Bullet Collision Detection & Physics Library
btSolverBody.h
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef BT_SOLVER_BODY_H
17 #define BT_SOLVER_BODY_H
18 
19 class btRigidBody;
20 #include "LinearMath/btVector3.h"
21 #include "LinearMath/btMatrix3x3.h"
22 
25 
27 #ifdef BT_USE_SSE
28 #define USE_SIMD 1
29 #endif //
30 
31 #ifdef USE_SIMD
32 
33 struct btSimdScalar
34 {
36  {
37  }
38 
40  : m_vec128(_mm_set1_ps(fl))
41  {
42  }
43 
44  SIMD_FORCE_INLINE btSimdScalar(__m128 v128)
45  : m_vec128(v128)
46  {
47  }
48  union {
49  __m128 m_vec128;
50  float m_floats[4];
51  int m_ints[4];
52  btScalar m_unusedPadding;
53  };
54  SIMD_FORCE_INLINE __m128 get128()
55  {
56  return m_vec128;
57  }
58 
59  SIMD_FORCE_INLINE const __m128 get128() const
60  {
61  return m_vec128;
62  }
63 
64  SIMD_FORCE_INLINE void set128(__m128 v128)
65  {
66  m_vec128 = v128;
67  }
68 
69  SIMD_FORCE_INLINE operator __m128()
70  {
71  return m_vec128;
72  }
73  SIMD_FORCE_INLINE operator const __m128() const
74  {
75  return m_vec128;
76  }
77 
78  SIMD_FORCE_INLINE operator float() const
79  {
80  return m_floats[0];
81  }
82 };
83 
86 operator*(const btSimdScalar& v1, const btSimdScalar& v2)
87 {
88  return btSimdScalar(_mm_mul_ps(v1.get128(), v2.get128()));
89 }
90 
93 operator+(const btSimdScalar& v1, const btSimdScalar& v2)
94 {
95  return btSimdScalar(_mm_add_ps(v1.get128(), v2.get128()));
96 }
97 
98 #else
99 #define btSimdScalar btScalar
100 #endif
101 
105 {
119 
121  void setWorldTransform(const btTransform& worldTransform)
122  {
123  m_worldTransform = worldTransform;
124  }
125 
127  {
128  return m_worldTransform;
129  }
130 
132  {
133  if (m_originalBody)
134  velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity + m_externalTorqueImpulse).cross(rel_pos);
135  else
136  velocity.setValue(0, 0, 0);
137  }
138 
140  {
141  if (m_originalBody)
142  velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
143  else
144  velocity.setValue(0, 0, 0);
145  }
146 
148  {
149  if (m_originalBody)
150  angVel = m_angularVelocity + m_deltaAngularVelocity;
151  else
152  angVel.setValue(0, 0, 0);
153  }
154 
155  //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
156  SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent, const btScalar impulseMagnitude)
157  {
158  if (m_originalBody)
159  {
160  m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
161  m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
162  }
163  }
164 
165  SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent, btScalar impulseMagnitude)
166  {
167  if (m_originalBody)
168  {
169  m_pushVelocity += linearComponent * impulseMagnitude * m_linearFactor;
170  m_turnVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
171  }
172  }
173 
175  {
176  return m_deltaLinearVelocity;
177  }
178 
180  {
181  return m_deltaAngularVelocity;
182  }
183 
184  const btVector3& getPushVelocity() const
185  {
186  return m_pushVelocity;
187  }
188 
189  const btVector3& getTurnVelocity() const
190  {
191  return m_turnVelocity;
192  }
193 
196 
198  {
199  return m_deltaLinearVelocity;
200  }
201 
203  {
204  return m_deltaAngularVelocity;
205  }
206 
208  {
209  return m_angularFactor;
210  }
211 
213  {
214  return m_invMass;
215  }
216 
217  void internalSetInvMass(const btVector3& invMass)
218  {
219  m_invMass = invMass;
220  }
221 
223  {
224  return m_pushVelocity;
225  }
226 
228  {
229  return m_turnVelocity;
230  }
231 
233  {
234  velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
235  }
236 
238  {
239  angVel = m_angularVelocity + m_deltaAngularVelocity;
240  }
241 
242  //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
243  SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent, const btScalar impulseMagnitude)
244  {
245  if (m_originalBody)
246  {
247  m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
248  m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
249  }
250  }
251 
253  {
254  if (m_originalBody)
255  {
256  m_linearVelocity += m_deltaLinearVelocity;
257  m_angularVelocity += m_deltaAngularVelocity;
258 
259  //m_originalBody->setCompanionId(-1);
260  }
261  }
262 
263  void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
264  {
265  (void)timeStep;
266  if (m_originalBody)
267  {
268  m_linearVelocity += m_deltaLinearVelocity;
269  m_angularVelocity += m_deltaAngularVelocity;
270 
271  //correct the position/orientation based on push/turn recovery
272  btTransform newTransform;
273  if (m_pushVelocity[0] != 0.f || m_pushVelocity[1] != 0 || m_pushVelocity[2] != 0 || m_turnVelocity[0] != 0.f || m_turnVelocity[1] != 0 || m_turnVelocity[2] != 0)
274  {
275  // btQuaternion orn = m_worldTransform.getRotation();
276  btTransformUtil::integrateTransform(m_worldTransform, m_pushVelocity, m_turnVelocity * splitImpulseTurnErp, timeStep, newTransform);
277  m_worldTransform = newTransform;
278  }
279  //m_worldTransform.setRotation(orn);
280  //m_originalBody->setCompanionId(-1);
281  }
282  }
283 };
284 
285 #endif //BT_SOLVER_BODY_H
btVector3 m_linearVelocity
Definition: btSolverBody.h:115
btVector3 m_angularVelocity
Definition: btSolverBody.h:116
const btVector3 & getDeltaAngularVelocity() const
Definition: btSolverBody.h:179
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Definition: btVector3.h:640
const btVector3 & internalGetAngularFactor() const
Definition: btSolverBody.h:207
void internalApplyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
Definition: btSolverBody.h:243
void internalGetAngularVelocity(btVector3 &angVel) const
Definition: btSolverBody.h:237
btVector3 m_linearFactor
Definition: btSolverBody.h:111
void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
Definition: btSolverBody.h:263
#define SIMD_FORCE_INLINE
Definition: btScalar.h:83
const btVector3 & getTurnVelocity() const
Definition: btSolverBody.h:189
const btVector3 & internalGetInvMass() const
Definition: btSolverBody.h:212
btMatrix3x3 operator+(const btMatrix3x3 &m1, const btMatrix3x3 &m2)
Definition: btMatrix3x3.h:929
btVector3 m_externalTorqueImpulse
Definition: btSolverBody.h:118
btVector3 m_externalForceImpulse
Definition: btSolverBody.h:117
btVector3 m_pushVelocity
Definition: btSolverBody.h:113
btVector3 & internalGetTurnVelocity()
Definition: btSolverBody.h:227
#define btSimdScalar
Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later...
Definition: btSolverBody.h:99
void internalSetInvMass(const btVector3 &invMass)
Definition: btSolverBody.h:217
btVector3 m_angularFactor
Definition: btSolverBody.h:110
void internalGetVelocityInLocalPointObsolete(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:232
btMatrix3x3 operator*(const btMatrix3x3 &m, const btScalar &k)
Definition: btMatrix3x3.h:907
btVector3 m_invMass
Definition: btSolverBody.h:112
The btRigidBody is the main class for rigid body objects.
Definition: btRigidBody.h:59
btVector3 m_deltaLinearVelocity
Definition: btSolverBody.h:108
void applyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
Definition: btSolverBody.h:156
void getVelocityInLocalPointObsolete(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:139
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:80
void getVelocityInLocalPointNoDelta(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:131
#define ATTRIBUTE_ALIGNED16(a)
Definition: btScalar.h:84
static void integrateTransform(const btTransform &curTrans, const btVector3 &linvel, const btVector3 &angvel, btScalar timeStep, btTransform &predictedTransform)
void setWorldTransform(const btTransform &worldTransform)
Definition: btSolverBody.h:121
btVector3 m_turnVelocity
Definition: btSolverBody.h:114
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:28
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
Definition: btSolverBody.h:103
const btTransform & getWorldTransform() const
Definition: btSolverBody.h:126
btRigidBody * m_originalBody
Definition: btSolverBody.h:120
void internalApplyPushImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, btScalar impulseMagnitude)
Definition: btSolverBody.h:165
btVector3 & internalGetDeltaLinearVelocity()
some internal methods, don't use them
Definition: btSolverBody.h:197
#define BT_DECLARE_ALIGNED_ALLOCATOR()
Definition: btScalar.h:405
btVector3 & internalGetPushVelocity()
Definition: btSolverBody.h:222
const btVector3 & getDeltaLinearVelocity() const
Definition: btSolverBody.h:174
btVector3 & internalGetDeltaAngularVelocity()
Definition: btSolverBody.h:202
void writebackVelocity()
Definition: btSolverBody.h:252
const btVector3 & getPushVelocity() const
Definition: btSolverBody.h:184
btVector3 m_deltaAngularVelocity
Definition: btSolverBody.h:109
void getAngularVelocity(btVector3 &angVel) const
Definition: btSolverBody.h:147
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:294
btTransform m_worldTransform
Definition: btSolverBody.h:107