Graphs¶
-
class
sage.categories.graphs.Graphs(s=None)¶ Bases:
sage.categories.category_singleton.Category_singletonThe category of graphs.
EXAMPLES:
sage: from sage.categories.graphs import Graphs sage: C = Graphs(); C Category of graphs
-
class
ParentMethods¶ -
dimension()¶ Return the dimension of
selfas a CW complex.EXAMPLES:
sage: from sage.categories.graphs import Graphs sage: C = Graphs().example() sage: C.dimension() 1
-
edges()¶ Return the edges of
self.EXAMPLES:
sage: from sage.categories.graphs import Graphs sage: C = Graphs().example() sage: C.edges() [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
-
faces()¶ Return the faces of
self.EXAMPLES:
sage: from sage.categories.graphs import Graphs sage: C = Graphs().example() sage: sorted(C.faces(), key=lambda x: (x.dimension(), x.value)) [0, 1, 2, 3, 4, (0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
-
facets()¶ Return the facets of
self.EXAMPLES:
sage: from sage.categories.graphs import Graphs sage: C = Graphs().example() sage: C.facets() [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
-
vertices()¶ Return the vertices of
self.EXAMPLES:
sage: from sage.categories.graphs import Graphs sage: C = Graphs().example() sage: C.vertices() [0, 1, 2, 3, 4]
-
-
super_categories()¶ EXAMPLES:
sage: from sage.categories.graphs import Graphs sage: Graphs().super_categories() [Category of simplicial complexes]
-
class