Homogeneous symmetric functions¶
By this we mean the basis formed of the complete homogeneous symmetric functions \(h_\lambda\), not an arbitrary graded basis.
-
class
sage.combinat.sf.homogeneous.SymmetricFunctionAlgebra_homogeneous(Sym)¶ Bases:
sage.combinat.sf.multiplicative.SymmetricFunctionAlgebra_multiplicativeA class of methods specific to the homogeneous basis of symmetric functions.
INPUT:
self– a homogeneous basis of symmetric functionsSym– an instance of the ring of symmetric functions
-
class
Element¶ Bases:
sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical.Element-
expand(n, alphabet='x')¶ Expand the symmetric function
selfas a symmetric polynomial innvariables.INPUT:
n– a nonnegative integeralphabet– (default:'x') a variable for the expansion
OUTPUT:
A monomial expansion of
selfin the \(n\) variables labelled byalphabet.EXAMPLES:
sage: h = SymmetricFunctions(QQ).h() sage: h([3]).expand(2) x0^3 + x0^2*x1 + x0*x1^2 + x1^3 sage: h([1,1,1]).expand(2) x0^3 + 3*x0^2*x1 + 3*x0*x1^2 + x1^3 sage: h([2,1]).expand(3) x0^3 + 2*x0^2*x1 + 2*x0*x1^2 + x1^3 + 2*x0^2*x2 + 3*x0*x1*x2 + 2*x1^2*x2 + 2*x0*x2^2 + 2*x1*x2^2 + x2^3 sage: h([3]).expand(2,alphabet='y') y0^3 + y0^2*y1 + y0*y1^2 + y1^3 sage: h([3]).expand(2,alphabet='x,y') x^3 + x^2*y + x*y^2 + y^3 sage: h([3]).expand(3,alphabet='x,y,z') x^3 + x^2*y + x*y^2 + y^3 + x^2*z + x*y*z + y^2*z + x*z^2 + y*z^2 + z^3 sage: (h([]) + 2*h([1])).expand(3) 2*x0 + 2*x1 + 2*x2 + 1 sage: h([1]).expand(0) 0 sage: (3*h([])).expand(0) 3
-
omega()¶ Return the image of
selfunder the omega automorphism.The omega automorphism is defined to be the unique algebra endomorphism \(\omega\) of the ring of symmetric functions that satisfies \(\omega(e_k) = h_k\) for all positive integers \(k\) (where \(e_k\) stands for the \(k\)-th elementary symmetric function, and \(h_k\) stands for the \(k\)-th complete homogeneous symmetric function). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the omega involution. It sends the power-sum symmetric function \(p_k\) to \((-1)^{k-1} p_k\) for every positive integer \(k\).
The images of some bases under the omega automorphism are given by
\[\omega(e_{\lambda}) = h_{\lambda}, \qquad \omega(h_{\lambda}) = e_{\lambda}, \qquad \omega(p_{\lambda}) = (-1)^{|\lambda| - \ell(\lambda)} p_{\lambda}, \qquad \omega(s_{\lambda}) = s_{\lambda^{\prime}},\]where \(\lambda\) is any partition, where \(\ell(\lambda)\) denotes the length (
length()) of the partition \(\lambda\), where \(\lambda^{\prime}\) denotes the conjugate partition (conjugate()) of \(\lambda\), and where the usual notations for bases are used (\(e\) = elementary, \(h\) = complete homogeneous, \(p\) = powersum, \(s\) = Schur).omega_involution()is a synonym for theomega()method.OUTPUT:
- the image of
selfunder the omega automorphism
EXAMPLES:
sage: h = SymmetricFunctions(QQ).h() sage: a = h([2,1]); a h[2, 1] sage: a.omega() h[1, 1, 1] - h[2, 1] sage: e = SymmetricFunctions(QQ).e() sage: e(h([2,1]).omega()) e[2, 1]
- the image of
-
omega_involution()¶ Return the image of
selfunder the omega automorphism.The omega automorphism is defined to be the unique algebra endomorphism \(\omega\) of the ring of symmetric functions that satisfies \(\omega(e_k) = h_k\) for all positive integers \(k\) (where \(e_k\) stands for the \(k\)-th elementary symmetric function, and \(h_k\) stands for the \(k\)-th complete homogeneous symmetric function). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the omega involution. It sends the power-sum symmetric function \(p_k\) to \((-1)^{k-1} p_k\) for every positive integer \(k\).
The images of some bases under the omega automorphism are given by
\[\omega(e_{\lambda}) = h_{\lambda}, \qquad \omega(h_{\lambda}) = e_{\lambda}, \qquad \omega(p_{\lambda}) = (-1)^{|\lambda| - \ell(\lambda)} p_{\lambda}, \qquad \omega(s_{\lambda}) = s_{\lambda^{\prime}},\]where \(\lambda\) is any partition, where \(\ell(\lambda)\) denotes the length (
length()) of the partition \(\lambda\), where \(\lambda^{\prime}\) denotes the conjugate partition (conjugate()) of \(\lambda\), and where the usual notations for bases are used (\(e\) = elementary, \(h\) = complete homogeneous, \(p\) = powersum, \(s\) = Schur).omega_involution()is a synonym for theomega()method.OUTPUT:
- the image of
selfunder the omega automorphism
EXAMPLES:
sage: h = SymmetricFunctions(QQ).h() sage: a = h([2,1]); a h[2, 1] sage: a.omega() h[1, 1, 1] - h[2, 1] sage: e = SymmetricFunctions(QQ).e() sage: e(h([2,1]).omega()) e[2, 1]
- the image of
-
-
coproduct_on_generators(i)¶ Returns the coproduct on \(h_i\).
INPUT:
self– a homogeneous basis of symmetric functionsi– a nonnegative integer
OUTPUT:
- the sum \(\sum_{r=0}^i h_r \otimes h_{i-r}\)
EXAMPLES:
sage: Sym = SymmetricFunctions(QQ) sage: h = Sym.homogeneous() sage: h.coproduct_on_generators(2) h[] # h[2] + h[1] # h[1] + h[2] # h[] sage: h.coproduct_on_generators(0) h[] # h[]