

↪^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Warning: Ignoring canonical projection to LEQ.Class by LEQ.class_of in
pair_LEQty: redundant with nat_LEQty

Error messages are also quite intelligible (if one skips to the end of the message).

Fail Canonical Structure err := Eval hnf in Pack bool nat_LEQmx.
The command has indeed failed with message:
The term "id" has type "phantom (EQ.obj ?e) -> phantom (EQ.obj ?e)"
while it is expected to have type "'Error:bool:"is not an EQ.type"".

7.4 Typeclasses

This chapter presents a quick reference of the commands related to type classes. For an actual introduction to typeclasses,
there is a description of the system [SO08] and the literature on type classes in Haskell which also applies.

7.4.1 Class and Instance declarations

The syntax for class and instance declarations is the same as the record syntax of Coq:
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Class classname (p1 : t1) ⋯ (pn : tn) [: sort] := { f1 : u1 ; ⋯ ; fm : um }.

Instance instancename q1 ⋯ qm : classname p1 ⋯ pn := { f1 := t1 ; ⋯ ; fm := tm }.

The pi : ti variables are called the parameters of the class and the fi : ti are called the methods. Each class
definition gives rise to a corresponding record declaration and each instance is a regular definition whose name is given
by instancename and type is an instantiation of the record type.
We’ll use the following example class in the rest of the chapter:

Class EqDec (A : Type) :=
{ eqb : A -> A -> bool ;
eqb_leibniz : forall x y, eqb x y = true -> x = y }.

This class implements a boolean equality test which is compatible with Leibniz equality on some type. An example
implementation is:

Instance unit_EqDec : EqDec unit :=
{ eqb x y := true ;
eqb_leibniz x y H :=

match x, y return x = y with
| tt, tt => eq_refl tt
end }.

If one does not give all the members in the Instance declaration, Coq enters the proof-mode and the user is asked to build
inhabitants of the remaining fields, e.g.:

Instance eq_bool : EqDec bool :=
{ eqb x y := if x then y else negb y }.

Proof.
intros x y H.

1 subgoal

x, y : bool
H : (if x then y else negb y) = true
============================
x = y

destruct x ; destruct y ; (discriminate || reflexivity).
No more subgoals.

Defined.
eq_bool is defined

One has to take care that the transparency of every field is determined by the transparency of the Instance proof. One
can use alternatively the Program Instance variant which has richer facilities for dealing with obligations.

7.4.2 Binding classes

Once a typeclass is declared, one can use it in class binders:

Definition neqb {A} {eqa : EqDec A} (x y : A) := negb (eqb x y).
neqb is defined
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When one calls a class method, a constraint is generated that is satisfied only in contexts where the appropriate instances
can be found. In the example above, a constraint EqDec A is generated and satisfied by eqa : EqDec A. In case no
satisfying constraint can be found, an error is raised:

Fail Definition neqb' (A : Type) (x y : A) := negb (eqb x y).
The command has indeed failed with message:
Unable to satisfy the following constraints:
In environment:
A : Type
x, y : A

?EqDec : "EqDec A"

The algorithm used to solve constraints is a variant of the eauto tactic that does proof search with a set of lemmas (the
instances). It will use local hypotheses as well as declared lemmas in the typeclass_instances database. Hence
the example can also be written:

Definition neqb' A (eqa : EqDec A) (x y : A) := negb (eqb x y).
neqb' is defined

However, the generalizing binders should be used instead as they have particular support for typeclasses:
• They automatically set the maximally implicit status for typeclass arguments, making derived functions as easy to
use as class methods. In the example above, A and eqa should be set maximally implicit.

• They support implicit quantification on partially applied type classes (Implicit generalization). Any argument not
given as part of a typeclass binder will be automatically generalized.

• They also support implicit quantification on Superclasses.
Following the previous example, one can write:

Generalizable Variables A B C.
Definition neqb_implicit `{eqa : EqDec A} (x y : A) := negb (eqb x y).

neqb_implicit is defined

Here A is implicitly generalized, and the resulting function is equivalent to the one above.

7.4.3 Parameterized Instances

One can declare parameterized instances as in Haskell simply by giving the constraints as a binding context before the
instance, e.g.:

Instance prod_eqb `(EA : EqDec A, EB : EqDec B) : EqDec (A * B) :=
{ eqb x y := match x, y with

| (la, ra), (lb, rb) => andb (eqb la lb) (eqb ra rb)
end }.

These instances are used just as well as lemmas in the instance hint database.

7.4.4 Sections and contexts

To ease developments parameterized by many instances, one can use the Context command to introduce these param-
eters into section contexts, it works similarly to the command Variable, except it accepts any binding context as an
argument, so variables can be implicit, and Implicit generalization can be used. For example:
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Section EqDec_defs.
Context `{EA : EqDec A}.

A is declared
EA is declared

Global Instance option_eqb : EqDec (option A) :=
{ eqb x y := match x, y with

| Some x, Some y => eqb x y
| None, None => true
| _, _ => false
end }.

Admitted.

End EqDec_defs.
About option_eqb.

option_eqb : forall A : Type, EqDec A -> EqDec (option A)

Arguments A, EA are implicit and maximally inserted
Argument scopes are [type_scope _]
Expands to: Constant Top.option_eqb

Here the Global modifier redeclares the instance at the end of the section, once it has been generalized by the context
variables it uses.
See also:
Section Section mechanism

7.4.5 Building hierarchies

Superclasses

One can also parameterize classes by other classes, generating a hierarchy of classes and superclasses. In the same way,
we give the superclasses as a binding context:

Class Ord `(E : EqDec A) := { le : A -> A -> bool }.
Ord is defined
le is defined

Contrary to Haskell, we have no special syntax for superclasses, but this declaration is equivalent to:

Class `(E : EqDec A) => Ord A :=
{ le : A -> A -> bool }.

This declaration means that any instance of the Ord class must have an instance of EqDec. The parameters of the
subclass contain at least all the parameters of its superclasses in their order of appearance (here A is the only one). As
we have seen, Ord is encoded as a record type with two parameters: a type A and an E of type EqDec A. However, one
can still use it as if it had a single parameter inside generalizing binders: the generalization of superclasses will be done
automatically.

Definition le_eqb `{Ord A} (x y : A) := andb (le x y) (le y x).
le_eqb is defined

In some cases, to be able to specify sharing of structures, one may want to give explicitly the superclasses. It is is possible
to do it directly in regular binders, and using the ! modifier in class binders. For example:
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Definition lt `{eqa : EqDec A, ! Ord eqa} (x y : A) := andb (le x y) (neqb x y).
lt is defined

The ! modifier switches the way a binder is parsed back to the regular interpretation of Coq. In particular, it uses the
implicit arguments mechanism if available, as shown in the example.

Substructures

Substructures are components of a class which are instances of a class themselves. They often arise when using classes
for logical properties, e.g.:

Class Reflexive (A : Type) (R : relation A) :=
reflexivity : forall x, R x x.

Class Transitive (A : Type) (R : relation A) :=
transitivity : forall x y z, R x y -> R y z -> R x z.

This declares singleton classes for reflexive and transitive relations, (see the singleton class variant for an explanation).
These may be used as parts of other classes:

Class PreOrder (A : Type) (R : relation A) :=
{ PreOrder_Reflexive :> Reflexive A R ;
PreOrder_Transitive :> Transitive A R }.
PreOrder is defined
PreOrder_Reflexive is defined
PreOrder_Transitive is defined

The syntax :> indicates that each PreOrder can be seen as a Reflexive relation. So each time a reflexive relation
is needed, a preorder can be used instead. This is very similar to the coercion mechanism of Structure declarations.
The implementation simply declares each projection as an instance.
One can also declare existing objects or structure projections using the Existing Instance command to achieve the same
effect.

7.4.6 Summary of the commands

Command: Class ident binders
?

: sort
?

:= ident
?

{ ident : >
?

term

+

;
}

The Class command is used to declare a typeclass with parameters binders and fields the declared record
fields.

Variant: Class ident binders
?

: sort
?

:= ident : term
This variant declares a singleton class with a single method. This singleton class is a so-called definitional class,
represented simply as a definition ident binders := term and whose instances are themselves objects
of this type. Definitional classes are not wrapped inside records, and the trivial projection of an instance of
such a class is convertible to the instance itself. This can be useful to make instances of existing objects easily
and to reduce proof size by not inserting useless projections. The class constant itself is declared rigid during
resolution so that the class abstraction is maintained.

Variant: Existing Class ident
This variant declares a class a posteriori from a constant or inductive definition. No methods or instances are
defined.
Warning: ident is already declared as a typeclass

This command has no effect when used on a typeclass.
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Command: Instance ident binders
?

: class t1 … tn [| priority] := { field1 := b1 ; …; fieldi := bi }
This command is used to declare a typeclass instance named ident of the class class with parameters t1 to
tn and fields b1 to bi, where each field must be a declared field of the class. Missing fields must be filled in
interactive proof mode.
An arbitrary context of binders can be put after the name of the instance and before the colon to declare a
parameterized instance. An optional priority can be declared, 0 being the highest priority as for auto hints. If the
priority is not specified, it defaults to the number of non-dependent binders of the instance.

Variant: Instance ident binders
?

: forall binders
?
, class term1 … termn [| priority] := term

This syntax is used for declaration of singleton class instances or for directly giving an explicit term of type
forall binders, class term1 … termn. One need not even mention the unique field name for
singleton classes.

Variant: Global Instance
One can use the Global modifier on instances declared in a section so that their generalization is automati-
cally redeclared after the section is closed.

Variant: Program Instance
Switches the type checking to Program (chapter Program) and uses the obligation mechanism to manage
missing fields.

Variant: Declare Instance
In a Module Type, this command states that a corresponding concrete instance should exist in any
implementation of this Module Type. This is similar to the distinction between Parameter vs.
Definition, or between Declare Module and Module.

Besides the Class and Instance vernacular commands, there are a few other commands related to typeclasses.

Command: Existing Instance ident
+

[| priority]
This command adds an arbitrary list of constants whose type ends with an applied typeclass to the instance database
with an optional priority. It can be used for redeclaring instances at the end of sections, or declaring structure
projections as instances. This is equivalent to Hint Resolve ident : typeclass_instances, except
it registers instances for Print Instances.

typeclasses eauto
This tactic uses a different resolution engine than eauto and auto. The main differences are the following:

• Contrary toeauto andauto, the resolution is done entirely in the new proof engine (as of Coq 8.6), meaning
that backtracking is available among dependent subgoals, and shelving goals is supported. typeclasses
eauto is a multi-goal tactic. It analyses the dependencies between subgoals to avoid backtracking on subgoals
that are entirely independent.

• When called with no arguments, typeclasses eauto uses the typeclass_instances database
by default (instead of core). Dependent subgoals are automatically shelved, and shelved goals can remain after
resolution ends (following the behavior of Coq 8.5).

Note: As of Coq 8.6, all:once (typeclasses eauto) faithfully mimicks what happens during
typeclass resolution when it is called during refinement/type inference, except that only declared class subgoals
are considered at the start of resolution during type inference, while all can select non-class subgoals as well.
It might move to all:typeclasses eauto in future versions when the refinement engine will be able
to backtrack.

• When called with specific databases (e.g. with), typeclasses eauto allows shelved goals to remain at
any point during search and treat typeclass goals like any other.
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• The transparency information of databases is used consistently for all hints declared in them. It is always used
when calling the unifier. When considering local hypotheses, we use the transparent state of the first hint
database given. Using an empty database (created with Create HintDb for example) with unfoldable
variables and constants as the first argument of typeclasses eauto hence makes resolution with the
local hypotheses use full conversion during unification.

Variant: typeclasses eauto num

Warning: The semantics for the limit num is different than for auto. By default, if no limit is given,
the search is unbounded. Contrary to auto, introduction steps are counted, which might result in larger
limits being necessary when searching with typeclasses eauto than with auto.

Variant: typeclasses eauto with ident
+

This variant runs resolution with the given hint databases. It treats typeclass subgoals the same as other
subgoals (no shelving of non-typeclass goals in particular).

autoapply term with ident
The tactic autoapply applies a term using the transparency information of the hint database ident, and does
no typeclass resolution. This can be used in Hint Extern’s for typeclass instances (in the hint database
typeclass_instances) to allow backtracking on the typeclass subgoals created by the lemma application,
rather than doing typeclass resolution locally at the hint application time.

Typeclasses Transparent, Typclasses Opaque

Command: Typeclasses Transparent ident
+

This command makes the identifiers transparent during typeclass resolution.

Command: Typeclasses Opaque ident
+

Make the identifiers opaque for typeclass search. It is useful when some constants prevent some unifications and
make resolution fail. It is also useful to declare constants which should never be unfolded during proof-search, like
fixpoints or anything which does not look like an abbreviation. This can additionally speed up proof search as the
typeclass map can be indexed by such rigid constants (see The hints databases for auto and eauto).

By default, all constants and local variables are considered transparent. One should take care not to make opaque any
constant that is used to abbreviate a type, like:

Definition relation A := A -> A -> Prop.

This is equivalent to Hint Transparent, Opaque ident : typeclass_instances.

Options

Flag: Typeclasses Dependency Order
This option (on by default since 8.6) respects the dependency order between subgoals, meaning that subgoals on
which other subgoals depend come first, while the non-dependent subgoals were put before the dependent ones
previously (Coq 8.5 and below). This can result in quite different performance behaviors of proof search.

Flag: Typeclasses Filtered Unification
This option, available since Coq 8.6 and off by default, switches the hint application procedure to a filter-then-unify
strategy. To apply a hint, we first check that the goal matches syntactically the inferred or specified pattern of the
hint, and only then try to unify the goal with the conclusion of the hint. This can drastically improve performance
by calling unification less often, matching syntactic patterns being very quick. This also provides more control on
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the triggering of instances. For example, forcing a constant to explicitely appear in the pattern will make it never
apply on a goal where there is a hole in that place.

Flag: Typeclasses Limit Intros
This option (on by default) controls the ability to apply hints while avoiding (functional) eta-expansions in the
generated proof term. It does so by allowing hints that conclude in a product to apply to a goal with a matching
product directly, avoiding an introduction.

Warning: This can be expensive as it requires rebuilding hint clauses dynamically, and does not benefit from
the invertibility status of the product introduction rule, resulting in potentially more expensive proof-search (i.e.
more useless backtracking).

Flag: Typeclass Resolution For Conversion
This option (on by default) controls the use of typeclass resolution when a unification problem cannot be solved
during elaboration/type inference. With this option on, when a unification fails, typeclass resolution is tried before
launching unification once again.

Flag: Typeclasses Strict Resolution
Typeclass declarations introduced when this option is set have a stricter resolution behavior (the option is off by
default). When looking for unifications of a goal with an instance of this class, we “freeze” all the existentials
appearing in the goals, meaning that they are considered rigid during unification and cannot be instantiated.

Flag: Typeclasses Unique Solutions
When a typeclass resolution is launched we ensure that it has a single solution or fail. This ensures that the resolution
is canonical, but can make proof search much more expensive.

Flag: Typeclasses Unique Instances
Typeclass declarations introduced when this option is set have a more efficient resolution behavior (the option is
off by default). When a solution to the typeclass goal of this class is found, we never backtrack on it, assuming that
it is canonical.

Flag: Typeclasses Debug
Controls whether typeclass resolution steps are shown during search. Setting this flag also sets Typeclasses
Debug Verbosity to 1.

Option: Typeclasses Debug Verbosity num
Determines how much information is shown for typeclass resolution steps during search. 1 is the default level. 2
shows additional information such as tried tactics and shelving of goals. Setting this option also setsTypeclasses
Debug.

Flag: Refine Instance Mode
This option allows to switch the behavior of instance declarations made through the Instance command.

• When it is on (the default), instances that have unsolved holes in their proof-term silently open the proof mode
with the remaining obligations to prove.

• When it is off, they fail with an error instead.

Typeclasses eauto :=

Command: Typeclasses eauto := debug
?

{dfs | bfs}
?

depth
This command allows more global customization of the typeclass resolution tactic. The semantics of the options
are:

• debug In debug mode, the trace of successfully applied tactics is printed.
• dfs, bfs This sets the search strategy to depth-first search (the default) or breadth-first search.
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• depth This sets the depth limit of the search.

7.5 Omega: a solver for quantifier-free problems in Presburger Arith-
metic

Author Pierre Crégut

7.5.1 Description of omega

omega
omega is a tactic for solving goals in Presburger arithmetic, i.e. for proving formulas made of equations and
inequalities over the type nat of natural numbers or the type Z of binary-encoded integers. Formulas on nat are
automatically injected into Z. The procedure may use any hypothesis of the current proof session to solve the goal.
Multiplication is handled by omega but only goals where at least one of the two multiplicands of products is a
constant are solvable. This is the restriction meant by ”Presburger arithmetic”.
If the tactic cannot solve the goal, it fails with an error message. In any case, the computation eventually stops.

Variant: romega
Deprecated since version 8.9: Use lia instead.

7.5.2 Arithmetical goals recognized by omega

omega applies only to quantifier-free formulas built from the connectives:

/\ \/ ~ ->

on atomic formulas. Atomic formulas are built from the predicates:

= < <= > >=

on nat or Z. In expressions of type nat, omega recognizes:

+ - * S O pred

and in expressions of type Z, omega recognizes numeral constants and:

+ - * Z.succ Z.pred

All expressions of type nat or Z not built on these operators are considered abstractly as if they were arbitrary variables
of type nat or Z.

7.5.3 Messages from omega

When omega does not solve the goal, one of the following errors is generated:
Error: omega can't solve this system.

This may happen if your goal is not quantifier-free (if it is universally quantified, try intros first; if it contains
existentials quantifiers too, omega is not strong enough to solve your goal). This may happen also if your goal
contains arithmetical operators not recognized by omega. Finally, your goal may be simply not true!
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Error: omega: Not a quantifier-free goal.
If your goal is universally quantified, you should first apply intro as many times as needed.

Error: omega: Unrecognized predicate or connective: ident.

Error: omega: Unrecognized atomic proposition: ...

Error: omega: Can't solve a goal with proposition variables.

Error: omega: Unrecognized proposition.

Error: omega: Can't solve a goal with non-linear products.

Error: omega: Can't solve a goal with equality on type ...

7.5.4 Using omega

The omega tactic does not belong to the core system. It should be loaded by

Require Import Omega.

Example

Require Import Omega.
Open Scope Z_scope.
Goal forall m n:Z, 1 + 2 * m <> 2 * n.

1 subgoal

============================
forall m n : Z, 1 + 2 * m <> 2 * n

intros; omega.
No more subgoals.

Abort.
Goal forall z:Z, z > 0 -> 2 * z + 1 > z.

1 subgoal

============================
forall z : Z, z > 0 -> 2 * z + 1 > z

intro; omega.
No more subgoals.

Abort.

7.5.5 Options

Flag: Stable Omega
Deprecated since version 8.5.
This deprecated option (on by default) is for compatibility with Coq pre 8.5. It resets internal name counters to
make executions of omega independent.

Flag: Omega UseLocalDefs
This option (on by default) allows omega to use the bodies of local variables.
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Flag: Omega System
This option (off by default) activate the printing of debug information

Flag: Omega Action
This option (off by default) activate the printing of debug information

7.5.6 Technical data

Overview of the tactic

• The goal is negated twice and the first negation is introduced as a hypothesis.
• Hypotheses are decomposed in simple equations or inequalities. Multiple goals may result from this phase.
• Equations and inequalities over nat are translated over Z, multiple goals may result from the translation of sub-
traction.

• Equations and inequalities are normalized.
• Goals are solved by the OMEGA decision procedure.
• The script of the solution is replayed.

Overview of the OMEGA decision procedure

The OMEGA decision procedure involved in the omega tactic uses a small subset of the decision procedure presented
in [Pug92] Here is an overview, refer to the original paper for more information.

• Equations and inequalities are normalized by division by the GCD of their coefficients.
• Equations are eliminated, using the Banerjee test to get a coefficient equal to one.
• Note that each inequality cuts the Euclidean space in half.
• Inequalities are solved by projecting on the hyperspace defined by cancelling one of the variables. They are parti-
tioned according to the sign of the coefficient of the eliminated variable. Pairs of inequalities from different classes
define a new edge in the projection.

• Redundant inequalities are eliminated or merged in new equations that can be eliminated by the Banerjee test.
• The last two steps are iterated until a contradiction is reached (success) or there is no more variable to eliminate
(failure).

It may happen that there is a real solution and no integer one. The last steps of the Omega procedure are not implemented,
so the decision procedure is only partial.

7.5.7 Bugs

• The simplification procedure is very dumb and this results in many redundant cases to explore.
• Much too slow.
• Certainly other bugs! You can report them to https://coq.inria.fr/bugs/.
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7.6 Micromega: tactics for solving arithmetic goals over ordered
rings

Authors Frédéric Besson and Evgeny Makarov

7.6.1 Short description of the tactics

The Psatz module (Require Import Psatz.) gives access to several tactics for solving arithmetic goals over ℤ, ℚ,
and ℝ20. It also possible to get the tactics for integers by a Require Import Lia, rationals Require Import
Lqa and reals Require Import Lra.

• lia is a decision procedure for linear integer arithmetic;
• nia is an incomplete proof procedure for integer non-linear arithmetic;
• lra is a decision procedure for linear (real or rational) arithmetic;
• nra is an incomplete proof procedure for non-linear (real or rational) arithmetic;
• psatz D n where D is ℤ or ℚ or ℝ, and n is an optional integer limiting the proof search depth, is an incomplete
proof procedure for non-linear arithmetic. It is based on John Harrison’s HOL Light driver to the external prover
csdp21. Note that the csdp driver is generating a proof cache which makes it possible to rerun scripts even
without csdp.

The tactics solve propositional formulas parameterized by atomic arithmetic expressions interpreted over a domain 𝐷 ∈
{ℤ, ℚ, ℝ}. The syntax of the formulas is the following:

F ::= A ∣ P ∣ True ∣ False ∣ F ∧ F ∣ F ∨ F ∣ F ↔ F ∣ F → F ∣ ¬ F
A ::= p = p ∣ p > p ∣ p < p ∣ p ≥ p ∣ p ≤ p
p ::= c ∣ x ∣ −p ∣ p − p ∣ p + p ∣ p × p ∣ p ^ n

where 𝑐 is a numeric constant, 𝑥 ∈ 𝐷 is a numeric variable, the operators −, +, × are respectively subtraction, addition,
and product; 𝑝𝑛 is exponentiation by a constant 𝑛, 𝑃 is an arbitrary proposition. For ℚ, equality is not Leibniz equality =
but the equality of rationals ==.
For ℤ (resp. ℚ), 𝑐 ranges over integer constants (resp. rational constants). For ℝ, the tactic recognizes as real constants
the following expressions:

c ::= R0 | R1 | Rmul(c,c) | Rplus(c,c) | Rminus(c,c) | IZR z | IQR q | Rdiv(c,c) |␣
↪Rinv c

where 𝑧 is a constant in ℤ and 𝑞 is a constant in ℚ. This includes integer constants written using the decimal notation, i.e.,
c%R.

7.6.2 Positivstellensatz refutations

The name psatz is an abbreviation for positivstellensatz – literally ”positivity theorem” – which generalizes Hilbert’s
nullstellensatz. It relies on the notion of Cone. Given a (finite) set of polynomials 𝑆, Cone(𝑆) is inductively defined as
the smallest set of polynomials closed under the following rules:

𝑝 ∈ 𝑆
𝑝 ∈ Cone(𝑆) 𝑝2 ∈ Cone(𝑆)

𝑝1 ∈ Cone(𝑆) 𝑝2 ∈ Cone(𝑆) � ∈ {+, ∗}
𝑝1 � 𝑝2 ∈ Cone(𝑆)

20 Support for nat and N is obtained by pre-processing the goal with the zify tactic.
21 Sources and binaries can be found at https://projects.coin-or.org/Csdp
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The following theorem provides a proof principle for checking that a set of polynomial inequalities does not have solu-
tions22.
Theorem (Psatz). Let 𝑆 be a set of polynomials. If −1 belongs to Cone(𝑆), then the conjunction ⋀𝑝∈𝑆 𝑝 ≥ 0 is
unsatisfiable. A proof based on this theorem is called a positivstellensatz refutation. The tactics work as follows. Formulas
are normalized into conjunctive normal form ⋀𝑖 𝐶𝑖 where 𝐶𝑖 has the general form (⋀𝑗∈𝑆𝑖

𝑝𝑗 � 0) → False and � ∈ {>
, ≥, =} for 𝐷 ∈ {ℚ, ℝ} and � ∈ {≥, =} for ℤ.
For each conjunct 𝐶𝑖, the tactic calls an oracle which searches for −1 within the cone. Upon success, the oracle returns
a cone expression that is normalized by the ring tactic (see The ring and field tactic families) and checked to be −1.

7.6.3 lra: a decision procedure for linear real and rational arithmetic

lra
This tactic is searching for linear refutations using Fourier elimination23. As a result, this tactic explores a subset
of the Cone defined as
LinCone(𝑆) = {∑𝑝∈𝑆 𝛼𝑝 × 𝑝 ∣ 𝛼𝑝 are positive constants}
The deductive power of lra overlaps with the one of field tactic e.g., 𝑥 = 10 ∗ 𝑥/10 is solved by lra.

7.6.4 lia: a tactic for linear integer arithmetic

lia

This tactic offers an alternative to the omega and romega tactics. Roughly speaking, the deductive power of lia is the
combined deductive power of ring_simplify and omega. However, it solves linear goals that omega and romega
do not solve, such as the following so-called omega nightmare [Pug92].

Goal forall x y,
27 <= 11 * x + 13 * y <= 45 ->
-10 <= 7 * x - 9 * y <= 4 -> False.

The estimation of the relative efficiency of lia vs omega and romega is under evaluation.

High level view of lia

Over ℝ, positivstellensatz refutations are a complete proof principle24. However, this is not the case over ℤ. Actually,
positivstellensatz refutations are not even sufficient to decide linear integer arithmetic. The canonical example is 2 ∗ 𝑥 =
1− > False which is a theorem of ℤ but not a theorem of ℝ. To remedy this weakness, the lia tactic is using
recursively a combination of:

• linear positivstellensatz refutations;
• cutting plane proofs;
• case split.

22 Variants deal with equalities and strict inequalities.
23 More efficient linear programming techniques could equally be employed.
24 In practice, the oracle might fail to produce such a refutation.
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Cutting plane proofs

are a way to take into account the discreteness of ℤ by rounding up (rational) constants up-to the closest integer.
Theorem: Bound on the ceiling function

Let 𝑝 be an integer and 𝑐 a rational constant. Then 𝑝 ≥ 𝑐 → 𝑝 ≥ ⌈𝑐⌉.
For instance, from 2 x = 1 we can deduce

• 𝑥 ≥ 1/2 whose cut plane is 𝑥 ≥ ⌈1/2⌉ = 1;
• 𝑥 ≤ 1/2 whose cut plane is 𝑥 ≤ ⌊1/2⌋ = 0.

By combining these two facts (in normal form) 𝑥 − 1 ≥ 0 and −𝑥 ≥ 0, we conclude by exhibiting a positivstellensatz
refutation: −1 ≡ 𝑥 − 1 + −𝑥 ∈ Cone(𝑥 − 1, 𝑥).
Cutting plane proofs and linear positivstellensatz refutations are a complete proof principle for integer linear arithmetic.

Case split

enumerates over the possible values of an expression.
Theorem. Let 𝑝 be an integer and 𝑐1 and 𝑐2 integer constants. Then:

𝑐1 ≤ 𝑝 ≤ 𝑐2 ⇒ ⋁𝑥∈[𝑐1,𝑐2] 𝑝 = 𝑥

Our current oracle tries to find an expression 𝑒 with a small range [𝑐1, 𝑐2]. We generate 𝑐2 − 𝑐1 subgoals which contexts
are enriched with an equation 𝑒 = 𝑖 for 𝑖 ∈ [𝑐1, 𝑐2] and recursively search for a proof.

7.6.5 nra: a proof procedure for non-linear arithmetic

nra

This tactic is an experimental proof procedure for non-linear arithmetic. The tactic performs a limited amount of non-
linear reasoning before running the linear prover of lra. This pre-processing does the following:

• If the context contains an arithmetic expression of the form 𝑒[𝑥2] where 𝑥 is a monomial, the context is enriched
with 𝑥2 ≥ 0;

• For all pairs of hypotheses 𝑒1 ≥ 0, 𝑒2 ≥ 0, the context is enriched with 𝑒1 × 𝑒2 ≥ 0.
After this pre-processing, the linear prover of lra searches for a proof by abstracting monomials by variables.

7.6.6 nia: a proof procedure for non-linear integer arithmetic

nia

This tactic is a proof procedure for non-linear integer arithmetic. It performs a pre-processing similar to nra. The
obtained goal is solved using the linear integer prover lia.

7.6.7 psatz: a proof procedure for non-linear arithmetic

psatz
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This tactic explores the Cone by increasing degrees – hence the depth parameter 𝑛. In theory, such a proof search
is complete – if the goal is provable the search eventually stops. Unfortunately, the external oracle is using numeric
(approximate) optimization techniques that might miss a refutation.
To illustrate the working of the tactic, consider we wish to prove the following Coq goal:

Require Import ZArith Psatz.
Open Scope Z_scope.
Goal forall x, -x^2 >= 0 -> x - 1 >= 0 -> False.
intro x.
psatz Z 2.

As shown, such a goal is solved by intro x. psatz Z 2.. The oracle returns the cone expression 2 × (𝑥 −
1) + (x − 1) × (x − 1) + −𝑥2 (polynomial hypotheses are printed in bold). By construction, this expression belongs to
Cone(−𝑥2, 𝑥 − 1). Moreover, by running ring we obtain −1. By Theorem Psatz, the goal is valid.

7.7 Extraction of programs in OCaml and Haskell

Authors Jean-Christophe Filliâtre and Pierre Letouzey
We present here the Coq extraction commands, used to build certified and relatively efficient functional programs, ex-
tracting them from either Coq functions or Coq proofs of specifications. The functional languages available as output are
currently OCaml, Haskell and Scheme. In the following, ”ML” will be used (abusively) to refer to any of the three.
Before using any of the commands or options described in this chapter, the extraction framework should first be loaded
explicitly via Require Extraction, or via the more robust From Coq Require Extraction. Note that in
earlier versions of Coq, these commands and options were directly available without any preliminary Require.

Require Extraction.

7.7.1 Generating ML Code

Note: In the following, a qualified identifier qualid can be used to refer to any kind of Coq global ”object” : constant,
inductive type, inductive constructor or module name.

The next two commands are meant to be used for rapid preview of extraction. They both display extracted term(s) inside
Coq.
Command: Extraction qualid

Extraction of the mentioned object in the Coq toplevel.

Command: Recursive Extraction qualid
+

Recursive extraction of all the mentioned objects and all their dependencies in the Coq toplevel.
All the following commands produce real ML files. User can choose to produce one monolithic file or one file per Coq
library.

Command: Extraction string qualid
+

Recursive extraction of all the mentioned objects and all their dependencies in one monolithic file string. Global
and local identifiers are renamed according to the chosen ML language to fulfill its syntactic conventions, keeping
original names as much as possible.
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Command: Extraction Library ident
Extraction of the whole Coq library ident.v to an ML module ident.ml. In case of name clash, identifiers
are here renamed using prefixes coq_ or Coq_ to ensure a session-independent renaming.

Command: Recursive Extraction Library ident
Extraction of the Coq library ident.v and all other modules ident.v depends on.

Command: Separate Extraction qualid
+

Recursive extraction of all the mentioned objects and all their dependencies, just as Extraction string

qualid
+ , but instead of producing one monolithic file, this command splits the produced code in separate ML

files, one per corresponding Coq .v file. This command is hence quite similar to Recursive Extraction
Library, except that only the needed parts of Coq libraries are extracted instead of the whole. The naming
convention in case of name clash is the same one as Extraction Library: identifiers are here renamed
using prefixes coq_ or Coq_.

The following command is meant to help automatic testing of the extraction, see for instance the test-suite directory
in the Coq sources.

Command: Extraction TestCompile qualid
+

All the mentioned objects and all their dependencies are extracted to a temporary OCaml file, just as in
Extraction "file". Then this temporary file and its signature are compiled with the same OCaml com-
piler used to built Coq. This command succeeds only if the extraction and the OCaml compilation succeed. It fails
if the current target language of the extraction is not OCaml.

7.7.2 Extraction Options

Setting the target language

Command: Extraction Language ( OCaml | Haskell | Scheme )
The ability to fix target language is the first and more important of the extraction options. Default is OCaml.

Inlining and optimizations

Since OCaml is a strict language, the extracted code has to be optimized in order to be efficient (for instance, when
using induction principles we do not want to compute all the recursive calls but only the needed ones). So the extraction
mechanism provides an automatic optimization routine that will be called each time the user wants to generate an OCaml
program. The optimizations can be split in two groups: the type-preserving ones (essentially constant inlining and re-
ductions) and the non type-preserving ones (some function abstractions of dummy types are removed when it is deemed
safe in order to have more elegant types). Therefore some constants may not appear in the resulting monolithic OCaml
program. In the case of modular extraction, even if some inlining is done, the inlined constants are nevertheless printed,
to ensure session-independent programs.
Concerning Haskell, type-preserving optimizations are less useful because of laziness. We still make some optimizations,
for example in order to produce more readable code.
The type-preserving optimizations are controlled by the following Coq options:
Flag: Extraction Optimize

Default is on. This controls all type-preserving optimizations made on the ML terms (mostly reduction of dummy
beta/iota redexes, but also simplifications on Cases, etc). Turn this option off if you want a ML term as close as
possible to the Coq term.

Flag: Extraction Conservative Types
Default is off. This controls the non type-preserving optimizations made on ML terms (which try to avoid function
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abstraction of dummy types). Turn this option on to make sure that e:t implies that e':t' where e' and t'
are the extracted code of e and t respectively.

Flag: Extraction KeepSingleton
Default is off. Normally, when the extraction of an inductive type produces a singleton type (i.e. a type with only
one constructor, and only one argument to this constructor), the inductive structure is removed and this type is seen
as an alias to the inner type. The typical example is sig. This option allows disabling this optimization when one
wishes to preserve the inductive structure of types.

Flag: Extraction AutoInline
Default is on. The extraction mechanism inlines the bodies of some defined constants, according to some heuristics
like size of bodies, uselessness of some arguments, etc. Those heuristics are not always perfect; if you want to
disable this feature, turn this option off.

Command: Extraction Inline qualid
+

In addition to the automatic inline feature, the constants mentionned by this command will always be inlined during
extraction.

Command: Extraction NoInline qualid
+

Conversely, the constants mentionned by this command will never be inlined during extraction.
Command: Print Extraction Inline

Prints the current state of the table recording the custom inlinings declared by the two previous commands.
Command: Reset Extraction Inline

Empties the table recording the custom inlinings (see the previous commands).
Inlining and printing of a constant declaration:
The user can explicitly ask for a constant to be extracted by two means:

• by mentioning it on the extraction command line
• by extracting the whole Coq module of this constant.

In both cases, the declaration of this constant will be present in the produced file. But this same constant may or may not
be inlined in the following terms, depending on the automatic/custom inlining mechanism.
For the constants non-explicitly required but needed for dependency reasons, there are two cases:

• If an inlining decision is taken, whether automatically or not, all occurrences of this constant are replaced by its
extracted body, and this constant is not declared in the generated file.

• If no inlining decision is taken, the constant is normally declared in the produced file.

Extra elimination of useless arguments

The following command provides some extra manual control on the code elimination performed during extraction, in a
way which is independent but complementary to the main elimination principles of extraction (logical parts and types).

Command: Extraction Implicit qualid [ ident
+

]
This experimental command allows declaring some arguments of qualid as implicit, i.e. useless in extracted
code and hence to be removed by extraction. Here qualid can be any function or inductive constructor, and the
given ident are the names of the concerned arguments. In fact, an argument can also be referred by a number
indicating its position, starting from 1.

When an actual extraction takes place, an error is normally raised if the Extraction Implicit declarations cannot
be honored, that is if any of the implicit arguments still occurs in the final code. This behavior can be relaxed via the
following option:
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Flag: Extraction SafeImplicits
Default is on. When this option is off, a warning is emitted instead of an error if some implicit arguments still
occur in the final code of an extraction. This way, the extracted code may be obtained nonetheless and reviewed
manually to locate the source of the issue (in the code, some comments mark the location of these remaining
implicit arguments). Note that this extracted code might not compile or run properly, depending of the use of these
remaining implicit arguments.

Realizing axioms

Extraction will fail if it encounters an informative axiom not realized. A warning will be issued if it encounters a logical
axiom, to remind the user that inconsistent logical axioms may lead to incorrect or non-terminating extracted terms.
It is possible to assume some axioms while developing a proof. Since these axioms can be any kind of proposition or
object or type, they may perfectly well have some computational content. But a program must be a closed term, and of
course the system cannot guess the program which realizes an axiom. Therefore, it is possible to tell the system what ML
term corresponds to a given axiom.
Command: Extract Constant qualid => string

Give an ML extraction for the given constant. The string may be an identifier or a quoted string.
Command: Extract Inlined Constant qualid => string

Same as the previous one, except that the given ML terms will be inlined everywhere instead of being declared via
a let.

Note: This command is sugar for an Extract Constant followed by a Extraction Inline. Hence a
Reset Extraction Inline will have an effect on the realized and inlined axiom.

Caution: It is the responsibility of the user to ensure that the ML terms given to realize the axioms do have the
expected types. In fact, the strings containing realizing code are just copied to the extracted files. The extraction
recognizes whether the realized axiom should become a ML type constant or a ML object declaration. For example:

Axiom X:Set.
Axiom x:X.
Extract Constant X => "int".
Extract Constant x => "0".

Notice that in the case of type scheme axiom (i.e. whose type is an arity, that is a sequence of product finished by a sort),
then some type variables have to be given (as quoted strings). The syntax is then:
Variant: Extract Constant qualid string ... string => string

The number of type variables is checked by the system. For example:

Axiom Y : Set -> Set -> Set.
Extract Constant Y "'a" "'b" => " 'a * 'b ".

Realizing an axiom via Extract Constant is only useful in the case of an informative axiom (of sort Type or Set).
A logical axiom has no computational content and hence will not appear in extracted terms. But a warning is nonetheless
issued if extraction encounters a logical axiom. This warning reminds user that inconsistent logical axioms may lead to
incorrect or non-terminating extracted terms.
If an informative axiom has not been realized before an extraction, a warning is also issued and the definition of the axiom
is filled with an exception labeled AXIOM TO BE REALIZED. The user must then search these exceptions inside the
extracted file and replace them by real code.

438 Chapter 7. Addendum



The Coq Reference Manual, Release 8.9.1

Realizing inductive types

The system also provides a mechanism to specify ML terms for inductive types and constructors. For instance, the user
may want to use the ML native boolean type instead of the Coq one. The syntax is the following:

Command: Extract Inductive qualid => string [ string
+

]
Give an ML extraction for the given inductive type. You must specify extractions for the type itself (first string)
and all its constructors (all the string between square brackets). In this form, the ML extraction must be an ML
inductive datatype, and the native pattern matching of the language will be used.

Variant: Extract Inductive qualid => string [ string
+

] string
Same as before, with a final extra string that indicates how to perform pattern matching over this inductive
type. In this form, the ML extraction could be an arbitrary type. For an inductive type with 𝑘 constructors,
the function used to emulate the pattern matching should expect 𝑘 + 1 arguments, first the 𝑘 branches in func-
tional form, and then the inductive element to destruct. For instance, the match branch | S n => foo gives
the functional form (fun n -> foo). Note that a constructor with no arguments is considered to have one
unit argument, in order to block early evaluation of the branch: | O => bar leads to the functional form
(fun () -> bar). For instance, when extracting nat into OCaml int, the code to be provided has type:
(unit->'a)->(int->'a)->int->'a.

Caution: As for Extract Constant, this command should be used with care:
• The ML code provided by the user is currently not checked at all by extraction, even for syntax errors.
• Extracting an inductive type to a pre-existing ML inductive type is quite sound. But extracting to a general
type (by providing an ad-hoc pattern matching) will often not be fully rigorously correct. For instance, when
extracting nat to OCaml int, it is theoretically possible to build nat values that are larger than OCaml
max_int. It is the user’s responsibility to be sure that no overflow or other bad events occur in practice.

• Translating an inductive type to an arbitrary ML type does notmagically improve the asymptotic complexity of
functions, even if the ML type is an efficient representation. For instance, when extracting nat to OCaml int,
the function Nat.mul stays quadratic. It might be interesting to associate this translation with some specific
Extract Constant when primitive counterparts exist.

Typical examples are the following:

Extract Inductive unit => "unit" [ "()" ].
Extract Inductive bool => "bool" [ "true" "false" ].
Extract Inductive sumbool => "bool" [ "true" "false" ].

Note: When extracting to OCaml, if an inductive constructor or type has arity 2 and the corresponding string is enclosed
by parentheses, and the string meets OCaml’s lexical criteria for an infix symbol, then the rest of the string is used as an
infix constructor or type.

Extract Inductive list => "list" [ "[]" "(::)" ].
Extract Inductive prod => "(*)" [ "(,)" ].

As an example of translation to a non-inductive datatype, let’s turn nat into OCaml int (see caveat above):

Extract Inductive nat => int [ "0" "succ" ] "(fun fO fS n -> if n=0 then fO () else␣
↪fS (n-1))".
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Avoiding conflicts with existing filenames

When using Extraction Library, the names of the extracted files directly depend on the names of the Coq files.
It may happen that these filenames are in conflict with already existing files, either in the standard library of the target
language or in other code that is meant to be linked with the extracted code. For instance the module List exists both
in Coq and in OCaml. It is possible to instruct the extraction not to use particular filenames.

Command: Extraction Blacklist ident
+

Instruct the extraction to avoid using these names as filenames for extracted code.
Command: Print Extraction Blacklist

Show the current list of filenames the extraction should avoid.
Command: Reset Extraction Blacklist

Allow the extraction to use any filename.
For OCaml, a typical use of these commands is Extraction Blacklist String List.

7.7.3 Differences between Coq and ML type systems

Due to differences between Coq and ML type systems, some extracted programs are not directly typable in ML. We now
solve this problem (at least in OCaml) by adding when needed some unsafe casting Obj.magic, which give a generic
type 'a to any term.
First, if some part of the program is very polymorphic, there may be no ML type for it. In that case the extraction to
ML works alright but the generated code may be refused by the ML type checker. A very well known example is the
distr-pair function:

Definition dp {A B:Type}(x:A)(y:B)(f:forall C:Type, C->C) := (f A x, f B y).

In OCaml, for instance, the direct extracted term would be:

let dp x y f = Pair((f () x),(f () y))

and would have type:

dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,'b) prod

which is not its original type, but a restriction.
We now produce the following correct version:

let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y))

Secondly, some Coq definitions may have no counterpart in ML. This happens when there is a quantification over types
inside the type of a constructor; for example:

Inductive anything : Type := dummy : forall A:Set, A -> anything.

which corresponds to the definition of an ML dynamic type. In OCaml, we must cast any argument of the constructor
dummy (no GADT are produced yet by the extraction).
Even with those unsafe castings, you should never get error like segmentation fault. In fact even if your program
may seem ill-typed to the OCaml type checker, it can’t go wrong : it comes from a Coq well-typed terms, so for exam-
ple inductive types will always have the correct number of arguments, etc. Of course, when launching manually some
extracted function, you should apply it to arguments of the right shape (from the Coq point-of-view).
More details about the correctness of the extracted programs can be found in [Let02].
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We have to say, though, that in most ”realistic” programs, these problems do not occur. For example all the programs of
Coq library are accepted by the OCaml type checker without any Obj.magic (see examples below).

7.7.4 Some examples

We present here two examples of extraction, taken from the Coq Standard Library. We choose OCaml as the target
language, but everything, with slight modifications, can also be done in the other languages supported by extraction. We
then indicate where to find other examples and tests of extraction.

A detailed example: Euclidean division

The file Euclid contains the proof of Euclidean division. The natural numbers used here are unary, represented by the
type‘‘nat‘‘, which is defined by two constructors O and S. This module contains a theorem eucl_dev, whose type is:

forall b:nat, b > 0 -> forall a:nat, diveucl a b

where diveucl is a type for the pair of the quotient and the modulo, plus some logical assertions that disappear during
extraction. We can now extract this program to OCaml:

Require Extraction.
Require Import Euclid Wf_nat.
Extraction Inline gt_wf_rec lt_wf_rec induction_ltof2.
Recursive Extraction eucl_dev.

type nat =
| O
| S of nat

type sumbool =
| Left
| Right

(** val sub : nat -> nat -> nat **)

let rec sub n m =
match n with
| O -> n
| S k -> (match m with

| O -> n
| S l -> sub k l)

(** val le_lt_dec : nat -> nat -> sumbool **)

let rec le_lt_dec n m =
match n with
| O -> Left
| S n0 -> (match m with

| O -> Right
| S m0 -> le_lt_dec n0 m0)

(** val le_gt_dec : nat -> nat -> sumbool **)

let le_gt_dec =
le_lt_dec

type diveucl =

(continues on next page)
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(continued from previous page)
| Divex of nat * nat

(** val eucl_dev : nat -> nat -> diveucl **)

let rec eucl_dev n m =
let s = le_gt_dec n m in
(match s with
| Left ->
let d = let y = sub m n in eucl_dev n y in
let Divex (q, r) = d in Divex ((S q), r)

| Right -> Divex (O, m))

The inlining of gt_wf_rec and others is not mandatory. It only enhances readability of extracted code. You can then
copy-paste the output to a file euclid.ml or let Coq do it for you with the following command:

Extraction "euclid" eucl_dev.

Let us play the resulting program (in an OCaml toplevel):

#use "euclid.ml";;
type nat = O | S of nat
type sumbool = Left | Right
val sub : nat -> nat -> nat = <fun>
val le_lt_dec : nat -> nat -> sumbool = <fun>
val le_gt_dec : nat -> nat -> sumbool = <fun>
type diveucl = Divex of nat * nat
val eucl_dev : nat -> nat -> diveucl = <fun>

# eucl_dev (S (S O)) (S (S (S (S (S O)))));;
- : diveucl = Divex (S (S O), S O)

It is easier to test on OCaml integers:

# let rec nat_of_int = function 0 -> O | n -> S (nat_of_int (n-1));;
val nat_of_int : int -> nat = <fun>

# let rec int_of_nat = function O -> 0 | S p -> 1+(int_of_nat p);;
val int_of_nat : nat -> int = <fun>

# let div a b =
let Divex (q,r) = eucl_dev (nat_of_int b) (nat_of_int a)
in (int_of_nat q, int_of_nat r);;

val div : int -> int -> int * int = <fun>

# div 173 15;;
- : int * int = (11, 8)

Note that these nat_of_int and int_of_nat are now available via a mere Require Import
ExtrOcamlIntConv and then adding these functions to the list of functions to extract. This file
ExtrOcamlIntConv.v and some others in plugins/extraction/ are meant to help building concrete
program via extraction.

Extraction’s horror museum

Some pathological examples of extraction are grouped in the file test-suite/success/extraction.v of the
sources of Coq.

442 Chapter 7. Addendum



The Coq Reference Manual, Release 8.9.1

Users’ Contributions

Several of the Coq Users’ Contributions use extraction to produce certified programs. In particular the following ones
have an automatic extraction test:

• additions : https://github.com/coq-contribs/additions
• bdds : https://github.com/coq-contribs/bdds
• canon-bdds : https://github.com/coq-contribs/canon-bdds
• chinese : https://github.com/coq-contribs/chinese
• continuations : https://github.com/coq-contribs/continuations
• coq-in-coq : https://github.com/coq-contribs/coq-in-coq
• exceptions : https://github.com/coq-contribs/exceptions
• firing-squad : https://github.com/coq-contribs/firing-squad
• founify : https://github.com/coq-contribs/founify
• graphs : https://github.com/coq-contribs/graphs
• higman-cf : https://github.com/coq-contribs/higman-cf
• higman-nw : https://github.com/coq-contribs/higman-nw
• hardware : https://github.com/coq-contribs/hardware
• multiplier : https://github.com/coq-contribs/multiplier
• search-trees : https://github.com/coq-contribs/search-trees
• stalmarck : https://github.com/coq-contribs/stalmarck

Note that continuations and multiplier are a bit particular. They are examples of developments where Obj.
magic is needed. This is probably due to a heavy use of impredicativity. After compilation, those two examples run
nonetheless, thanks to the correction of the extraction [Let02].

7.8 Program

Author Matthieu Sozeau
We present here the Program tactic commands, used to build certified Coq programs, elaborating them from their algo-
rithmic skeleton and a rich specification [Soz07]. It can be thought of as a dual of Extraction. The goal of Program is to
program as in a regular functional programming language whilst using as rich a specification as desired and proving that
the code meets the specification using the whole Coq proof apparatus. This is done using a technique originating from
the “Predicate subtyping” mechanism of PVS [ROS98], which generates type checking conditions while typing a term
constrained to a particular type. Here we insert existential variables in the term, which must be filled with proofs to get
a complete Coq term. Program replaces the Program tactic by Catherine Parent [Par95] which had a similar goal but
is no longer maintained.
The languages available as input are currently restricted to Coq’s term language, but may be extended to OCaml, Haskell
and others in the future. We use the same syntax as Coq and permit to use implicit arguments and the existing coercion
mechanism. Input terms and types are typed in an extended system (Russell) and interpreted into Coq terms. The
interpretation process may produce some proof obligations which need to be resolved to create the final term.

7.8. Program 443

https://github.com/coq-contribs/additions
https://github.com/coq-contribs/bdds
https://github.com/coq-contribs/canon-bdds
https://github.com/coq-contribs/chinese
https://github.com/coq-contribs/continuations
https://github.com/coq-contribs/coq-in-coq
https://github.com/coq-contribs/exceptions
https://github.com/coq-contribs/firing-squad
https://github.com/coq-contribs/founify
https://github.com/coq-contribs/graphs
https://github.com/coq-contribs/higman-cf
https://github.com/coq-contribs/higman-nw
https://github.com/coq-contribs/hardware
https://github.com/coq-contribs/multiplier
https://github.com/coq-contribs/search-trees
https://github.com/coq-contribs/stalmarck


The Coq Reference Manual, Release 8.9.1

7.8.1 Elaborating programs

The main difference from Coq is that an object in a type T : Set can be considered as an object of type {x : T |
P} for any well-formed P : Prop. If we go from T to the subset of T verifying property P, we must prove that the
object under consideration verifies it. Russell will generate an obligation for every such coercion. In the other direction,
Russell will automatically insert a projection.
Another distinction is the treatment of pattern matching. Apart from the following differences, it is equivalent to the
standard match operation (see Extended pattern matching).

• Generation of equalities. A match expression is always generalized by the corresponding equality. As an example,
the expression:

match x with
| 0 => t
| S n => u
end.

will be first rewritten to:

(match x as y return (x = y -> _) with
| 0 => fun H : x = 0 -> t
| S n => fun H : x = S n -> u
end) (eq_refl x).

This permits to get the proper equalities in the context of proof obligations inside clauses, without which reasoning
is very limited.

• Generation of disequalities. If a pattern intersects with a previous one, a disequality is added in the context of the
second branch. See for example the definition of div2 below, where the second branch is typed in a context where
∀ p, _ <> S (S p).

• Coercion. If the object being matched is coercible to an inductive type, the corresponding coercion will be auto-
matically inserted. This also works with the previous mechanism.

There are options to control the generation of equalities and coercions.
Flag: Program Cases

This controls the special treatment of pattern matching generating equalities and disequalities when using Program
(it is on by default). All pattern-matches and let-patterns are handled using the standard algorithm of Coq (see
Extended pattern matching) when this option is deactivated.

Flag: Program Generalized Coercion
This controls the coercion of general inductive types when using Program (the option is on by default). Coercion
of subset types and pairs is still active in this case.

Syntactic control over equalities

To give more control over the generation of equalities, the type checker will fall back directly to Coq’s usual typing of
dependent pattern matching if a return or in clause is specified. Likewise, the if construct is not treated specially by
Program so boolean tests in the code are not automatically reflected in the obligations. One can use the dec combinator
to get the correct hypotheses as in:

Require Import Program Arith.

Program Definition id (n : nat) : { x : nat | x = n } :=
if dec (leb n 0) then 0

(continues on next page)
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(continued from previous page)
else S (pred n).
id has type-checked, generating 2 obligations
Solving obligations automatically...
2 obligations remaining
Obligation 1 of id:
(forall n : nat, (n <=? 0) = true -> (fun x : nat => x = n) 0).

Obligation 2 of id:
(forall n : nat,
(n <=? 0) = false -> (fun x : nat => x = n) (S (Init.Nat.pred n))).

The let tupling construct let (x1, ..., xn) := t in b does not produce an equality, contrary to the let
pattern construct let '(x1,..., xn) := t in b. Also, term :> explicitly asks the system to coerce term to
its support type. It can be useful in notations, for example:

Notation " x `= y " := (@eq _ (x :>) (y :>)) (only parsing).

This notation denotes equality on subset types using equality on their support types, avoiding uses of proof-irrelevance
that would come up when reasoning with equality on the subset types themselves.
The next two commands are similar to their standard counterparts Definition and Fixpoint in that they define
constants. However, they may require the user to prove some goals to construct the final definitions.

Program Definition

Command: Program Definition ident := term
This command types the value term in Russell and generates proof obligations. Once solved using the commands
shown below, it binds the final Coq term to the name ident in the environment.
Error: ident already exists.

Variant: Program Definition ident : type := term
It interprets the type type, potentially generating proof obligations to be resolved. Once done with them, we
have a Coq type type0. It then elaborates the preterm term into a Coq term term0, checking that the type
of term0 is coercible to type0, and registers ident as being of type type0 once the set of obligations
generated during the interpretation of term0 and the aforementioned coercion derivation are solved.
Error: In environment … the term: term does not have type type. Actually, it has type ...

Variant: Program Definition ident binders : type := term
This is equivalent to:
Program Definition ident : forall binders, type := fun binders => term.

See also:
Sections Controlling the reduction strategies and the conversion algorithm, unfold

Program Fixpoint

Command: Program Fixpoint ident binders {order}
?

: type := term
The optional order annotation follows the grammar:

order ::= measure term (term)? | wf term term
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• measure f ( R )where f is a value of type X computed on any subset of the arguments and the optional
(parenthesised) term (R) is a relation on X. By default X defaults to nat and R to lt.

• wf R x which is equivalent to measure x (R).

The structural fixpoint operator behaves just like the one of Coq (see Fixpoint), except it may also generate
obligations. It works with mutually recursive definitions too.

Require Import Program Arith.

Program Fixpoint div2 (n : nat) : { x : nat | n = 2 * x \/ n = 2 * x + 1 } :=
match n with
| S (S p) => S (div2 p)
| _ => O
end.
Solving obligations automatically...
4 obligations remaining

Here we have one obligation for each branch (branches for 0 and (S 0) are automatically generated by the pattern
matching compilation algorithm).

Obligation 1.
1 subgoal

p, x : nat
o : p = x + (x + 0) \/ p = x + (x + 0) + 1
============================
S (S p) = S (x + S (x + 0)) \/ S (S p) = S (x + S (x + 0) + 1)

One can use a well-founded order or a measure as termination orders using the syntax:

Program Fixpoint div2 (n : nat) {measure n} : { x : nat | n = 2 * x \/ n = 2 * x + 1 }
↪ :=
match n with
| S (S p) => S (div2 p)
| _ => O
end.

Caution: When defining structurally recursive functions, the generated obligations should have the prototype of
the currently defined functional in their context. In this case, the obligations should be transparent (e.g. defined using
Defined) so that the guardedness condition on recursive calls can be checked by the kernel’s type- checker. There is
an optimization in the generation of obligations which gets rid of the hypothesis corresponding to the functional when
it is not necessary, so that the obligation can be declared opaque (e.g. using Qed). However, as soon as it appears in
the context, the proof of the obligation is required to be declared transparent.
No such problems arise when using measures or well-founded recursion.

Program Lemma

Command: Program Lemma ident : type
The Russell language can also be used to type statements of logical properties. It will generate obligations, try to
solve them automatically and fail if some unsolved obligations remain. In this case, one can first define the lemma’s
statement using Program Definition and use it as the goal afterwards. Otherwise the proof will be started
with the elaborated version as a goal. The Program prefix can similarly be used as a prefix for Variable,
Hypothesis, Axiom etc.
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7.8.2 Solving obligations

The following commands are available to manipulate obligations. The optional identifier is used when multiple functions
have unsolved obligations (e.g. when defining mutually recursive blocks). The optional tactic is replaced by the default
one if not specified.

Command: Local|Global
?

Obligation Tactic := tactic
Sets the default obligation solving tactic applied to all obligations automatically, whether to solve them or when
starting to prove one, e.g. using Next. Local makes the setting last only for the current module. Inside sections,
local is the default.

Command: Show Obligation Tactic
Displays the current default tactic.

Command: Obligations of ident
?

Displays all remaining obligations.

Command: Obligation num of ident
?

Start the proof of obligation num.

Command: Next Obligation of ident
?

Start the proof of the next unsolved obligation.

Command: Solve Obligations of ident
?

with tactic

?

Tries to solve each obligation of ident using the given tactic or the default one.

Command: Solve All Obligations with tactic
?

Tries to solve each obligation of every program using the given tactic or the default one (useful for mutually recursive
definitions).

Command: Admit Obligations of ident
?

Admits all obligations (of ident).

Note: Does not work with structurally recursive programs.

Command: Preterm of ident
?

Shows the term that will be fed to the kernel once the obligations are solved. Useful for debugging.
Flag: Transparent Obligations

Controls whether all obligations should be declared as transparent (the default), or if the system should infer which
obligations can be declared opaque.

Flag: Hide Obligations
Controls whether obligations appearing in the term should be hidden as implicit arguments of the special constant-
Program.Tactics.obligation.

Flag: Shrink Obligations
Deprecated since 8.7

This option (on by default) controls whether obligations should have their context minimized to the set of variables
used in the proof of the obligation, to avoid unnecessary dependencies.

The module Coq.Program.Tactics defines the default tactic for solving obligations called program_simpl.
Importing Coq.Program.Program also adds some useful notations, as documented in the file itself.
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7.8.3 Frequently Asked Questions

Error: Ill-formed recursive definition.
This error can happen when one tries to define a function by structural recursion on a subset object, which means
the Coq function looks like:

Program Fixpoint f (x : A | P) := match x with A b => f b end.

Supposing b : A, the argument at the recursive call to f is not a direct subterm of x as b is wrapped inside an
exist constructor to build an object of type {x : A | P}. Hence the definition is rejected by the guardedness
condition checker. However one can use wellfounded recursion on subset objects like this:

Program Fixpoint f (x : A | P) { measure (size x) } :=
match x with A b => f b end.

One will then just have to prove that the measure decreases at each recursive call. There are three drawbacks
though:
1. A measure function has to be defined;
2. The reduction is a little more involved, although it works well using lazy evaluation;
3. Mutual recursion on the underlying inductive type isn’t possible anymore, but nested mutual recursion is

always possible.

7.9 The ring and field tactic families

Author Bruno Barras, Benjamin Grégoire, Assia Mahboubi, Laurent Théry25

This chapter presents the tactics dedicated to dealing with ring and field equations.

7.9.1 What does this tactic do?

ring does associative-commutative rewriting in ring and semiring structures. Assume you have two binary functions ⊕
and ⊗ that are associative and commutative, with ⊕ distributive on ⊗, and two constants 0 and 1 that are unities for ⊕
and ⊗. A polynomial is an expression built on variables 𝑉0, 𝑉1, … and constants by application of ⊕ and ⊗.
Let an ordered product be a product of variables 𝑉𝑖1

⊗ ⋯ ⊗ 𝑉𝑖𝑛
verifying 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑛 . Let a monomial be the

product of a constant and an ordered product. We can order the monomials by the lexicographic order on products of
variables. Let a canonical sum be an ordered sum of monomials that are all different, i.e. each monomial in the sum is
strictly less than the following monomial according to the lexicographic order. It is an easy theorem to show that every
polynomial is equivalent (modulo the ring properties) to exactly one canonical sum. This canonical sum is called the
normal form of the polynomial. In fact, the actual representation shares monomials with same prefixes. So what does the
ring tactic do? It normalizes polynomials over any ring or semiring structure. The basic use of ring is to simplify ring
expressions, so that the user does not have to deal manually with the theorems of associativity and commutativity.

Example
In the ring of integers, the normal form of 𝑥(3 + 𝑦𝑥 + 25(1 − 𝑧)) + 𝑧𝑥
is 28𝑥 + (−24)𝑥𝑧 + 𝑥𝑥𝑦.

25 based on previous work from Patrick Loiseleur and Samuel Boutin
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ring is also able to compute a normal form modulo monomial equalities. For example, under the hypothesis that
2𝑥2 = 𝑦𝑧 + 1, the normal form of 2(𝑥 + 1)𝑥 − 𝑥 − 𝑧𝑦 is 𝑥 + 1.

7.9.2 The variables map

It is frequent to have an expression built with + and ×, but rarely on variables only. Let us associate a number to each
subterm of a ring expression in the Gallina language. For example, consider this expression in the semiring nat:

(plus (mult (plus (f (5)) x) x)
(mult (if b then (4) else (f (3))) (2)))

As a ring expression, it has 3 subterms. Give each subterm a number in an arbitrary order:

0 ↦ if b then (4) else (f (3))
1 ↦ (f (5))
2 ↦ x

Then normalize the “abstract” polynomial ((𝑉1 ⊗ 𝑉2) ⊕ 𝑉2) ⊕ (𝑉0 ⊗ 2) In our example the normal form is: (2 ⊗ 𝑉0) ⊕
(𝑉1 ⊗ 𝑉2) ⊕ (𝑉2 ⊗ 𝑉2). Then substitute the variables by their values in the variables map to get the concrete normal
polynomial:

(plus (mult (2) (if b then (4) else (f (3))))
(plus (mult (f (5)) x) (mult x x)))

7.9.3 Is it automatic?

Yes, building the variables map and doing the substitution after normalizing is automatically done by the tactic. So you
can just forget this paragraph and use the tactic according to your intuition.

7.9.4 Concrete usage in Coq

ring
This tactic solves equations upon polynomial expressions of a ring (or semiring) structure. It proceeds by normaliz-
ing both sides of the equation (w.r.t. associativity, commutativity and distributivity, constant propagation, rewriting
of monomials) and comparing syntactically the results.

ring_simplify
This tactic applies the normalization procedure described above to the given terms. The tactic then replaces all
occurrences of the terms given in the conclusion of the goal by their normal forms. If no term is given, then the
conclusion should be an equation and both sides are normalized. The tactic can also be applied in a hypothesis.
The tactic must be loaded by Require Import Ring. The ring structures must be declared with the Add
Ring command (see below). The ring of booleans is predefined; if one wants to use the tactic on nat one must
first require the module ArithRing exported by Arith); for Z, do Require Import ZArithRing or
simply Require Import ZArith; for N, do Require Import NArithRing or Require Import
NArith.

Example
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Require Import ZArith.
[Loading ML file quote_plugin.cmxs ... done]
[Loading ML file newring_plugin.cmxs ... done]
[Loading ML file omega_plugin.cmxs ... done]

Open Scope Z_scope.
Goal forall a b c:Z,

(a + b + c) ^ 2 =
a * a + b ^ 2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c.

1 subgoal

============================
forall a b c : Z,
(a + b + c) ^ 2 = a * a + b ^ 2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c

intros; ring.
No more subgoals.

Abort.
Goal forall a b:Z,

2 * a * b = 30 -> (a + b) ^ 2 = a ^ 2 + b ^ 2 + 30.
1 subgoal

============================
forall a b : Z, 2 * a * b = 30 -> (a + b) ^ 2 = a ^ 2 + b ^ 2 + 30

intros a b H; ring [H].
No more subgoals.

Abort.

Variant: ring [ term
*
]

This tactic decides the equality of two terms modulo ring operations and the equalities defined by the terms. Each
term has to be a proof of some equality m = p, where m is a monomial (after “abstraction”), p a polynomial and
= the corresponding equality of the ring structure.

Variant: ring_simplify [ term
*
] term

*
in ident

This tactic performs the simplification in the hypothesis named ident.

Note: ring_simplify term1; ring_simplify term2 is not equivalent to ring_simplify term1
term2.
In the latter case the variables map is shared between the two terms, and common subterm t of term1 and term2 will
have the same associated variable number. So the first alternative should be avoided for terms belonging to the same ring
theory.

Error messages:
Error: Not a valid ring equation.

The conclusion of the goal is not provable in the corresponding ring theory.
Error: Arguments of ring_simplify do not have all the same type.

ring_simplify cannot simplify terms of several rings at the same time. Invoke the tactic once per ring struc-
ture.
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Error: Cannot find a declared ring structure over term.
No ring has been declared for the type of the terms to be simplified. Use Add Ring first.

Error: Cannot find a declared ring structure for equality term.
Same as above in the case of the ring tactic.

7.9.5 Adding a ring structure

Declaring a new ring consists in proving that a ring signature (a carrier set, an equality, and ring operations:
Ring_theory.ring_theory andRing_theory.semi_ring_theory) satisfies the ring axioms. Semi- rings
(rings without + inverse) are also supported. The equality can be either Leibniz equality, or any relation declared as a se-
toid (see Tactics enabled on user provided relations). The definitions of ring and semiring (see module Ring_theory)
are:

Record ring_theory : Prop := mk_rt {
Radd_0_l : forall x, 0 + x == x;
Radd_sym : forall x y, x + y == y + x;
Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
Rmul_1_l : forall x, 1 * x == x;
Rmul_sym : forall x y, x * y == y * x;
Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
Rsub_def : forall x y, x - y == x + -y;
Ropp_def : forall x, x + (- x) == 0

}.

Record semi_ring_theory : Prop := mk_srt {
SRadd_0_l : forall n, 0 + n == n;
SRadd_sym : forall n m, n + m == m + n ;
SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
SRmul_1_l : forall n, 1*n == n;
SRmul_0_l : forall n, 0*n == 0;
SRmul_sym : forall n m, n*m == m*n;
SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
SRdistr_l : forall n m p, (n + m)*p == n*p + m*p

}.

This implementation of ring also features a notion of constant that can be parameterized. This can be used to improve
the handling of closed expressions when operations are effective. It consists in introducing a type of coefficients and an
implementation of the ring operations, and a morphism from the coefficient type to the ring carrier type. The morphism
needs not be injective, nor surjective.
As an example, one can consider the real numbers. The set of coefficients could be the rational numbers, upon which the
ring operations can be implemented. The fact that there exists a morphism is defined by the following properties:

Record ring_morph : Prop := mkmorph {
morph0 : [cO] == 0;
morph1 : [cI] == 1;
morph_add : forall x y, [x +! y] == [x]+[y];
morph_sub : forall x y, [x -! y] == [x]-[y];
morph_mul : forall x y, [x *! y] == [x]*[y];
morph_opp : forall x, [-!x] == -[x];
morph_eq : forall x y, x?=!y = true -> [x] == [y]

}.

Record semi_morph : Prop := mkRmorph {
Smorph0 : [cO] == 0;

(continues on next page)
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(continued from previous page)
Smorph1 : [cI] == 1;
Smorph_add : forall x y, [x +! y] == [x]+[y];
Smorph_mul : forall x y, [x *! y] == [x]*[y];
Smorph_eq : forall x y, x?=!y = true -> [x] == [y]

}.

where c0 and cI denote the 0 and 1 of the coefficient set, +!, *!, -! are the implementations of the ring operations,
== is the equality of the coefficients, ?+! is an implementation of this equality, and [x] is a notation for the image of
x by the ring morphism.
Since Z is an initial ring (and N is an initial semiring), it can always be considered as a set of coefficients. There are
basically three kinds of (semi-)rings:
abstract rings to be used when operations are not effective. The set of coefficients is Z (or N for semirings).
computational rings to be used when operations are effective. The set of coefficients is the ring itself. The user only

has to provide an implementation for the equality.
customized ring for other cases. The user has to provide the coefficient set and the morphism.
This implementation of ring can also recognize simple power expressions as ring expressions. A power function is specified
by the following property:

Require Import Reals.
Section POWER.
Variable Cpow : Set.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Record power_theory : Prop := mkpow_th {

rpow_pow_N : forall r n, rpow r (Cp_phi n) = pow_N 1%R Rmult r n
}.

End POWER.

The syntax for adding a new ring is

Command: Add Ring ident : term ( ring_mod , ring_mod
*

)

?

The ident is not relevant. It is used just for error messages. The term is a proof that the ring signature satisfies
the (semi-)ring axioms. The optional list of modifiers is used to tailor the behavior of the tactic. The following list
describes their syntax and effects:

ring_mod ::= abstract | decidable term | morphism term
| setoid term term
| constants [ltac]
| preprocess [ltac]
| postprocess [ltac]
| power_tac term [ltac]
| sign term
| div term

abstract declares the ring as abstract. This is the default.
decidable term declares the ring as computational. The expression term is the correctness proof of an equality

test ?=! (which should be evaluable). Its type should be of the form forall x y, x ?=! y = true
→ x == y.
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morphism term declares the ring as a customized one. The expression term is a proof that there exists
a morphism between a set of coefficient and the ring carrier (see Ring_theory.ring_morph and
Ring_theory.semi_morph).

setoid term term forces the use of given setoid. The first term is a proof that the equality is indeed a setoid
(see Setoid.Setoid_Theory), and the second term a proof that the ring operations are morphisms
(see Ring_theory.ring_eq_ext and Ring_theory.sring_eq_ext). This modifier needs not
be used if the setoid and morphisms have been declared.

constants [ ltac ] specifies a tactic expression ltac that, given a term, returns either an object of the coefficient
set that is mapped to the expression via the morphism, or returns InitialRing.NotConstant. The
default behavior is to map only 0 and 1 to their counterpart in the coefficient set. This is generally not desirable
for non trivial computational rings.

preprocess [ ltac ] specifies a tactic ltac that is applied as a preliminary step for ring and
ring_simplify. It can be used to transform a goal so that it is better recognized. For instance, S n
can be changed to plus 1 n.

postprocess [ ltac ] specifies a tactic ltac that is applied as a final step for ring_simplify. For instance,
it can be used to undo modifications of the preprocessor.

power_tac term [ ltac ] allows ring and ring_simplify to recognize power expressions with a constant
positive integer exponent (example: 𝑥2 ). The term term is a proof that a given power function satis-
fies the specification of a power function (term has to be a proof of Ring_theory.power_theory)
and ltac specifies a tactic expression that, given a term, “abstracts” it into an object of type N whose
interpretation via Cp_phi (the evaluation function of power coefficient) is the original term, or returns
InitialRing.NotConstant if not a constant coefficient (i.e. Ltac is the inverse function of Cp_phi).
See files plugins/setoid_ring/ZArithRing.v and plugins/setoid_ring/RealField.
v for examples. By default the tactic does not recognize power expressions as ring expressions.

sign term allows ring_simplify to use a minus operation when outputting its normal form, i.e writing x −
y instead of x + (− y). The term term is a proof that a given sign function indicates expressions that
are signed (term has to be a proof of Ring_theory.get_sign). See plugins/setoid_ring/
InitialRing.v for examples of sign function.

div term allows ring and ring_simplify to use monomials with coefficients other than 1 in the rewriting.
The term term is a proof that a given division function satisfies the specification of an euclidean division func-
tion (term has to be a proof of Ring_theory.div_theory). For example, this function is called when
trying to rewrite 7𝑥 by 2𝑥 = 𝑧 to tell that 7 = 3×2+1. See plugins/setoid_ring/InitialRing.
v for examples of div function.

Error messages:
Error: Bad ring structure.

The proof of the ring structure provided is not of the expected type.
Error: Bad lemma for decidability of equality.

The equality function provided in the case of a computational ring has not the expected type.
Error: Ring operation should be declared as a morphism.

A setoid associated to the carrier of the ring structure has been found, but the ring operation should be declared as
morphism. See Tactics enabled on user provided relations.

7.9.6 How does it work?

The code of ring is a good example of a tactic written using reflection. What is reflection? Basically, using it means
that a part of a tactic is written in Gallina, Coq’s language of terms, rather than Ltac or OCaml. From the philosophical
point of view, reflection is using the ability of the Calculus of Constructions to speak and reason about itself. For the
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ring tactic we used Coq as a programming language and also as a proof environment to build a tactic and to prove its
correctness.
The interested reader is strongly advised to have a look at the file Ring_polynom.v. Here a type for polynomials is
defined:

Inductive PExpr : Type :=
| PEc : C -> PExpr
| PEX : positive -> PExpr
| PEadd : PExpr -> PExpr -> PExpr
| PEsub : PExpr -> PExpr -> PExpr
| PEmul : PExpr -> PExpr -> PExpr
| PEopp : PExpr -> PExpr
| PEpow : PExpr -> N -> PExpr.

Polynomials in normal form are defined as:

Inductive Pol : Type :=
| Pc : C -> Pol
| Pinj : positive -> Pol -> Pol
| PX : Pol -> positive -> Pol -> Pol.

where Pinj n P denotes P in which 𝑉𝑖 is replaced by 𝑉𝑖+𝑛 , and PX P n Q denotes 𝑃 ⊗𝑉 𝑛
1 ⊕𝑄′, Q' being Q where

𝑉𝑖 is replaced by 𝑉𝑖+1.
Variable maps are represented by lists of ring elements, and two interpretation functions, one that maps a variables map
and a polynomial to an element of the concrete ring, and the second one that does the same for normal forms:

Definition PEeval : list R -> PExpr -> R := [...].
Definition Pphi_dev : list R -> Pol -> R := [...].

A function to normalize polynomials is defined, and the big theorem is its correctness w.r.t interpretation, that is:

Definition norm : PExpr -> Pol := [...].
Lemma Pphi_dev_ok :

forall l pe npe, norm pe = npe -> PEeval l pe == Pphi_dev l npe.

So now, what is the scheme for a normalization proof? Let p be the polynomial expression that the user wants to normalize.
First a little piece of ML code guesses the type of p, the ring theory T to use, an abstract polynomial ap and a variables
map v such that p is 𝛽𝛿𝜄- equivalent to (PEeval v ap). Then we replace it by (Pphi_dev v (norm ap)),
using the main correctness theorem and we reduce it to a concrete expression p’, which is the concrete normal form of
p. This is summarized in this diagram:

p →𝛽𝛿𝜄 (PEeval v ap)

=(by the main correctness theorem)
p’ ←𝛽𝛿𝜄 (Pphi_dev v (norm ap))

The user does not see the right part of the diagram. From outside, the tactic behaves like a 𝛽𝛿𝜄 simplification extended
with rewriting rules for associativity and commutativity. Basically, the proof is only the application of themain correctness
theorem to well-chosen arguments.

7.9.7 Dealing with fields

field
This tactic is an extension of the ring tactic that deals with rational expressions. Given a rational expression𝐹 = 0.
It first reduces the expression F to a common denominator 𝑁/𝐷 = 0 where N and D are two ring expressions. For
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example, if we take 𝐹 = (1 − 1/𝑥)𝑥 − 𝑥 + 1, this gives 𝑁 = (𝑥 − 1)𝑥 − 𝑥2 + 𝑥 and 𝐷 = 𝑥. It then calls ring to
solve 𝑁 = 0.
Note that field also generates nonzero conditions for all the denominators it encounters in the reduction. In our
example, it generates the condition 𝑥 ≠ 0. These conditions appear as one subgoal which is a conjunction if there
are several denominators. Nonzero conditions are always polynomial expressions. For example when reducing the
expression 1/(1 + 1/𝑥), two side conditions are generated: 𝑥 ≠ 0 and 𝑥 + 1 ≠ 0. Factorized expressions are
broken since a field is an integral domain, and when the equality test on coefficients is complete w.r.t. the equality
of the target field, constants can be proven different from zero automatically.
The tactic must be loaded by Require Import Field. New field structures can be declared to the system
with the Add Field command (see below). The field of real numbers is defined in module RealField (in
plugins/setoid_ring). It is exported by module Rbase, so that requiring Rbase or Reals is enough to
use the field tactics on real numbers. Rational numbers in canonical form are also declared as a field in the module
Qcanon.

Example

Require Import Reals.
Open Scope R_scope.
Goal forall x,

x <> 0 -> (1 - 1 / x) * x - x + 1 = 0.
1 subgoal

============================
forall x : R, x <> 0 -> (1 - 1 / x) * x - x + 1 = 0

intros; field; auto.
No more subgoals.

Abort.
Goal forall x y,

y <> 0 -> y = x -> x / y = 1.
1 subgoal

============================
forall x y : R, y <> 0 -> y = x -> x / y = 1

intros x y H H1; field [H1]; auto.
No more subgoals.

Abort.

Variant: field [ term
*
]

This tactic decides the equality of two terms modulo field operations and the equalities defined by the terms. Each
term has to be a proof of some equality m = p, where m is a monomial (after “abstraction”), p a polynomial and
= the corresponding equality of the field structure.

Note: Rewriting works with the equality m = p only if p is a polynomial since rewriting is handled by the underlying
ring tactic.

Variant: field_simplify
performs the simplification in the conclusion of the goal, 𝐹1 = 𝐹2 becomes 𝑁1/𝐷1 = 𝑁2/𝐷2. A normalization
step (the same as the one for rings) is then applied to 𝑁1, 𝐷1, 𝑁2 and 𝐷2. This way, polynomials remain in factor-
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ized form during fraction simplification. This yields smaller expressions when reducing to the same denominator
since common factors can be canceled.

Variant: field_simplify [ term
*
]

This variant performs the simplification in the conclusion of the goal using the equalities defined by the terms.

Variant: field_simplify [ term
*
] term

*

This variant performs the simplification in the terms terms of the conclusion of the goal using the equalities defined
by terms inside the brackets.

Variant: field_simplify in ident
This variant performs the simplification in the assumption ident.

Variant: field_simplify [ term
*
] in ident

This variant performs the simplification in the assumption ident using the equalities defined by the terms.

Variant: field_simplify [ term
*
] term

*
in ident

This variant performs the simplification in the terms of the assumption ident using the equalities defined by the
terms inside the brackets.

Variant: field_simplify_eq
performs the simplification in the conclusion of the goal removing the denominator. 𝐹1 = 𝐹2 becomes 𝑁1𝐷2 =
𝑁2𝐷1.

Variant: field_simplify_eq [ term
*
]

This variant performs the simplification in the conclusion of the goal using the equalities defined by terms.
Variant: field_simplify_eq in ident

This variant performs the simplification in the assumption ident.

Variant: field_simplify_eq [ term
*
] in ident

This variant performs the simplification in the assumption ident using the equalities defined by terms and re-
moving the denominator.

7.9.8 Adding a new field structure

Declaring a new field consists in proving that a field signature (a carrier set, an equality, and field operations:
Field_theory.field_theory and Field_theory.semi_field_theory) satisfies the field axioms.
Semi-fields (fields without + inverse) are also supported. The equality can be either Leibniz equality, or any relation
declared as a setoid (see Tactics enabled on user provided relations). The definition of fields and semifields is:

Record field_theory : Prop := mk_field {
F_R : ring_theory rO rI radd rmul rsub ropp req;
F_1_neq_0 : ~ 1 == 0;
Fdiv_def : forall p q, p / q == p * / q;
Finv_l : forall p, ~ p == 0 -> / p * p == 1

}.

Record semi_field_theory : Prop := mk_sfield {
SF_SR : semi_ring_theory rO rI radd rmul req;
SF_1_neq_0 : ~ 1 == 0;
SFdiv_def : forall p q, p / q == p * / q;
SFinv_l : forall p, ~ p == 0 -> / p * p == 1

}.

The result of the normalization process is a fraction represented by the following type:
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Record linear : Type := mk_linear {
num : PExpr C;
denum : PExpr C;
condition : list (PExpr C)

}.

where num and denum are the numerator and denominator; condition is a list of expressions that have appeared as a
denominator during the normalization process. These expressions must be proven different from zero for the correctness
of the algorithm.
The syntax for adding a new field is

Command: Add Field ident : term ( field_mod , field_mod
*

)

?

The ident is not relevant. It is used just for error messages. term is a proof that the field signature satisfies the
(semi-)field axioms. The optional list of modifiers is used to tailor the behavior of the tactic.

field_mod ::= ring_mod | completeness term

Since field tactics are built upon ring tactics, all modifiers of the Add Ring apply. There is only one specific
modifier:
completeness term allows the field tactic to prove automatically that the image of nonzero coefficients aremapped

to nonzero elements of the field. term is a proof of forall x y, [x] == [y] -> x ?=! y =
true, which is the completeness of equality on coefficients w.r.t. the field equality.

7.9.9 History of ring

First Samuel Boutin designed the tactic ACDSimpl. This tactic did lot of rewriting. But the proofs terms generated by
rewriting were too big for Coq’s type checker. Let us see why:

Require Import ZArith.
Open Scope Z_scope.
Goal forall x y z : Z,

x + 3 + y + y * z = x + 3 + y + z * y.
1 subgoal

============================
forall x y z : Z, x + 3 + y + y * z = x + 3 + y + z * y

intros; rewrite (Zmult_comm y z); reflexivity.
No more subgoals.

Save foo.
foo is defined

Print foo.
foo =
fun x y z : Z =>
eq_ind_r (fun z0 : Z => x + 3 + y + z0 = x + 3 + y + z * y) eq_refl

(Z.mul_comm y z)
: forall x y z : Z, x + 3 + y + y * z = x + 3 + y + z * y

Argument scopes are [Z_scope Z_scope Z_scope]
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At each step of rewriting, the whole context is duplicated in the proof term. Then, a tactic that does hundreds of rewriting
generates huge proof terms. Since ACDSimpl was too slow, Samuel Boutin rewrote it using reflection (see [Bou97]).
Later, it was rewritten by Patrick Loiseleur: the new tactic does not any more require ACDSimpl to compile and it
makes use of 𝛽𝛿𝜄-reduction not only to replace the rewriting steps, but also to achieve the interleaving of computation
and reasoning (see Discussion). He also wrote some ML code for the Add Ring command that allows registering new
rings dynamically.
Proofs terms generated by ring are quite small, they are linear in the number of ⊕ and ⊗ operations in the normalized
terms. Type checking those terms requires some time because it makes a large use of the conversion rule, but memory
requirements are much smaller.

7.9.10 Discussion

Efficiency is not the only motivation to use reflection here. ring also deals with constants, it rewrites for example the
expression 34 + 2 * x − x + 12 to the expected result x + 46. For the tactic ACDSimpl, the only constants
were 0 and 1. So the expression 34 + 2 * (x − 1) + 12 is interpreted as 𝑉0 ⊕ 𝑉1 ⊗ (𝑉2 ⊖ 1) ⊕ 𝑉3, with the
variables mapping {𝑉0 ↦ 34; 𝑉1 ↦ 2; 𝑉2 ↦ 𝑥; 𝑉3 ↦ 12}. Then it is rewritten to 34 − x + 2 * x + 12, very
far from the expected result. Here rewriting is not sufficient: you have to do some kind of reduction (some kind of
computation) to achieve the normalization.
The tactic ring is not only faster than the old one: by using reflection, we get for free the integration of computation and
reasoning that would be very difficult to implement without it.
Is it the ultimate way to write tactics? The answer is: yes and no. The ring tactic intensively uses the conversion rules of
the Calculus of Inductive Constructions, i.e. it replaces proofs by computations as much as possible. It can be useful in all
situations where a classical tactic generates huge proof terms, like symbolic processing and tautologies. But there are also
tactics like auto or linear that do many complex computations, using side-effects and backtracking, and generate a
small proof term. Clearly, it would be significantly less efficient to replace them by tactics using reflection.
Another idea suggested by Benjamin Werner: reflection could be used to couple an external tool (a rewriting program or
a model checker) with Coq. We define (in Coq) a type of terms, a type of traces, and prove a correctness theorem that
states that replaying traces is safe with respect to some interpretation. Then we let the external tool do every computation
(using side-effects, backtracking, exception, or others features that are not available in pure lambda calculus) to produce
the trace. Now we can check in Coq that the trace has the expected semantics by applying the correctness theorem.

7.10 Nsatz: tactics for proving equalities in integral domains

Author Loïc Pottier
nsatz

This tactic is for solving goals of the form
∀𝑋1, … , 𝑋𝑛 ∈ 𝐴,
𝑃1(𝑋1, … , 𝑋𝑛) = 𝑄1(𝑋1, … , 𝑋𝑛), … , 𝑃𝑠(𝑋1, … , 𝑋𝑛) = 𝑄𝑠(𝑋1, … , 𝑋𝑛)
⊢ 𝑃(𝑋1, … , 𝑋𝑛) = 𝑄(𝑋1, … , 𝑋𝑛)
where 𝑃 , 𝑄, 𝑃1, 𝑄1, … , 𝑃𝑠, 𝑄𝑠 are polynomials and 𝐴 is an integral domain, i.e. a commutative ring with no zero
divisors. For example, 𝐴 can be ℝ, ℤ, or ℚ. Note that the equality = used in these goals can be any setoid equality
(see Tactics enabled on user provided relations) , not only Leibniz equality.
It also proves formulas
∀𝑋1, … , 𝑋𝑛 ∈ 𝐴,
𝑃1(𝑋1, … , 𝑋𝑛) = 𝑄1(𝑋1, … , 𝑋𝑛) ∧ … ∧ 𝑃𝑠(𝑋1, … , 𝑋𝑛) = 𝑄𝑠(𝑋1, … , 𝑋𝑛)
→ 𝑃 (𝑋1, … , 𝑋𝑛) = 𝑄(𝑋1, … , 𝑋𝑛)

458 Chapter 7. Addendum



The Coq Reference Manual, Release 8.9.1

doing automatic introductions.
You can load the Nsatz module with the command Require Import Nsatz.

7.10.1 More about nsatz

Hilbert’s Nullstellensatz theorem shows how to reduce proofs of equalities on polynomials on a commutative ring 𝐴 with
no zero divisors to algebraic computations: it is easy to see that if a polynomial 𝑃 in 𝐴[𝑋1, … , 𝑋𝑛] verifies 𝑐𝑃 𝑟 =
∑𝑠

𝑖=1 𝑆𝑖𝑃𝑖, with 𝑐 ∈ 𝐴, 𝑐 ≠ 0, 𝑟 a positive integer, and the 𝑆𝑖 s in 𝐴[𝑋1, … , 𝑋𝑛], then 𝑃 is zero whenever polynomials
𝑃1, … , 𝑃𝑠 are zero (the converse is also true when 𝐴 is an algebraically closed field: the method is complete).
So, solving our initial problem reduces to finding 𝑆1, … , 𝑆𝑠, 𝑐 and 𝑟 such that 𝑐(𝑃 − 𝑄)𝑟 = ∑𝑖 𝑆𝑖(𝑃𝑖 − 𝑄𝑖), which will
be proved by the tactic ring.
This is achieved by the computation of a Gröbner basis of the ideal generated by 𝑃1 − 𝑄1, ..., 𝑃𝑠 − 𝑄𝑠, with an adapted
version of the Buchberger algorithm.
This computation is done after a step of reification, which is performed using Typeclasses.

Variant: nsatz with radicalmax:=num%N strategy:=num%Z parameters:=[ ident
*
, ] variables:=[ ident

*
, ]

Most complete syntax for nsatz.
• radicalmax is a bound when searching for r such that 𝑐(𝑃 − 𝑄)𝑟 = ∑𝑖=1..𝑠 𝑆𝑖(𝑃 𝑖 − 𝑄𝑖)
• strategy gives the order on variables 𝑋1, … , 𝑋𝑛 and the strategy used in Buchberger algorithm (see
[GMN+91] for details):
– strategy = 0: reverse lexicographic order and newest s-polynomial.
– strategy = 1: reverse lexicographic order and sugar strategy.
– strategy = 2: pure lexicographic order and newest s-polynomial.
– strategy = 3: pure lexicographic order and sugar strategy.

• parameters is the list of variables 𝑋𝑖1
, … , 𝑋𝑖𝑘

among 𝑋1, … , 𝑋𝑛 which are considered as parameters:
computation will be performed with rational fractions in these variables, i.e. polynomials are considered
with coefficients in 𝑅(𝑋𝑖1

, … , 𝑋𝑖𝑘
). In this case, the coefficient 𝑐 can be a non constant polynomial in

𝑋𝑖1
, … , 𝑋𝑖𝑘

, and the tactic produces a goal which states that 𝑐 is not zero.
• variables is the list of the variables in the decreasing order in which they will be used in the Buch-
berger algorithm. If variables = (@nil R), then lvar is replaced by all the variables which are not
in parameters.

See the file Nsatz.v for many examples, especially in geometry.

7.11 Generalized rewriting

Author Matthieu Sozeau
This chapter presents the extension of several equality related tactics to work over user-defined structures (called setoids)
that are equipped with ad-hoc equivalence relations meant to behave as equalities. Actually, the tactics have also been gen-
eralized to relations weaker then equivalences (e.g. rewriting systems). The toolbox also extends the automatic rewriting
capabilities of the system, allowing the specification of custom strategies for rewriting.
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This documentation is adapted from the previous setoid documentation by Claudio Sacerdoti Coen (based on previous
work by Clément Renard). The new implementation is a drop-in replacement for the old one26, hence most of the
documentation still applies.
The work is a complete rewrite of the previous implementation, based on the typeclass infrastructure. It also improves
on and generalizes the previous implementation in several ways:

• User-extensible algorithm. The algorithm is separated into two parts: generation of the rewriting constraints (writ-
ten in ML) and solving these constraints using typeclass resolution. As typeclass resolution is extensible using
tactics, this allows users to define general ways to solve morphism constraints.

• Subrelations. An example extension to the base algorithm is the ability to define one relation as a subrelation of
another so that morphism declarations on one relation can be used automatically for the other. This is done purely
using tactics and typeclass search.

• Rewriting under binders. It is possible to rewrite under binders in the new implementation, if one provides the
proper morphisms. Again, most of the work is handled in the tactics.

• First-class morphisms and signatures. Signatures and morphisms are ordinary Coq terms, hence they can be ma-
nipulated inside Coq, put inside structures and lemmas about them can be proved inside the system. Higher-order
morphisms are also allowed.

• Performance. The implementation is based on a depth-first search for the first solution to a set of constraints which
can be as fast as linear in the size of the term, and the size of the proof term is linear in the size of the original term.
Besides, the extensibility allows the user to customize the proof search if necessary.

7.11.1 Introduction to generalized rewriting

Relations and morphisms

A parametric relation R is any term of type forall (x1 : T1) ... (xn : Tn), relation A. The expres-
sion A, which depends on x1 ... xn , is called the carrier of the relation and R is said to be a relation over A; the list
x1,...,xn is the (possibly empty) list of parameters of the relation.

Example: Parametric relation
It is possible to implement finite sets of elements of type A as unordered lists of elements of type A. The function set_eq:
forall (A : Type), relation (list A) satisfied by two lists with the same elements is a parametric rela-
tion over (list A)with one parameter A. The type of set_eq is convertible with forall (A : Type), list
A -> list A -> Prop.

An instance of a parametric relation R with n parameters is any term (R t1 ... tn).
Let R be a relation over Awith n parameters. A term is a parametric proof of reflexivity for R if it has type forall (x1
: T1) ... (xn : Tn), reflexive (R x1 ... xn). Similar definitions are given for parametric proofs
of symmetry and transitivity.

Example: Parametric relation (continued)
The set_eq relation of the previous example can be proved to be reflexive, symmetric and transitive. A parametric
unary function f of type forall (x1 : T1) ... (xn : Tn), A1 -> A2 covariantly respects two paramet-
ric relation instances R1 and R2 if, whenever x, y satisfy R1 x y, their images (f x) and (f y) satisfy R2 (f x)
(f y). An f that respects its input and output relations will be called a unary covariant morphism. We can also say

26 Nicolas Tabareau helped with the gluing.
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that f is a monotone function with respect to R1 and R2 . The sequence x1 ... xn represents the parameters of the
morphism.

LetR1 andR2 be two parametric relations. The signature of a parametric morphism of typeforall (x1 : T1) ...
(xn : Tn), A1 -> A2 that covariantly respects two instances 𝐼𝑅1

and 𝐼𝑅2
of R1 and R2 is written 𝐼𝑅1

++ > 𝐼𝑅2
.

Notice that the special arrow ++>, which reminds the reader of covariance, is placed between the two relation instances,
not between the two carriers. The signature relation instances and morphism will be typed in a context introducing
variables for the parameters.
The previous definitions are extended straightforwardly to n-ary morphisms, that are required to be simultaneously mono-
tone on every argument.
Morphisms can also be contravariant in one or more of their arguments. A morphism is contravariant on an argument
associated to the relation instance 𝑅 if it is covariant on the same argument when the inverse relation 𝑅−1 (inverse R
in Coq) is considered. The special arrow --> is used in signatures for contravariant morphisms.
Functions having arguments related by symmetric relations instances are both covariant and contravariant in those argu-
ments. The special arrow ==> is used in signatures for morphisms that are both covariant and contravariant.
An instance of a parametric morphism 𝑓 with 𝑛 parameters is any term 𝑓 𝑡1 … 𝑡𝑛.

Example: Morphisms
Continuing the previous example, let union: forall (A : Type), list A -> list A -> list A
perform the union of two sets by appending one list to the other. union` is a binary morphism
parametric over ``A that respects the relation instance (set_eq A). The latter condition is proved by showing:

forall (A: Type) (S1 S1' S2 S2': list A),
set_eq A S1 S1' ->
set_eq A S2 S2' ->
set_eq A (union A S1 S2) (union A S1' S2').

The signature of the function union A is set_eq A ==> set_eq A ==> set_eq A for all A.

Example: Contravariant morphisms
The division function Rdiv : R -> R -> R is a morphism of signature le ++> le --> le where le is the
usual order relation over real numbers. Notice that division is covariant in its first argument and contravariant in its second
argument.

Leibniz equality is a relation and every function is a morphism that respects Leibniz equality. Unfortunately, Leibniz
equality is not always the intended equality for a given structure.
In the next section we will describe the commands to register terms as parametric relations and morphisms. Several tactics
that deal with equality in Coq can also work with the registered relations. The exact list of tactics will be given in this
section. For instance, the tactic reflexivity can be used to solve a goal R n n whenever R is an instance of a registered
reflexive relation. However, the tactics that replace in a context C[] one term with another one related by R must verify
that C[] is a morphism that respects the intended relation. Currently the verification consists of checking whether C[]
is a syntactic composition of morphism instances that respects some obvious compatibility constraints.

Example: Rewriting
Continuing the previous examples, suppose that the user must prove set_eq int (union int (union int
S1 S2) S2) (f S1 S2) under the hypothesis H : set_eq int S2 (@nil int). It is possible to use the
rewrite tactic to replace the first two occurrences of S2 with @nil int in the goal since the context set_eq
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int (union int (union int S1 nil) nil) (f S1 S2), being a composition of morphisms instances,
is a morphism. However the tactic will fail replacing the third occurrence of S2 unless f has also been declared as a
morphism.

Adding new relations and morphisms

Command: Add Parametric Relation (x1 : T1) ... (xn : Tk) : (A t1 ... tn) (Aeq t′1 ... t′m) reflexivity proved by refl
?

symmetry proved by sym
?

transitivity proved by trans
?

as ident
This command declares a parametric relation Aeq: forall (y1 : β1 ... ym : βm), relation (A
t1 ... tn) over (A : αi -> ... αn -> Type).
The ident gives a unique name to the morphism and it is used by the command to generate fresh names for
automatically provided lemmas used internally.
Notice that the carrier and relation parameters may refer to the context of variables introduced at the beginning of
the declaration, but the instances need not be made only of variables. Also notice that A is not required to be a
term having the same parameters as Aeq, although that is often the case in practice (this departs from the previous
implementation).
To use this command, you need to first import the module Setoid using the command Require Import
Setoid.

Command: Add Relation
In case the carrier and relations are not parametric, one can use this command instead, whose syntax is the same
except there is no local context.
The proofs of reflexivity, symmetry and transitivity can be omitted if the relation is not an equivalence relation.
The proofs must be instances of the corresponding relation definitions: e.g. the proof of reflexivity must have
a type convertible to reflexive (A t1 ... tn) (Aeq t′ 1 …t′ n). Each proof may refer to the
introduced variables as well.

Example: Parametric relation
For Leibniz equality, we may declare:

Add Parametric Relation (A : Type) : A (@eq A)
[reflexivity proved by @refl_equal A]

...

Some tactics (reflexivity, symmetry, transitivity) work only on relations that respect the expected prop-
erties. The remaining tactics (replace, rewrite and derived tactics such as autorewrite) do not require any
properties over the relation. However, they are able to replace terms with related ones only in contexts that are syntactic
compositions of parametric morphism instances declared with the following command.
Command: Add Parametric Morphism (x1 : T1) ... (xk : Tk) : (f t1 ... tn) with signature sig as ident

This command declares f as a parametric morphism of signature sig. The identifier ident gives a unique name
to the morphism and it is used as the base name of the typeclass instance definition and as the name of the lemma
that proves the well-definedness of the morphism. The parameters of the morphism as well as the signature may
refer to the context of variables. The command asks the user to prove interactively that f respects the relations
identified from the signature.

Example
We start the example by assuming a small theory over homogeneous sets and we declare set equality as a parametric
equivalence relation and union of two sets as a parametric morphism.
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Require Export Setoid.
Require Export Relation_Definitions.
Set Implicit Arguments.
Parameter set : Type -> Type.
Parameter empty : forall A, set A.
Parameter eq_set : forall A, set A -> set A -> Prop.
Parameter union : forall A, set A -> set A -> set A.
Axiom eq_set_refl : forall A, reflexive _ (eq_set (A:=A)).
Axiom eq_set_sym : forall A, symmetric _ (eq_set (A:=A)).
Axiom eq_set_trans : forall A, transitive _ (eq_set (A:=A)).
Axiom empty_neutral : forall A (S : set A), eq_set (union S (empty A)) S.
Axiom union_compat :

forall (A : Type),
forall x x' : set A, eq_set x x' ->
forall y y' : set A, eq_set y y' ->

eq_set (union x y) (union x' y').
Add Parametric Relation A : (set A) (@eq_set A)

reflexivity proved by (eq_set_refl (A:=A))
symmetry proved by (eq_set_sym (A:=A))
transitivity proved by (eq_set_trans (A:=A))
as eq_set_rel.

Add Parametric Morphism A : (@union A)
with signature (@eq_set A) ==> (@eq_set A) ==> (@eq_set A) as union_mor.

Proof.
exact (@union_compat A).
Qed.

It is possible to reduce the burden of specifying parameters using (maximally inserted) implicit arguments. If A is always
set as maximally implicit in the previous example, one can write:

Add Parametric Relation A : (set A) eq_set
reflexivity proved by eq_set_refl
symmetry proved by eq_set_sym
transitivity proved by eq_set_trans
as eq_set_rel.

Add Parametric Morphism A : (@union A) with
signature eq_set ==> eq_set ==> eq_set as union_mor.

Proof. exact (@union_compat A). Qed.

We proceed now by proving a simple lemma performing a rewrite step and then applying reflexivity, as we would do
working with Leibniz equality. Both tactic applications are accepted since the required properties over eq_set and
union can be established from the two declarations above.

Goal forall (S : set nat),
eq_set (union (union S (empty nat)) S) (union S S).

Proof.
intros.
rewrite empty_neutral.
reflexivity.
Qed.

The tables of relations and morphisms are managed by the typeclass instance mechanism. The behavior on section close
is to generalize the instances by the variables of the section (and possibly hypotheses used in the proofs of instance
declarations) but not to export them in the rest of the development for proof search. One can use the cmd:Existing
Instance command to do so outside the section, using the name of the declared morphism suffixed by _Morphism,
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or use the Global modifier for the corresponding class instance declaration (see First Class Setoids and Morphisms) at
definition time. When loading a compiled file or importing a module, all the declarations of this module will be loaded.

Rewriting and non reflexive relations

To replace only one argument of an n-ary morphism it is necessary to prove that all the other arguments are related to
themselves by the respective relation instances.

Example
To replace (union S empty) with S in (union (union S empty) S) (union S S) the rewrite tactic
must exploit the monotony of union (axiom union_compat in the previous example). Applying union_compat
by hand we are left with the goal eq_set (union S S) (union S S).

When the relations associated to some arguments are not reflexive, the tactic cannot automatically prove the reflexivity
goals, that are left to the user.
Setoids whose relations are partial equivalence relations (PER) are useful for dealing with partial functions. Let R be a
PER. We say that an element x is defined if R x x. A partial function whose domain comprises all the defined elements
is declared as a morphism that respects R. Every time a rewriting step is performed the user must prove that the argument
of the morphism is defined.

Example
Let eqO be fun x y => x = y /\ x <> 0 (the smallest PER over nonzero elements). Division can be declared
as a morphism of signature eq ==> eq0 ==> eq. Replacing x with y in div x n = div y n opens an addi-
tional goal eq0 n n which is equivalent to n = n /\ n <> 0.

Rewriting and non symmetric relations

When the user works up to relations that are not symmetric, it is no longer the case that any covariant morphism argument
is also contravariant. As a result it is no longer possible to replace a term with a related one in every context, since the
obtained goal implies the previous one if and only if the replacement has been performed in a contravariant position. In
a similar way, replacement in an hypothesis can be performed only if the replaced term occurs in a covariant position.

Example: Covariance and contravariance
Suppose that division over real numbers has been defined as a morphism of signature Z.div : Z.lt ++> Z.lt
--> Z.lt (i.e. Z.div is increasing in its first argument, but decreasing on the second one). Let < denote Z.lt.
Under the hypothesis H : x < ywe have k < x / y -> k < x / x, but not k < y / x -> k < x / x.
Dually, under the same hypothesis k < x / y -> k < y / y holds, but k < y / x -> k < y / y does
not. Thus, if the current goal is k < x / x, it is possible to replace only the second occurrence of x (in contravariant
position) with y since the obtained goal must imply the current one. On the contrary, if k < x / x is an hypothesis, it
is possible to replace only the first occurrence of x (in covariant position) with y since the current hypothesis must imply
the obtained one.
Contrary to the previous implementation, no specific error message will be raised when trying to replace a term that
occurs in the wrong position. It will only fail because the rewriting constraints are not satisfiable. However it is possible
to use the at modifier to specify which occurrences should be rewritten.
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As expected, composing morphisms together propagates the variance annotations by switching the variance every time a
contravariant position is traversed.

Example
Let us continue the previous example and let us consider the goal x / (x / x) < k. The first and third occurrences
of x are in a contravariant position, while the second one is in covariant position. More in detail, the second occurrence of
x occurs covariantly in (x / x) (since division is covariant in its first argument), and thus contravariantly in x / (x
/ x) (since division is contravariant in its second argument), and finally covariantly in x / (x / x) < k (since <,
as every transitive relation, is contravariant in its first argument with respect to the relation itself).

Rewriting in ambiguous setoid contexts

One function can respect several different relations and thus it can be declared as a morphism having multiple signatures.

Example
Union over homogeneous lists can be given all the following signatures: eq ==> eq ==> eq (eq being the equality
over ordered lists) set_eq ==> set_eq ==> set_eq (set_eq being the equality over unordered lists up to
duplicates), multiset_eq ==> multiset_eq ==> multiset_eq (multiset_eq being the equality over
unordered lists).

To declare multiple signatures for a morphism, repeat the Add Morphism command.
When morphisms have multiple signatures it can be the case that a rewrite request is ambiguous, since it is unclear what
relations should be used to perform the rewriting. Contrary to the previous implementation, the tactic will always choose
the first possible solution to the set of constraints generated by a rewrite and will not try to find all the possible solutions
to warn the user about them.

7.11.2 Commands and tactics

First class setoids and morphisms

The implementation is based on a first-class representation of properties of relations and morphisms as typeclasses. That
is, the various combinations of properties on relations and morphisms are represented as records and instances of theses
classes are put in a hint database. For example, the declaration:

Add Parametric Relation (x1 : T1) ... (xn : Tn) : (A t1 ... tn) (Aeq t′1 ... t′m)
[reflexivity proved by refl]
[symmetry proved by sym]
[transitivity proved by trans]
as id.

is equivalent to an instance declaration:

Instance (x1 : T1) ... (xn : Tn) => id : @Equivalence (A t1 ... tn) (Aeq t′1 ... t′m)␣
↪:=
[Equivalence_Reflexive := refl]
[Equivalence_Symmetric := sym]
[Equivalence_Transitive := trans].
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The declaration itself amounts to the definition of an object of the record type Coq.Classes.RelationClasses.
Equivalence and a hint added to the typeclass_instances hint database. Morphism declarations are also
instances of a typeclass defined in Classes.Morphisms. See the documentation on Typeclasses and the theories files
in Classes for further explanations.
One can inform the rewrite tactic about morphisms and relations just by using the typeclass mechanism to declare them
using Instance and Context vernacular commands. Any object of type Proper (the type of morphism declarations) in the
local context will also be automatically used by the rewriting tactic to solve constraints.
Other representations of first class setoids and morphisms can also be handled by encoding them as records. In the
following example, the projections of the setoid relation and of the morphism function can be registered as parametric
relations and morphisms.

Example: First class setoids

Require Import Relation_Definitions Setoid.
Record Setoid : Type :=
{ car: Type;

eq: car -> car -> Prop;
refl: reflexive _ eq;
sym: symmetric _ eq;
trans: transitive _ eq

}.
Add Parametric Relation (s : Setoid) : (@car s) (@eq s)

reflexivity proved by (refl s)
symmetry proved by (sym s)
transitivity proved by (trans s) as eq_rel.

Record Morphism (S1 S2 : Setoid) : Type :=
{ f: car S1 -> car S2;

compat: forall (x1 x2 : car S1), eq S1 x1 x2 -> eq S2 (f x1) (f x2)
}.
Add Parametric Morphism (S1 S2 : Setoid) (M : Morphism S1 S2) :

(@f S1 S2 M) with signature (@eq S1 ==> @eq S2) as apply_mor.
Proof.
apply (compat S1 S2 M).
Qed.
Lemma test : forall (S1 S2 : Setoid) (m : Morphism S1 S2)

(x y : car S1), eq S1 x y -> eq S2 (f _ _ m x) (f _ _ m y).
Proof.
intros.
rewrite H.
reflexivity.
Qed.

Tactics enabled on user provided relations

The following tactics, all prefixed by setoid_, deal with arbitrary registered relations and morphisms. Moreover, all
the corresponding unprefixed tactics (i.e. reflexivity, symmetry, transitivity, replace, rewrite)
have been extended to fall back to their prefixed counterparts when the relation involved is not Leibniz equality. Notice,
however, that using the prefixed tactics it is possible to pass additional arguments such as using relation.
Variant: setoid_reflexivity
Variant: setoid_symmetry in ident

?

Variant: setoid_transitivity
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Variant: setoid_rewrite orientation
?

term at occs
?

in ident
?

Variant: setoid_replace term with term using relation term
?

in ident
?

by tactic
?

The using relation arguments cannot be passed to the unprefixed form. The latter argument tells the tactic
what parametric relation should be used to replace the first tactic argument with the second one. If omitted, it
defaults to the DefaultRelation instance on the type of the objects. By default, it means the most recent
Equivalence instance in the environment, but it can be customized by declaring new DefaultRelation
instances. As Leibniz equality is a declared equivalence, it will fall back to it if no other relation is declared on a
given type.

Every derived tactic that is based on the unprefixed forms of the tactics considered above will also work up to user defined
relations. For instance, it is possible to register hints for autorewrite that are not proofs of Leibniz equalities. In
particular it is possible to exploit autorewrite to simulate normalization in a term rewriting system up to user defined
equalities.

Printing relations and morphisms

Command: Print Instances
This command can be used to show the list of currently registered Reflexive (using Print Instances
Reflexive), Symmetric or Transitive relations, Equivalences, PreOrders, PERs, and Morphisms (im-
plemented as Proper instances). When the rewriting tactics refuse to replace a term in a context because the
latter is not a composition of morphisms, the Print Instances command can be useful to understand what
additional morphisms should be registered.

Deprecated syntax and backward incompatibilities

Command: Add Setoid A Aeq ST as ident
This command for declaring setoids and morphisms is also accepted due to backward compatibility reasons.
Here Aeq is a congruence relation without parameters, A is its carrier and ST is an object of type
(Setoid_Theory A Aeq) (i.e. a record packing together the reflexivity, symmetry and transitivity lemmas).
Notice that the syntax is not completely backward compatible since the identifier was not required.

Command: Add Morphism f : ident
This command is restricted to the declaration of morphisms without parameters. It is not fully backward compatible
since the property the user is asked to prove is slightly different: for n-ary morphisms the hypotheses of the property
are permuted; moreover, when the morphism returns a proposition, the property is now stated using a bi-implication
in place of a simple implication. In practice, porting an old development to the new semantics is usually quite simple.

Notice that several limitations of the old implementation have been lifted. In particular, it is now possible to declare
several relations with the same carrier and several signatures for the same morphism. Moreover, it is now also possible
to declare several morphisms having the same signature. Finally, the replace and rewrite tactics can be used to
replace terms in contexts that were refused by the old implementation. As discussed in the next section, the semantics of
the new setoid_rewrite tactic differs slightly from the old one and rewrite.

7.11.3 Extensions

Rewriting under binders

Warning: Due to compatibility issues, this feature is enabled only when calling the setoid_rewrite tactic
directly and not rewrite.
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To be able to rewrite under binding constructs, one must declare morphisms with respect to pointwise (setoid) equivalence
of functions. Example of such morphisms are the standard all and ex combinators for universal and existential quan-
tification respectively. They are declared as morphisms in the Classes.Morphisms_Prop module. For example,
to declare that universal quantification is a morphism for logical equivalence:

Instance all_iff_morphism (A : Type) :
Proper (pointwise_relation A iff ==> iff) (@all A).

Proof.
simpl_relation.

1 subgoal

A : Type
x, y : A -> Prop
H : pointwise_relation A iff x y
============================
all x <-> all y

One then has to show that if two predicates are equivalent at every point, their universal quantifications are equivalent.
Once we have declared such a morphism, it will be used by the setoid rewriting tactic each time we try to rewrite under
an all application (products in Prop are implicitly translated to such applications).
Indeed, when rewriting under a lambda, binding variable x, say from P x to Q x using the relation iff, the tactic will
generate a proof of pointwise_relation A iff (fun x => P x) (fun x => Q x) from the proof of
iff (P x) (Q x) and a constraint of the form Proper (pointwise_relation A iff ==> ?) m will
be generated for the surrounding morphism m.
Hence, one can add higher-order combinators as morphisms by providing signatures using pointwise extension for the
relations on the functional arguments (or whatever subrelation of the pointwise extension). For example, one could declare
the map combinator on lists as a morphism:

Instance map_morphism `{Equivalence A eqA, Equivalence B eqB} :
Proper ((eqA ==> eqB) ==> list_equiv eqA ==> list_equiv eqB) (@map A B).

where list_equiv implements an equivalence on lists parameterized by an equivalence on the elements.
Note that when one does rewriting with a lemma under a binder using setoid_rewrite, the application of the lemma
may capture the bound variable, as the semantics are different from rewrite where the lemma is first matched on the whole
term. With the new setoid_rewrite, matching is done on each subterm separately and in its local environment, and
all matches are rewritten simultaneously by default. The semantics of the previous setoid_rewrite implementation
can almost be recovered using the at 1 modifier.

Subrelations

Subrelations can be used to specify that one relation is included in another, so that morphism signatures for one can
be used for the other. If a signature mentions a relation R on the left of an arrow ==>, then the signature also applies
for any relation S that is smaller than R, and the inverse applies on the right of an arrow. One can then declare only
a few morphisms instances that generate the complete set of signatures for a particular constant. By default, the only
declared subrelation is iff, which is a subrelation of impl and inverse impl (the dual of implication). That’s why
we can declare only two morphisms for conjunction: Proper (impl ==> impl ==> impl) and and Proper
(iff ==> iff ==> iff) and. This is sufficient to satisfy any rewriting constraints arising from a rewrite using
iff, impl or inverse impl through and.
Subrelations are implemented in Classes.Morphisms and are a prime example of a mostly user-space extension of
the algorithm.
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Constant unfolding

The resolution tactic is based on typeclasses and hence regards user- defined constants as transparent by default. This
may slow down the resolution due to a lot of unifications (all the declared Proper instances are tried at each node of
the search tree). To speed it up, declare your constant as rigid for proof search using the command Typeclasses
Opaque.

7.11.4 Strategies for rewriting

Definitions

The generalized rewriting tactic is based on a set of strategies that can be combined to obtain custom rewriting proce-
dures. Its set of strategies is based on Elan’s rewriting strategies [LV97]. Rewriting strategies are applied using the tactic
rewrite_strat s where s is a strategy expression. Strategies are defined inductively as described by the following
grammar:

s, t, u ::= strategy
| lemma
| lemma_right_to_left
| failure
| identity
| reflexivity
| progress
| failure_catch
| composition
| left_biased_choice
| iteration_one_or_more
| iteration_zero_or_more
| one_subterm
| all_subterms
| innermost_first
| outermost_first
| bottom_up
| top_down
| apply_hint
| any_of_the_terms
| apply_reduction
| fold_expression

strategy ::= "(" s ")"
lemma ::= c
lemma_right_to_left ::= "<-" c
failure ::= fail
identity ::= id
reflexivity ::= refl
progress ::= progress s
failure_catch ::= try s
composition ::= s ";" u
left_biased_choice ::= choice s t
iteration_one_or_more ::= repeat s
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iteration_zero_or_more ::= any s
one_subterm ::= subterm s
all_subterms ::= subterms s
innermost_first ::= innermost s
outermost_first ::= outermost s
bottom_up ::= bottomup s
top_down ::= topdown s
apply_hint ::= hints hintdb
any_of_the_terms ::= terms (c)+
apply_reduction ::= eval redexpr
fold_expression ::= fold c

Actually a few of these are defined in term of the others using a primitive fixpoint operator:

try `s` ::= choice s id
any `s` ::= fix u. try (s ; u)
repeat `s` ::= s ; any s
bottomup s ::= fix bu. (choice (progress (subterms bu)) s) ; try bu
topdown s ::= fix td. (choice s (progress (subterms td))) ; try td
innermost s ::= fix i. (choice (subterm i) s)
outermost s ::= fix o. (choice s (subterm o))

The basic control strategy semantics are straightforward: strategies are applied to subterms of the term to rewrite, starting
from the root of the term. The lemma strategies unify the left-hand-side of the lemma with the current subterm and on
success rewrite it to the right- hand-side. Composition can be used to continue rewriting on the current subterm. The
fail strategy always fails while the identity strategy succeeds without making progress. The reflexivity strategy succeeds,
making progress using a reflexivity proof of rewriting. Progress tests progress of the argument strategy and fails if no
progress was made, while try always succeeds, catching failures. Choice is left-biased: it will launch the first strategy
and fall back on the second one in case of failure. One can iterate a strategy at least 1 time using repeat and at least 0
times using any.
Thesubterm andsubterms strategies apply their argument strategys to respectively one or all subterms of the current
term under consideration, left-to-right. subterm stops at the first subterm for which s made progress. The composite
strategies innermost and outermost perform a single innermost or outermost rewrite using their argument strategy.
Their counterparts bottomup and topdown perform as many rewritings as possible, starting from the bottom or the
top of the term.
Hint databases created for autorewrite can also be used by rewrite_strat using the hints strategy that applies
any of the lemmas at the current subterm. The terms strategy takes the lemma names directly as arguments. The
eval strategy expects a reduction expression (see Performing computations) and succeeds if it reduces the subterm under
consideration. The fold strategy takes a term c and tries to unify it to the current subterm, converting it to c on success,
it is stronger than the tactic fold.

Usage

rewrite_strat s [in ident]
Rewrite using the strategy s in hypothesis ident or the conclusion.
Error: Nothing to rewrite.

If the strategy failed.
Error: No progress made.

If the strategy succeeded but made no progress.
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Error: Unable to satisfy the rewriting constraints.
If the strategy succeeded and made progress but the corresponding rewriting constraints are not satisfied.

The setoid_rewrite c tactic is basically equivalent to rewrite_strat (outermost c).

7.12 Asynchronous and Parallel Proof Processing

Author Enrico Tassi
This chapter explains how proofs can be asynchronously processed by Coq. This feature improves the reactivity of the
system when used in interactive mode via CoqIDE. In addition, it allows Coq to take advantage of parallel hardware when
used as a batch compiler by decoupling the checking of statements and definitions from the construction and checking of
proofs objects.
This feature is designed to help dealing with huge libraries of theorems characterized by long proofs. In the current state,
it may not be beneficial on small sets of short files.
This feature has some technical limitations that may make it unsuitable for some use cases.
For example, in interactive mode, some errors coming from the kernel of Coq are signaled late. The type of errors
belonging to this category are universe inconsistencies.
At the time of writing, only opaque proofs (ending with Qed or Admitted) can be processed asynchronously.
Finally, asynchronous processing is disabled when running CoqIDE in Windows. The current implementation of the
feature is not stable on Windows. It can be enabled, as described below at Interactive mode, though doing so is not
recommended.

7.12.1 Proof annotations

To process a proof asynchronously Coq needs to know the precise statement of the theorem without looking at the proof.
This requires some annotations if the theorem is proved inside a Section (see Section Section mechanism).
When a section ends, Coq looks at the proof object to decide which section variables are actually used and hence have
to be quantified in the statement of the theorem. To avoid making the construction of proofs mandatory when ending a
section, one can start each proof with the Proof using command (Section Switching on/off the proof editing mode)
that declares which section variables the theorem uses.
The presence of Proof using is needed to process proofs asynchronously in interactive mode.
It is not strictly mandatory in batch mode if it is not the first time the file is compiled and if the file itself did not change.
When the proof does not begin with Proof using, the system records in an auxiliary file, produced along with the .vo file,
the list of section variables used.

Automatic suggestion of proof annotations

The flag Suggest Proof Using makes Coq suggest, when a Qed command is processed, a correct proof annotation.
It is up to the user to modify the proof script accordingly.

7.12.2 Proof blocks and error resilience

Coq 8.6 introduced a mechanism for error resilience: in interactive mode Coq is able to completely check a document
containing errors instead of bailing out at the first failure.
Two kind of errors are supported: errors occurring in vernacular commands and errors occurring in proofs.
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To properly recover from a failing tactic, Coq needs to recognize the structure of the proof in order to confine the error
to a sub proof. Proof block detection is performed by looking at the syntax of the proof script (i.e. also looking at
indentation). Coq comes with four kind of proof blocks, and an ML API to add new ones.

curly blocks are delimited by { and }, see Chapter Proof handling
par blocks are atomic, i.e. just one tactic introduced by the par: goal selector
indent blocks end with a tactic indented less than the previous one
bullet blocks are delimited by two equal bullet signs at the same indentation level

Caveats

When a vernacular command fails the subsequent error messages may be bogus, i.e. caused
by the first error. Error resilience for vernacular commands can be switched off by passing
-async-proofs-command-error-resilience off to CoqIDE.
An incorrect proof block detection can result into an incorrect error recovery and hence in bogus errors. Proof block
detection cannot be precise for bullets or any other non well parenthesized proof structure. Error resilience can be turned
off or selectively activated for any set of block kind passing to CoqIDE one of the following options:

• -async-proofs-tactic-error-resilience off

• -async-proofs-tactic-error-resilience all

• -async-proofs-tactic-error-resilience blocktype
*
,

Valid proof block types are: “curly”, “par”, “indent”, and “bullet”.

7.12.3 Interactive mode

At the time of writing the only user interface supporting asynchronous proof processing is CoqIDE.
When CoqIDE is started, two Coq processes are created. The master one follows the user, giving feedback as soon as
possible by skipping proofs, which are delegated to the worker process. The worker process, whose state can be seen by
clicking on the button in the lower right corner of the main CoqIDE window, asynchronously processes the proofs. If a
proof contains an error, it is reported in red in the label of the very same button, that can also be used to see the list of
errors and jump to the corresponding line.
If a proof is processed asynchronously the corresponding Qed command is colored using a lighter color than usual. This
signals that the proof has been delegated to a worker process (or will be processed lazily if the -async-proofs lazy
option is used). Once finished, the worker process will provide the proof object, but this will not be automatically checked
by the kernel of the main process. To force the kernel to check all the proof objects, one has to click the button with the
gears (Fully check the document) on the top bar. Only then all the universe constraints are checked.

Caveats

The number of worker processes can be increased by passing CoqIDE the -async-proofs-j n flag. Note that the
memory consumption increases too, since each worker requires the same amount of memory as the master process. Also
note that increasing the number of workers may reduce the reactivity of the master process to user commands.
To disable this feature, one can pass the -async-proofs off flag to CoqIDE. Conversely, on Windows, where the
feature is disabled by default, pass the -async-proofs on flag to enable it.
Proofs that are known to take little time to process are not delegated to a worker process. The threshold can be configured
with -async-proofs-delegation-threshold. Default is 0.03 seconds.
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7.12.4 Batch mode

When Coq is used as a batch compiler by running coqc or coqtop -compile, it produces a .vo file for each .v file. A
.vo file contains, among other things, theorem statements and proofs. Hence to produce a .vo Coq need to process all
the proofs of the .v file.
The asynchronous processing of proofs can decouple the generation of a compiled file (like the .vo one) that can be
loaded by Require from the generation and checking of the proof objects. The -quick flag can be passed to coqc
or coqtop to produce, quickly, .vio files. Alternatively, when using a Makefile produced by coq_makefile, the
quick target can be used to compile all files using the -quick flag.
A .vio file can be loaded using Require exactly as a .vo file but proofs will not be available (the Print command
produces an error). Moreover, some universe constraints might be missing, so universes inconsistencies might go unno-
ticed. A .vio file does not contain proof objects, but proof tasks, i.e. what a worker process can transform into a proof
object.
Compiling a set of files with the -quick flag allows one to work, interactively, on any file without waiting for all the
proofs to be checked.
When working interactively, one can fully check all the .v files by running coqc as usual.
Alternatively one can turn each .vio into the corresponding .vo. All .vio files can be processed in parallel, hence this
alternative might be faster. The command coqtop -schedule-vio2vo 2 a b c can be used to obtain a good
scheduling for two workers to produce a.vo, b.vo, and c.vo. When using a Makefile produced by coq_makefile,
the vio2vo target can be used for that purpose. Variable J should be set to the number of workers, e.g. make vio2vo
J=2. The only caveat is that, while the .vo files obtained from .vio files are complete (they contain all proof terms and
universe constraints), the satisfiability of all universe constraints has not been checked globally (they are checked to
be consistent for every single proof). Constraints will be checked when these .vo files are (recursively) loaded with
Require.
There is an extra, possibly even faster, alternative: just check the proof tasks stored in .vio files without producing the
.vo files. This is possibly faster because all the proof tasks are independent, hence one can further partition the job to
be done between workers. The coqtop -schedule-vio-checking 6 a b c command can be used to obtain
a good scheduling for 6 workers to check all the proof tasks of a.vio, b.vio, and c.vio. Auxiliary files are used to
predict how long a proof task will take, assuming it will take the same amount of time it took last time. When using a
Makefile produced by coq_makefile, the checkproofs target can be used to check all .vio files. Variable J should be
set to the number of workers, e.g. make checkproofs J=6. As when converting .vio files to .vo files, universe
constraints are not checked to be globally consistent. Hence this compilation mode is only useful for quick regression
testing and on developments not making heavy use of the Type hierarchy.

7.12.5 Limiting the number of parallel workers

Many Coq processes may run on the same computer, and each of them may start many additional worker processes. The
coqworkmgr utility lets one limit the number of workers, globally.
The utility accepts the -j argument to specify the maximum number of workers (defaults to 2).
coqworkmgr automatically starts in the background and prints an environment variable assignment like
COQWORKMGR_SOCKET=localhost:45634. The user must set this variable in all the shells from which
Coq processes will be started. If one uses just one terminal running the bash shell, then export ‘coqworkmgr -j
4‘ will do the job.
After that, all Coq processes, e.g. coqide and coqc, will respect the limit, globally.
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7.13 Miscellaneous extensions

7.13.1 Program derivation

Coq comes with an extension called Derive, which supports program derivation. Typically in the style of Bird and
Meertens or derivations of program refinements. To use the Derive extension it must first be required with Require
Coq.derive.Derive. When the extension is loaded, it provides the following command:
Command: Derive ident1 SuchThat type As ident2

ident1 can appear in type. This command opens a new proof presenting the user with a goal for type in which
the name ident1 is bound to an existential variable ?x (formally, there are other goals standing for the existential
variables but they are shelved, as described in shelve).
When the proof ends two constants are defined:

• The first one is named ident1 and is defined as the proof of the shelved goal (which is also the value of ?x).
It is always transparent.

• The second one is named ident2. It has type type, and its body is the proof of the initially visible goal. It
is opaque if the proof ends with Qed, and transparent if the proof ends with Defined.

Example

Require Coq.derive.Derive.
[Loading ML file derive_plugin.cmxs ... done]

Require Import Coq.Numbers.Natural.Peano.NPeano.
Section P.
Variables (n m k:nat).

n is declared
m is declared
k is declared

Derive p SuchThat ((k*n)+(k*m) = p) As h.
1 focused subgoal
(shelved: 1)

n, m, k : nat
p := ?Goal : nat
============================
k * n + k * m = p

Proof.
rewrite <- Nat.mul_add_distr_l.

1 focused subgoal
(shelved: 1)

n, m, k : nat
p := ?Goal : nat
============================
k * (n + m) = p

subst p.
1 focused subgoal
(shelved: 1)

n, m, k : nat
(continues on next page)
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(continued from previous page)
============================
k * (n + m) = ?Goal

reflexivity.
No more subgoals.

Qed.
End P.
Print p.

p = fun n m k : nat => k * (n + m)
: nat -> nat -> nat -> nat

Argument scopes are [nat_scope nat_scope nat_scope]

Check h.
h

: forall n m k : nat, k * n + k * m = p n m k

Any property can be used as term, not only an equation. In particular, it could be an order relation specifying some form
of program refinement or a non-executable property from which deriving a program is convenient.

7.14 Polymorphic Universes

Author Matthieu Sozeau

7.14.1 General Presentation

Warning: The status of Universe Polymorphism is experimental.

This section describes the universe polymorphic extension of Coq. Universe polymorphism makes it possible to write
generic definitions making use of universes and reuse them at different and sometimes incompatible universe levels.
A standard example of the difference between universe polymorphic and monomorphic definitions is given by the identity
function:

Definition identity {A : Type} (a : A) := a.

By default, constant declarations are monomorphic, hence the identity function declares a global universe (say Top.1)
for its domain. Subsequently, if we try to self-apply the identity, we will get an error:

Fail Definition selfid := identity (@identity).
The command has indeed failed with message:
The term "@identity" has type "forall A : Type, A -> A"
while it is expected to have type "?A"
(unable to find a well-typed instantiation for "?A": cannot ensure that
"Type@{Top.1+1}" is a subtype of "Type@{Top.1}").

Indeed, the global level Top.1 would have to be strictly smaller than itself for this self-application to type check, as the
type of (@identity) is forall (A : Type@{Top.1}), A -> A whose type is itself Type@{Top.1+1}.
A universe polymorphic identity function binds its domain universe level at the definition level instead of making it global.

7.14. Polymorphic Universes 475



The Coq Reference Manual, Release 8.9.1

Polymorphic Definition pidentity {A : Type} (a : A) := a.

About pidentity.
pidentity@{Top.2} : forall A : Type, A -> A

pidentity is universe polymorphic
Argument A is implicit and maximally inserted
Argument scopes are [type_scope _]
pidentity is transparent
Expands to: Constant Top.pidentity

It is then possible to reuse the constant at different levels, like so:

Definition selfpid := pidentity (@pidentity).

Of course, the two instances of pidentity in this definition are different. This can be seen when the Printing
Universes flag is on:

Print selfpid.
selfpid =
pidentity@{Top.3} (@pidentity@{Top.4})

: forall A : Type@{Top.4}, A -> A
(* {Top.4 Top.3} |= Top.4 < Top.3

*)

Argument scopes are [type_scope _]

Now pidentity is used at two different levels: at the head of the application it is instantiated at Top.3 while in
the argument position it is instantiated at Top.4. This definition is only valid as long as Top.4 is strictly smaller than
Top.3, as shown by the constraints. Note that this definition is monomorphic (not universe polymorphic), so the two
universes (in this case Top.3 and Top.4) are actually global levels.
When printing pidentity, we can see the universes it binds in the annotation @{Top.2}. Additionally, when
Printing Universes is on we print the ”universe context” of pidentity consisting of the bound universes
and the constraints they must verify (for pidentity there are no constraints).
Inductive types can also be declared universes polymorphic on universes appearing in their parameters or fields. A typical
example is given by monoids:

Polymorphic Record Monoid := { mon_car :> Type; mon_unit : mon_car;
mon_op : mon_car -> mon_car -> mon_car }.

Print Monoid.

The Monoid’s carrier universe is polymorphic, hence it is possible to instantiate it for example with Monoid itself. First
we build the trivial unit monoid in Set:

Definition unit_monoid : Monoid :=
{| mon_car := unit; mon_unit := tt; mon_op x y := tt |}.

From this we can build a definition for the monoid of Set-monoids (where multiplication would be given by the product
of monoids).

Polymorphic Definition monoid_monoid : Monoid.
refine (@Build_Monoid Monoid unit_monoid (fun x y => x)).
Defined.
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Print monoid_monoid.
Polymorphic monoid_monoid@{Top.9} =
{|
mon_car := Monoid@{Set};
mon_unit := unit_monoid;
mon_op := fun x _ : Monoid@{Set} => x |}

: Monoid@{Top.9}
(* Top.9 |= Set < Top.9

*)

monoid_monoid is universe polymorphic

As one can see from the constraints, this monoid is “large”, it lives in a universe strictly higher than Set.

7.14.2 Polymorphic, Monomorphic

Command: Polymorphic definition
As shown in the examples, polymorphic definitions and inductives can be declared using the Polymorphic prefix.

Flag: Universe Polymorphism
Once enabled, this option will implicitly prepend Polymorphic to any definition of the user.

Command: Monomorphic definition
When the Universe Polymorphism option is set, to make a definition producing global universe constraints,
one can use the Monomorphic prefix.

Many other commands support the Polymorphic flag, including:
• Lemma, Axiom, and all the other “definition” keywords support polymorphism.
• Variables, Context, Universe and Constraint in a section support polymorphism. This means that
the universe variables (and associated constraints) are discharged polymorphically over definitions that use them. In
other words, two definitions in the section sharing a common variable will both get parameterized by the universes
produced by the variable declaration. This is in contrast to a “mononorphic” variable which introduces global
universes and constraints, making the two definitions depend on the same global universes associated to the variable.

• Hint Resolve and Hint Rewrite will use the auto/rewrite hint polymorphically, not at a single instance.

7.14.3 Cumulative, NonCumulative

Polymorphic inductive types, coinductive types, variants and records can be declared cumulative using the Cumulative
prefix.
Command: Cumulative inductive

Declares the inductive as cumulative
Alternatively, there is a flag Polymorphic Inductive Cumulativity which when set, makes all subsequent
polymorphic inductive definitions cumulative. When set, inductive types and the like can be enforced to be non-cumulative
using the NonCumulative prefix.
Command: NonCumulative inductive

Declares the inductive as non-cumulative
Flag: Polymorphic Inductive Cumulativity

When this option is on, it sets all following polymorphic inductive types as cumulative (it is off by default).
Consider the examples below.
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Polymorphic Cumulative Inductive list {A : Type} :=
| nil : list
| cons : A -> list -> list.

Print list.
Polymorphic Cumulative Inductive
list@{Top.12} (A : Type@{Top.12}) : Type@{max(Set,Top.12)} :=

nil : list@{Top.12} | cons : A -> list@{Top.12} -> list@{Top.12}
(* *Top.12 |= *)

For list: Argument A is implicit and maximally inserted
For nil: Argument A is implicit and maximally inserted
For cons: Argument A is implicit and maximally inserted
For list: Argument scope is [type_scope]
For nil: Argument scope is [type_scope]
For cons: Argument scopes are [type_scope _ _]

When printing list, the universe context indicates the subtyping constraints by prefixing the level names with symbols.
Because inductive subtypings are only produced by comparing inductives to themselves with universes changed, they
amount to variance information: each universe is either invariant, covariant or irrelevant (there are no contravariant
subtypings in Coq), respectively represented by the symbols =, + and *.
Here we see that list binds an irrelevant universe, so any two instances of list are convertible: 𝐸[Γ] ⊢
list@{𝑖} 𝐴 =𝛽𝛿𝜄𝜁𝜂 list@{𝑗} 𝐵 whenever 𝐸[Γ] ⊢ 𝐴 =𝛽𝛿𝜄𝜁𝜂 𝐵 and this applies also to their corresponding construc-
tors, when they are comparable at the same type.
See Conversion rules for more details on convertibility and subtyping. The following is an example of a record with
non-trivial subtyping relation:

Polymorphic Cumulative Record packType := {pk : Type}.
packType is defined
pk is defined

packType binds a covariant universe, i.e.

𝐸[Γ] ⊢ packType@{𝑖} =𝛽𝛿𝜄𝜁𝜂 packType@{𝑗} whenever 𝑖 ≤ 𝑗

Cumulative inductive types, coinductive types, variants and records only make sense when they are universe polymorphic.
Therefore, an error is issued whenever the user uses the Cumulative or NonCumulative prefix in a monomor-
phic context. Notice that this is not the case for the option Polymorphic Inductive Cumulativity. That
is, this option, when set, makes all subsequent polymorphic inductive declarations cumulative (unless, of course the
NonCumulative prefix is used) but has no effect on monomorphic inductive declarations.
Consider the following examples.

Fail Monomorphic Cumulative Inductive Unit := unit.
The command has indeed failed with message:
The Cumulative prefix can only be used in a polymorphic context.

Fail Monomorphic NonCumulative Inductive Unit := unit.
The command has indeed failed with message:
The NonCumulative prefix can only be used in a polymorphic context.

Set Polymorphic Inductive Cumulativity.
Inductive Unit := unit.

Unit is defined

(continues on next page)
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(continued from previous page)
Unit_rect is defined
Unit_ind is defined
Unit_rec is defined

An example of a proof using cumulativity

Set Universe Polymorphism.
Set Polymorphic Inductive Cumulativity.
Inductive eq@{i} {A : Type@{i}} (x : A) : A -> Type@{i} := eq_refl : eq x x.
Definition funext_type@{a b e} (A : Type@{a}) (B : A -> Type@{b})
:= forall f g : (forall a, B a),

(forall x, eq@{e} (f x) (g x))
-> eq@{e} f g.

Section down.
Universes a b e e'.
Constraint e' < e.
Lemma funext_down {A B}

(H : @funext_type@{a b e} A B) : @funext_type@{a b e'} A B.
Proof.
exact H.
Defined.
End down.

7.14.4 Cumulativity Weak Constraints

Flag: Cumulativity Weak Constraints
When set, which is the default, causes ”weak” constraints to be produced when comparing universes in an irrelevant
position. Processing weak constraints is delayed until minimization time. A weak constraint between u and vwhen
neither is smaller than the other and one is flexible causes them to be unified. Otherwise the constraint is silently
discarded.
This heuristic is experimental and may change in future versions. Disabling weak constraints is more predictable
but may produce arbitrary numbers of universes.

7.14.5 Global and local universes

Each universe is declared in a global or local environment before it can be used. To ensure compatibility, every global
universe is set to be strictly greater than Set when it is introduced, while every local (i.e. polymorphically quantified)
universe is introduced as greater or equal to Set.

7.14.6 Conversion and unification

The semantics of conversion and unification have to be modified a little to account for the new universe instance arguments
to polymorphic references. The semantics respect the fact that definitions are transparent, so indistinguishable from their
bodies during conversion.
This is accomplished by changing one rule of unification, the first- order approximation rule, which applies when two
applicative terms with the same head are compared. It tries to short-cut unfolding by comparing the arguments directly. In
case the constant is universe polymorphic, we allow this rule to fire only when unifying the universes results in instantiating
a so-called flexible universe variables (not given by the user). Similarly for conversion, if such an equation of applicative
terms fail due to a universe comparison not being satisfied, the terms are unfolded. This change implies that conversion
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and unification can have different unfolding behaviors on the same development with universe polymorphism switched on
or off.

7.14.7 Minimization

Universe polymorphism with cumulativity tends to generate many useless inclusion constraints in general. Typically at
each application of a polymorphic constant f, if an argument has expected type Type@{i} and is given a term of type
Type@{j}, a 𝑗 ≤ 𝑖 constraint will be generated. It is however often the case that an equation 𝑗 = 𝑖 would be more
appropriate, when f’s universes are fresh for example. Consider the following example:

Definition id0 := @pidentity nat 0.

Print id0.
id0@{} = pidentity@{Set} 0

: nat

id0 is universe polymorphic

This definition is elaborated by minimizing the universe of id0 to level Set while the more general definition would
keep the fresh level i generated at the application of id and a constraint that Set ≤ 𝑖. This minimization process is
applied only to fresh universe variables. It simply adds an equation between the variable and its lower bound if it is an
atomic universe (i.e. not an algebraic max() universe).
Flag: Universe Minimization ToSet

Turning this flag off (it is on by default) disallows minimization to the sort Set and only collapses floating universes
between themselves.

7.14.8 Explicit Universes

The syntax has been extended to allow users to explicitly bind names to universes and explicitly instantiate polymorphic
definitions.
Command: Universe ident

In the monorphic case, this command declares a new global universe named ident, which can be referred to
using its qualified name as well. Global universe names live in a separate namespace. The command supports the
polymorphic flag only in sections, meaning the universe quantification will be discharged on each section definition
independently. One cannot mix polymorphic and monomorphic declarations in the same section.

Command: Constraint ident ord ident
This command declares a new constraint between named universes. The order relation ord can be one of <, ≤ or
=. If consistent, the constraint is then enforced in the global environment. Like Universe, it can be used with
the Polymorphic prefix in sections only to declare constraints discharged at section closing time. One cannot
declare a global constraint on polymorphic universes.
Error: Undeclared universe ident.

Error: Universe inconsistency.

Polymorphic definitions

For polymorphic definitions, the declaration of (all) universe levels introduced by a definition uses the following syntax:

Polymorphic Definition le@{i j} (A : Type@{i}) : Type@{j} := A.
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Print le.
le@{i j} =
fun A : Type@{i} => A

: Type@{i} -> Type@{j}
(* i j |= i <= j

*)

le is universe polymorphic
Argument scope is [type_scope]

During refinement we find that j must be larger or equal than i, as we are using A : Type@{i} <= Type@{j},
hence the generated constraint. At the end of a definition or proof, we check that the only remaining universes are the
ones declared. In the term and in general in proof mode, introduced universe names can be referred to in terms. Note
that local universe names shadow global universe names. During a proof, one can use Show Universes to display the
current context of universes.
Definitions can also be instantiated explicitly, giving their full instance:

Check (pidentity@{Set}).
pidentity@{Set}

: ?A -> ?A
where
?A : [ |- Set]

Monomorphic Universes k l.
Check (le@{k l}).

le@{k l}
: Type@{k} -> Type@{l}

(* {} |= k <= l
*)

User-named universes and the anonymous universe implicitly attached to an explicit Type are considered rigid for uni-
fication and are never minimized. Flexible anonymous universes can be produced with an underscore or by omitting the
annotation to a polymorphic definition.

Check (fun x => x) : Type -> Type.
(fun x : Type@{Top.49} => x) : Type@{Top.49} -> Type@{Top.50}

: Type@{Top.49} -> Type@{Top.50}
(* {Top.50 Top.49} |= Top.49 <= Top.50

*)

Check (fun x => x) : Type -> Type@{_}.
(fun x : Type@{Top.51} => x) : Type@{Top.51} -> Type@{Top.51}

: Type@{Top.51} -> Type@{Top.51}
(* {Top.51} |= *)

Check le@{k _}.
le@{k k}

: Type@{k} -> Type@{k}

Check le.
le@{Top.54 Top.54}

: Type@{Top.54} -> Type@{Top.54}
(* {Top.54} |= *)

Flag: Strict Universe Declaration
Turning this option off allows one to freely use identifiers for universes without declaring them first, with the
semantics that the first use declares it. In this mode, the universe names are not associated with the definition or
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proof once it has been defined. This is meant mainly for debugging purposes.
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COMMAND INDEX

a
Abort, 138
About, 123
Add @table, 124
Add Field, 457
Add LoadPath, 132
Add ML Path, 132
Add Morphism, 467
Add Parametric Morphism, 462
Add Parametric Relation, 462
Add Rec LoadPath, 132
Add Rec ML Path, 132
Add Relation, 462
Add Ring, 452
Add Setoid, 467
Admit Obligations, 447
Admitted, 138
Arguments, 69
Arguments (implicits), 69
Arguments (scopes), 355
Axiom, 31
Axioms, 31

b
Back, 133
BackTo, 133
Backtrack, 133
Bind Scope, 356

c
Canonical Structure, 75
Cd, 132
Check, 125
Class, 425
Close Scope, 354
Coercion, 406
CoFixpoint, 41
CoInductive, 37
Collection, 140
Combined Scheme, 365
Compute, 125
Conjecture, 31

Conjectures, 31
Constraint, 480
Context, 58
Corollary, 42
Create HintDb, 200
Cumulative, 477

d
Declare Custom Entry, 350
Declare Implicit Tactic, 205
Declare Instance, 426
Declare Left Step, 189
Declare ML Module, 131
Declare Module, 60
Declare Reduction, 137
Declare Right Step, 189
Defined, 138
Definition, 31
Delimit Scope, 355
Derive, 474
Derive Inversion, 370
Drop, 134

e
End, 57
Eval, 125
Example, 32
Existential, 140
Existing Instance, 426
Export, 64
Extract Constant, 438
Extract Inductive, 439
Extract Inlined Constant, 438
Extraction, 435
Extraction Blacklist, 440
Extraction Implicit, 437
Extraction Inline, 437
Extraction Language, 436
Extraction Library, 435
Extraction NoInline, 437
Extraction TestCompile, 436

486



The Coq Reference Manual, Release 8.9.1

f
Fact, 42
Fail, 134
Fixpoint, 39
Focus, 141
Function, 53
Functional Scheme, 365

g
Generalizable, 78
Generalizable All Variables, 77
Generalizable No Variables, 78
Global, 137
Global Close Scope, 355
Global Generalizable, 78
Global Instance, 426
Global Opaque, 135
Global Open Scope, 355
Global Transparent, 136
Goal, 138
Grab Existential Variables, 140
Guarded, 148

h
Hint, 200
Hint Constants, 201
Hint Constructors, 201
Hint Cut, 202
Hint Extern, 201
Hint Immediate, 201
Hint Mode, 202
Hint Opaque, 201
Hint Resolve, 200
Hint Rewrite, 204
Hint Transparent, 201
Hint Unfold, 201
Hint Variables, 201
Hint View for, 340
Hint View for apply, 334
Hint View for move, 334
Hypotheses, 57
Hypotheses (outside a section), 31
Hypothesis, 57
Hypothesis (outside a section), 31

i
Identity Coercion, 406
Implicit Types, 76
Import, 63
Include, 59
Inductive, 32
Infix, 345
Info, 236
Inline, 60

Inspect, 123
Instance, 425

l
Lemma, 42
Let, 57
Let (outside a section), 32
Let CoFixpoint, 57
Let Fixpoint, 57
Load, 130
Local, 137
Local Close Scope, 354
Local Declare Custom Entry, 354
Local Definition, 32
Local Notation, 354
Local Open Scope, 354
Local Parameter, 30
Locate, 129
Locate File, 133
Locate Library, 133
Ltac, 236

m
Module, 58
Module Type, 59
Monomorphic, 477

n
Next Obligation, 447
NonCumulative, 477
Notation, 341
Numeral Notation, 359

o
Obligation num, 447
Obligation Tactic, 447
Obligations, 447
Opaque, 135
Open Scope, 354
Optimize Heap, 150
Optimize Proof, 150

p
Parameter, 30
Parameters, 31
Polymorphic, 477
Prenex Implicits, 260
Preterm, 447
Print, 123
Print All, 123
Print All Dependencies, 125
Print Assumptions, 125
Print Canonical Projections, 76
Print Classes, 407
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Print Coercion Paths, 407
Print Coercions, 407
Print Extraction Blacklist, 440
Print Extraction Inline, 437
Print Firstorder Solver, 208
Print Grammar, 352
Print Grammar constr, 343
Print Grammar pattern, 343
Print Grammar tactic, 362
Print Graph, 407
Print Hint, 200
Print HintDb, 204
Print Implicit, 74
Print Instances, 467
Print Libraries, 131
Print LoadPath, 132
Print Ltac, 236
Print Ltac Signatures, 236
Print ML Modules, 132
Print ML Path, 133
Print Module, 64
Print Module Type, 64
Print Opaque Dependencies, 125
Print Options, 124
Print Rewrite HintDb, 204
Print Scope, 358
Print Scopes, 358
Print Strategy, 136
Print Table @table, 124
Print Tables, 124
Print Term, 123
Print Transparent Dependencies, 125
Print Universes, 79
Print Visibility, 358
Program Definition, 445
Program Fixpoint, 445
Program Instance, 426
Program Lemma, 446
Proof, 139
Proof `term`, 139
Proof using, 139
Proof with, 205
Proposition, 42
Pwd, 132

q
Qed, 138
Quit, 134

r
Record, 45
Recursive Extraction, 435
Recursive Extraction Library, 436
Redirect, 134

Remark, 42
Remove @table, 124
Remove Hints, 203
Remove LoadPath, 132
Require, 130
Require Export, 131
Require Import, 131
Reset, 133
Reset Extraction Blacklist, 440
Reset Extraction Inline, 437
Reset Ltac Profile, 238
Restart, 141

s
Save, 138
Scheme, 362
Scheme Equality, 363
Search, 125
Search (ssreflect), 335
SearchAbout, 126
SearchHead, 126
SearchPattern, 127
SearchRewrite, 128
Section, 57
Separate Extraction, 436
Set, 124
Set @option, 124
Show, 146
Show Conjectures, 147
Show Existentials, 147
Show Intro, 147
Show Intros, 147
Show Ltac Profile, 237
Show Obligation Tactic, 447
Show Proof, 147
Show Script, 147
Show Universes, 148
Solve All Obligations, 447
Solve Obligations, 447
Strategy, 136
Structure, 408
SubClass, 407

t
Tactic Notation, 361
Test, 124
Test @table for, 124
Theorem, 42
Time, 134
Timeout, 134
Transparent, 136
Typeclasses eauto, 428
Typeclasses Opaque, 427
Typeclasses Transparent, 427
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u
Undelimit Scope, 355
Undo, 141
Unfocus, 141
Unfocused, 141
Universe, 480
Unset, 124
Unset @option, 124
Unshelve, 218

v
Variable, 57
Variable (outside a section), 31
Variables, 57
Variables (outside a section), 31
Variant, 36
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+
+ (backtracking branching), 223

.

... : ... (goal selector), 222

... : ... (ssreflect), 274

=
=>, 277

[
[> ... | ... | ... ] (dispatch), 221

_
_, 165

a
abstract, 235
abstract (ssreflect), 276
absurd, 169
admit, 169
all: ..., 222
apply, 153
apply (ssreflect), 273
apply ... in, 156
apply ... in ... as, 157
assert, 167
assert_fails, 225
assert_succeeds, 225
assumption, 152
auto, 197
autoapply, 427
autorewrite, 199
autounfold, 199

b
btauto, 213
by, 284

c
case, 171
case (ssreflect), 280

cbn, 192
cbv, 190
change, 189
classical_left, 212
classical_right, 212
clear, 162
clearbody, 162
cofix, 186
compare, 211
compute, 191
congr, 313
congruence, 208
congruence with, 209
constr_eq, 210
constr_eq_strict, 210
constructor, 157
contradict, 170
contradiction, 170
cut, 168
cutrewrite, 188
cycle, 214

d
debug auto, 197
debug trivial, 198
decide equality, 211
decompose, 166
dependent destruction, 176
dependent induction, 175
dependent inversion, 182
dependent inversion ... with ..., 182
dependent rewrite ->, 212
dependent rewrite <-, 212
destruct, 170
destruct ... eqn:, 171
dintuition, 207
discriminate, 178
discrR, 91
do, 223
do (ssreflect), 287
done, 284
double induction, 175
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dtauto, 207

e
eapply, 154
eassert, 167
eassumption, 152
easy, 199
eauto, 198
ecase, 171
econstructor, 158
edestruct, 171
ediscriminate, 178
eelim, 174
eenough, 168
eexact, 152
eexists, 158
einduction, 173
einjection, 179
eleft, 158
elim, 174
elim (ssreflect), 272
elim ... with, 174
elimtype, 174
enough, 167
epose, 166
epose proof, 167
eremember, 165
erewrite, 188
eright, 158
eset, 165
esimplify_eq, 211
esplit, 158
evar, 169
exact, 152
exactly_once, 225
exfalso, 170
exists, 158

f
f_equal, 211
fail, 226
field, 213
field_simplify, 213
field_simplify_eq, 213
finish_timing, 229
first, 224
first (ssreflect), 285
first last, 286
firstorder, 208
fix, 186
fold, 195
function induction, 176
functional inversion, 212

g
generalize, 168
generally have, 339
gfail, 226
give_up, 218
guard, 234

h
has_evar, 210
have, 289
hnf, 192

i
idtac, 226
in, 287
induction, 172
induction ... using ..., 173
info_trivial, 198
injection, 178
instantiate, 169
intro, 158
intros, 159
intros ..., 160
intuition, 207
inversion, 180
inversion_clear, 180
inversion_sigma, 182
is_evar, 210
is_var, 210

l
lapply, 155
last, 285
last first, 286
lazy, 190
left, 158
let ... := ..., 230
lia, 433
lra, 433
ltac-seq, 221

m
match goal, 232
move, 272
move ... after ..., 162
move ... at bottom, 163
move ... at top, 163
move ... before ..., 163

n
native_compute, 192
nia, 434
notypeclasses refine, 153
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now, 199
nra, 434
nsatz, 458

o
omega, 213
once, 225
only ... : ..., 222
optimize_heap, 239

p
par: ..., 222
pattern, 196
pose, 165
pose (ssreflect), 261
pose proof, 167
progress, 223
psatz, 434

q
quote, 212

r
red, 192
refine, 152
reflexivity, 211
remember, 165
rename, 164
repeat, 223
replace, 188
reset ltac profile, 239
restart_timer, 229
revert, 162
revert dependent, 162
revgoals, 216
rewrite, 187
rewrite (ssreflect), 299
rewrite_strat, 470
right, 158
ring, 213
ring_simplify, 213
romega, 429
rtauto, 207

s
set, 165
set (ssreflect), 262
setoid_reflexivity, 466
setoid_replace, 467
setoid_rewrite, 466
setoid_symmetry, 466
setoid_transitivity, 466
shelve, 217
shelve_unifiable, 217

show ltac profile, 239
simpl, 192
simple apply, 155
simple destruct, 171
simple eapply, 155
simple induction, 175
simple inversion, 182
simple notypeclasses refine, 153
simple refine, 153
simplify_eq, 211
solve, 225
specialize, 168
split, 158
split_Rabs, 91
split_Rmult, 92
start ltac profiling, 239
stepl, 189
stepr, 189
stop ltac profiling, 239
subst, 188
suff, 339
suffices, 339
swap, 215
symmetry, 211

t
tauto, 206
time, 229
time_constr, 229
timeout, 229
transitivity, 211
transparent_abstract, 235
trivial, 197
try, 223
tryif, 224
typeclasses eauto, 426

u
unfold, 194
unify, 210
unlock, 313

v
vm_compute, 191

w
without loss, 296
wlog, 296

|
|| (left-biased branching), 224
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a
Asymmetric Patterns, 399
Automatic Coercions Import, 408
Automatic Introduction, 149

b
Boolean Equality Schemes, 364
Bracketing Last Introduction Pattern,

162
Bullet Behavior, 146

c
Case Analysis Schemes, 364
Congruence Verbose, 210
Contextual Implicit, 73
Cumulativity Weak Constraints, 479

d
Debug Auto, 198
Debug Cbv, 192
Debug Eauto, 198
Debug RAKAM, 194
Debug Trivial, 198
Decidable Equality Schemes, 364
Default Goal Selector, 151
Default Proof Using, 140
Default Timeout, 134
Diffs, 148

e
Elimination Schemes, 364
Extraction AutoInline, 437
Extraction Conservative Types, 436
Extraction KeepSingleton, 437
Extraction Optimize, 436
Extraction SafeImplicits, 437

f
Firstorder Depth, 208
Firstorder Solver, 208

h
Hide Obligations, 447
Hyps Limit, 149

i
Implicit Arguments, 72
Info Auto, 198
Info Eauto, 198
Info Level, 237
Info Trivial, 198
Intuition Negation Unfolding, 207

k
Keep Proof Equalities, 180

l
Loose Hint Behavior, 204
Ltac Batch Debug, 237
Ltac Debug, 237
Ltac Profiling, 237

m
Maximal Implicit Insertion, 73

n
NativeCompute Profile Filename, 192
NativeCompute Profiling, 192
Nested Proofs Allowed, 150
Nonrecursive Elimination Schemes, 364

o
Omega Action, 431
Omega System, 430
Omega UseLocalDefs, 430

p
Parsing Explicit, 75
Polymorphic Inductive Cumulativity, 477
Primitive Projections, 48
Printing All, 78
Printing Allow Match Default Clause, 52
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Printing Coercion, 407
Printing Coercions, 407
Printing Compact Contexts, 135
Printing Constructor, 47
Printing Dependent Evars Line, 135
Printing Depth, 135
Printing Existential Instances, 80
Printing Factorizable Match Patterns,

52
Printing If, 53
Printing Implicit, 74
Printing Implicit Defensive, 74
Printing Let, 53
Printing Matching, 52
Printing Notations, 346
Printing Primitive Projection

Compatibility, 49
Printing Primitive Projection

Parameters, 48
Printing Projections, 47
Printing Record, 47
Printing Records, 46
Printing Synth, 52
Printing Unfocused, 135
Printing Universes, 79
Printing Width, 135
Printing Wildcard, 52
Program Cases, 444
Program Generalized Coercion, 444

r
Refine Instance Mode, 428
Regular Subst Tactic, 189
Reversible Pattern Implicit, 73
Rewriting Schemes, 364

s
Search Blacklist, 129
Search Output Name Only, 135
Short Module Printing, 64
Shrink Obligations, 447
Silent, 135
SsrHave NoTCResolution, 295
Stable Omega, 430
Strict Implicit, 72
Strict Universe Declaration, 481
Strongly Strict Implicit, 73
Structural Injection, 180
Suggest Proof Using, 140

t
Transparent Obligations, 447
Typeclass Resolution For Conversion, 428
Typeclasses Debug, 428

Typeclasses Debug Verbosity, 428
Typeclasses Dependency Order, 427
Typeclasses Filtered Unification, 427
Typeclasses Limit Intros, 428
Typeclasses Strict Resolution, 428
Typeclasses Unique Instances, 428
Typeclasses Unique Solutions, 428

u
Uniform Inductive Parameters, 35
Universal Lemma Under Conjunction, 156
Universe Minimization ToSet, 480
Universe Polymorphism, 477

w
Warnings, 135
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ERRORS AND WARNINGS INDEX

@
@ident already exists. (Axiom), 30
@ident already exists. (Definition), 31
@ident already exists. (Let), 57
@ident already exists. (Program

Definition), 445
@ident already exists. (Theorem), 42
@ident already exists. (Variable), 57

a
Ambiguous path, 406
Argument of match does not evaluate to

a term, 231
Arguments of ring_simplify do not have

all the same type, 450
Attempt to save an incomplete proof, 138

b
Bad lemma for decidability of equality,

453
Bad magic number, 131
Bad occurrence number of ‘qualid’, 195
Bad ring structure, 453
Brackets do not support multi-goal

selectors, 142

c
Cannot build functional inversion

principle, 55
Cannot define graph for ‘ident’, 55
Cannot define principle(s) for ‘ident’,

55
Cannot find a declared ring structure

for equality ‘term’, 451
Cannot find a declared ring structure

over ‘term’, 450
Cannot find induction information on

‘qualid’, 177
Cannot find inversion information for

hypothesis ‘ident’, 212
Cannot find library foo in loadpath, 131

Cannot find the source class of
‘qualid’, 406

Cannot handle mutually (co)inductive
records, 48

Cannot infer a term for this
placeholder. (Casual use of
implicit arguments), 68

Cannot infer a term for this
placeholder. (refine), 153

Cannot interpret in ‘scope’ because
‘ident’ could not be found in
the current environment, 360

Cannot interpret this number as a
value of type ‘type’, 360

Cannot load qualid: no physical path
bound to dirpath, 131

Cannot move ‘ident’ after ‘ident’: it
depends on ‘ident’, 163

Cannot move ‘ident’ after ‘ident’: it
occurs in the type of ‘ident’,
163

Cannot recognize a boolean equality, 213
Cannot recognize ‘class’ as a source

class of ‘qualid’, 406
Cannot solve the goal, 225
Cannot use mutual definition with

well-founded recursion or
measure, 55

Can’t find file ‘ident’ on loadpath, 130
Coercion used but not in scope:

‘qualid’. If you want to use
this coercion, please Import
the module that contains it, 408

Compiled library ‘ident’.vo makes
inconsistent assumptions over
library qualid, 131

Condition not satisfied, 235

d
Debug mode not available in the IDE, 237
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e
Either there is a type incompatibility

or the problem involves
dependencies, 404

f
Failed to progress, 223
File not found on loadpath: ‘string’,

132
Files processed by Load cannot leave

open proofs, 130
Found target class ... instead of ...,

406
Funclass cannot be a source class, 406

g
goal does not satisfy the expected

preconditions, 180
Goal is solvable by congruence but

some arguments are missing. Try
congruence with ‘term’…‘term’,
replacing metavariables by
arbitrary terms, 210

h
Hypothesis ‘ident’ must contain at

least one Function, 212

i
I don’t know how to handle dependent

equality, 209
Ill-formed recursive definition, 448
In environment … the term: ‘term’ does

not have type ‘type’. Actually,
it has type ..., 445

Invalid argument, 153
Invalid backtrack, 133

l
Load is not supported inside proofs, 130
Loading of ML object file forbidden in

a native Coq, 132

m
Module/section ‘qualid’ not found, 127

n
Nested proofs are not allowed unless

you turn option Nested Proofs
Allowed on, 42

No applicable tactic, 224
No argument name ‘ident’, 55
No discriminable equalities, 178

No evars, 210
No focused proof, 138
No focused proof (No proof-editing in

progress), 139
No focused proof to restart, 141
No head constant to reduce, 192
No matching clauses for match, 231
No matching clauses for match goal, 233
No primitive equality found, 178
No product even after head-reduction,

159
No progress made, 470
No such assumption, 152
No such binder, 151
No such goal, 146
No such goal (‘ident’), 142
No such goal (‘num’), 142
No such goal. (fail), 226
No such goal. (Goal selector), 223
No such goal. Focus next goal with

bullet ‘bullet’, 146
No such hypothesis, 162
No such hypothesis in current goal, 159
No such hypothesis: ‘ident’, 159
No such label ‘ident’, 59
Non exhaustive pattern matching, 404
Non strictly positive occurrence of

‘ident’ in ‘type’, 32
Not a context variable, 233
Not a discriminable equality, 178
Not a primitive equality, 179
Not a projectable equality but a

discriminable one, 179
Not a proposition or a type, 167
Not a valid ring equation, 450
Not a variable or hypothesis, 210
Not an evar, 210
Not an exact proof, 152
Not an inductive goal with 1

constructor, 158
Not an inductive goal with 2

constructors, 158
Not an inductive product, 157
Not convertible, 190
Not enough constructors, 157
Not equal, 210
Not equal (due to universes), 210
Not reducible, 192
Not the right number of induction

arguments, 177
Not the right number of missing

arguments, 151
Nothing to do, it is an equality

between convertible terms, 179
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Nothing to inject, 179
Nothing to rewrite, 470

o
omega can't solve this system, 429
omega: Can't solve a goal with

equality on type ..., 430
omega: Can't solve a goal with

non-linear products, 430
omega: Can't solve a goal with

proposition variables, 430
omega: Not a quantifier-free goal, 429
omega: Unrecognized atomic

proposition: ..., 430
omega: Unrecognized predicate or

connective: ‘ident’, 430
omega: Unrecognized proposition, 430

p
Proof is not complete. (abstract), 235
Proof is not complete. (assert), 167

q
quote: not a simple fixpoint, 212

r
Records declared with the keyword

Record or Structure cannot be
recursive, 48

Refine passed ill-formed term, 153
Require is not allowed inside a module

or a module type, 131
Ring operation should be declared as a

morphism, 453

s
Signature components for label ‘ident’

do not match, 59
Stack overflow or segmentation fault

happens when working with large
numbers in ‘type’ (threshold
may vary depending on your
system limits and on the
command executed), 361

Statement without assumptions, 157
Syntax error: [prim:reference]

expected after 'Notation' (in
[vernac:command]), 361

Syntax error: [prim:reference]
expected after [prim:reference]
(in [vernac:command]), 361

t
Tactic Failure message (level ‘num’),

226

Tactic generated a subgoal identical
to the original goal. This
happens if ‘term’ does not
occur in the goal, 187

Tactic Notation ‘qualid’ is deprecated
since ‘string’. ‘string’, 44

Tactic ‘qualid’ is deprecated since
‘string’. ‘string’, 44

Terms do not have convertible types, 188
The 'abstract after' directive has

no effect when the parsing
function (‘ident’) targets an
option type, 361

The command has not failed!, 134
The conclusion is not a substitutive

equation, 211
The conclusion of ‘type’ is not valid;

it must be built from ‘ident’, 32
The constructor ‘ident’ expects ‘num’

arguments, 403
The elimination predicate term should

be of arity ‘num’ (for non
dependent case) or ‘num’ (for
dependent case), 404

The file :n:`‘ident’.vo` contains
library dirpath and not library
dirpath’, 131

The recursive argument must be
specified, 55

The reference is not unfoldable, 136
The reference ‘ident’ was not found in

the current environment, 361
The reference ‘qualid’ was not found

in the current environment, 125
The term ‘term’ has type ‘type’ which

should be Set, Prop or Type, 42
The term ‘term’ has type ‘type’ while

it is expected to have type
‘type’', 32

The variable ‘ident’ is already
defined, 165

The ‘num’ th argument of ‘ident’ must
be ‘ident’ in ‘type’, 36

The ‘term’ provided does not end with
an equation, 187

This is not the last opened module, 59
This is not the last opened module

type, 60
This is not the last opened section, 57
This object does not support universe

names, 123
This proof is focused, but cannot be

unfocused this way, 142
This tactic has more than one success,
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225
To avoid stack overflow, large numbers

in ‘type’ are interpreted as
applications of ‘ident’, 361

Too few occurrences, 190
Trying to mask the absolute name

‘qualid’!, 64

u
Unable to apply, 157
Unable to find an instance for the

variables ‘ident’…‘ident’, 154
Unable to infer a match predicate, 404
Unable to satisfy the rewriting

constraints, 470
Unable to unify ... with ..., 211
Unable to unify ‘term’ with ‘term’, 153
Unbound context identifier ‘ident’, 233
Undeclared universe ‘ident’, 480
Unexpected non-option term ‘term’

while parsing a numeral
notation, 360

Unexpected term ‘term’ while parsing a
numeral notation, 360

Universe inconsistency, 480
Universe instance should have length

‘num’, 123
Unknown inductive type, 148

v
Variable ‘ident’ is already declared,

167

w
When ‘term’ contains more than one non

dependent product the tactic
lapply only takes into account
the first product, 155

Wrong bullet ‘bullet’: Bullet ‘bullet’
is mandatory here, 146

Wrong bullet ‘bullet’: Current bullet
‘bullet’ is not finished, 146

‘
‘class’ must be a transparent constant,

407
‘ident’ cannot be defined, 48
‘ident’ is already declared as a

typeclass, 425
‘ident’ is already used, 159
‘ident’ is bound to a notation that

does not denote a reference, 361
‘ident’ is declared as a local axiom

[local-declaration,scope], 31

‘ident’ is declared as a
local definition
[local-declaration,scope], 32

‘ident’ is not a local definition, 162
‘ident’ is not an inductive type, 201
‘ident’ is used in conclusion, 168
‘ident’ is used in hypothesis ‘ident’,

168
‘ident’ is used in the conclusion, 162
‘ident’ is used in the hypothesis

‘ident’, 162
‘ident’ should go from Decimal.int

to ‘type’ or (option ‘type’).
Instead of Decimal.int, the
types Decimal.uint or Z could
be used(require BinNums first),
360

‘ident’ should go from ‘type’ to
Decimal.int or (option
Decimal.int). Instead of
Decimal.int, the types
Decimal.uint or Z could be
used(require BinNums first),
360

‘ident’: no such entry, 133
‘qualid’ does not denote an evaluable

constant, 194
‘qualid’ does not occur, 195
‘qualid’ does not respect the uniform

inheritance condition, 406
‘qualid’ is already a coercion, 406
‘qualid’ is not a function, 406
‘qualid’ is not a module, 64
‘qualid’ not a defined object, 123
‘qualid’ not declared, 406
‘term’ cannot be used as a hint, 201
‘type’ is not an inductive type, 360
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Non-alphabetical
- (term), 89
... : ... (goal selector) (tacn), 222
... : ... (ssreflect) (tacn), 274
... : ... (type cast), 27
... <: ..., 27
... <<: ..., 27
* (term), 84, 89
+ (backtracking branching) (tacn), 223
+ (term), 84, 89
:> (coercion), 407
:> (substructure), 425
< (term), 89
<= (term), 89
?= (term), 89
=> (tacn), 277
> (term), 89
>= (term), 89
@ident already exists. (Axiom) (err), 30
@ident already exists. (Definition)

(err), 31
@ident already exists. (Let) (err), 57
@ident already exists. (Program

Definition) (err), 445
@ident already exists. (Theorem) (err), 42
@ident already exists. (Variable) (err),

57
[> ... | ... | ... ] (dispatch) (tacn),

221
_, 27
`{ }, 77
`( ), 77
{, 141
|| (left-biased branching) (tacn), 224
}, 141
‘class’ must be a transparent constant

(err), 407
‘ident’ cannot be defined (warn), 48
‘ident’ is already declared as a

typeclass (warn), 425
‘ident’ is already used (err), 159, 165
‘ident’ is bound to a notation that

does not denote a reference (err),
361

‘ident’ is declared as a local axiom
[local-declaration,scope] (warn),
31

‘ident’ is declared as a
local definition
[local-declaration,scope] (warn),
32

‘ident’ is not a local definition (err),
162

‘ident’ is not an inductive type (err), 201
‘ident’ is used in conclusion (err), 168
‘ident’ is used in hypothesis ‘ident’

(err), 168
‘ident’ is used in the conclusion (err),

162
‘ident’ is used in the hypothesis

‘ident’ (err), 162
‘ident’ should go from Decimal.int

to ‘type’ or (option ‘type’).
Instead of Decimal.int, the
types Decimal.uint or Z could
be used(require BinNums first)
(err), 360

‘ident’ should go from ‘type’ to
Decimal.int or (option
Decimal.int). Instead of
Decimal.int, the types
Decimal.uint or Z could be
used(require BinNums first)
(err), 360

‘ident’: no such entry (err), 133
‘qualid’ does not denote an evaluable

constant (err), 194
‘qualid’ does not occur (err), 195
‘qualid’ does not respect the uniform

inheritance condition (err), 406
‘qualid’ is already a coercion (err), 406
‘qualid’ is not a function (err), 406
‘qualid’ is not a module (err), 64
‘qualid’ not a defined object (err), 123
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‘qualid’ not declared (err), 406
‘term’ cannot be used as a hint (err), 201
‘type’ is not an inductive type (err), 360

A
A*B (term), 84
A+B (term), 84
A+{B} (term), 85
{A}+{B} (term), 85
Abort (cmd), 138
About (cmd), 123
abstract (ssreflect) (tacn), 276
abstract (tacn), 235
absurd (tacn), 169
absurd (term), 83
absurd_set (term), 86
Acc (term), 87
Acc_inv (term), 87
Acc_rect (term), 87
Add @table (cmd), 124
Add Field (cmd), 457
Add LoadPath (cmd), 132
Add ML Path (cmd), 132
Add Morphism (cmd), 467
Add Parametric Morphism (cmd), 462
Add Parametric Relation (cmd), 462
Add Rec LoadPath (cmd), 132
Add Rec ML Path (cmd), 132
Add Relation (cmd), 462
Add Ring (cmd), 452
Add Setoid (cmd), 467
admit (tacn), 169
Admit Obligations (cmd), 447
Admitted (cmd), 138
all (term), 82
all: ... (tacnv), 222
Ambiguous path (warn), 406
and (term), 82
and_rect (term), 86
app (term), 93
apply ... in ... as (tacnv), 157
apply ... in (tacn), 156
apply (ssreflect) (tacn), 273
apply (tacn), 153
Argument of match does not evaluate to

a term (err), 231
Arguments (cmd), 69, 71, 74
Arguments (implicits) (cmd), 69
Arguments (scopes) (cmd), 355
Arguments of ring_simplify do not have

all the same type (err), 450
Arithmetical notations, 89
assert (tacn), 167
assert_fails (tacn), 225

assert_succeeds (tacn), 225
assumption (tacn), 152
Asymmetric Patterns (flag), 399
Attempt to save an incomplete proof

(err), 138
auto (tacn), 197
autoapply (tacn), 427
Automatic Coercions Import (flag), 408
Automatic Introduction (flag), 149
autorewrite (tacn), 199
autounfold (tacn), 199
Axiom (cmdv), 31
Axioms (cmdv), 31

B
Back (cmd), 133
BackTo (cmd), 133
Backtrack (cmdv), 133
Bad lemma for decidability of equality

(err), 453
Bad magic number (err), 131
Bad occurrence number of ‘qualid’ (err),

195
Bad ring structure (err), 453
Bind Scope (cmd), 356
bool (term), 84
bool_choice (term), 85
Boolean Equality Schemes (flag), 364
Bracketing Last Introduction Pattern

(flag), 162
Brackets do not support multi-goal

selectors (err), 142
btauto (tacn), 213
Bullet Behavior (opt), 146
by (tacn), 284

C
Cannot build functional inversion

principle (warn), 55
Cannot define graph for ‘ident’ (warn), 55
Cannot define principle(s) for ‘ident’

(warn), 55
Cannot find a declared ring structure

for equality ‘term’ (err), 451
Cannot find a declared ring structure

over ‘term’ (err), 450
Cannot find induction information on

‘qualid’ (err), 177
Cannot find inversion information for

hypothesis ‘ident’ (err), 212
Cannot find library foo in loadpath

(err), 131
Cannot find the source class of

‘qualid’ (err), 406
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Cannot handle mutually (co)inductive
records (err), 48

Cannot infer a term for this
placeholder. (Casual use of
implicit arguments) (err), 68

Cannot infer a term for this
placeholder. (refine) (err), 153

Cannot interpret in ‘scope’ because
‘ident’ could not be found in
the current environment (err), 360

Cannot interpret this number as a
value of type ‘type’ (err), 360

Cannot load qualid: no physical path
bound to dirpath (err), 131

Cannot move ‘ident’ after ‘ident’: it
depends on ‘ident’ (err), 163

Cannot move ‘ident’ after ‘ident’: it
occurs in the type of ‘ident’
(err), 163

Cannot recognize a boolean equality
(err), 213

Cannot recognize ‘class’ as a source
class of ‘qualid’ (err), 406

Cannot solve the goal (err), 225
Cannot use mutual definition with

well-founded recursion or
measure (err), 55

Canonical Structure (cmd), 75
Can’t find file ‘ident’ on loadpath

(err), 130
case (ssreflect) (tacnv), 280
case (tacn), 171
Case Analysis Schemes (flag), 364
cbn (tacn), 192
cbv (tacn), 190
Cd (cmd), 132
change (tacn), 189
Check (cmd), 125
Choice (term), 85
Choice2 (term), 85
Class (cmd), 425
classical_left (tacn), 212
classical_right (tacn), 212
clear (tacn), 162
clearbody (tacnv), 162
Close Scope (cmd), 354
Coercion (cmd), 406
Coercion used but not in scope:

‘qualid’. If you want to use
this coercion, please Import
the module that contains it
(warn), 408

cofix, 29
cofix (tacn), 186

CoFixpoint (cmd), 41
CoInductive (cmd), 37
Collection (cmd), 140
Combined Scheme (cmd), 365
compare (tacn), 211
Compiled library ‘ident’.vo makes

inconsistent assumptions over
library qualid (err), 131

Compute (cmd), 125
compute (tacnv), 191
Condition not satisfied (err), 235
congr (tacn), 313
congruence (tacn), 208
Congruence Verbose (flag), 210
congruence with (tacnv), 209
conj (term), 82
Conjecture (cmdv), 31
Conjectures (cmdv), 31
Connectives, 82
constr_eq (tacn), 210
constr_eq_strict (tacn), 210
Constraint (cmd), 480
constructor (tacn), 157
Context (cmd), 58
Contextual Implicit (flag), 73
contradict (tacn), 170
contradiction (tacn), 170
Corollary (cmdv), 42
Create HintDb (cmd), 200
Cumulative (cmd), 477
Cumulativity Weak Constraints (flag), 479
cut (tacnv), 168
cutrewrite (tacnv), 188
cycle (tacn), 214

D
Datatypes, 84
Debug Auto (flag), 198
debug auto (tacnv), 197
Debug Cbv (flag), 192
Debug Eauto (flag), 198
Debug mode not available in the IDE

(err), 237
Debug RAKAM (flag), 194
Debug Trivial (flag), 198
debug trivial (tacnv), 198
Decidable Equality Schemes (flag), 364
decide equality (tacn), 211
Declare Custom Entry (cmd), 350
Declare Implicit Tactic (cmd), 205
Declare Instance (cmdv), 426
Declare Left Step (cmd), 189
Declare ML Module (cmd), 131
Declare Module (cmd), 60

Index 501



The Coq Reference Manual, Release 8.9.1

Declare Reduction (cmd), 137
Declare Right Step (cmd), 189
decompose (tacn), 166
Default Goal Selector (opt), 151
Default Proof Using (opt), 140
Default Timeout (opt), 134
Defined (cmdv), 138
Definition (cmd), 31
Delimit Scope (cmd), 355
dependent destruction (tacnv), 176
dependent induction (tacn), 175
dependent inversion ... with ... (tacnv),

182
dependent inversion (tacnv), 182
dependent rewrite <- (tacnv), 212
dependent rewrite -> (tacn), 212
Derive (cmd), 474
Derive Inversion (cmd), 370
destruct ... eqn: (tacnv), 171
destruct (tacn), 170
Diffs (opt), 148
dintuition (tacnv), 207
discriminate (tacn), 178
discrR (tacn), 91
do (ssreflect) (tacn), 287
do (tacn), 223
done (tacn), 284
double induction (tacn), 175
Drop (cmd), 134
dtauto (tacnv), 207

E
eapply (tacnv), 154
eassert (tacnv), 167
eassumption (tacnv), 152
easy (tacn), 199
eauto (tacn), 198
ecase (tacnv), 171
econstructor (tacnv), 158
edestruct (tacnv), 171
ediscriminate (tacnv), 178
eelim (tacnv), 174
eenough (tacnv), 168
eexact (tacnv), 152
eexists (tacnv), 158
einduction (tacnv), 173
einjection (tacnv), 179
Either there is a type incompatibility

or the problem involves
dependencies (err), 404

eleft (tacnv), 158
elim ... with (tacnv), 174
elim (ssreflect) (tacn), 272
elim (tacnv), 174

Elimination Schemes (flag), 364
elimtype (tacnv), 174
End (cmd), 57, 59, 60
enough (tacnv), 167
epose (tacnv), 166
epose proof (tacnv), 167
eq (term), 83
eq_add_S (term), 86
eq_ind_r (term), 83
eq_rec_r (term), 83
eq_rect (term), 83, 86
eq_rect_r (term), 83
eq_refl (term), 83
eq_S (term), 86
eq_sym (term), 83
eq_trans (term), 83
Equality, 83
eremember (tacnv), 165
erewrite (tacnv), 188
eright (tacnv), 158
error (term), 85
eset (tacnv), 165
esimplify_eq (tacnv), 211
esplit (tacnv), 158
Eval (cmd), 125
evar (tacn), 169
ex (term), 82
ex2 (term), 82
ex_intro (term), 82
ex_intro2 (term), 82
exact (tacn), 152
exactly_once (tacn), 225
Example (cmdv), 32
Exc (term), 85
exfalso (tacn), 170
exist (term), 85
exist2 (term), 85
Existential (cmd), 140
Existing Instance (cmd), 426
exists (tacnv), 158
exists (term), 82
exists2 (term), 82
existT (term), 85
existT2 (term), 85
Export (cmdv), 64
Extract Constant (cmd), 438
Extract Inductive (cmd), 439
Extract Inlined Constant (cmd), 438
Extraction (cmd), 435
Extraction AutoInline (flag), 437
Extraction Blacklist (cmd), 440
Extraction Conservative Types (flag), 436
Extraction Implicit (cmd), 437
Extraction Inline (cmd), 437
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Extraction KeepSingleton (flag), 437
Extraction Language (cmd), 436
Extraction Library (cmd), 435
Extraction NoInline (cmd), 437
Extraction Optimize (flag), 436
Extraction SafeImplicits (flag), 437
Extraction TestCompile (cmd), 436

F
f_equal (tacn), 211
f_equal (term), 83
f_equal2 ... f_equal5 (term), 83
Fact (cmdv), 42
Fail (cmd), 134
fail (tacn), 226
Failed to progress (err), 223
False (term), 82
false (term), 84
False_rec (term), 86
False_rect (term), 86
field (tacn), 213
field_simplify (tacn), 213
field_simplify_eq (tacn), 213
File not found on loadpath: ‘string’

(err), 132
Files processed by Load cannot leave

open proofs (err), 130
finish_timing (tacn), 229
first (ssreflect) (tacn), 285
first (tacn), 224
first last (tacn), 286
firstorder (tacn), 208
Firstorder Depth (opt), 208
Firstorder Solver (opt), 208
fix, 29
fix (tacn), 186
fix_eq (term), 88
Fix_F (term), 88
Fix_F_eq (term), 88
Fix_F_inv (term), 88
Fixpoint (cmd), 39
flat_map (term), 93
Focus (cmd), 141
fold (tacn), 195
fold_left (term), 93
fold_right (term), 93
forall, 27
Found target class ... instead of ...

(err), 406
fst (term), 84
fun ... => ..., 26
Funclass cannot be a source class (err),

406
Function (cmd), 53

function induction (tacn), 176
function_scope, 357
functional inversion (tacn), 212
Functional Scheme (cmd), 365

G
ge (term), 87
Generalizable (cmd), 78
Generalizable All Variables (cmd), 77
Generalizable No Variables (cmd), 78
generalize (tacn), 168
generally have (tacnv), 339
gfail (tacnv), 226
give_up (tacn), 218
Global (cmd), 137
Global Close Scope (cmd), 355
Global Generalizable (cmd), 78
Global Instance (cmdv), 426
Global Opaque (cmdv), 135
Global Open Scope (cmd), 355
Global Transparent (cmdv), 136
Goal (cmd), 138
goal does not satisfy the expected

preconditions (err), 180
Goal is solvable by congruence but

some arguments are missing. Try
congruence with ‘term’…‘term’,
replacing metavariables by
arbitrary terms (err), 210

Grab Existential Variables (cmd), 140
gt (term), 87
guard (tacn), 234
Guarded (cmd), 148

H
has_evar (tacn), 210
have (tacn), 289
head (term), 93
Hide Obligations (flag), 447
Hint (cmd), 200
Hint Constants (cmdv), 201
Hint Constructors (cmdv), 201
Hint Cut (cmdv), 202
Hint Extern (cmdv), 201
Hint Immediate (cmdv), 201
Hint Mode (cmdv), 202
Hint Opaque (cmdv), 201
Hint Resolve (cmdv), 200
Hint Rewrite (cmd), 204
Hint Transparent (cmdv), 201
Hint Unfold (cmdv), 201
Hint Variables (cmdv), 201
Hint View for (cmd), 340
Hint View for apply (cmd), 334, 340

Index 503



The Coq Reference Manual, Release 8.9.1

Hint View for move (cmd), 334
hnf (tacn), 192
Hypotheses (cmdv), 57
Hypotheses (outside a section) (cmdv), 31
Hypothesis (cmdv), 57
Hypothesis (outside a section) (cmdv), 31
Hypothesis ‘ident’ must contain at

least one Function (err), 212
Hyps Limit (opt), 149

I
I (term), 82
I don’t know how to handle dependent

equality (err), 209
identity (term), 84, 88
Identity Coercion (cmd), 406
idtac (tacn), 226
IF_then_else (term), 82
iff (term), 82
Ill-formed recursive definition (err), 448
Implicit Arguments (flag), 72
Implicit Types (cmd), 76
Import (cmd), 63
in (tacn), 287
In environment … the term: ‘term’ does

not have type ‘type’. Actually,
it has type ... (err), 445

Include (cmd), 59
induction ... using ... (tacnv), 173
induction (tacn), 172
Inductive (cmd), 32
Infix (cmd), 345
Info (cmd), 236
Info Auto (flag), 198
Info Eauto (flag), 198
Info Level (opt), 237
Info Trivial (flag), 198
info_trivial (tacnv), 198
injection (tacn), 178
inl (term), 84
inleft (term), 85
Inline (cmd), 60
inr (term), 84
inright (term), 85
Inspect (cmdv), 123
Instance (cmd), 425
instantiate (tacn), 169
intro (tacn), 158
intros ... (tacn), 160
intros (tacnv), 159
intuition (tacn), 207
Intuition Negation Unfolding (flag), 207
Invalid argument (err), 153
Invalid backtrack (err), 133, 134

inversion (tacn), 180
inversion_clear (tacnv), 180
inversion_sigma (tacnv), 182
is_evar (tacn), 210
is_var (tacn), 210
IsSucc (term), 86

K
Keep Proof Equalities (flag), 180

L
lapply (tacnv), 155
last (tacn), 285
last first (tacn), 286
lazy (tacn), 190
le (term), 87
le_n (term), 87
le_S (term), 87
left (tacnv), 158
left (term), 85
Lemma (cmdv), 42
length (term), 93
let ... := ... (tacn), 230
let ... := ... (term), 27
Let (cmd), 57
Let (outside a section) (cmdv), 32
Let CoFixpoint (cmdv), 57
Let Fixpoint (cmdv), 57
lia (tacn), 433
Load (cmd), 130
Load is not supported inside proofs

(err), 130
Loading of ML object file forbidden in

a native Coq (err), 132
Local (cmd), 137
Local Close Scope (cmd), 354
Local Declare Custom Entry (cmd), 354
Local Definition (cmdv), 32
Local Notation (cmd), 354
Local Open Scope (cmd), 354
Local Parameter (cmdv), 30
Locate (cmd), 129
Locate File (cmd), 133
Locate Library (cmd), 133
Loose Hint Behavior (opt), 204
lra (tacn), 433
lt (term), 87
Ltac (cmd), 236
Ltac Batch Debug (flag), 237
Ltac Debug (flag), 237
Ltac Profiling (flag), 237
ltac-seq (tacn), 221
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M
map (term), 93
match ... with ..., 27
match goal (tacn), 232
Maximal Implicit Insertion (flag), 73
mod (term), 89
Module (cmd), 58, 59
Module Type (cmd), 59, 60
Module/section ‘qualid’ not found (err),

127
Monomorphic (cmd), 477
move ... after ... (tacn), 162
move ... at bottom (tacnv), 163
move ... at top (tacnv), 163
move ... before ... (tacnv), 163
move (tacn), 272
mult (term), 86
mult_n_O (term), 86
mult_n_Sm (term), 86

N
n_Sn (term), 86
nat (term), 84
nat_case (term), 87
nat_double_ind (term), 87
nat_scope, 89
native_compute (tacnv), 192
NativeCompute Profile Filename (opt), 192
NativeCompute Profiling (flag), 192
Nested Proofs Allowed (flag), 150
Nested proofs are not allowed unless

you turn option Nested Proofs
Allowed on (err), 42

Next Obligation (cmd), 447
nia (tacn), 434
No applicable tactic (err), 224
No argument name ‘ident’ (err), 55
No discriminable equalities (err), 178
No evars (err), 210
No focused proof (err), 138, 146
No focused proof (No proof-editing in

progress) (err), 139
No focused proof to restart (err), 141
No head constant to reduce (err), 192
No matching clauses for match (err), 231
No matching clauses for match goal (err),

233
No primitive equality found (err), 178
No product even after head-reduction

(err), 159
No progress made (err), 470
No such assumption (err), 152, 170
No such binder (err), 151
No such goal (err), 146

No such goal. (fail) (err), 226
No such goal. (Goal selector) (err), 223
No such goal (‘ident’) (err), 142
No such goal (‘num’) (err), 142
No such goal. Focus next goal with

bullet ‘bullet’ (err), 146
No such hypothesis (err), 162, 163, 165
No such hypothesis in current goal (err),

159
No such hypothesis: ‘ident’ (err), 159, 196
No such label ‘ident’ (err), 59
Non exhaustive pattern matching (err), 404
Non strictly positive occurrence of

‘ident’ in ‘type’ (err), 32
NonCumulative (cmd), 477
None (term), 84
Nonrecursive Elimination Schemes (flag),

364
not (term), 82
Not a context variable (err), 233
Not a discriminable equality (err), 178
Not a primitive equality (err), 179
Not a projectable equality but a

discriminable one (err), 179
Not a proposition or a type (err), 167
Not a valid ring equation (err), 450
Not a variable or hypothesis (err), 210
Not an evar (err), 210
Not an exact proof (err), 152
Not an inductive goal with 1

constructor (err), 158
Not an inductive goal with 2

constructors (err), 158
Not an inductive product (err), 157, 173
Not convertible (err), 190
Not enough constructors (err), 157
Not equal (due to universes) (err), 210
Not equal (err), 210
Not reducible (err), 192
Not the right number of induction

arguments (err), 177
Not the right number of missing

arguments (err), 151, 154
not_eq_S (term), 86
Notation (cmd), 341
Notations for lists, 93
Nothing to do, it is an equality

between convertible terms (err),
179

Nothing to inject (err), 179
Nothing to rewrite (err), 470
notT (term), 88
notypeclasses refine (tacnv), 153
now (tacnv), 199
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nra (tacn), 434
nsatz (tacn), 458
nth (term), 93
Numeral Notation (cmd), 359

O
O (term), 84
O_S (term), 86
Obligation num (cmd), 447
Obligation Tactic (cmd), 447
Obligations (cmd), 447
omega (tacn), 213
Omega Action (flag), 431
omega can't solve this system (err), 429
Omega System (flag), 430
Omega UseLocalDefs (flag), 430
omega: Can't solve a goal with

equality on type ... (err), 430
omega: Can't solve a goal with

non-linear products (err), 430
omega: Can't solve a goal with

proposition variables (err), 430
omega: Not a quantifier-free goal (err),

429
omega: Unrecognized atomic

proposition: ... (err), 430
omega: Unrecognized predicate or

connective: ‘ident’ (err), 430
omega: Unrecognized proposition (err), 430
once (tacn), 225
only ... : ... (tacnv), 222
Opaque (cmd), 135
Open Scope (cmd), 354
Optimize Heap (cmd), 150
Optimize Proof (cmd), 150
optimize_heap (tacn), 239
option (term), 84
or (term), 82
or_introl (term), 82
or_intror (term), 82

P
pair (term), 84
par: ... (tacnv), 222
Parameter (cmd), 30
Parameters (cmdv), 31
Parsing Explicit (flag), 75
pattern (tacn), 196
Peano's arithmetic, 89
plus (term), 86
plus_n_O (term), 86
plus_n_Sm (term), 86
Polymorphic (cmd), 477

Polymorphic Inductive Cumulativity (flag),
477

pose (ssreflect) (tacn), 261
pose (tacn), 165
pose proof (tacnv), 167
pred (term), 86
pred_Sn (term), 86
Prenex Implicits (cmd), 260, 340
Preterm (cmd), 447
Primitive Projections (flag), 48
Print (cmd), 123
Print All (cmd), 123
Print All Dependencies (cmdv), 125
Print Assumptions (cmd), 125
Print Canonical Projections (cmd), 76
Print Classes (cmd), 407
Print Coercion Paths (cmd), 407
Print Coercions (cmd), 407
Print Extraction Blacklist (cmd), 440
Print Extraction Inline (cmd), 437
Print Firstorder Solver (cmd), 208
Print Grammar (cmd), 352
Print Grammar constr (cmd), 343
Print Grammar pattern (cmd), 343
Print Grammar tactic (cmd), 362
Print Graph (cmd), 407
Print Hint (cmd), 200, 203, 204
Print HintDb (cmd), 204
Print Implicit (cmd), 74
Print Instances (cmd), 467
Print Libraries (cmd), 131
Print LoadPath (cmd), 132
Print Ltac (cmd), 236
Print Ltac Signatures (cmd), 236
Print ML Modules (cmd), 132
Print ML Path (cmd), 133
Print Module (cmd), 64
Print Module Type (cmd), 64
Print Opaque Dependencies (cmdv), 125
Print Options (cmd), 124
Print Rewrite HintDb (cmd), 204
Print Scope (cmdv), 358
Print Scopes (cmd), 358
Print Strategy (cmd), 136
Print Table @table (cmd), 124
Print Tables (cmd), 124
Print Term (cmdv), 123
Print Transparent Dependencies (cmdv), 125
Print Universes (cmd), 79
Print Visibility (cmd), 358
Printing All (flag), 78
Printing Allow Match Default Clause

(flag), 52
Printing Coercion (table), 407
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Printing Coercions (flag), 407
Printing Compact Contexts (flag), 135
Printing Constructor (table), 47
Printing Dependent Evars Line (flag), 135
Printing Depth (opt), 135
Printing Existential Instances (flag), 80
Printing Factorizable Match Patterns

(flag), 52
Printing If (table), 53
Printing Implicit (flag), 74
Printing Implicit Defensive (flag), 74
Printing Let (table), 53
Printing Matching (flag), 52
Printing Notations (flag), 346
Printing Primitive Projection

Compatibility (flag), 49
Printing Primitive Projection

Parameters (flag), 48
Printing Projections (flag), 47
Printing Record (table), 47
Printing Records (flag), 46
Printing Synth (flag), 52
Printing Unfocused (flag), 135
Printing Universes (flag), 79
Printing Width (opt), 135
Printing Wildcard (flag), 52
prod (term), 84
Program Cases (flag), 444
Program Definition (cmd), 445
Program Fixpoint (cmd), 445
Program Generalized Coercion (flag), 444
Program Instance (cmdv), 426
Program Lemma (cmd), 446
Programming, 84
progress (tacn), 223
proj1 (term), 82
proj2 (term), 82
projT1 (term), 85
projT2 (term), 85
Proof (cmd), 139
Proof `term` (cmd), 139
Proof is not complete. (abstract) (err),

235
Proof is not complete. (assert) (err), 167
Proof using (cmd), 139
Proof with (cmd), 205
Prop, 26
Proposition (cmdv), 42
psatz (tacn), 434
Pwd (cmd), 132

Q
Qed (cmd), 138
Quantifiers, 82

Quit (cmd), 134
quote (tacn), 212
quote: not a simple fixpoint (err), 212

R
Record (cmd), 45
Records declared with the keyword

Record or Structure cannot be
recursive (err), 48

Recursion, 87
Recursive Extraction (cmd), 435
Recursive Extraction Library (cmd), 436
red (tacn), 192
Redirect (cmd), 134
refine (tacn), 152
Refine Instance Mode (flag), 428
Refine passed ill-formed term (err), 153
refl_identity (term), 84
reflexivity (tacn), 211
Regular Subst Tactic (flag), 189
Remark (cmdv), 42
remember (tacn), 165
Remove @table (cmd), 124
Remove Hints (cmd), 203
Remove LoadPath (cmd), 132
rename (tacn), 164
repeat (tacn), 223
replace (tacn), 188
Require (cmd), 130
Require Export (cmdv), 131
Require Import (cmdv), 131
Require is not allowed inside a module

or a module type (err), 131
Reset (cmd), 133
Reset Extraction Blacklist (cmd), 440
Reset Extraction Inline (cmd), 437
Reset Ltac Profile (cmd), 238
reset ltac profile (tacn), 239
Restart (cmdv), 141
restart_timer (tacn), 229
rev (term), 93
Reversible Pattern Implicit (flag), 73
revert (tacn), 162
revert dependent (tacnv), 162
revgoals (tacn), 216
rewrite (ssreflect) (tacn), 299
rewrite (tacn), 187
rewrite_strat (tacn), 470
Rewriting Schemes (flag), 364
right (tacnv), 158
right (term), 85
ring (tacn), 213
Ring operation should be declared as a

morphism (err), 453
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ring_simplify (tacn), 213
romega (tacnv), 429
rtauto (tacn), 207

S
S (term), 84
Save (cmdv), 138
Scheme (cmd), 362
Scheme Equality (cmdv), 363
Search (cmd), 125
Search (ssreflect) (cmd), 335
Search Blacklist (table), 129
Search Output Name Only (flag), 135
SearchAbout (cmdv), 126
SearchHead (cmd), 126
SearchPattern (cmd), 127
SearchRewrite (cmd), 128
Section (cmd), 57
Separate Extraction (cmd), 436
Set (cmd), 124
Set (sort), 26
set (ssreflect) (tacn), 262
set (tacn), 165
Set @option (cmd), 124
setoid_reflexivity (tacnv), 466
setoid_replace (tacnv), 466
setoid_rewrite (tacnv), 466
setoid_symmetry (tacnv), 466
setoid_transitivity (tacnv), 466
shelve (tacn), 217
shelve_unifiable (tacnv), 217
Short Module Printing (flag), 64
Show (cmd), 146
Show Conjectures (cmdv), 147
Show Existentials (cmdv), 147
Show Intro (cmdv), 147
Show Intros (cmdv), 147
Show Ltac Profile (cmd), 237
show ltac profile (tacn), 239
Show Obligation Tactic (cmd), 447
Show Proof (cmdv), 147
Show Script (cmdv), 147
Show Universes (cmdv), 148
Shrink Obligations (flag), 447
sig (term), 85
sig2 (term), 85
Signature components for label ‘ident’

do not match (err), 59
sigT (term), 85
sigT2 (term), 85
Silent (flag), 135
simpl (tacn), 192
simple apply (tacnv), 155
simple destruct (tacnv), 171

simple eapply (tacnv), 155
simple induction (tacnv), 175
simple inversion (tacnv), 182
simple notypeclasses refine (tacnv), 153
simple refine (tacnv), 153
simplify_eq (tacn), 211
singel: / (term), 89
snd (term), 84
solve (tacn), 225
Solve All Obligations (cmd), 447
Solve Obligations (cmd), 447
Some (term), 84
specialize (tacnv), 168
split (tacnv), 158
split_Rabs (tacn), 91
split_Rmult (tacn), 92
SsrHave NoTCResolution (flag), 295
Stable Omega (flag), 430
Stack overflow or segmentation fault

happens when working with large
numbers in ‘type’ (threshold
may vary depending on your
system limits and on the
command executed) (warn), 361

start ltac profiling (tacn), 239
Statement without assumptions (err), 157
stepl (tacn), 189
stepr (tacnv), 189
stop ltac profiling (tacn), 239
Strategy (cmd), 136
Strict Implicit (flag), 72
Strict Universe Declaration (flag), 481
Strongly Strict Implicit (flag), 73
Structural Injection (flag), 180
Structure (cmdv), 408
SubClass (cmdv), 407
subst (tacn), 188
suff (tacn), 339
suffices (tacnv), 339
Suggest Proof Using (flag), 140
sum (term), 84
sumbool (term), 85
sumor (term), 85
swap (tacn), 215
sym_not_eq (term), 83
symmetry (tacn), 211
Syntax error: [prim:reference]

expected after [prim:reference]
(in [vernac:command]) (err), 361

Syntax error: [prim:reference]
expected after 'Notation' (in
[vernac:command]) (err), 361
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T
Tactic Failure message (level ‘num’)

(err), 226
Tactic generated a subgoal identical

to the original goal. This
happens if ‘term’ does not
occur in the goal (err), 187

Tactic Notation (cmd), 361
Tactic Notation ‘qualid’ is deprecated

since ‘string’. ‘string’ (warn), 44
Tactic ‘qualid’ is deprecated since

‘string’. ‘string’ (warn), 44
tail (term), 93
tauto (tacn), 206
Terms do not have convertible types

(err), 188
Test (cmd), 124
Test @table for (cmd), 124
The 'abstract after' directive has

no effect when the parsing
function (‘ident’) targets an
option type (warn), 361

The command has not failed! (err), 134
The conclusion is not a substitutive

equation (err), 211
The conclusion of ‘type’ is not valid

it must be built from ‘ident’ (err), 32
The constructor ‘ident’ expects ‘num’

arguments (err), 403
The elimination predicate term should

be of arity ‘num’ (for non
dependent case) or ‘num’ (for
dependent case) (err), 404

The file :n:`‘ident’.vo` contains
library dirpath and not library
dirpath’ (err), 131

The recursive argument must be
specified (err), 55

The reference is not unfoldable (err), 136
The reference ‘ident’ was not found in

the current environment (err), 361
The reference ‘qualid’ was not found

in the current environment (err),
125, 136

The term ‘term’ has type ‘type’ which
should be Set, Prop or Type (err),
42

The term ‘term’ has type ‘type’ while
it is expected to have type
‘type’' (err), 32

The ‘num’ th argument of ‘ident’ must
be ‘ident’ in ‘type’ (err), 36

The ‘term’ provided does not end with
an equation (err), 187

The variable ‘ident’ is already
defined (err), 165

Theorem (cmd), 42
Theories, 80
This is not the last opened module (err),

59
This is not the last opened module

type (err), 60
This is not the last opened section

(err), 57
This object does not support universe

names (err), 123
This proof is focused, but cannot be

unfocused this way (err), 142
This tactic has more than one success

(err), 225
Time (cmd), 134
time (tacn), 229
time_constr (tacn), 229
Timeout (cmd), 134
timeout (tacn), 229
To avoid stack overflow, large numbers

in ‘type’ are interpreted as
applications of ‘ident’ (warn), 361

Too few occurrences (err), 190, 194
transitivity (tacn), 211
Transparent (cmd), 136
Transparent Obligations (flag), 447
transparent_abstract (tacnv), 235
trivial (tacnv), 197
True (term), 82
true (term), 84
try (tacn), 223
tryif (tacn), 224
Trying to mask the absolute name

‘qualid’! (warn), 64
tt (term), 84
Type, 26
type_scope, 357
Typeclass Resolution For Conversion

(flag), 428
Typeclasses Debug (flag), 428
Typeclasses Debug Verbosity (opt), 428
Typeclasses Dependency Order (flag), 427
Typeclasses eauto (cmd), 428
typeclasses eauto (tacn), 426
Typeclasses Filtered Unification (flag),

427
Typeclasses Limit Intros (flag), 428
Typeclasses Opaque (cmd), 427
Typeclasses Strict Resolution (flag), 428
Typeclasses Transparent (cmd), 427
Typeclasses Unique Instances (flag), 428
Typeclasses Unique Solutions (flag), 428
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U
Unable to apply (err), 157
Unable to find an instance for the

variables ‘ident’ ... ‘ident’
(err), 173

Unable to find an instance for the
variables ‘ident’…‘ident’ (err), 154

Unable to infer a match predicate (err),
404

Unable to satisfy the rewriting
constraints (err), 470

Unable to unify ... with ... (err), 211
Unable to unify ‘term’ with ‘term’ (err),

153, 210
Unbound context identifier ‘ident’ (err),

233
Undeclared universe ‘ident’ (err), 480
Undelimit Scope (cmd), 355
Undo (cmd), 141
Unexpected non-option term ‘term’

while parsing a numeral
notation (err), 360

Unexpected term ‘term’ while parsing a
numeral notation (err), 360

Unfocus (cmd), 141
Unfocused (cmd), 141
unfold (tacn), 194
Uniform Inductive Parameters (flag), 35
unify (tacn), 210
unit (term), 84
Universal Lemma Under Conjunction (flag),

156
Universe (cmd), 480
Universe inconsistency (err), 480
Universe instance should have length

‘num’ (err), 123
Universe Minimization ToSet (flag), 480
Universe Polymorphism (flag), 477
Unknown inductive type (err), 148
unlock (tacn), 313
Unset (cmd), 124
Unset @option (cmd), 124
Unshelve (cmd), 218

V
value (term), 85
Variable (cmd), 57
Variable (outside a section) (cmdv), 31
Variable ‘ident’ is already declared

(err), 167
Variables (cmdv), 57
Variables (outside a section) (cmdv), 31
Variant (cmd), 36
vm_compute (tacnv), 191

W
Warnings (opt), 135
Well founded induction, 87
Well foundedness, 87
well_founded (term), 87
When ‘term’ contains more than one non

dependent product the tactic
lapply only takes into account
the first product (warn), 155

without loss (tacnv), 296
wlog (tacn), 296
Wrong bullet ‘bullet’: Bullet ‘bullet’

is mandatory here (err), 146
Wrong bullet ‘bullet’: Current bullet

‘bullet’ is not finished (err), 146

X
{x:A & P x} (term), 85
{x:A | P x} (term), 85
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