23 #ifdef BT_USE_DOUBLE_PRECISION 24 #define btVector3Data btVector3DoubleData 25 #define btVector3DataName "btVector3DoubleData" 27 #define btVector3Data btVector3FloatData 28 #define btVector3DataName "btVector3FloatData" 29 #endif //BT_USE_DOUBLE_PRECISION 31 #if defined BT_USE_SSE 36 #pragma warning(disable : 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255' 39 #define BT_SHUFFLE(x, y, z, w) ((w) << 6 | (z) << 4 | (y) << 2 | (x)) 41 #define bt_pshufd_ps(_a, _mask) _mm_shuffle_ps((_a), (_a), (_mask)) 42 #define bt_splat3_ps(_a, _i) bt_pshufd_ps((_a), BT_SHUFFLE(_i, _i, _i, 3)) 43 #define bt_splat_ps(_a, _i) bt_pshufd_ps((_a), BT_SHUFFLE(_i, _i, _i, _i)) 45 #define btv3AbsiMask (_mm_set_epi32(0x00000000, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF)) 46 #define btvAbsMask (_mm_set_epi32(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF)) 47 #define btvFFF0Mask (_mm_set_epi32(0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF)) 48 #define btv3AbsfMask btCastiTo128f(btv3AbsiMask) 49 #define btvFFF0fMask btCastiTo128f(btvFFF0Mask) 50 #define btvxyzMaskf btvFFF0fMask 51 #define btvAbsfMask btCastiTo128f(btvAbsMask) 54 #define btvMzeroMask (_mm_set_ps(-0.0f, -0.0f, -0.0f, -0.0f)) 55 #define v1110 (_mm_set_ps(0.0f, 1.0f, 1.0f, 1.0f)) 56 #define vHalf (_mm_set_ps(0.5f, 0.5f, 0.5f, 0.5f)) 57 #define v1_5 (_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f)) 68 const float32x4_t
ATTRIBUTE_ALIGNED16(btvMzeroMask) = (float32x4_t){-0.0f, -0.0f, -0.0f, -0.0f};
70 static_cast<int32_t>(0xFFFFFFFF),
static_cast<int32_t>(0xFFFFFFFF), 0x0};
71 const int32x4_t
ATTRIBUTE_ALIGNED16(btvAbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
72 const int32x4_t
ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x0};
86 #if defined(__SPU__) && defined(__CELLOS_LV2__) 92 return *((
const vec_float4*)&m_floats[0]);
96 #else //__CELLOS_LV2__ __SPU__ 97 #if defined(BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM 113 #endif //__CELLOS_LV2__ __SPU__ 134 #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) 144 mVec128 = rhs.mVec128;
155 #endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 161 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 162 mVec128 = _mm_add_ps(mVec128, v.mVec128);
163 #elif defined(BT_USE_NEON) 164 mVec128 = vaddq_f32(mVec128, v.mVec128);
177 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 178 mVec128 = _mm_sub_ps(mVec128, v.mVec128);
179 #elif defined(BT_USE_NEON) 180 mVec128 = vsubq_f32(mVec128, v.mVec128);
193 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 194 __m128 vs = _mm_load_ss(&s);
195 vs = bt_pshufd_ps(vs, 0x80);
196 mVec128 = _mm_mul_ps(mVec128, vs);
197 #elif defined(BT_USE_NEON) 198 mVec128 = vmulq_n_f32(mVec128, s);
213 #if 0 //defined(BT_USE_SSE_IN_API) 215 __m128 vs = _mm_load_ss(&s);
216 vs = _mm_div_ss(v1110, vs);
217 vs = bt_pshufd_ps(vs, 0x00);
219 mVec128 = _mm_mul_ps(mVec128, vs);
231 #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 232 __m128 vd = _mm_mul_ps(mVec128, v.mVec128);
233 __m128 z = _mm_movehl_ps(vd, vd);
234 __m128 y = _mm_shuffle_ps(vd, vd, 0x55);
235 vd = _mm_add_ss(vd, y);
236 vd = _mm_add_ss(vd, z);
237 return _mm_cvtss_f32(vd);
238 #elif defined(BT_USE_NEON) 239 float32x4_t vd = vmulq_f32(mVec128, v.mVec128);
240 float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd));
241 x = vadd_f32(x, vget_high_f32(vd));
242 return vget_lane_f32(x, 0);
244 return m_floats[0] * v.
m_floats[0] +
307 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 309 __m128 vd = _mm_mul_ps(mVec128, mVec128);
310 __m128 z = _mm_movehl_ps(vd, vd);
311 __m128 y = _mm_shuffle_ps(vd, vd, 0x55);
312 vd = _mm_add_ss(vd, y);
313 vd = _mm_add_ss(vd, z);
316 vd = _mm_sqrt_ss(vd);
317 vd = _mm_div_ss(v1110, vd);
318 vd = bt_splat_ps(vd, 0x80);
319 mVec128 = _mm_mul_ps(mVec128, vd);
323 y = _mm_rsqrt_ss(vd);
327 vd = _mm_mul_ss(vd, vHalf);
329 vd = _mm_mul_ss(vd, y);
330 vd = _mm_mul_ss(vd, y);
331 z = _mm_sub_ss(z, vd);
333 y = _mm_mul_ss(y, z);
335 y = bt_splat_ps(y, 0x80);
336 mVec128 = _mm_mul_ps(mVec128, y);
366 #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 367 return btVector3(_mm_and_ps(mVec128, btv3AbsfMask));
368 #elif defined(BT_USE_NEON) 382 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 385 T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3));
386 V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3));
388 V = _mm_mul_ps(V, mVec128);
389 T = _mm_mul_ps(T, v.mVec128);
390 V = _mm_sub_ps(V, T);
392 V = bt_pshufd_ps(V, BT_SHUFFLE(1, 2, 0, 3));
394 #elif defined(BT_USE_NEON) 397 float32x2_t Tlow = vget_low_f32(mVec128);
398 float32x2_t Vlow = vget_low_f32(v.mVec128);
399 T = vcombine_f32(vext_f32(Tlow, vget_high_f32(mVec128), 1), Tlow);
400 V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v.mVec128), 1), Vlow);
402 V = vmulq_f32(V, mVec128);
403 T = vmulq_f32(T, v.mVec128);
405 Vlow = vget_low_f32(V);
407 V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
408 V = (float32x4_t)vandq_s32((int32x4_t)V, btvFFF0Mask);
421 #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 423 __m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3));
424 __m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3));
426 V = _mm_mul_ps(V, v1.mVec128);
427 T = _mm_mul_ps(T, v2.mVec128);
428 V = _mm_sub_ps(V, T);
430 V = _mm_shuffle_ps(V, V, BT_SHUFFLE(1, 2, 0, 3));
433 V = _mm_mul_ps(V, mVec128);
434 __m128 z = _mm_movehl_ps(V, V);
435 __m128 y = _mm_shuffle_ps(V, V, 0x55);
436 V = _mm_add_ss(V, y);
437 V = _mm_add_ss(V, z);
438 return _mm_cvtss_f32(V);
440 #elif defined(BT_USE_NEON) 444 float32x2_t Tlow = vget_low_f32(v1.mVec128);
445 float32x2_t Vlow = vget_low_f32(v2.mVec128);
446 T = vcombine_f32(vext_f32(Tlow, vget_high_f32(v1.mVec128), 1), Tlow);
447 V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v2.mVec128), 1), Vlow);
449 V = vmulq_f32(V, v1.mVec128);
450 T = vmulq_f32(T, v2.mVec128);
452 Vlow = vget_low_f32(V);
454 V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
457 V = vmulq_f32(mVec128, V);
458 float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V));
459 x = vadd_f32(x, vget_high_f32(V));
460 return vget_lane_f32(x, 0);
472 return m_floats[0] < m_floats[1] ? (m_floats[0] < m_floats[2] ? 0 : 2) : (m_floats[1] < m_floats[2] ? 1 : 2);
479 return m_floats[0] < m_floats[1] ? (m_floats[1] < m_floats[2] ? 2 : 1) : (m_floats[0] < m_floats[2] ? 2 : 0);
484 return absolute().minAxis();
489 return absolute().maxAxis();
494 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 495 __m128 vrt = _mm_load_ss(&rt);
497 __m128 vs = _mm_load_ss(&s);
498 vs = bt_pshufd_ps(vs, 0x80);
499 __m128 r0 = _mm_mul_ps(v0.mVec128, vs);
500 vrt = bt_pshufd_ps(vrt, 0x80);
501 __m128 r1 = _mm_mul_ps(v1.mVec128, vrt);
502 __m128 tmp3 = _mm_add_ps(r0, r1);
504 #elif defined(BT_USE_NEON) 505 float32x4_t vl = vsubq_f32(v1.mVec128, v0.mVec128);
506 vl = vmulq_n_f32(vl, rt);
507 mVec128 = vaddq_f32(vl, v0.mVec128);
523 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 524 __m128 vt = _mm_load_ss(&t);
525 vt = bt_pshufd_ps(vt, 0x80);
526 __m128 vl = _mm_sub_ps(v.mVec128, mVec128);
527 vl = _mm_mul_ps(vl, vt);
528 vl = _mm_add_ps(vl, mVec128);
531 #elif defined(BT_USE_NEON) 532 float32x4_t vl = vsubq_f32(v.mVec128, mVec128);
533 vl = vmulq_n_f32(vl, t);
534 vl = vaddq_f32(vl, mVec128);
539 m_floats[1] + (v.
m_floats[1] - m_floats[1]) * t,
540 m_floats[2] + (v.
m_floats[2] - m_floats[2]) * t);
548 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 549 mVec128 = _mm_mul_ps(mVec128, v.mVec128);
550 #elif defined(BT_USE_NEON) 551 mVec128 = vmulq_f32(mVec128, v.mVec128);
591 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 592 return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128)));
594 return ((m_floats[3] == other.
m_floats[3]) &&
595 (m_floats[2] == other.
m_floats[2]) &&
596 (m_floats[1] == other.
m_floats[1]) &&
597 (m_floats[0] == other.
m_floats[0]));
603 return !(*
this == other);
611 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 612 mVec128 = _mm_max_ps(mVec128, other.mVec128);
613 #elif defined(BT_USE_NEON) 614 mVec128 = vmaxq_f32(mVec128, other.mVec128);
628 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 629 mVec128 = _mm_min_ps(mVec128, other.mVec128);
630 #elif defined(BT_USE_NEON) 631 mVec128 = vminq_f32(mVec128, other.mVec128);
650 #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 652 __m128 V = _mm_and_ps(mVec128, btvFFF0fMask);
653 __m128 V0 = _mm_xor_ps(btvMzeroMask, V);
654 __m128 V2 = _mm_movelh_ps(V0, V);
656 __m128 V1 = _mm_shuffle_ps(V, V0, 0xCE);
658 V0 = _mm_shuffle_ps(V0, V, 0xDB);
659 V2 = _mm_shuffle_ps(V2, V, 0xF9);
673 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 674 mVec128 = (__m128)_mm_xor_ps(mVec128, mVec128);
675 #elif defined(BT_USE_NEON) 676 int32x4_t vi = vdupq_n_s32(0);
677 mVec128 = vreinterpretq_f32_s32(vi);
722 #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 724 __m128 a0 = _mm_mul_ps(v0.mVec128, this->mVec128);
725 __m128 a1 = _mm_mul_ps(v1.mVec128, this->mVec128);
726 __m128 a2 = _mm_mul_ps(v2.mVec128, this->mVec128);
727 __m128 b0 = _mm_unpacklo_ps(a0, a1);
728 __m128 b1 = _mm_unpackhi_ps(a0, a1);
729 __m128 b2 = _mm_unpacklo_ps(a2, _mm_setzero_ps());
730 __m128 r = _mm_movelh_ps(b0, b2);
731 r = _mm_add_ps(r, _mm_movehl_ps(b2, b0));
732 a2 = _mm_and_ps(a2, btvxyzMaskf);
733 r = _mm_add_ps(r, btCastdTo128f(_mm_move_sd(btCastfTo128d(a2), btCastfTo128d(b1))));
736 #elif defined(BT_USE_NEON) 737 static const uint32x4_t xyzMask = (
const uint32x4_t){
static_cast<uint32_t>(-1), static_cast<uint32_t>(-1),
static_cast<uint32_t>(-1), 0};
738 float32x4_t a0 = vmulq_f32(v0.mVec128, this->mVec128);
739 float32x4_t a1 = vmulq_f32(v1.mVec128, this->mVec128);
740 float32x4_t a2 = vmulq_f32(v2.mVec128, this->mVec128);
741 float32x2x2_t zLo = vtrn_f32(vget_high_f32(a0), vget_high_f32(a1));
742 a2 = (float32x4_t)vandq_u32((uint32x4_t)a2, xyzMask);
743 float32x2_t b0 = vadd_f32(vpadd_f32(vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0]);
744 float32x2_t b1 = vpadd_f32(vpadd_f32(vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f));
756 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 757 return btVector3(_mm_add_ps(v1.mVec128, v2.mVec128));
758 #elif defined(BT_USE_NEON) 759 return btVector3(vaddq_f32(v1.mVec128, v2.mVec128));
772 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 773 return btVector3(_mm_mul_ps(v1.mVec128, v2.mVec128));
774 #elif defined(BT_USE_NEON) 775 return btVector3(vmulq_f32(v1.mVec128, v2.mVec128));
788 #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) 791 __m128 r = _mm_sub_ps(v1.mVec128, v2.mVec128);
792 return btVector3(_mm_and_ps(r, btvFFF0fMask));
793 #elif defined(BT_USE_NEON) 794 float32x4_t r = vsubq_f32(v1.mVec128, v2.mVec128);
795 return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
808 #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) 809 __m128 r = _mm_xor_ps(v.mVec128, btvMzeroMask);
810 return btVector3(_mm_and_ps(r, btvFFF0fMask));
811 #elif defined(BT_USE_NEON) 812 return btVector3((btSimdFloat4)veorq_s32((int32x4_t)v.mVec128, (int32x4_t)btvMzeroMask));
822 #if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 823 __m128 vs = _mm_load_ss(&s);
824 vs = bt_pshufd_ps(vs, 0x80);
825 return btVector3(_mm_mul_ps(v.mVec128, vs));
826 #elif defined(BT_USE_NEON) 827 float32x4_t r = vmulq_n_f32(v.mVec128, s);
828 return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
846 #if 0 //defined(BT_USE_SSE_IN_API) 848 __m128 vs = _mm_load_ss(&s);
849 vs = _mm_div_ss(v1110, vs);
850 vs = bt_pshufd_ps(vs, 0x00);
852 return btVector3(_mm_mul_ps(v.mVec128, vs));
862 #if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) 863 __m128 vec = _mm_div_ps(v1.mVec128, v2.mVec128);
864 vec = _mm_and_ps(vec, btvFFF0fMask);
866 #elif defined(BT_USE_NEON) 867 float32x4_t x, y, v, m;
873 m = vrecpsq_f32(y, v);
875 m = vrecpsq_f32(y, v);
936 return v1.
lerp(v2, t);
941 return (v - *
this).length2();
946 return (v - *
this).length();
960 #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 962 __m128 O = _mm_mul_ps(wAxis.mVec128, mVec128);
964 __m128 C = wAxis.
cross(mVec128).mVec128;
965 O = _mm_and_ps(O, btvFFF0fMask);
968 __m128 vsin = _mm_load_ss(&ssin);
969 __m128 vcos = _mm_load_ss(&scos);
971 __m128 Y = bt_pshufd_ps(O, 0xC9);
972 __m128 Z = bt_pshufd_ps(O, 0xD2);
973 O = _mm_add_ps(O, Y);
974 vsin = bt_pshufd_ps(vsin, 0x80);
975 O = _mm_add_ps(O, Z);
976 vcos = bt_pshufd_ps(vcos, 0x80);
979 O = O * wAxis.mVec128;
980 __m128 X = mVec128 - O;
992 _y = wAxis.
cross(*
this);
994 return (o + _x *
btCos(_angle) + _y *
btSin(_angle));
1000 #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON) 1001 #if defined _WIN32 || defined(BT_USE_SSE) 1002 const long scalar_cutoff = 10;
1003 long _maxdot_large(
const float* array,
const float* vec,
unsigned long array_count,
float* dotOut);
1004 #elif defined BT_USE_NEON 1005 const long scalar_cutoff = 4;
1006 extern long (*_maxdot_large)(
const float* array,
const float* vec,
unsigned long array_count,
float* dotOut);
1008 if (array_count < scalar_cutoff)
1014 for (i = 0; i < array_count; i++)
1028 #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON) 1029 return _maxdot_large((
float*)array, (
float*)&
m_floats[0], array_count, &dotOut);
1035 #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON) 1036 #if defined BT_USE_SSE 1037 const long scalar_cutoff = 10;
1038 long _mindot_large(
const float* array,
const float* vec,
unsigned long array_count,
float* dotOut);
1039 #elif defined BT_USE_NEON 1040 const long scalar_cutoff = 4;
1041 extern long (*_mindot_large)(
const float* array,
const float* vec,
unsigned long array_count,
float* dotOut);
1043 #error unhandled arch! 1046 if (array_count < scalar_cutoff)
1053 for (i = 0; i < array_count; i++)
1068 #if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON) 1069 return _mindot_large((
float*)array, (
float*)&
m_floats[0], array_count, &dotOut);
1070 #endif //BT_USE_SIMD_VECTOR3 1084 #if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) 1092 mVec128 = rhs.mVec128;
1098 mVec128 = v.mVec128;
1101 #endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 1105 #if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) 1106 return btVector4(_mm_and_ps(mVec128, btvAbsfMask));
1107 #elif defined(BT_USE_NEON) 1210 #ifdef BT_USE_DOUBLE_PRECISION 1211 unsigned char* dest = (
unsigned char*)&destVal;
1212 const unsigned char* src = (
const unsigned char*)&sourceVal;
1222 unsigned char* dest = (
unsigned char*)&destVal;
1223 const unsigned char* src = (
const unsigned char*)&sourceVal;
1228 #endif //BT_USE_DOUBLE_PRECISION 1233 for (
int i = 0; i < 4; i++)
1243 for (
int i = 0; i < 4; i++)
1247 vector = swappedVec;
1256 btScalar a = n[1] * n[1] + n[2] * n[2];
1263 q[1] = -n[0] * p[2];
1269 btScalar a = n[0] * n[0] + n[1] * n[1];
1275 q[0] = -n[2] * p[1];
1294 for (
int i = 0; i < 4; i++)
1300 for (
int i = 0; i < 4; i++)
1307 for (
int i = 0; i < 4; i++)
1313 for (
int i = 0; i < 4; i++)
1320 for (
int i = 0; i < 4; i++)
1326 for (
int i = 0; i < 4; i++)
1332 for (
int i = 0; i < 4; i++)
1336 #endif //BT_VECTOR3_H
btScalar length(const btQuaternion &q)
Return the length of a quaternion.
btVector3 & operator*=(const btVector3 &v)
Elementwise multiply this vector by the other.
void deSerializeDouble(const struct btVector3DoubleData &dataIn)
btScalar norm() const
Return the norm (length) of the vector.
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
btVector3 & operator+=(const btVector3 &v)
Add a vector to this one.
btVector3 dot3(const btVector3 &v0, const btVector3 &v1, const btVector3 &v2) const
btVector3 operator*(const btVector3 &v1, const btVector3 &v2)
Return the elementwise product of two vectors.
btScalar btAngle(const btVector3 &v1, const btVector3 &v2)
Return the angle between two vectors.
btScalar btSin(btScalar x)
btScalar length2() const
Return the length of the vector squared.
void setZ(btScalar _z)
Set the z value.
void btPlaneSpace1(const T &n, T &p, T &q)
btScalar btSqrt(btScalar y)
void serializeFloat(struct btVector3FloatData &dataOut) const
btVector4(const btScalar &_x, const btScalar &_y, const btScalar &_z, const btScalar &_w)
#define SIMD_FORCE_INLINE
const btScalar & getY() const
Return the y value.
long minDot(const btVector3 *array, long array_count, btScalar &dotOut) const
returns index of minimum dot product between this and vectors in array[]
void btSwapScalarEndian(const btScalar &sourceVal, btScalar &destVal)
btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization ...
btVector3 & safeNormalize()
btVector3 & operator/=(const btScalar &s)
Inversely scale the vector.
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.
btVector3 normalized() const
Return a normalized version of this vector.
void serializeDouble(struct btVector3DoubleData &dataOut) const
void btSetMin(T &a, const T &b)
btVector3()
No initialization constructor.
btVector3 btCross(const btVector3 &v1, const btVector3 &v2)
Return the cross product of two vectors.
const btScalar & getZ() const
Return the z value.
long maxDot(const btVector3 *array, long array_count, btScalar &dotOut) const
returns index of maximum dot product between this and vectors in array[]
btScalar btDistance(const btVector3 &v1, const btVector3 &v2)
Return the distance between two vectors.
void setX(btScalar _x)
Set the x value.
int minAxis() const
Return the axis with the smallest value Note return values are 0,1,2 for x, y, or z...
const btScalar & x() const
Return the x value.
btScalar distance2(const btVector3 &v) const
Return the distance squared between the ends of this and another vector This is symantically treating...
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
void getSkewSymmetricMatrix(btVector3 *v0, btVector3 *v1, btVector3 *v2) const
btScalar dot(const btVector3 &v) const
Return the dot product.
void setW(btScalar _w)
Set the w value.
void setY(btScalar _y)
Set the y value.
void deSerialize(const struct btVector3DoubleData &dataIn)
const btScalar & y() const
Return the y value.
const btScalar & z() const
Return the z value.
void btUnSwapVector3Endian(btVector3 &vector)
btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization ...
const btScalar & w() const
Return the w value.
btVector3 rotate(const btVector3 &wAxis, const btScalar angle) const
Return a rotated version of this vector.
void btSetMax(T &a, const T &b)
btVector3 & operator*=(const btScalar &s)
Scale the vector.
btVector3 can be used to represent 3D points and vectors.
#define ATTRIBUTE_ALIGNED16(a)
btScalar btAcos(btScalar x)
btVector3 absolute() const
Return a vector with the absolute values of each element.
void serialize(struct btVector3Data &dataOut) const
btVector4 absolute4() const
btScalar angle(const btVector3 &v) const
Return the angle between this and another vector.
btVector3(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Constructor from scalars.
btVector3 operator+(const btVector3 &v1, const btVector3 &v2)
Return the sum of two vectors (Point symantics)
btScalar distance(const btVector3 &v) const
Return the distance between the ends of this and another vector This is symantically treating the vec...
bool operator!=(const btVector3 &other) const
#define BT_DECLARE_ALIGNED_ALLOCATOR()
int maxAxis() const
Return the axis with the largest value Note return values are 0,1,2 for x, y, or z.
btScalar dot(const btQuaternion &q1, const btQuaternion &q2)
Calculate the dot product between two quaternions.
btScalar btDot(const btVector3 &v1, const btVector3 &v2)
Return the dot product between two vectors.
void setMax(const btVector3 &other)
Set each element to the max of the current values and the values of another btVector3.
void deSerializeFloat(const struct btVector3FloatData &dataIn)
btScalar btDistance2(const btVector3 &v1, const btVector3 &v2)
Return the distance squared between two vectors.
btVector3 operator/(const btVector3 &v, const btScalar &s)
Return the vector inversely scaled by s.
btVector3 operator-(const btVector3 &v1, const btVector3 &v2)
Return the difference between two vectors.
void setInterpolate3(const btVector3 &v0, const btVector3 &v1, btScalar rt)
btScalar btTriple(const btVector3 &v1, const btVector3 &v2, const btVector3 &v3)
bool operator==(const btVector3 &other) const
btVector3 lerp(const btVector3 &v, const btScalar &t) const
Return the linear interpolation between this and another vector.
btScalar triple(const btVector3 &v1, const btVector3 &v2) const
btVector3 & operator-=(const btVector3 &v)
Subtract a vector from this one.
void btSwapVector3Endian(const btVector3 &sourceVec, btVector3 &destVec)
btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization ...
btVector3 lerp(const btVector3 &v1, const btVector3 &v2, const btScalar &t)
Return the linear interpolation between two vectors.
const btScalar & getX() const
Return the x value.
void setMin(const btVector3 &other)
Set each element to the min of the current values and the values of another btVector3.
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
btScalar btCos(btScalar x)
btScalar safeNorm() const
Return the norm (length) of the vector.
btScalar length() const
Return the length of the vector.
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z, const btScalar &_w)
Set x,y,z and zero w.
btScalar btFabs(btScalar x)