Distributive Magmas and Additive Magmas¶
-
class
sage.categories.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_singletonThe category of sets \((S,+,*)\) with \(*\) distributing on \(+\).
This is similar to a ring, but \(+\) and \(*\) are only required to be (additive) magmas.
EXAMPLES:
sage: from sage.categories.distributive_magmas_and_additive_magmas import DistributiveMagmasAndAdditiveMagmas sage: C = DistributiveMagmasAndAdditiveMagmas(); C Category of distributive magmas and additive magmas sage: C.super_categories() [Category of magmas and additive magmas]
-
class
AdditiveAssociative(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_singleton-
class
AdditiveCommutative(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_singleton-
class
AdditiveUnital(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_singleton-
class
Associative(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom_singleton-
AdditiveInverse¶ alias of
sage.categories.rngs.Rngs
-
Unital¶ alias of
sage.categories.semirings.Semirings
-
-
class
-
class
-
class
-
class
CartesianProducts(category, *args)¶ Bases:
sage.categories.cartesian_product.CartesianProductsCategory-
extra_super_categories()¶ Implement the fact that a Cartesian product of magmas distributing over additive magmas is a magma distributing over an additive magma.
EXAMPLES:
sage: C = (Magmas() & AdditiveMagmas()).Distributive().CartesianProducts() sage: C.extra_super_categories() [Category of distributive magmas and additive magmas] sage: C.axioms() frozenset({'Distributive'})
-
-
class
ParentMethods¶
-
class