
Digraphs
Version 0.15.0

Jan De Beule
Julius Jonušas

James D. Mitchell
Michael Torpey
Wilf A. Wilson
Stuart Burrell
Luke Elliott

Christopher Jefferson
Markus Pfeiffer

Chris Russell
Finn Smith

Jan De Beule Email: jdebeule@cage.ugent.be
Homepage: http://homepages.vub.ac.be/~jdbeule

Julius Jonušas Email: jj252@st-andrews.ac.uk
Homepage: http://www-circa.mcs.st-andrews.ac.uk/~julius

James D. Mitchell Email: jdm3@st-andrews.ac.uk
Homepage: http://goo.gl/ZtViV6

Michael Torpey Email: mct25@st-andrews.ac.uk
Homepage: http://www-circa.mcs.st-andrews.ac.uk/~mct25

Wilf A. Wilson Email: gap@wilf-wilson.net
Homepage: http://wilf.me

mailto://jdebeule@cage.ugent.be
http://homepages.vub.ac.be/~jdbeule
mailto://jj252@st-andrews.ac.uk
http://www-circa.mcs.st-andrews.ac.uk/~julius
mailto://jdm3@st-andrews.ac.uk
http://goo.gl/ZtViV6
mailto://mct25@st-andrews.ac.uk
http://www-circa.mcs.st-andrews.ac.uk/~mct25
mailto://gap@wilf-wilson.net
http://wilf.me

Digraphs 2

Abstract
The Digraphs package is a GAP package containing methods for graphs, digraphs, and multidigraphs.

Copyright
© 2014-19 by Jan De Beule, Julius Jonušas, James D. Mitchell, Michael Torpey, Wilf A. Wilson et al.

Digraphs is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Acknowledgements

We would like to thank Christopher Jefferson for his help in including bliss in Digraphs. This package’s
methods for computing digraph homomorphisms are based on work by Max Neunhöffer, and independently
Artur Schäfer.

 http://www.fsf.org/licenses/gpl.html
 http://www.fsf.org/licenses/gpl.html
http://www.tcs.tkk.fi/Software/bliss/

Contents

1 The Digraphs package 5
1.1 Introduction . 5

2 Installing Digraphs 7
2.1 For those in a hurry . 7
2.2 Optional package dependencies . 8
2.3 Compiling the kernel module . 8
2.4 Rebuilding the documentation . 9
2.5 Testing your installation . 9

3 Creating digraphs 10
3.1 Creating digraphs . 10
3.2 Changing representations . 15
3.3 New digraphs from old . 17
3.4 Random digraphs . 33
3.5 Standard examples . 34

4 Operators 37
4.1 Operators for digraphs . 37

5 Attributes and operations 40
5.1 Vertices and edges . 40
5.2 Neighbours and degree . 47
5.3 Reachability and connectivity . 54
5.4 Cayley graphs of groups . 67
5.5 Associated semigroups . 68
5.6 Planarity . 69

6 Properties of digraphs 73
6.1 Edge properties . 73
6.2 Regularity . 80
6.3 Connectivity and cycles . 82
6.4 Planarity . 87

7 Homomorphisms 89
7.1 Acting on digraphs . 89
7.2 Isomorphisms and canonical labellings . 90

3

Digraphs 4

7.3 Homomorphisms of digraphs . 106

8 Finding cliques and independent sets 116
8.1 Finding cliques . 117
8.2 Finding independent sets . 122

9 Visualising and IO 126
9.1 Visualising a digraph . 126
9.2 Reading and writing graphs to a file . 129

A Grape to Digraphs Command Map 140
A.1 Functions to construct and modify graphs . 140
A.2 Functions to inspect graphs, vertices and edges . 140
A.3 Functions to determine regularity properties of graphs 141
A.4 Some special vertex subsets of a graph . 141
A.5 Functions to construct new graphs from old . 142
A.6 Vertex-Colouring and Complete Subgraphs . 142
A.7 Automorphism groups and isomorphism testing for graphs 142

References 143

Index 144

Chapter 1

The Digraphs package

1.1 Introduction

This is the manual for the Digraphs package version 0.15.0. This package was developed at the
University of St Andrews by:

• Jan De Beule,

• Julius Jonušas,

• James D. Mitchell,

• Michael C. Torpey, and

• Wilf A. Wilson.

Additional contributions were made by:

• Stuart Burrell,

• Luke Elliott,

• Christopher Jefferson,

• Markus Pfeiffer,

• Chris Russell, and

• Finn Smith.

The Digraphs package contains a variety of methods for efficiently creating and storing digraphs and
computing information about them. Full explanations of all the functions contained in the package are
provided below.

If the Grape package is available, it will be loaded automatically. Digraphs created with the
Digraphs package can be converted to Grape graphs with Graph (3.2.3), and conversely Grape graphs
can be converted to Digraphs objects with Digraph (3.1.5). Grape is not required for Digraphs to
run.

The bliss tool [JK07] is included in this package. It is an open-source tool for computing automor-
phism groups and canonical forms of graphs, written by Tommi Junttila and Petteri Kaski. Several

5

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.tcs.tkk.fi/Software/bliss/

Digraphs 6

of the methods in the Digraphs package rely on bliss. If the NautyTracesInterface package for GAP
is available then it is also possible to use nauty [MP14] for computing automorphism groups and
canonical forms in Digraphs. See Section 7.2 for more details.

1.1.1 Definitions

For the purposes of this package and its documentation, the following definitions apply:
A digraph E = (E0,E1,r,s), also known as a directed graph, consists of a set of vertices E0 and a

set of edges E1 together with functions s,r : E1→ E0, called the source and range, respectively. The
source and range of an edge is respectively the values of s,r at that edge. An edge is called a loop if
its source and range are the same. A digraph is called a multidigraph if there exist two or more edges
with the same source and the same range.

A directed walk on a digraph is a sequence of alternating vertices and edges
(v1,e1,v2,e2, ...,en−1,vn) such that each edge ei has source vi and range vi+1. A directed path
is a directed walk where no vertex (and hence no edge) is repeated. A directed circuit is a directed
walk where v1 = vn, and a directed cycle is a directed circuit where where no vertex is repeated,
except for v1 = vn.

The length of a directed walk (v1,e1,v2,e2, ...,en−1,vn) is equal to n− 1, the number of edges it
contains. A directed walk (or path) (v1,e1,v2,e2, ...,en−1,vn) is sometimes called a directed walk (or
path) from vertex v1 to vertex vn. A directed walk of zero length, i.e. a sequence (v) for some vertex v,
is called trivial. A trivial directed walk is considered to be both a circuit and a cycle, as is the empty
directed walk (). A simple circuit is another name for a non-trivial and non-empty directed cycle.

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Chapter 2

Installing Digraphs

2.1 For those in a hurry

In this section we give a brief description of how to start using Digraphs.
It is assumed that you have a working copy of GAP with version number 4.9.0 or higher. The

most up-to-date version of GAP and instructions on how to install it can be obtained from the main
GAP webpage http://www.gap-system.org.

The following is a summary of the steps that should lead to a successful installation of Digraphs:

• ensure that the IO package version 4.5.1 or higher is available. IO must be compiled before
Digraphs can be loaded.

• ensure that the Orb package version 4.8.1 or higher is available. Orb has better performance
when compiled, but although compilation is recommended, it is not required to be compiled for
Digraphs to be loaded.

• THIS STEP IS OPTIONAL: certain functions in Digraphs require the Grape package to be avail-
able; see Section 2.2.1 for full details. To use these functions make sure that the Grape package
version 4.8.1 or higher is available. If Grape is not available, then Digraphs can be used as
normal with the exception that the functions listed in Subsection 2.2.1 will not work.

• download the package archive digraphs-0.15.0.tar.gz from the Digraph package webpage.

• unzip and untar the file, this should create a directory called digraphs-0.15.0.

• locate the pkg directory of your GAP directory, which contains the directories lib, doc and so
on. Move the directory digraphs-0.15.0 into the pkg directory.

• it is necessary to compile the Digraphs package. Inside the pkg/digraphs-0.15.0 directory,
type

./configure
make

Further information about this step can be found in Section 2.3.

• start GAP in the usual way (i.e. type gap at the command line).

7

http://www.gap-system.org
 http://gap-packages.github.io/io/
 http://gap-packages.github.io/io/
 http://http://gap-packages.github.io/orb/
 http://http://gap-packages.github.io/orb/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://gap-packages.github.io/Digraphs/

Digraphs 8

• type LoadPackage("digraphs");

If you want to check that the package is working correctly, you should run some of the tests described
in Section 2.5.

2.2 Optional package dependencies

The Digraphs package is written in GAP and C code and requires the IO package. The IO package is
used to read and write transformations, partial permutations, and bipartitions to a file.

2.2.1 The Grape package

The Grape package must be available for the following operations to be available:

• Graph (3.2.3) with a digraph argument

• AsGraph (3.2.4) with a digraph argument

• Digraph (3.1.5) with a Grape graph argument

If Grape is not available, then Digraphs can be used as normal with the exception that the functions
above will not work.

2.3 Compiling the kernel module

The Digraphs package has a GAP kernel component in C which should be compiled. This component
contains certain low-level functions required by Digraphs.

It is not possible to use the Digraphs package without compiling it.
To compile the kernel component inside the pkg/digraphs-0.15.0 directory, type

./configure
make

If you installed the package in another ’pkg’ directory than the standard ’pkg’ directory in your
GAP installation, then you have to do two things. Firstly during compilation you have to use the
option ’–with-gaproot=PATH’ of the ’configure’ script where ’PATH’ is a path to the main GAP root
directory (if not given the default ’../..’ is assumed).

If you installed GAP on several architectures, you must execute the configure/make step for each
of the architectures. You can either do this immediately after configuring and compiling GAP itself
on this architecture, or alternatively (when using version 4.5 of GAP or newer) set the environment
variable ’CONFIGNAME’ to the name of the configuration you used when compiling GAP before
running ’./configure’. Note however that your compiler choice and flags (environment variables ’CC’
and ’CFLAGS’) need to be chosen to match the setup of the original GAP compilation. For example
you have to specify 32-bit or 64-bit mode correctly!

 http://gap-packages.github.io/io/
 http://gap-packages.github.io/io/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

Digraphs 9

2.4 Rebuilding the documentation

The Digraphs package comes complete with pdf, html, and text versions of the documentation. How-
ever, you might find it necessary, at some point, to rebuild the documentation. To rebuild the docu-
mentation use the DigraphsMakeDoc (2.4.1).

2.4.1 DigraphsMakeDoc

. DigraphsMakeDoc() (function)

Returns: Nothing
This function should be called with no argument to compile the Digraphs documentation.

2.5 Testing your installation

In this section we describe how to test that Digraphs is working as intended. To test that Di-
graphs is installed correctly use DigraphsTestInstall (2.5.1) or for more extensive tests use
DigraphsTestStandard (2.5.2).

If something goes wrong, then please review the instructions in Section 2.1 and ensure that Di-
graphs has been properly installed. If you continue having problems, please use the issue tracker to
report the issues you are having.

2.5.1 DigraphsTestInstall

. DigraphsTestInstall() (function)

Returns: true or false.
This function should be called with no argument to test your installation of Digraphs is working

correctly. These tests should take no more than a fraction of a second to complete. To test more
comprehensively that Digraphs is working correctly, use DigraphsTestStandard (2.5.2).

2.5.2 DigraphsTestStandard

. DigraphsTestStandard() (function)

Returns: true or false.
This function should be called to test all the methods included in Digraphs. These tests should

take only a few seconds to complete.
To quickly test that Digraphs is installed correctly use DigraphsTestInstall (2.5.1). For a

more thorough test, use DigraphsTestStandard.

https://github.com/gap-packages/Digraphs/issues

Chapter 3

Creating digraphs

In this chapter we describe how to create digraphs.

3.1 Creating digraphs

3.1.1 IsDigraph

. IsDigraph (Category)

Every digraph in Digraphs belongs to the category IsDigraph. Basic attributes and opera-
tions for digraphs are: DigraphVertices (5.1.1), DigraphRange (5.2.5), DigraphSource (5.2.5),
OutNeighbours (5.2.6), and DigraphEdges (5.1.3).

3.1.2 IsCayleyDigraph

. IsCayleyDigraph (Category)

IsCayleyDigraph is a subcategory of IsDigraph. Digraphs that are Cayley digraphs of a group
and that are constructed by the operation CayleyDigraph (3.1.10) are constructed in this category.

3.1.3 IsDigraphWithAdjacencyFunction

. IsDigraphWithAdjacencyFunction (Category)

IsDigraphWithAdjacencyFunction is a subcategory of IsDigraph. Digraphs that are created
using an adjacency function are constructed in this category.

3.1.4 DigraphType

. DigraphType (global variable)

. DigraphFamily (family)

The type of all digraphs is DigraphType. The family of all digraphs is DigraphFamily.

10

Digraphs 11

3.1.5 Digraph

. Digraph(obj[, source, range]) (operation)

. Digraph(list, func) (operation)

. Digraph(G, list, act, adj) (operation)

Returns: A digraph.

for a list (i.e. an adjacency list)
if obj is a list of lists of positive integers in the range from 1 to Length(obj), then this function
returns the digraph with vertices E0 =[1 .. Length(obj)], and edges corresponding to the
entries of obj .

More precisely, there is an edge from vertex i to j if and only if j is in obj[i]; the source of
this edge is i and the range is j. If j occurs in obj[i] with multiplicity k, then there are k
edges from i to j.

for three lists
if obj is a duplicate-free list, and source and range are lists of equal length consisting
of positive integers in the list [1 .. Length(obj)], then this function returns a digraph
with vertices E0 =[1 .. Length(obj)], and Length(source) edges. For each i in [1
.. Length(source)] there exists an edge with source vertex source[i] and range vertex
range[i]. See DigraphSource (5.2.5) and DigraphRange (5.2.5).

The vertices of the digraph will be labelled by the elements of obj .

for an integer, and two lists
if obj is an integer, and source and range are lists of equal length consisting of positive
integers in the list [1 .. obj], then this function returns a digraph with vertices E0 =[1 ..
obj], and Length(source) edges. For each i in [1 .. Length(source)] there exists an
edge with source vertex source[i] and range vertex range[i]. See DigraphSource (5.2.5)
and DigraphRange (5.2.5).

for a list and a function
if list is a list and func is a function taking 2 arguments that are elements of list ,
and func returns true or false, then this operation creates a digraph with vertices [1
.. Length(list)] and an edge from vertex i to vertex j if and only if func(list[i],
list[j]) returns true.

for a group, a list, and two functions
The arguments will be G, list, act, adj .

Let G be a group acting on the objects in list via the action act , and let adj be a function
taking two objects from list as arguments and returning true or false. The function adj
will describe the adjacency between objects from list , which is invariant under the action of G .
This variant of the constructor returns a digraph with vertices the objects of list and directed
edges [x, y] when f(x, y) is true.

The action of the group G on the objects in list is stored in the attribute DigraphGroup (7.2.9),
and is used to speed up operations like DigraphDiameter (5.3.1).

for a Grape package graph
if obj is a Grape package graph (i.e. a record for which the function IsGraph returns true),
then this function returns a digraph isomorphic to obj .

http://www.maths.qmul.ac.uk/~leonard/grape/

Digraphs 12

for a binary relation
if obj is a binary relation on the points [1 .. n] for some posititve integer n, then this
function returns the digraph defined by obj . Specifically, this function returns a digraph which
has n vertices, and which has an edge with source i and range j if and only if [i,j] is a pair in
the binary relation obj .

Example
gap> gr := Digraph([
> [2, 5, 8, 10], [2, 3, 4, 2, 5, 6, 8, 9, 10], [1],
> [3, 5, 7, 8, 10], [2, 5, 7], [3, 6, 7, 9, 10], [1, 4],
> [1, 5, 9], [1, 2, 7, 8], [3, 5]]);
<multidigraph with 10 vertices, 38 edges>
gap> gr := Digraph(["a", "b", "c"], ["a"], ["b"]);
<digraph with 3 vertices, 1 edge>
gap> gr := Digraph(5, [1, 2, 2, 4, 1, 1], [2, 3, 5, 5, 1, 1]);
<multidigraph with 5 vertices, 6 edges>
gap> Petersen := Graph(SymmetricGroup(5), [[1, 2]], OnSets,
> function(x, y) return Intersection(x, y) = []; end);;
gap> Digraph(Petersen);
<digraph with 10 vertices, 30 edges>
gap> b := BinaryRelationOnPoints(
> [[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);
Binary Relation on 5 points
gap> gr := Digraph(b);
<digraph with 5 vertices, 11 edges>
gap> gr := Digraph([1 .. 10], ReturnTrue);
<digraph with 10 vertices, 100 edges>

The next example illustrates the uses of the fourth and fifth variants of this constructor. The resulting
digraph is a strongly regular graph, and it is actually the point graph of the van Lint-Schrijver partial
geometry, [vLS81]. The algebraic description is taken from the seminal paper of Calderbank and
Kantor [CK86].

Example
gap> f := GF(3 ^ 4);
GF(3^4)
gap> gamma := First(f, x -> Order(x) = 5);
Z(3^4)^64
gap> L := Union([Zero(f)], List(Group(gamma)));
[0*Z(3), Z(3)^0, Z(3^4)^16, Z(3^4)^32, Z(3^4)^48, Z(3^4)^64]
gap> omega := Union(List(L, x -> List(Difference(L, [x]), y -> x - y)));
[Z(3)^0, Z(3), Z(3^4)^5, Z(3^4)^7, Z(3^4)^8, Z(3^4)^13, Z(3^4)^15,

Z(3^4)^16, Z(3^4)^21, Z(3^4)^23, Z(3^4)^24, Z(3^4)^29, Z(3^4)^31,
Z(3^4)^32, Z(3^4)^37, Z(3^4)^39, Z(3^4)^45, Z(3^4)^47, Z(3^4)^48,
Z(3^4)^53, Z(3^4)^55, Z(3^4)^56, Z(3^4)^61, Z(3^4)^63, Z(3^4)^64,
Z(3^4)^69, Z(3^4)^71, Z(3^4)^72, Z(3^4)^77, Z(3^4)^79]

gap> adj := function(x, y)
> return x - y in omega;
> end;
function(x, y) ... end
gap> digraph := Digraph(AsList(f), adj);
<digraph with 81 vertices, 2430 edges>
gap> group := Group(Z(3));

Digraphs 13

<group with 1 generators>
gap> act := *;
<Operation "*">
gap> digraph := Digraph(group, List(f), act, adj);
<digraph with 81 vertices, 2430 edges>

3.1.6 DigraphByAdjacencyMatrix

. DigraphByAdjacencyMatrix(adj) (operation)

Returns: A digraph.
If adj is the adjacency matrix of a digraph in the sense of AdjacencyMatrix (5.2.1), then this

operation returns the digraph which is defined by adj .
Alternatively, if adj is a square boolean matrix, then this operation returns the digraph with

Length(adj) vertices which has the edge [i,j] if and only if adj[i][j] is true.
Example

gap> DigraphByAdjacencyMatrix([
> [0, 1, 0, 2, 0],
> [1, 1, 1, 0, 1],
> [0, 3, 2, 1, 1],
> [0, 0, 1, 0, 1],
> [2, 0, 0, 0, 0]]);
<multidigraph with 5 vertices, 18 edges>
gap> gr := DigraphByAdjacencyMatrix([
> [true, false, true],
> [false, false, true],
> [false, true, false]]);
<digraph with 3 vertices, 4 edges>
gap> OutNeighbours(gr);
[[1, 3], [3], [2]]

3.1.7 DigraphByEdges

. DigraphByEdges(edges[, n]) (operation)

Returns: A digraph.
If edges is list of pairs of positive integers, then this function returns the digraph with the mini-

mum number of vertices m such that its edges equal edges .
If the optional second argument n is a positive integer with n >= m (with m defined as above),

then this function returns the digraph with n vertices and edges edges .
See DigraphEdges (5.1.3).

Example
gap> DigraphByEdges(
> [[1, 3], [2, 1], [2, 3], [2, 5], [3, 6],
> [4, 6], [5, 2], [5, 4], [5, 6], [6, 6]]);
<digraph with 6 vertices, 10 edges>
gap> DigraphByEdges(
> [[1, 3], [2, 1], [2, 3], [2, 5], [3, 6],
> [4, 6], [5, 2], [5, 4], [5, 6], [6, 6]], 12);
<digraph with 12 vertices, 10 edges>

Digraphs 14

3.1.8 EdgeOrbitsDigraph

. EdgeOrbitsDigraph(G, edges[, n]) (operation)

Returns: A new digraph.
If G is a permutation group, edges is an edge or list of edges, and n is a non-negative integer

such that G fixes [1 .. n] setwise, then this operation returns a new digraph with n vertices and
the union of the orbits of the edges in edges under the action of the permutation group G . An edge
in this context is simply a pair of positive integers.

If the optional third argument n is not present, then the largest moved point of the permutation
group G is used by default.

Example
gap> digraph := EdgeOrbitsDigraph(Group((1, 3), (1, 2)(3, 4)),
> [[1, 2], [4, 5]], 5);
<digraph with 5 vertices, 12 edges>
gap> OutNeighbours(digraph);
[[2, 4, 5], [1, 3, 5], [2, 4, 5], [1, 3, 5], []]
gap> RepresentativeOutNeighbours(digraph);
[[2, 4, 5], []]

3.1.9 DigraphByInNeighbours

. DigraphByInNeighbours(in) (operation)

. DigraphByInNeighbors(in) (operation)

Returns: A digraph.
If in is a list of lists of positive integers in the range [1 .. Length(in)], then this function

returns the digraph with vertices E0 =[1 .. Length(in)], and edges corresponding to the entries
of in . More precisely, there is an edge with source vertex i and range vertex j if i is in in[j].

If i occurs in in[j] with multiplicity k, then there are k multiple edges from i to j.
See InNeighbours (5.2.7).

Example
gap> gr := DigraphByInNeighbours([
> [2, 5, 8, 10], [2, 3, 4, 5, 6, 8, 9, 10],
> [1], [3, 5, 7, 8, 10], [2, 5, 7], [3, 6, 7, 9, 10], [1, 4],
> [1, 5, 9], [1, 2, 7, 8], [3, 5]]);
<digraph with 10 vertices, 37 edges>
gap> gr := DigraphByInNeighbours([[2, 3, 2], [1], [1, 2, 3]]);
<multidigraph with 3 vertices, 7 edges>

3.1.10 CayleyDigraph

. CayleyDigraph(G[, gens]) (operation)

Returns: A digraph.
Let G be any group and let gens be a list of elements of G . This function returns the Cayley graph

of the group with respect gens . The vertices are the elements of G . There exists an edge from the
vertex u to the vertex v if and only if there exists a generator g in gens such that x * g = y.

If the optional second argument gens is not present, then the generators of G are used by default.
The digraph created by this operation belongs to the category IsCayleyDigraph (3.1.2), the group G
can be recovered from the digraph using GroupOfCayleyDigraph (5.4.1), and the generators gens
can be obtained using GeneratorsOfCayleyDigraph (5.4.2).

Digraphs 15

Example
gap> G := DihedralGroup(8);
<pc group of size 8 with 3 generators>
gap> CayleyDigraph(G);
<digraph with 8 vertices, 24 edges>
gap> G := DihedralGroup(IsPermGroup, 8);
Group([(1,2,3,4), (2,4)])
gap> CayleyDigraph(G);
<digraph with 8 vertices, 16 edges>
gap> digraph := CayleyDigraph(G, [()]);
<digraph with 8 vertices, 8 edges>
gap> GroupOfCayleyDigraph(digraph) = G;
true
gap> GeneratorsOfCayleyDigraph(digraph);
[()]

3.2 Changing representations

3.2.1 AsBinaryRelation

. AsBinaryRelation(digraph) (operation)

Returns: A binary relation.
If digraph is a digraph with a positive number of vertices n, and no multiple edges, then this

operation returns a binary relation on the points [1..n]. The pair [i,j] is in the binary relation if
and only if [i,j] is an edge in digraph .

Example
gap> gr := Digraph([[3, 2], [1, 2], [2], [3, 4]]);
<digraph with 4 vertices, 7 edges>
gap> AsBinaryRelation(gr);
Binary Relation on 4 points

3.2.2 AsDigraph

. AsDigraph(trans[, n]) (operation)

Returns: A digraph, or fail.
If trans is a transformation, and n is a non-negative integer such that the restriction of trans to

[1 .. n] defines a transformation of [1 .. n], then AsDigraph returns the functional digraph
with n vertices defined by trans . See IsFunctionalDigraph (6.1.7).

Specifically, the digraph returned by AsDigraph has n edges: for each vertex x in [1 .. n],
there is a unique edge with source x; this edge has range x^trans .

If the optional second argument n is not supplied, then the degree of the transformation trans is
used by default. If the restriction of trans to [1 .. n] does not define a transformation of [1 ..
n], then AsDigraph(trans, n) returns fail.

Example
gap> f := Transformation([4, 3, 3, 1, 7, 9, 10, 4, 2, 3]);
Transformation([4, 3, 3, 1, 7, 9, 10, 4, 2, 3])
gap> AsDigraph(f);
<digraph with 10 vertices, 10 edges>
gap> AsDigraph(f, 4);

Digraphs 16

<digraph with 4 vertices, 4 edges>
gap> AsDigraph(f, 5);
fail

3.2.3 Graph

. Graph(digraph) (operation)

Returns: A Grape package graph.
If digraph is a digraph without multiple edges, then this operation returns a Grape package graph

that is isomorphic to digraph .
If digraph is a multidigraph, then since Grape does not support multiple edges, the multiple edges

will be reduced to a single edge in the result. In order words, for a multidigraph this operation will
return the same as Graph(DigraphRemoveAllMultipleEdges(digraph)).

Example
gap> Petersen := Graph(SymmetricGroup(5), [[1, 2]], OnSets,
> function(x, y) return Intersection(x, y) = []; end);
rec(adjacencies := [[3, 5, 8]], group := Group([(1,2,3,5,7)

(4,6,8,9,10), (2,4)(6,9)(7,10)]), isGraph := true,
names := [[1, 2], [2, 3], [3, 4], [1, 3], [4, 5],

[2, 4], [1, 5], [3, 5], [1, 4], [2, 5]],
order := 10, representatives := [1],
schreierVector := [-1, 1, 1, 2, 1, 1, 1, 1, 2, 2])

gap> Digraph(Petersen);
<digraph with 10 vertices, 30 edges>
gap> Graph(last);
rec(adjacencies := [[3, 5, 8]], group := Group([(1,2,3,5,7)

(4,6,8,9,10), (2,4)(6,9)(7,10)]), isGraph := true,
names := [[1, 2], [2, 3], [3, 4], [1, 3], [4, 5],

[2, 4], [1, 5], [3, 5], [1, 4], [2, 5]],
order := 10, representatives := [1],
schreierVector := [-1, 1, 1, 2, 1, 1, 1, 1, 2, 2])

3.2.4 AsGraph

. AsGraph(digraph) (attribute)

Returns: A Grape package graph.
If digraph is a digraph, then this method returns the same as Graph (3.2.3), except that the result

will be stored as a mutable attribute of digraph .
If AsGraph(digraph) is called subsequently, then the same GAP object will be returned as be-

fore.
Example

gap> d := Digraph([[1, 2], [3], []]);
<digraph with 3 vertices, 3 edges>
gap> g := AsGraph(d);
rec(adjacencies := [[1, 2], [3], []], group := Group(()),

isGraph := true, names := [1 .. 3], order := 3,
representatives := [1, 2, 3], schreierVector := [-1, -2, -3])

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

Digraphs 17

3.2.5 AsTransformation

. AsTransformation(digraph) (attribute)

Returns: A transformation, or fail
If digraph is a functional digraph, then AsTransformation returns the transforma-

tion which is defined by digraph . See IsFunctionalDigraph (6.1.7). Otherwise,
AsTransformation(digraph) returns fail.

If digraph is a functional digraph with n vertices, then AsTransformation(digraph) will
return the transformation f of degree at most n where for each 1≤ i≤ n, i ^ f is equal to the unique
out-neighbour of vertex i in digraph .

Example
gap> gr := Digraph([[1], [3], [2]]);
<digraph with 3 vertices, 3 edges>
gap> gr := CycleDigraph(3);
<digraph with 3 vertices, 3 edges>
gap> AsTransformation(gr);
Transformation([2, 3, 1])
gap> AsPermutation(last);
(1,2,3)
gap> gr := Digraph([[2, 3], [], []]);
<digraph with 3 vertices, 2 edges>
gap> AsTransformation(gr);
fail

3.3 New digraphs from old

3.3.1 DigraphCopy

. DigraphCopy(digraph) (operation)

Returns: A digraph.
This function returns a new copy of digraph , retaining none of the attributes or properties of

digraph .
Example

gap> gr := CycleDigraph(10);
<digraph with 10 vertices, 10 edges>
gap> DigraphCopy(gr) = gr;
true

3.3.2 InducedSubdigraph

. InducedSubdigraph(digraph, verts) (operation)

Returns: A digraph.
If digraph is a digraph, and verts is a subset of the vertices of digraph , then this operation

returns a digraph constructed from digraph by retaining precisely those vertices in verts , and those
edges whose source and range vertices are both contained in verts .

The vertices of the induced subdigraph are [1..Length(verts)] but the original vertex labels
can be accessed via DigraphVertexLabels (5.1.9).

Digraphs 18

Example
gap> gr := Digraph([[1, 1, 2, 3, 4, 4], [1, 3, 4], [3, 1], [1, 1]]);
<multidigraph with 4 vertices, 13 edges>
gap> InducedSubdigraph(gr, [1, 3, 4]);
<multidigraph with 3 vertices, 9 edges>
gap> DigraphVertices(last);
[1 .. 3]

3.3.3 ReducedDigraph

. ReducedDigraph(digraph) (attribute)

Returns: A digraph.
This function returns a digraph isomorphic to the subdigraph of digraph induced by the set of

non-isolated vertices, i.e. the set of those vertices of digraph which are the source or range of some
edge in digraph . See InducedSubdigraph (3.3.2).

The vertex and edge labels of the graph are preserved. A vertex in the new digraph can be matched
to the corresponding vertex in digraph by using the label.

The ordering of the vertices is preserved.
Example

gap> d := Digraph([[1, 2], [], [], [1, 4], []]);
<digraph with 5 vertices, 4 edges>
gap> r := ReducedDigraph(d);
<digraph with 3 vertices, 4 edges>
gap> OutNeighbours(r);
[[1, 2], [], [1, 3]]
gap> DigraphEdges(d);
[[1, 1], [1, 2], [4, 1], [4, 4]]
gap> DigraphEdges(r);
[[1, 1], [1, 2], [3, 1], [3, 3]]
gap> DigraphVertexLabel(r, 3);
4
gap> DigraphVertexLabel(r, 2);
2

3.3.4 MaximalSymmetricSubdigraph

. MaximalSymmetricSubdigraph(digraph) (attribute)

. MaximalSymmetricSubdigraphWithoutLoops(digraph) (attribute)

Returns: A digraph.
If digraph is a digraph, then MaximalSymmetricSubdigraph returns a symmetric digraph with-

out multiple edges which has the same vertex set as digraph , and whose edge list is formed from
digraph by ignoring the multiplicity of edges, and by ignoring edges [u,v] for which there does not
exist an edge [v,u].

The digraph returned by MaximalSymmetricSubdigraphWithoutLoops is the same, except that
loops are removed.

See IsSymmetricDigraph (6.1.10), IsMultiDigraph (6.1.8), and DigraphHasLoops (6.1.1) for
more information.

Example
gap> gr := Digraph([[2, 2], [1, 3], [4], [3, 1]]);
<multidigraph with 4 vertices, 7 edges>

Digraphs 19

gap> not IsSymmetricDigraph(gr) and IsMultiDigraph(gr);
true
gap> OutNeighbours(gr);
[[2, 2], [1, 3], [4], [3, 1]]
gap> sym := MaximalSymmetricSubdigraph(gr);
<digraph with 4 vertices, 4 edges>
gap> IsSymmetricDigraph(sym) and not IsMultiDigraph(sym);
true
gap> OutNeighbours(sym);
[[2], [1], [4], [3]]

3.3.5 MaximalAntiSymmetricSubdigraph

. MaximalAntiSymmetricSubdigraph(digraph) (attribute)

Returns: A digraph.
If digraph is a digraph, then MaximalAntiSymmetricSubdigraph returns a anti-symmetric sub-

digraph of digraph which does not have multiple edges, has the same vertex set as digraph , and
whose edge list is formed from digraph by ignoring the multiplicity of edges, and by having either
an edge from the vertex u to the vertex v, or the edge from v to u (but not both) whenever both edges
belong to digraph .

See IsAntisymmetricDigraph (6.1.2) for more information.
Example

gap> D := Digraph([[2, 2], [1, 3], [4], [3, 1]]);
<multidigraph with 4 vertices, 7 edges>
gap> not IsAntiSymmetricDigraph(D) and IsMultiDigraph(D);
true
gap> OutNeighbours(D);
[[2, 2], [1, 3], [4], [3, 1]]
gap> D := MaximalAntiSymmetricSubdigraph(D);
<digraph with 4 vertices, 4 edges>
gap> IsAntiSymmetricDigraph(D) and not IsMultiDigraph(D);
true
gap> OutNeighbours(D);
[[2], [3], [4], [1]]

3.3.6 UndirectedSpanningTree

. UndirectedSpanningTree(digraph) (attribute)

. UndirectedSpanningForest(digraph) (attribute)

Returns: A digraph, or fail.
If digraph is a digraph with at least one vertex, then UndirectedSpanningForest re-

turns an undirected spanning forest of digraph , otherwise this attribute returns fail. See
IsUndirectedSpanningForest (4.1.2) for the definition of an undirected spanning forest.

If digraph is a digraph with at least one vertex and whose MaximalSymmetricSubdigraph
(3.3.4) is connected (see IsConnectedDigraph (6.3.3)), then UndirectedSpanningTree re-
turns an undirected spanning tree of digraph , otherwise this attribute returns fail. See
IsUndirectedSpanningTree (4.1.2) for the definition of an undirected spanning tree.

Note that for a digraph that has an undirected spanning tree, the attribute
UndirectedSpanningTree returns the same digraph as the attribute UndirectedSpanningForest.

Digraphs 20

Example
gap> gr := Digraph([[1, 2, 1, 3], [1], [4], [3, 4, 3]]);
<multidigraph with 4 vertices, 9 edges>
gap> UndirectedSpanningTree(gr);
fail
gap> forest := UndirectedSpanningForest(gr);
<digraph with 4 vertices, 4 edges>
gap> OutNeighbours(forest);
[[2], [1], [4], [3]]
gap> IsUndirectedSpanningForest(gr, forest);
true
gap> DigraphConnectedComponents(forest).comps;
[[1, 2], [3, 4]]
gap> DigraphConnectedComponents(MaximalSymmetricSubdigraph(gr)).comps;
[[1, 2], [3, 4]]
gap> UndirectedSpanningForest(MaximalSymmetricSubdigraph(gr))
> = forest;
true
gap> gr := CompleteDigraph(4);
<digraph with 4 vertices, 12 edges>
gap> tree := UndirectedSpanningTree(gr);
<digraph with 4 vertices, 6 edges>
gap> IsUndirectedSpanningTree(gr, tree);
true
gap> tree = UndirectedSpanningForest(gr);
true
gap> UndirectedSpanningForest(EmptyDigraph(0));
fail

3.3.7 QuotientDigraph

. QuotientDigraph(digraph, p) (operation)

Returns: A digraph.
If digraph is a digraph, and p is a partition of the vertices of digraph , then this operation returns

a new digraph constructed by amalgamating all vertices of digraph which lie in the same part of p .
A partition of the vertices of digraph is a list of non-empty disjoint lists, such that the union of all

the sub-lists is equal to the vertex set of digraph . In particular, each vertex must appear in precisely
one sub-list.

The vertices of digraph in part i of p will become vertex i in the quotient, and every edge of
digraph with source in part i and range in part j becomes an edge from i to j in the quotient. In
particular, this means that the quotient of a digraph without multiple edges can have multiple edges.

Example
gap> gr := Digraph([[2, 1], [4], [1], [1, 3, 4]]);
<digraph with 4 vertices, 7 edges>
gap> DigraphVertices(gr);
[1 .. 4]
gap> DigraphEdges(gr);
[[1, 2], [1, 1], [2, 4], [3, 1], [4, 1], [4, 3],

[4, 4]]
gap> p := [[1], [2, 4], [3]];
[[1], [2, 4], [3]]

Digraphs 21

gap> qr := QuotientDigraph(gr, p);
<multidigraph with 3 vertices, 7 edges>
gap> DigraphVertices(qr);
[1 .. 3]
gap> DigraphEdges(qr);
[[1, 2], [1, 1], [2, 2], [2, 1], [2, 3], [2, 2],

[3, 1]]
gap> QuotientDigraph(EmptyDigraph(0), []);
<digraph with 0 vertices, 0 edges>

3.3.8 DigraphReverse

. DigraphReverse(digraph) (operation)

Returns: A digraph.
If digraph is a digraph, then this operation returns a digraph constructed from digraph by re-

versing the orientation of every edge.
Example

gap> gr := Digraph([[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);
<digraph with 5 vertices, 11 edges>
gap> DigraphReverse(gr);
<digraph with 5 vertices, 11 edges>
gap> OutNeighbours(last);
[[2, 3, 4], [4, 5], [1, 2, 5], [4], [2, 5]]
gap> gr := Digraph([[2, 4], [1], [4], [3, 4]]);
<digraph with 4 vertices, 6 edges>
gap> DigraphEdges(gr);
[[1, 2], [1, 4], [2, 1], [3, 4], [4, 3], [4, 4]]
gap> DigraphEdges(DigraphReverse(gr));
[[1, 2], [2, 1], [3, 4], [4, 1], [4, 3], [4, 4]]

3.3.9 DigraphDual

. DigraphDual(digraph) (attribute)

Returns: A digraph.
If digraph is a digraph without multiple edges, then this returns the dual of digraph . The dual

is sometimes called the complement.
The dual of digraph has the same vertices as digraph , and there is an edge in the dual from i

to j whenever there is no edge from i to j in digraph .
Example

gap> gr := Digraph([[2, 3], [], [4, 6], [5], [],
> [7, 8, 9], [], [], []]);
<digraph with 9 vertices, 8 edges>
gap> DigraphDual(gr);
<digraph with 9 vertices, 73 edges>

3.3.10 DigraphSymmetricClosure

. DigraphSymmetricClosure(digraph) (attribute)

Returns: A digraph.

Digraphs 22

If digraph is a digraph, then this attribute gives the minimal symmetric digraph which has the
same vertices and contains all the edges of digraph .

A digraph is symmetric if its adjacency matrix AdjacencyMatrix (5.2.1) is symmetric. For a
digraph with multiple edges this means that there are the same number of edges from a vertex u to a
vertex v as there are from v to u; see IsSymmetricDigraph (6.1.10).

Example
gap> gr := Digraph([[1, 2, 3], [2, 4], [1], [3, 4]]);
<digraph with 4 vertices, 8 edges>
gap> gr1 := DigraphSymmetricClosure(gr);
<digraph with 4 vertices, 11 edges>
gap> IsSymmetricDigraph(gr1);
true
gap> List(OutNeighbours(gr1), AsSet);
[[1, 2, 3], [1, 2, 4], [1, 4], [2, 3, 4]]
gap> gr := Digraph([[2, 2], [1]]);
<multidigraph with 2 vertices, 3 edges>
gap> gr1 := DigraphSymmetricClosure(gr);
<multidigraph with 2 vertices, 4 edges>
gap> OutNeighbours(gr1);
[[2, 2], [1, 1]]

3.3.11 DigraphReflexiveTransitiveClosure

. DigraphReflexiveTransitiveClosure(digraph) (attribute)

. DigraphTransitiveClosure(digraph) (attribute)

Returns: A digraph.
If digraph is a digraph with no multiple edges, then these attributes return the (reflexive) transitive

closure of digraph .
A digraph is reflexive if it has a loop at every vertex, and it is transitive if whenever [i,j] and

[j,k] are edges of digraph , [i,k] is also an edge. The (reflexive) transitive closure of a digraph
digraph is the least (reflexive and) transitive digraph containing digraph .

Let n be the number of vertices of digraph , and let m be the number of edges. For an arbi-
trary digraph, these attributes will use a version of the Floyd-Warshall algorithm, with complexity
O(n3). However, for a topologically sortable digraph [see DigraphTopologicalSort (5.1.7)], these
attributes will use methods with complexity O(m+n+m ·n) when this is faster.

Example
gap> gr := DigraphFromDiSparse6String(".H‘eOWR‘Ul^");
<digraph with 9 vertices, 8 edges>
gap> IsReflexiveDigraph(gr) or IsTransitiveDigraph(gr);
false
gap> OutNeighbours(gr);
[[4, 6], [1, 3], [], [5], [], [7, 8, 9], [], [],

[]]
gap> trans := DigraphTransitiveClosure(gr);
<digraph with 9 vertices, 18 edges>
gap> OutNeighbours(trans);
[[4, 5, 6, 7, 8, 9], [1, 3, 4, 5, 6, 7, 8, 9], [], [5],

[], [7, 8, 9], [], [], []]
gap> reflextrans := DigraphReflexiveTransitiveClosure(gr);
<digraph with 9 vertices, 27 edges>

Digraphs 23

gap> OutNeighbours(reflextrans);
[[1, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9], [3],

[4, 5], [5], [6, 7, 8, 9], [7], [8], [9]]

3.3.12 DigraphReflexiveTransitiveReduction

. DigraphReflexiveTransitiveReduction(digraph) (operation)

. DigraphTransitiveReduction(digraph) (operation)

Returns: A digraph.
If digraph is a topologically sortable digraph [see DigraphTopologicalSort (5.1.7)] with no

multiple edges, then these operations return the (reflexive) transitive reduction of digraph .
The (reflexive) transitive reduction of such a digraph is the unique least subgraph such that the

(reflexive) transitive closure of the subgraph is equal to the (reflexive) transitive closure of digraph
[see DigraphReflexiveTransitiveClosure (3.3.11)]. In order words, it is the least subgraph of
digraph which retains the same reachability as digraph .

Let n be the number of vertices of an arbitrary digraph, and let m be the number of edges. Then
these operations use methods with complexity O(m+n+m ·n).

Example
gap> gr := Digraph([[1, 2, 3], [3], [3]]);;
gap> DigraphHasLoops(gr);
true
gap> gr1 := DigraphReflexiveTransitiveReduction(gr);
<digraph with 3 vertices, 2 edges>
gap> DigraphHasLoops(gr1);
false
gap> OutNeighbours(gr1);
[[2], [3], []]
gap> gr2 := DigraphTransitiveReduction(gr);
<digraph with 3 vertices, 4 edges>
gap> DigraphHasLoops(gr2);
true
gap> OutNeighbours(gr2);
[[2, 1], [3], [3]]
gap> DigraphReflexiveTransitiveClosure(gr)
> = DigraphReflexiveTransitiveClosure(gr1);
true
gap> DigraphTransitiveClosure(gr)
> = DigraphTransitiveClosure(gr2);
true

3.3.13 DigraphAddVertex

. DigraphAddVertex(digraph[, label]) (operation)

Returns: A digraph.
The operation returns a new digraph constructed from digraph by adding a single new vertex.
If the optional second argument label is a GAP object, then the new vertex will be labelled

label .
Example

gap> gr := CompleteDigraph(3);
<digraph with 3 vertices, 6 edges>

Digraphs 24

gap> new := DigraphAddVertex(gr);
<digraph with 4 vertices, 6 edges>
gap> DigraphVertices(new);
[1 .. 4]
gap> new := DigraphAddVertex(gr, Group([(1, 2)]));
<digraph with 4 vertices, 6 edges>
gap> DigraphVertexLabels(new);
[1, 2, 3, Group([(1,2)])]

3.3.14 DigraphAddVertices

. DigraphAddVertices(digraph, m[, labels]) (operation)

Returns: A digraph.
For a non-negative integer m , this operation returns a new digraph constructed from digraph by

adding m new vertices.
If the optional third argument labels is a list of length m consisting of GAP objects, then the new

vertices will be labelled according to this list.
Example

gap> gr := CompleteDigraph(3);
<digraph with 3 vertices, 6 edges>
gap> new := DigraphAddVertices(gr, 3);
<digraph with 6 vertices, 6 edges>
gap> DigraphVertices(new);
[1 .. 6]
gap> new := DigraphAddVertices(gr, 2, [Group([(1, 2)]), "d"]);
<digraph with 5 vertices, 6 edges>
gap> DigraphVertexLabels(new);
[1, 2, 3, Group([(1,2)]), "d"]
gap> DigraphAddVertices(gr, 0) = gr;
true

3.3.15 DigraphAddEdge

. DigraphAddEdge(digraph, edge) (operation)

Returns: A digraph.
If edge is a pairs of vertices of digraph , then this operation returns a new digraph constructed

from digraph by adding a new edge with source edge[1] and range edge[2].
Example

gap> gr1 := Digraph([[2], [3], []]);
<digraph with 3 vertices, 2 edges>
gap> DigraphEdges(gr1);
[[1, 2], [2, 3]]
gap> gr2 := DigraphAddEdge(gr1, [3, 1]);
<digraph with 3 vertices, 3 edges>
gap> DigraphEdges(gr2);
[[1, 2], [2, 3], [3, 1]]
gap> gr3 := DigraphAddEdge(gr2, [2, 3]);
<multidigraph with 3 vertices, 4 edges>
gap> DigraphEdges(gr3);
[[1, 2], [2, 3], [2, 3], [3, 1]]

Digraphs 25

3.3.16 DigraphAddEdgeOrbit

. DigraphAddEdgeOrbit(digraph, edge) (operation)

Returns: A new digraph.
This operation returns a new digraph with the same vertices and edges as digraph and with

additional edges consisting of the orbit of the edge edge under the action of the DigraphGroup
(7.2.9) of digraph . If edge is already an edge in digraph , then digraph is returns unchanged.

An edge is simply a pair of vertices of digraph .
Example

gap> gr1 := CayleyDigraph(DihedralGroup(8));
<digraph with 8 vertices, 24 edges>
gap> gr2 := DigraphAddEdgeOrbit(gr1, [1, 8]);
<digraph with 8 vertices, 32 edges>
gap> DigraphEdges(gr1);
[[1, 2], [1, 3], [1, 4], [2, 1], [2, 8], [2, 6],

[3, 5], [3, 4], [3, 7], [4, 6], [4, 7], [4, 1],
[5, 3], [5, 2], [5, 8], [6, 4], [6, 5], [6, 2],
[7, 8], [7, 1], [7, 3], [8, 7], [8, 6], [8, 5]]

gap> DigraphEdges(gr2);
[[1, 2], [1, 3], [1, 4], [1, 8], [2, 1], [2, 8],

[2, 6], [2, 3], [3, 5], [3, 4], [3, 7], [3, 2],
[4, 6], [4, 7], [4, 1], [4, 5], [5, 3], [5, 2],
[5, 8], [5, 4], [6, 4], [6, 5], [6, 2], [6, 7],
[7, 8], [7, 1], [7, 3], [7, 6], [8, 7], [8, 6],
[8, 5], [8, 1]]

gap> gr3 := DigraphRemoveEdgeOrbit(gr2, [1, 8]);
<digraph with 8 vertices, 24 edges>
gap> gr3 = gr1;
true

3.3.17 DigraphAddEdges

. DigraphAddEdges(digraph, edges) (operation)

Returns: A digraph.
If edges is a (possibly empty) list of pairs of vertices of digraph , then this operation returns a

new digraph constructed from digraph by adding the edges specified by edges . More precisely, for
every edge in edges , a new edge will be added with source edge[1] and range edges[2].

If an edge is included in edges with multiplicity k, then it will be added k times.
Example

gap> func := function(n)
> local source, range, i;
> source := [];
> range := [];
> for i in [1 .. n - 2] do
> Add(source, i);
> Add(range, i + 1);
> od;
> return Digraph(n, source, range);
> end;;
gap> gr := func(1024);
<digraph with 1024 vertices, 1022 edges>

Digraphs 26

gap> gr := DigraphAddEdges(gr,
> [[1023, 1024], [1, 1024], [1023, 1024], [1024, 1]]);
<multidigraph with 1024 vertices, 1026 edges>

3.3.18 DigraphRemoveVertex

. DigraphRemoveVertex(digraph, v) (operation)

Returns: A digraph.
If v is a vertex of digraph , then this operation returns a new digraph constructed from digraph

by removing vertex v , along with any edge whose source or range vertex is v .
If digraph has n vertices, then the vertices of the new digraph are [1..n-1], but the original

labels can be accessed via DigraphVertexLabels (5.1.9).
Example

gap> gr := Digraph(["a", "b", "c"],
> ["a", "a", "b", "c", "c"],
> ["b", "c", "a", "a", "c"]);
<digraph with 3 vertices, 5 edges>
gap> DigraphVertexLabels(gr);
["a", "b", "c"]
gap> DigraphEdges(gr);
[[1, 2], [1, 3], [2, 1], [3, 1], [3, 3]]
gap> new := DigraphRemoveVertex(gr, 2);
<digraph with 2 vertices, 3 edges>
gap> DigraphVertexLabels(new);
["a", "c"]

3.3.19 DigraphRemoveVertices

. DigraphRemoveVertices (digraph, verts) (operation)

Returns: A digraph.
If verts is a (possibly empty) duplicate-free list of vertices of digraph , then this operation

returns a new digraph constructed from digraph by removing every vertex in verts , along with any
edge whose source or range vertex is in verts .

If digraph has n vertices, then the vertices of the new digraph are [1 .. n-Length(verts)],
but the original labels can be accessed via DigraphVertexLabels (5.1.9).

Example
gap> gr := Digraph([[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);
<digraph with 5 vertices, 11 edges>
gap> SetDigraphVertexLabels(gr, ["a", "b", "c", "d", "e"]);
gap> new := DigraphRemoveVertices(gr, [2, 4]);
<digraph with 3 vertices, 4 edges>
gap> DigraphVertexLabels(new);
["a", "c", "e"]

3.3.20 DigraphRemoveEdge

. DigraphRemoveEdge(digraph, edge) (operation)

Returns: A digraph.
If one of the following holds:

Digraphs 27

• digraph is a digraph with no multiple edges, and edge is a pair of vertices of digraph , or

• digraph is any digraph and edge is the index of an edge of digraph ,

then this operation returns a new digraph constructed from digraph by removing the edges specified
by edges . If, in the first case, the pair of vertices edge does not specify an edge of digraph , then a
new copy of digraph will be returned.

Example
gap> gr := CycleDigraph(250000);
<digraph with 250000 vertices, 250000 edges>
gap> gr := DigraphRemoveEdge(gr, [250000, 1]);
<digraph with 250000 vertices, 249999 edges>
gap> gr := DigraphRemoveEdge(gr, 10);
<digraph with 250000 vertices, 249998 edges>

3.3.21 DigraphRemoveEdgeOrbit

. DigraphRemoveEdgeOrbit(digraph, edge) (operation)

Returns: A new digraph.
This operation returns a new digraph with the same vertices as digraph and with the orbit of the

edge edge (under the action of the DigraphGroup (7.2.9) of digraph) removed. If edge is not an
edge in digraph , then digraph is returned unchanged.

An edge is simply a pair of vertices of digraph .
Example

gap> gr1 := CayleyDigraph(DihedralGroup(8));
<digraph with 8 vertices, 24 edges>
gap> gr2 := DigraphAddEdgeOrbit(gr1, [1, 8]);
<digraph with 8 vertices, 32 edges>
gap> DigraphEdges(gr1);
[[1, 2], [1, 3], [1, 4], [2, 1], [2, 8], [2, 6],

[3, 5], [3, 4], [3, 7], [4, 6], [4, 7], [4, 1],
[5, 3], [5, 2], [5, 8], [6, 4], [6, 5], [6, 2],
[7, 8], [7, 1], [7, 3], [8, 7], [8, 6], [8, 5]]

gap> DigraphEdges(gr2);
[[1, 2], [1, 3], [1, 4], [1, 8], [2, 1], [2, 8],

[2, 6], [2, 3], [3, 5], [3, 4], [3, 7], [3, 2],
[4, 6], [4, 7], [4, 1], [4, 5], [5, 3], [5, 2],
[5, 8], [5, 4], [6, 4], [6, 5], [6, 2], [6, 7],
[7, 8], [7, 1], [7, 3], [7, 6], [8, 7], [8, 6],
[8, 5], [8, 1]]

gap> gr3 := DigraphRemoveEdgeOrbit(gr2, [1, 8]);
<digraph with 8 vertices, 24 edges>
gap> gr3 = gr1;
true

3.3.22 DigraphRemoveEdges

. DigraphRemoveEdges(digraph, edges) (operation)

Returns: A digraph.
If one of the following holds:

Digraphs 28

• digraph is a digraph with no multiple edges, and edges is a list of pairs of vertices of digraph ,
or

• digraph is any digraph and edges is a list of indices of edges of digraph ,

then this operation returns a new digraph constructed from digraph by removing all of the edges
specified by edges [see DigraphRemoveEdge (3.3.20)].

Example
gap> gr := CycleDigraph(250000);
<digraph with 250000 vertices, 250000 edges>
gap> gr := DigraphRemoveEdges(gr, [[250000, 1]]);
<digraph with 250000 vertices, 249999 edges>
gap> gr := DigraphRemoveEdges(gr, [10]);
<digraph with 250000 vertices, 249998 edges>

3.3.23 DigraphRemoveLoops

. DigraphRemoveLoops(digraph) (operation)

Returns: A digraph.
If digraph is a digraph, then this operation returns a new digraph constructed from digraph by

removing every loop. A loop is an edge with equal source and range.
Example

gap> gr := Digraph([[1, 2, 4], [1, 4], [3, 4], [1, 4, 5], [1, 5]]);
<digraph with 5 vertices, 12 edges>
gap> DigraphRemoveLoops(gr);
<digraph with 5 vertices, 8 edges>

3.3.24 DigraphRemoveAllMultipleEdges

. DigraphRemoveAllMultipleEdges(digraph) (operation)

Returns: A digraph.
If digraph is a digraph, then this operation returns a new digraph constructed from digraph by

removing all multiple edges. The result is the largest subdigraph of digraph which does not contain
multiple edges.

Example
gap> gr1 := Digraph([[1, 2, 3, 2], [1, 1, 3], [2, 2, 2]]);
<multidigraph with 3 vertices, 10 edges>
gap> gr2 := DigraphRemoveAllMultipleEdges(gr1);
<digraph with 3 vertices, 6 edges>
gap> OutNeighbours(gr2);
[[1, 2, 3], [1, 3], [2]]

3.3.25 DigraphReverseEdges

. DigraphReverseEdges(digraph, edges) (operation)

. DigraphReverseEdge(digraph, edge) (operation)

Returns: A digraph.
If digraph is a digraph without multiple edges, and edges is either:

Digraphs 29

• a list of pairs of vertices of digraph (the entries of each pair corresponding to the source and
the range of an edge, respectively),

• a list of positions of elements in the list DigraphEdges (5.1.3),

then DigraphReverseEdges returns a new digraph constructed from digraph by reversing
the orientation of every edge specified by edges . If only one edge is to be reversed, then
DigraphReverseEdge can be used instead. In this case, the second argument should just be a single
vertex-pair or a single position.

Note that even though digraph cannot have multiple edges, the output may have multiple edges.
Example

gap> gr := DigraphFromDiSparse6String(".Tg?i@s?t_e?_qEsC");
<digraph with 21 vertices, 8 edges>
gap> DigraphEdges(gr);
[[1, 2], [1, 7], [1, 8], [5, 21], [7, 19], [9, 1],

[11, 2], [21, 1]]
gap> gr2 := DigraphReverseEdges(gr, [1, 2, 4]);
<digraph with 21 vertices, 8 edges>
gap> gr = DigraphReverseEdges(gr2, [[7, 1], [2, 1], [21, 5]]);
true
gap> gr2 := DigraphReverseEdge(gr, 5);
<digraph with 21 vertices, 8 edges>
gap> gr2 = DigraphReverseEdge(gr, [7, 19]);
true

3.3.26 DigraphDisjointUnion (for an arbitrary number of digraphs)

. DigraphDisjointUnion(gr1, gr2, ...) (function)

. DigraphDisjointUnion(list) (function)

Returns: A digraph.
In the first form, if gr1 , gr2 , etc. are digraphs, then DigraphDisjointUnion returns their dis-

joint union. In the second form, if list is a non-empty list of digraphs, then DigraphDisjointUnion
returns the disjoint union of the digraphs contained in the list.

For a disjoint union of digraphs, the vertex set is the disjoint union of the vertex sets, and the edge
list is the disjoint union of the edge lists.

More specifically, for a collection of digraphs gr1 , gr2 , ..., the disjoint union with have
DigraphNrVertices(gr1) + DigraphNrVertices(gr2) + ... vertices. The edges of gr1
will remain unchanged, whilst the edges of the ith digraph, gr[i], will be changed so that they
belong to the vertices of the disjoint union corresponding to gr[i]. In particular, the edges
of gr[i] will have their source and range increased by DigraphNrVertices(gr1) + ... +
DigraphNrVertices(gr[i-1]).

Note that previously set DigraphVertexLabels (5.1.9) will be lost.
Example

gap> gr1 := CycleDigraph(3);
<digraph with 3 vertices, 3 edges>
gap> OutNeighbours(gr1);
[[2], [3], [1]]
gap> gr2 := CompleteDigraph(3);
<digraph with 3 vertices, 6 edges>
gap> OutNeighbours(gr2);

Digraphs 30

[[2, 3], [1, 3], [1, 2]]
gap> union := DigraphDisjointUnion(gr1, gr2);
<digraph with 6 vertices, 9 edges>
gap> OutNeighbours(union);
[[2], [3], [1], [5, 6], [4, 6], [4, 5]]

3.3.27 DigraphEdgeUnion (for an arbitrary number of digraphs)

. DigraphEdgeUnion(gr1, gr2, ...) (function)

. DigraphEdgeUnion(list) (function)

Returns: A digraph.
In the first form, if gr1 , gr2 , etc. are digraphs, then DigraphEdgeUnion returns their edge union.

In the second form, if list is a non-empty list of digraphs, then DigraphEdgeUnion returns the edge
union of the digraphs contained in the list.

The vertex set of the edge union of a collection of digraphs is the union of the vertex sets, whilst
the edge list of the edge union is the concatenation of the edge lists. The number of vertices of the
edge union is equal to the maximum number of vertices of one of the digraphs, whilst the number of
edges of the edge union will equal the sum of the number of edges of each digraph.

Note that previously set DigraphVertexLabels (5.1.9) will be lost.
Example

gap> gr := CycleDigraph(10);
<digraph with 10 vertices, 10 edges>
gap> DigraphEdgeUnion(gr, gr);
<multidigraph with 10 vertices, 20 edges>
gap> gr1 := Digraph([[2], [1]]);
<digraph with 2 vertices, 2 edges>
gap> gr2 := Digraph([[2, 3], [2], [1]]);
<digraph with 3 vertices, 4 edges>
gap> union := DigraphEdgeUnion(gr1, gr2);
<multidigraph with 3 vertices, 6 edges>
gap> OutNeighbours(union);
[[2, 2, 3], [1, 2], [1]]
gap> union = DigraphByEdges(
> Concatenation(DigraphEdges(gr1), DigraphEdges(gr2)));
true

3.3.28 DigraphJoin (for an arbitrary number of digraphs)

. DigraphJoin(gr1, gr2, ...) (function)

. DigraphJoin(list) (function)

Returns: A digraph.
In the first form, if gr1 , gr2 , etc. are digraphs, then DigraphJoin returns their join. In the second

form, if list is a non-empty list of digraphs, then DigraphJoin returns the join of the digraphs
contained in the list.

The join of a collection of digraphs gr1 , gr2 , ... is formed by first taking the
DigraphDisjointUnion (3.3.26) of the collection. In the disjoint union, if i 6= j then there are
no edges between vertices corresponding to digraphs gr[i] and gr[j] in the collection; the join is
created by including all such edges.

Digraphs 31

For example, the join of two empty digraphs is a complete bipartite digraph.
Note that previously set DigraphVertexLabels (5.1.9) will be lost.

Example
gap> gr := CompleteDigraph(3);
<digraph with 3 vertices, 6 edges>
gap> IsCompleteDigraph(DigraphJoin(gr, gr));
true
gap> gr2 := CycleDigraph(3);
<digraph with 3 vertices, 3 edges>
gap> DigraphJoin(gr, gr2);
<digraph with 6 vertices, 27 edges>

3.3.29 LineDigraph

. LineDigraph(digraph) (operation)

. EdgeDigraph(digraph) (operation)

Returns: A digraph.
Given a digraph digraph , the operation returns the digraph obtained by associating a vertex with

each edge of digraph , and creating an edge from a vertex v to a vertex u if and only if the terminal
vertex of the edge associated with v is the start vertex of the edge associated with u.

Example
gap> LineDigraph(CompleteDigraph(3));
<digraph with 6 vertices, 12 edges>
gap> LineDigraph(ChainDigraph(3));
<digraph with 2 vertices, 1 edge>

3.3.30 LineUndirectedDigraph

. LineUndirectedDigraph(digraph) (operation)

. EdgeUndirectedDigraph(digraph) (operation)

Returns: A digraph.
Given a symmetric digraph digraph , the operation returns the symmetric digraph obtained by

associating a vertex with each edge of digraph , ignoring directions and multiplicites, and adding an
edge between two vertices if and only if the corresponding edges have a vertex in common.

Example
gap> LineUndirectedDigraph(CompleteDigraph(3));
<digraph with 3 vertices, 6 edges>
gap> LineUndirectedDigraph(DigraphSymmetricClosure(ChainDigraph(3)));
<digraph with 2 vertices, 2 edges>

3.3.31 DoubleDigraph

. DoubleDigraph(digraph) (operation)

Returns: A digraph.
Let digraph be a digraph with vertex set V. This function returns the double digraph of digraph .

The vertex set of the double digraph is the orginal vertex set together with a duplicate. The edges are
[u_1, v_2] and [u_2, v_1] if and only if [u, v] is an edge in digraph , together with the original
edges and their duplicates.

Digraphs 32

Example
gap> gamma := Digraph([[2], [3], [1]]);
<digraph with 3 vertices, 3 edges>
gap> DoubleDigraph(gamma);
<digraph with 6 vertices, 12 edges>

3.3.32 BipartiteDoubleDigraph

. BipartiteDoubleDigraph(digraph) (operation)

Returns: A digraph.
Let digraph be a digraph with vertex set V. This function returns the bipartite double digraph of

digraph . The vertex set of the double digraph is the orginal vertex set together with a duplicate. The
edges are [u_1, v_2] and [u_2, v_1] if and only if [u, v] is an edge in digraph . The resulting
graph is bipartite, since the orignal edges are not included in the resulting digraph.

Example
gap> gamma := Digraph([[2], [3], [1]]);
<digraph with 3 vertices, 3 edges>
gap> BipartiteDoubleDigraph(gamma);
<digraph with 6 vertices, 6 edges>

3.3.33 DigraphAddAllLoops

. DigraphAddAllLoops(digraph) (operation)

Returns: A digraph.
For a digraph digraph this operation return a copy of digraph such that a loop is added for every

vertex which did not have a loop in digraph .
Example

gap> gr := EmptyDigraph(13);
<digraph with 13 vertices, 0 edges>
gap> gr := DigraphAddAllLoops(gr);
<digraph with 13 vertices, 13 edges>
gap> OutNeighbours(gr);
[[1], [2], [3], [4], [5], [6], [7], [8], [9],

[10], [11], [12], [13]]
gap> gr := Digraph([[1, 2, 3], [1, 3], [1]]);
<digraph with 3 vertices, 6 edges>
gap> gr := DigraphAddAllLoops(gr);
<digraph with 3 vertices, 8 edges>
gap> OutNeighbours(gr);
[[1, 2, 3], [1, 3, 2], [1, 3]]

3.3.34 DistanceDigraph (for digraph and int)

. DistanceDigraph(digraph, i) (operation)

. DistanceDigraph(digraph, list) (operation)

Returns: A digraph.
The first argument is a digraph, the second argument is a non-negative integer or a list of positive

integers. This operation returns a digraph on the same set of vertices as digraph , with two vertices

Digraphs 33

being adjacent if and only if the distance between them in digraph equals i or is a number in list .
See DigraphShortestDistance (5.3.2).

Example
gap> digraph := DigraphFromSparse6String(
> ":]n?AL‘BC_DEbEF‘GIaGHdIJeGKcKL_@McDHfILaBJfHMjKM");
<digraph with 30 vertices, 90 edges>
gap> DistanceDigraph(digraph, 1);
<digraph with 30 vertices, 90 edges>
gap> DistanceDigraph(digraph, [1, 2]);
<digraph with 30 vertices, 270 edges>

3.3.35 DigraphClosure (for a digraph and positive integer)

. DigraphClosure(digraph, k) (operation)

Returns: A digraph
Given a symmetric loopless digraph with no multiple edges digraph , the k-closure of digraph is

defined to be the unique smallest symmetric loopless digraph C with no multiple edges on the vertices
of digraph that contains all the edges of digraph and satsifies the property that the sum of the
degrees of every two non-adjacenct vertices in C is less than k . See IsSymmetricDigraph (6.1.10),
DigraphHasLoops (6.1.1), IsMultiDigraph (6.1.8), and OutDegreeOfVertex (5.2.10).

The operation DigraphClosure returns the k -closure of digraph .
Example

gap> gr := CompleteDigraph(6);;
gap> DigraphRemoveEdges(gr, [[1, 2], [2, 1]]);;
gap> closure := DigraphClosure(gr, 6);
<digraph with 6 vertices, 30 edges>
gap> IsCompleteDigraph(closure);
true

3.4 Random digraphs

3.4.1 RandomDigraph

. RandomDigraph(n[, p]) (operation)

Returns: A digraph.
If n is a positive integer, then this function returns a random digraph with n vertices and without

multiple edges. The result may or may not have loops.
If the optional second argument p is a float with value 0≤ p ≤ 1, then an edge will exist between

each pair of vertices with probability approximately p . If p is not specified, then a random probability
will be assumed (chosen with uniform probability).

Example
gap> RandomDigraph(1000);
<digraph with 1000 vertices, 364444 edges>
gap> RandomDigraph(10000, 0.023);
<digraph with 10000 vertices, 2300438 edges>

Digraphs 34

3.4.2 RandomMultiDigraph

. RandomMultiDigraph(n[, m]) (operation)

Returns: A digraph.
If n is a positive integer, then this function returns a random digraph with n vertices. If the optional

second argument m is a positive integer, then the digraph will have m edges. If m is not specified, then
the number of edges will be chosen randomly (with uniform probability) from the range [1 ..

(n
2

)
].

The method used by this function chooses each edge from the set of all possible edges with uniform
probability. No effort is made to avoid creating multiple edges, so it is possible (but not guaranteed)
that the result will have multiple edges. The result may or may not have loops.

Example
gap> RandomMultiDigraph(1000);
<multidigraph with 1000 vertices, 216659 edges>
gap> RandomMultiDigraph(1000, 950);
<multidigraph with 1000 vertices, 950 edges>

3.4.3 RandomTournament

. RandomTournament(n) (operation)

Returns: A digraph.
If n is a non-negative integer, this function returns a random tournament with n vertices. See

IsTournament (6.1.11).
Example

gap> RandomTournament(10);
<digraph with 10 vertices, 45 edges>

3.5 Standard examples

3.5.1 ChainDigraph

. ChainDigraph(n) (operation)

Returns: A digraph.
If n is a positive integer, this function returns a chain with n vertices and n - 1 edges. Specifi-

cally, for each vertex i (with i < n), there is a directed edge with source i and range i + 1.
The DigraphReflexiveTransitiveClosure (3.3.11) of a chain represents a total order.

Example
gap> ChainDigraph(42);
<digraph with 42 vertices, 41 edges>

3.5.2 CompleteDigraph

. CompleteDigraph(n) (operation)

Returns: A digraph.
If n is a non-negative integer, this function returns the complete digraph with n vertices. See

IsCompleteDigraph (6.1.5).
Example

gap> CompleteDigraph(20);
<digraph with 20 vertices, 380 edges>

Digraphs 35

3.5.3 CompleteBipartiteDigraph

. CompleteBipartiteDigraph(m, n) (operation)

Returns: A digraph.
A complete bipartite digraph is a digraph whose vertices can be partitioned into two non-empty

vertex sets, such there exists a unique edge with source i and range j if and only if i and j lie in
different vertex sets.

If m and n are positive integers, this function returns the complete bipartite digraph with vertex
sets of sizes m (containing the vertices [1 .. m]) and n (containing the vertices [m + 1 .. m +
n]).

Example
gap> CompleteBipartiteDigraph(2, 3);
<digraph with 5 vertices, 12 edges>

3.5.4 CompleteMultipartiteDigraph

. CompleteMultipartiteDigraph(orders) (operation)

Returns: A digraph.
For a list orders of n positive integers, this function returns the digraph containing n independent

sets of vertices of orders [l[1] .. l[n]]. Moreover, each vertex is adjacent to every other not
contained in the same independent set.

Example
gap> CompleteMultipartiteDigraph([5, 4, 2]);
<digraph with 11 vertices, 76 edges>

3.5.5 CycleDigraph

. CycleDigraph(n) (operation)

Returns: A digraph.
If n is a positive integer, this function returns a cycle digraph with n vertices and n edges. Specif-

ically, for each vertex i (with i < n), there is a directed edge with source i and range i + 1. In
addition, there is an edge with source n and range 1.

Example
gap> CycleDigraph(1);
<digraph with 1 vertex, 1 edge>
gap> CycleDigraph(123);
<digraph with 123 vertices, 123 edges>

3.5.6 EmptyDigraph

. EmptyDigraph(n) (operation)

. NullDigraph(n) (operation)

Returns: A digraph.
If n is a non-negative integer, this function returns the empty or null digraph with n vertices. An

empty digraph is one with no edges.
NullDigraph is a synonym for EmptyDigraph.

Digraphs 36

Example
gap> EmptyDigraph(20);
<digraph with 20 vertices, 0 edges>
gap> NullDigraph(10);
<digraph with 10 vertices, 0 edges>

3.5.7 JohnsonDigraph

. JohnsonDigraph(n, k) (operation)

Returns: A digraph.
If n and k are non-negative integers, then this operation returns a symmetric digraph which corre-

sponds to the undirected Johnson graph J(n,k).
The Johnson graph J(n,k) has vertices given by all the k -subsets of the range [1 .. k], and

two vertices are connected by an edge iff their intersection has size k −1.
Example

gap> gr := JohnsonDigraph(3, 1);
<digraph with 3 vertices, 6 edges>
gap> OutNeighbours(gr);
[[2, 3], [1, 3], [1, 2]]
gap> gr := JohnsonDigraph(4, 2);
<digraph with 6 vertices, 24 edges>
gap> OutNeighbours(gr);
[[2, 3, 4, 5], [1, 3, 4, 6], [1, 2, 5, 6], [1, 2, 5, 6],

[1, 3, 4, 6], [2, 3, 4, 5]]
gap> JohnsonDigraph(1, 0);
<digraph with 1 vertex, 0 edges>

Chapter 4

Operators

4.1 Operators for digraphs

digraph1 = digraph2
returns true if digraph1 and digraph2 have the same vertices, and
DigraphEdges(digraph1) = DigraphEdges(digraph2), up to some re-ordering of
the edge lists.

Note that this operator does not compare the vertex labels of digraph1 and digraph2 .

digraph1 < digraph2
This operator returns true if one of the following holds:

• The number n1 of vertices in digraph1 is less than the number n2 of vertices in digraph2 ;

• n1 = n2, and the number m1 of edges in digraph1 is less than the number m2 of edges in
digraph2 ;

• n1 = n2, m1 = m2, and DigraphEdges(digraph1) is less than
DigraphEdges(digraph2) after having both of these sets have been sorted with
respect to the lexicographical order.

4.1.1 IsSubdigraph

. IsSubdigraph(super, sub) (operation)

Returns: true or false.
If super and sub are digraphs, then this operation returns true if sub is a subdigraph of super ,

and false if it is not.
A digraph sub is a subdigraph of a digraph super if sub and super share the same number of

vertices, and the collection of edges of super (including repeats) contains the collection of edges of
sub (including repeats).

In other words, sub is a subdigraph of super if and only if DigraphNrVertices(sub) =
DigraphNrVertices(super), and for each pair of vertices i and j, there are at least as many edges
of the form [i, j] in super as there are in sub .

Example
gap> g := Digraph([[2, 3], [1], [2, 3]]);
<digraph with 3 vertices, 5 edges>
gap> h := Digraph([[2, 3], [], [2]]);

37

Digraphs 38

<digraph with 3 vertices, 3 edges>
gap> IsSubdigraph(g, h);
true
gap> IsSubdigraph(h, g);
false
gap> IsSubdigraph(CompleteDigraph(4), CycleDigraph(4));
true
gap> IsSubdigraph(CycleDigraph(4), ChainDigraph(4));
true
gap> g := Digraph([[2, 2], [1]]);
<multidigraph with 2 vertices, 3 edges>
gap> h := Digraph([[2], [1]]);
<digraph with 2 vertices, 2 edges>
gap> IsSubdigraph(g, h);
true
gap> IsSubdigraph(h, g);
false

4.1.2 IsUndirectedSpanningTree

. IsUndirectedSpanningTree(super, sub) (operation)

. IsUndirectedSpanningForest(super, sub) (operation)

Returns: true or false.
The operation IsUndirectedSpanningTree returns true if the digraph sub is an undirected

spanning tree of the digraph super , and the operation IsUndirectedSpanningForest returns true
if the digraph sub is an undirected spanning forest of the digraph super .

An undirected spanning tree of a digraph super is a subdigraph of super that is an undi-
rected tree (see IsSubdigraph (4.1.1) and IsUndirectedTree (6.3.8)). Note that a digraph whose
MaximalSymmetricSubdigraph (3.3.4) is not connected has no undirected spanning trees (see
IsConnectedDigraph (6.3.3)).

An undirected spanning forest of a digraph super is a subdigraph of super that is an undirected
forest (see IsSubdigraph (4.1.1) and IsUndirectedForest (6.3.8)), and is not contained in any
larger such subdigraph of super . Equivalently, an undirected spanning forest is a subdigraph of super
whose connected components coincide with those of the MaximalSymmetricSubdigraph (3.3.4) of
super (see DigraphConnectedComponents (5.3.8)).

Note that an undirected spanning tree is an undirected spanning forest that is connected.
Example

gap> gr := CompleteDigraph(4);
<digraph with 4 vertices, 12 edges>
gap> tree := Digraph([[3], [4], [1, 4], [2, 3]]);
<digraph with 4 vertices, 6 edges>
gap> IsSubdigraph(gr, tree) and IsUndirectedTree(tree);
true
gap> IsUndirectedSpanningTree(gr, tree);
true
gap> forest := EmptyDigraph(4);
<digraph with 4 vertices, 0 edges>
gap> IsSubdigraph(gr, forest) and IsUndirectedForest(forest);
true
gap> IsUndirectedSpanningForest(gr, forest);

Digraphs 39

false
gap> IsSubdigraph(tree, forest);
true
gap> gr := DigraphDisjointUnion(CycleDigraph(2), CycleDigraph(2));
<digraph with 4 vertices, 4 edges>
gap> IsUndirectedTree(gr);
false
gap> IsUndirectedForest(gr) and IsUndirectedSpanningForest(gr, gr);
true

Chapter 5

Attributes and operations

5.1 Vertices and edges

5.1.1 DigraphVertices

. DigraphVertices(digraph) (attribute)

Returns: A list of integers.
Returns the vertices of the digraph digraph .
Note that the vertices of a digraph are always a range of positive integers from 1 to the number of

vertices of the graph.
Example

gap> gr := Digraph(["a", "b", "c"],
> ["a", "b", "b"],
> ["b", "c", "a"]);
<digraph with 3 vertices, 3 edges>
gap> DigraphVertices(gr);
[1 .. 3]
gap> gr := Digraph([1, 2, 3, 4, 5, 7],
> [1, 2, 2, 4, 4],
> [2, 7, 5, 3, 7]);
<digraph with 6 vertices, 5 edges>
gap> DigraphVertices(gr);
[1 .. 6]
gap> DigraphVertices(RandomDigraph(100));
[1 .. 100]

5.1.2 DigraphNrVertices

. DigraphNrVertices(digraph) (attribute)

Returns: An integer.
Returns the number of vertices of the digraph digraph .

Example
gap> gr := Digraph(["a", "b", "c"],
> ["a", "b", "b"],
> ["b", "c", "a"]);
<digraph with 3 vertices, 3 edges>
gap> DigraphNrVertices(gr);

40

Digraphs 41

3
gap> gr := Digraph([1, 2, 3, 4, 5, 7],
> [1, 2, 2, 4, 4],
> [2, 7, 5, 3, 7]);
<digraph with 6 vertices, 5 edges>
gap> DigraphNrVertices(gr);
6
gap> DigraphNrVertices(RandomDigraph(100));
100

5.1.3 DigraphEdges

. DigraphEdges(digraph) (attribute)

Returns: A list of lists.
DigraphEdges returns a list of edges of the digraph digraph , where each edge is a pair of ele-

ments of DigraphVertices (5.1.1) of the form [source,range].
The entries of DigraphEdges(digraph) are in one-to-one corresponence with the edges of

digraph . Hence DigraphEdges(digraph) is duplicate-free if and only if digraph contains no
multiple edges.

The entries of DigraphEdges are guaranteed to be sorted by their first component (i.e. by the
source of each edge), but they are not necessarily then sorted by the second component.

Example
gap> gr := DigraphFromDiSparse6String(".DaXbOe?EAM@G~");
<multidigraph with 5 vertices, 16 edges>
gap> edges := ShallowCopy(DigraphEdges(gr));; Sort(edges);
gap> edges;
[[1, 1], [1, 3], [1, 3], [1, 4], [1, 5], [2, 1],

[2, 2], [2, 3], [2, 5], [3, 2], [3, 4], [3, 5],
[4, 2], [4, 4], [4, 5], [5, 1]]

5.1.4 DigraphNrEdges

. DigraphNrEdges(digraph) (attribute)

Returns: An integer.
This function returns the number of edges of the digraph digraph .

Example
gap> gr := Digraph([
> [1, 3, 4, 5], [1, 2, 3, 5], [2, 4, 5], [2, 4, 5], [1]]);;
gap> DigraphNrEdges(gr);
15
gap> gr := Digraph(["a", "b", "c"],
> ["a", "b", "b"],
> ["b", "a", "a"]);
<multidigraph with 3 vertices, 3 edges>
gap> DigraphNrEdges(gr);
3

Digraphs 42

5.1.5 DigraphSinks

. DigraphSinks(digraph) (attribute)

Returns: A list of vertices.
This function returns a list of the sinks of the digraph digraph . A sink of a digraph is a vertex

with out-degree zero. See OutDegreeOfVertex (5.2.10).
Example

gap> gr := Digraph([[3, 5, 2, 2], [3], [], [5, 2, 5, 3], []]);
<multidigraph with 5 vertices, 9 edges>
gap> DigraphSinks(gr);
[3, 5]

5.1.6 DigraphSources

. DigraphSources(digraph) (attribute)

Returns: A list of vertices.
This function returns a list of the sources of the digraph digraph . A source of a digraph is a

vertex with in-degree zero. See InDegreeOfVertex (5.2.12).
Example

gap> gr := Digraph([[3, 5, 2, 2], [3], [], [5, 2, 5, 3], []]);
<multidigraph with 5 vertices, 9 edges>
gap> DigraphSources(gr);
[1, 4]

5.1.7 DigraphTopologicalSort

. DigraphTopologicalSort(digraph) (attribute)

Returns: A list of positive integers, or fail.
If digraph is a digraph whose only directed cycles are loops, then DigraphTopologicalSort

returns the vertices of digraph ordered so that every edge’s source appears no earlier in the list than
its range. If the digraph digraph contains directed cycles of length greater than 1, then this operation
returns fail.

See section 1.1.1 for the definition of a directed cycle, and the definition of a loop.
The method used for this attribute has complexity O(m + n) where m is the number of edges

(counting multiple edges as one) and n is the number of vertices in the digraph.
Example

gap> gr := Digraph([
> [2, 3], [], [4, 6], [5], [], [7, 8, 9], [], [], []]);
<digraph with 9 vertices, 8 edges>
gap> DigraphTopologicalSort(gr);
[2, 5, 4, 7, 8, 9, 6, 3, 1]

5.1.8 DigraphVertexLabel

. DigraphVertexLabel(digraph, i) (operation)

. SetDigraphVertexLabel(digraph, i, obj) (operation)

Digraphs 43

If digraph is a digraph, then the first operation returns the label of the vertex i . The second
operation can be used to set the label of the vertex i in digraph to the arbitrary GAP object obj .

The label of a vertex can be changed an arbitrary number of times. If no label has been set for the
vertex i , then the default value is i .

If digraph is a digraph created from a record with a component vertices, then the labels of the
vertices are set to the value of this component.

Induced subdigraphs, and other operations which create new digraphs from old ones, inherit their
labels from their parents.

Example
gap> gr := DigraphFromDigraph6String("&DHUEe_");
<digraph with 5 vertices, 11 edges>
gap> DigraphVertexLabel(gr, 3);
3
gap> gr := Digraph(["a", "b", "c"], [], []);
<digraph with 3 vertices, 0 edges>
gap> DigraphVertexLabel(gr, 2);
"b"
gap> SetDigraphVertexLabel(gr, 2, "d");
gap> DigraphVertexLabel(gr, 2);
"d"
gap> gr := InducedSubdigraph(gr, [1, 2]);
<digraph with 2 vertices, 0 edges>
gap> DigraphVertexLabel(gr, 2);
"d"

5.1.9 DigraphVertexLabels

. DigraphVertexLabels(digraph) (operation)

. SetDigraphVertexLabels(digraph, list) (operation)

If digraph is a digraph, then DigraphVertexLabels returns a copy of the labels of the vertices
in digraph . SetDigraphVertexLabels can be used to set the labels of the vertices in digraph to
the list of arbitrary GAP objects list .

The label of a vertex can be changed an arbitrary number of times. If no label has been set for the
vertex i , then the default value is i .

If digraph is a digraph created from a record with a component vertices, then the labels of the
vertices are set to the value of this component.

Induced subdigraphs, and other operations which create new digraphs from old ones, inherit their
labels from their parents.

Example
gap> gr := DigraphFromDigraph6String("&DHUEe_");
<digraph with 5 vertices, 11 edges>
gap> DigraphVertexLabels(gr);
[1 .. 5]
gap> gr := Digraph(["a", "b", "c"], [], []);
<digraph with 3 vertices, 0 edges>
gap> DigraphVertexLabels(gr);
["a", "b", "c"]
gap> SetDigraphVertexLabel(gr, 2, "d");
gap> DigraphVertexLabels(gr);

Digraphs 44

["a", "d", "c"]
gap> gr := InducedSubdigraph(gr, [1, 3]);
<digraph with 2 vertices, 0 edges>
gap> DigraphVertexLabels(gr);
["a", "c"]

5.1.10 DigraphEdgeLabel

. DigraphEdgeLabel(digraph, i, j) (operation)

. SetDigraphEdgeLabel(digraph, i, j, obj) (operation)

If digraph is a digraph without multiple edges, then the first operation returns the label of the
edge from vertex i to vertex j . The second operation can be used to set the label of the edge between
vertex i and vertex j to the arbitrary GAP object obj .

The label of an edge can be changed an arbitrary number of times. If no label has been set for the
edge, then the default value is 1 .

Induced subdigraphs, and some other operations which create new digraphs from old ones, inherit
their edge labels from their parents. See also DigraphEdgeLabels (5.1.11).

Example
gap> gr := DigraphFromDigraph6String("&DHUEe_");
<digraph with 5 vertices, 11 edges>
gap> DigraphEdgeLabel(gr, 3, 1);
1
gap> SetDigraphEdgeLabel(gr, 2, 5, [42]);
gap> DigraphEdgeLabel(gr, 2, 5);
[42]
gap> gr := InducedSubdigraph(gr, [2, 5]);
<digraph with 2 vertices, 3 edges>
gap> DigraphEdgeLabel(gr, 1, 2);
[42]

5.1.11 DigraphEdgeLabels

. DigraphEdgeLabels(digraph) (operation)

. SetDigraphEdgeLabels(digraph, labels) (operation)

. SetDigraphEdgeLabels(digraph, func) (operation)

If digraph is a digraph without multiple edges, then DigraphEdgeLabels returns a copy of
the labels of the edges in digraph as a list of lists labels such that labels[i][j] is the label
on the edge from vertex i to vertex OutNeighbours(digraph)[i][j]. SetDigraphEdgeLabels
can be used to set the labels of the edges in digraph without multiple edges to the list labels
of lists of arbitrary GAP objects such that list[i][j] is the label on the edge from vertex i to
the vertex OutNeighbours(digraph>[i][j]. Alternatively SetDigraphEdgeLabels can be called
with binary function func that as its second argument that when passed two vertices i and j returns
the label for the edge between vertex i and vertex j.

The label of an edge can be changed an arbitrary number of times. If no label has been set for an
edge, then the default value is 1.

Digraphs 45

Induced subdigraphs, and some other operations which create new digraphs from old ones, inherit
their labels from their parents.

Example
gap> gr := DigraphFromDigraph6String("&DHUEe_");
<digraph with 5 vertices, 11 edges>
gap> DigraphEdgeLabels(gr);
[[1], [1, 1, 1], [1], [1, 1, 1], [1, 1, 1]]
gap> SetDigraphEdgeLabel(gr, 2, 1, "d");
gap> DigraphEdgeLabels(gr);
[[1], ["d", 1, 1], [1], [1, 1, 1], [1, 1, 1]]
gap> gr := InducedSubdigraph(gr, [1, 2, 3]);
<digraph with 3 vertices, 4 edges>
gap> DigraphEdgeLabels(gr);
[[1], ["d", 1], [1]]
gap> OutNeighbours(gr);
[[3], [1, 3], [1]]

5.1.12 DigraphInEdges

. DigraphInEdges(digraph, vertex) (operation)

Returns: A list of edges.
DigraphInEdges returns the list of all edges of digraph which have vertex as their range.

Example
gap> gr := Digraph([[2, 2], [3, 3], [4, 4], [1, 1]]);
<multidigraph with 4 vertices, 8 edges>
gap> DigraphInEdges(gr, 2);
[[1, 2], [1, 2]]

5.1.13 DigraphOutEdges

. DigraphOutEdges(digraph, vertex) (operation)

Returns: A list of edges.
DigraphOutEdges returns the list of all edges of digraph which have vertex as their source.

Example
gap> gr := Digraph([[2, 2], [3, 3], [4, 4], [1, 1]]);
<multidigraph with 4 vertices, 8 edges>
gap> DigraphOutEdges(gr, 2);
[[2, 3], [2, 3]]

5.1.14 IsDigraphEdge (for digraph and list)

. IsDigraphEdge(digraph, list) (operation)

. IsDigraphEdge(digraph, u, v) (operation)

Returns: true or false.
In the first form, this function returns true if and only if the list list specifies an edge in the

digraph digraph . Specifically, this operation returns true if list is a pair of positive integers where
list[1] is the source and list[2] is the range of an edge in digraph , and false otherwise.

The second form simply returns true if [u, v] is an edge in digraph , and false otherwise.

Digraphs 46

Example
gap> gr := Digraph([[2, 2], [6], [], [3], [], [1]]);
<multidigraph with 6 vertices, 5 edges>
gap> IsDigraphEdge(gr, [1, 1]);
false
gap> IsDigraphEdge(gr, [1, 2]);
true
gap> IsDigraphEdge(gr, [1, 8]);
false

5.1.15 IsMatching

. IsMatching(digraph, list) (operation)

. IsMaximalMatching(digraph, list) (operation)

. IsPerfectMatching(digraph, list) (operation)

Returns: true or false.
If digraph is a digraph and list is a list of pairs of vertices of digraph , then IsMatching

returns true if list is a matching of digraph . The operations IsMaximalMatching and
IsPerfectMatching return true if list is a maximal, or perfect, matching of digraph , respec-
tively. Otherwise, these operations return false.

A matching M of a digraph digraph is a subset of the edges of digraph , i.e.
DigraphEdges(digraph), such that no pair of distinct edges in M are incident to the same vertex
of digraph . Note that this definition allows a matching to contain loops. See DigraphHasLoops
(6.1.1). The matching M is maximal if it is contained in no larger matching of the digraph, and is
perfect if every vertex of the digraph is incident to an edge in the matching. Every perfect matching is
maximal.

Example
gap> gr := Digraph([[2], [1], [2, 3, 4], [3, 5], [1]]);
<digraph with 5 vertices, 8 edges>
gap> IsMatching(gr, [[2, 1], [3, 2]]);
false
gap> edges := [[3, 2]];;
gap> IsMatching(gr, edges);
true
gap> IsMaximalMatching(gr, edges);
false
gap> edges := [[5, 1], [3, 3]];;
gap> IsMaximalMatching(gr, edges);
true
gap> IsPerfectMatching(gr, edges);
false
gap> edges := [[1, 2], [3, 3], [4, 5]];;
gap> IsPerfectMatching(gr, edges);
true

Digraphs 47

5.2 Neighbours and degree

5.2.1 AdjacencyMatrix

. AdjacencyMatrix(digraph) (attribute)

. AdjacencyMatrixMutableCopy(digraph) (operation)

Returns: A square matrix of non-negative integers.
This function returns the adjacency matrix mat of the digraph digraph . The value of the matrix

entry mat[i][j] is the number of edges in digraph with source i and range j. If digraph has no
vertices, then the empty list is returned.

The function AdjacencyMatrix returns an immutable list of immutable lists, whereas the func-
tion AdjacencyMatrixMutableCopy returns a copy of AdjacencyMatrix that is a mutable list of
mutable lists.

Example
gap> gr := Digraph([
> [2, 2, 2], [1, 3, 6, 8, 9, 10], [4, 6, 8],
> [1, 2, 3, 9], [3, 3], [3, 5, 6, 10], [1, 2, 7],
> [1, 2, 3, 10, 5, 6, 10], [1, 3, 4, 5, 8, 10],
> [2, 3, 4, 6, 7, 10]]);
<multidigraph with 10 vertices, 44 edges>
gap> mat := AdjacencyMatrix(gr);;
gap> Display(mat);
[[0, 3, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 1, 0, 0, 1, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 0, 1, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 1, 1, 0, 0, 0, 1],
[1, 1, 0, 0, 0, 0, 1, 0, 0, 0],
[1, 1, 1, 0, 1, 1, 0, 0, 0, 2],
[1, 0, 1, 1, 1, 0, 0, 1, 0, 1],
[0, 1, 1, 1, 0, 1, 1, 0, 0, 1]]

5.2.2 CharacteristicPolynomial

. CharacteristicPolynomial(digraph) (attribute)

Returns: A polynomial with integer coefficients.
This function returns the characteristic polynomial of the digraph digraph . That is it returns the

characteristic polynomial of the adjacency matrix of the digraph digraph
Example

gap> gr := Digraph([
> [2, 2, 2], [1, 3, 6, 8, 9, 10], [4, 6, 8],
> [1, 2, 3, 9], [3, 3], [3, 5, 6, 10], [1, 2, 7],
> [1, 2, 3, 10, 5, 6, 10], [1, 3, 4, 5, 8, 10],
> [2, 3, 4, 6, 7, 10]]);
<multidigraph with 10 vertices, 44 edges>
gap> CharacteristicPolynomial(gr);
x_1^10-3*x_1^9-7*x_1^8-x_1^7+14*x_1^6+x_1^5-26*x_1^4+51*x_1^3-10*x_1^2\
+18*x_1-30
gap> gr := CompleteDigraph(5);
<digraph with 5 vertices, 20 edges>

Digraphs 48

gap> CharacteristicPolynomial(gr);
x_1^5-10*x_1^3-20*x_1^2-15*x_1-4

5.2.3 BooleanAdjacencyMatrix

. BooleanAdjacencyMatrix(digraph) (attribute)

. BooleanAdjacencyMatrixMutableCopy(digraph) (operation)

Returns: A square matrix of booleans.
If digraph is a digraph with a positive number of vertices n, then

BooleanAdjacencyMatrix(digraph) returns the boolean adjacency matrix mat of digraph .
The value of the matrix entry mat[j][i] is true if and only if there exists an edge in digraph with
source j and range i. If digraph has no vertices, then the empty list is returned.

Note that the boolean adjacency matrix loses information about multiple edges.
The attribute BooleanAdjacencyMatrix returns an immutable list of immutable

lists, whereas the function BooleanAdjacencyMatrixMutableCopy returns a copy of the
BooleanAdjacencyMatrix that is a mutable list of mutable lists.

Example
gap> gr := Digraph([[3, 4], [2, 3], [1, 2, 4], [4]]);
<digraph with 4 vertices, 8 edges>
gap> PrintArray(BooleanAdjacencyMatrix(gr));
[[false, false, true, true],

[false, true, true, false],
[true, true, false, true],
[false, false, false, true]]

gap> gr := CycleDigraph(4);;
gap> PrintArray(BooleanAdjacencyMatrix(gr));
[[false, true, false, false],

[false, false, true, false],
[false, false, false, true],
[true, false, false, false]]

gap> BooleanAdjacencyMatrix(EmptyDigraph(0));
[]

5.2.4 DigraphAdjacencyFunction

. DigraphAdjacencyFunction(digraph) (attribute)

Returns: A function.
If digraph is a digraph, then DigraphAdjacencyFunction returns a function which takes two

integer parameters x, y and returns true if there exists an edge from vertex x to vertex y in digraph
and false if not.

Example
gap> digraph := Digraph([[1, 2], [3], []]);
<digraph with 3 vertices, 3 edges>
gap> foo := DigraphAdjacencyFunction(digraph);
function(u, v) ... end
gap> foo(1, 1);
true
gap> foo(1, 2);
true

Digraphs 49

gap> foo(1, 3);
false
gap> foo(3, 1);
false
gap> gr := Digraph(["a", "b", "c"],
> ["a", "b", "b"],
> ["b", "a", "a"]);
<multidigraph with 3 vertices, 3 edges>
gap> foo := DigraphAdjacencyFunction(gr);
function(u, v) ... end
gap> foo(1, 2);
true
gap> foo(3, 2);
false
gap> foo(3, 1);
false

5.2.5 DigraphRange

. DigraphRange(digraph) (attribute)

. DigraphSource(digraph) (attribute)

Returns: A list of positive integers.
DigraphRange and DigraphSource return the range and source of the digraph digraph . More

precisely, position i in DigraphRange(digraph) is the range of the ith edge of digraph .
Example

gap> gr := Digraph([
> [2, 1, 3, 5], [1, 3, 4], [2, 3], [2], [1, 2, 3, 4]]);
<digraph with 5 vertices, 14 edges>
gap> DigraphRange(gr);
[2, 1, 3, 5, 1, 3, 4, 2, 3, 2, 1, 2, 3, 4]
gap> DigraphSource(gr);
[1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 5, 5]
gap> DigraphEdges(gr);
[[1, 2], [1, 1], [1, 3], [1, 5], [2, 1], [2, 3],

[2, 4], [3, 2], [3, 3], [4, 2], [5, 1], [5, 2],
[5, 3], [5, 4]]

5.2.6 OutNeighbours

. OutNeighbours(digraph) (attribute)

. OutNeighbors(digraph) (attribute)

. OutNeighboursMutableCopy(digraph) (operation)

. OutNeighborsMutableCopy(digraph) (operation)

Returns: The adjacencies of a digraph.
This function returns the list out of out-neighbours of each vertex of the digraph digraph . More

specifically, a vertex j appears in out[i] each time there exists an edge with source i and range j in
digraph .

The function OutNeighbours returns an immutable list of immutable lists, whereas the function
OutNeighboursMutableCopy returns a copy of OutNeighbours which is a mutable list of mutable
lists.

Digraphs 50

Example
gap> gr := Digraph(["a", "b", "c"],
> ["a", "b", "b"],
> ["b", "a", "c"]);
<digraph with 3 vertices, 3 edges>
gap> OutNeighbours(gr);
[[2], [1, 3], []]
gap> gr := Digraph([[1, 2, 3], [2, 1], [3]]);
<digraph with 3 vertices, 6 edges>
gap> OutNeighbours(gr);
[[1, 2, 3], [2, 1], [3]]
gap> gr := DigraphByAdjacencyMatrix([
> [1, 2, 1],
> [1, 1, 0],
> [0, 0, 1]]);
<multidigraph with 3 vertices, 7 edges>
gap> OutNeighbours(gr);
[[1, 2, 2, 3], [1, 2], [3]]
gap> OutNeighboursMutableCopy(gr);
[[1, 2, 2, 3], [1, 2], [3]]

5.2.7 InNeighbours

. InNeighbours(digraph) (attribute)

. InNeighbors(digraph) (attribute)

. InNeighboursMutableCopy(digraph) (operation)

. InNeighborsMutableCopy(digraph) (operation)

Returns: A list of lists of vertices.
This function returns the list inn of in-neighbours of each vertex of the digraph digraph . More

specifically, a vertex j appears in inn[i] each time there exists an edge with source j and range i in
digraph .

The function InNeighbours returns an immutable list of immutable lists, whereas the function
InNeighboursMutableCopy returns a copy of InNeighbours which is a mutable list of mutable
lists.

Note that each entry of inn is sorted into ascending order.
Example

gap> gr := Digraph(["a", "b", "c"],
> ["a", "b", "b"],
> ["b", "a", "c"]);
<digraph with 3 vertices, 3 edges>
gap> InNeighbours(gr);
[[2], [1], [2]]
gap> gr := Digraph([[1, 2, 3], [2, 1], [3]]);
<digraph with 3 vertices, 6 edges>
gap> InNeighbours(gr);
[[1, 2], [1, 2], [1, 3]]
gap> gr := DigraphByAdjacencyMatrix([
> [1, 2, 1],
> [1, 1, 0],
> [0, 0, 1]]);

Digraphs 51

<multidigraph with 3 vertices, 7 edges>
gap> InNeighbours(gr);
[[1, 2], [1, 1, 2], [1, 3]]
gap> InNeighboursMutableCopy(gr);
[[1, 2], [1, 1, 2], [1, 3]]

5.2.8 OutDegrees

. OutDegrees(digraph) (attribute)

. OutDegreeSequence(digraph) (attribute)

. OutDegreeSet(digraph) (attribute)

Returns: A list of non-negative integers.
Given a digraph digraph with n vertices, the function OutDegrees returns a list out of length

n, such that for a vertex i in digraph , the value of out[i] is the out-degree of vertex i. See
OutDegreeOfVertex (5.2.10).

The function OutDegreeSequence returns the same list, after it has been sorted into non-
increasing order.

The function OutDegreeSet returns the same list, sorted into increasing order with duplicate
entries removed.

Example
gap> gr := Digraph([[1, 3, 2, 2], [], [2, 1], []]);
<multidigraph with 4 vertices, 6 edges>
gap> OutDegrees(gr);
[4, 0, 2, 0]
gap> OutDegreeSequence(gr);
[4, 2, 0, 0]
gap> OutDegreeSet(gr);
[0, 2, 4]

5.2.9 InDegrees

. InDegrees(digraph) (attribute)

. InDegreeSequence(digraph) (attribute)

. InDegreeSet(digraph) (attribute)

Returns: A list of non-negative integers.
Given a digraph digraph with n vertices, the function InDegrees returns a list inn of length

n, such that for a vertex i in digraph , the value of inn[i] is the in-degree of vertex i. See
InDegreeOfVertex (5.2.12).

The function InDegreeSequence returns the same list, after it has been sorted into non-increasing
order.

The function InDegreeSet returns the same list, sorted into increasing order with duplicate entries
removed.

Example
gap> gr := Digraph([[1, 3, 2, 2, 4], [], [2, 1, 4], []]);
<multidigraph with 4 vertices, 8 edges>
gap> InDegrees(gr);
[2, 3, 1, 2]
gap> InDegreeSequence(gr);

Digraphs 52

[3, 2, 2, 1]
gap> InDegreeSet(gr);
[1, 2, 3]

5.2.10 OutDegreeOfVertex

. OutDegreeOfVertex(digraph, vertex) (operation)

Returns: The non-negative integer.
This operation returns the out-degree of the vertex vertex in the digraph digraph . The out-

degree of vertex is the number of edges in digraph whose source is vertex .
Example

gap> gr := Digraph([
> [2, 2, 1], [1, 4], [2, 2, 4, 2], [1, 1, 2, 2, 1, 2, 2]]);
<multidigraph with 4 vertices, 16 edges>
gap> OutDegreeOfVertex(gr, 1);
3
gap> OutDegreeOfVertex(gr, 2);
2
gap> OutDegreeOfVertex(gr, 3);
4
gap> OutDegreeOfVertex(gr, 4);
7

5.2.11 OutNeighboursOfVertex

. OutNeighboursOfVertex(digraph, vertex) (operation)

. OutNeighborsOfVertex(digraph, vertex) (operation)

Returns: A list of vertices.
This operation returns the list out of vertices of the digraph digraph . A vertex i appears in the

list out each time there exists an edge with source vertex and range i in digraph ; in particular, this
means that out may contain duplicates.

Example
gap> gr := Digraph([
> [2, 2, 3], [1, 3, 4], [2, 2, 3], [1, 1, 2, 2, 1, 2, 2]]);
<multidigraph with 4 vertices, 16 edges>
gap> OutNeighboursOfVertex(gr, 1);
[2, 2, 3]
gap> OutNeighboursOfVertex(gr, 3);
[2, 2, 3]

5.2.12 InDegreeOfVertex

. InDegreeOfVertex(digraph, vertex) (operation)

Returns: A non-negative integer.
This operation returns the in-degree of the vertex vertex in the digraph digraph . The in-degree

of vertex is the number of edges in digraph whose range is vertex .
Example

gap> gr := Digraph([
> [2, 2, 1], [1, 4], [2, 2, 4, 2], [1, 1, 2, 2, 1, 2, 2]]);

Digraphs 53

<multidigraph with 4 vertices, 16 edges>
gap> InDegreeOfVertex(gr, 1);
5
gap> InDegreeOfVertex(gr, 2);
9
gap> InDegreeOfVertex(gr, 3);
0
gap> InDegreeOfVertex(gr, 4);
2

5.2.13 InNeighboursOfVertex

. InNeighboursOfVertex(digraph, vertex) (operation)

. InNeighborsOfVertex(digraph, vertex) (operation)

Returns: A list of postitive vertices.
This operation returns the list inn of vertices of the digraph digraph . A vertex i appears in the

list inn each time there exists an edge with source i and range vertex in digraph ; in particular, this
means that inn may contain duplicates.

Example
gap> gr := Digraph([
> [2, 2, 3], [1, 3, 4], [2, 2, 3], [1, 1, 2, 2, 1, 2, 2]]);
<multidigraph with 4 vertices, 16 edges>
gap> InNeighboursOfVertex(gr, 1);
[2, 4, 4, 4]
gap> InNeighboursOfVertex(gr, 2);
[1, 1, 3, 3, 4, 4, 4, 4]

5.2.14 DigraphLoops

. DigraphLoops(digraph) (attribute)

Returns: A list of vertices.
If digraph is a digraph, then DigraphLoops returns the list consisting of the DigraphVertices

(5.1.1) of digraph at which there is a loop. See DigraphHasLoops (6.1.1).
Example

gap> gr := Digraph([[2], [3], []]);
<digraph with 3 vertices, 2 edges>
gap> DigraphHasLoops(gr);
false
gap> DigraphLoops(gr);
[]
gap> gr := Digraph([[3, 5], [1], [2, 4, 3], [4], [2, 1]]);
<digraph with 5 vertices, 9 edges>
gap> DigraphLoops(gr);
[3, 4]

5.2.15 PartialOrderDigraphMeetOfVertices (for a digraph and two vertices)

. PartialOrderDigraphMeetOfVertices(digraph, u, v) (operation)

. PartialOrderDigraphJoinOfVertices(digraph, u, v) (operation)

Returns: A positive integer or fail

Digraphs 54

If the first argument is a partial order digraph IsPartialOrderDigraph (6.1.14) then these op-
erations return the meet, or the join, of the two input vertices. If the meet (or join) is does not exist
then fail is returned. The meet (or join) is guaranteed to exist when the first argument satisfies
IsMeetSemilatticeDigraph (6.1.15) (or IsJoinSemilatticeDigraph (6.1.15)) - see the docu-
mentation for these properties for the definition of the meet (or the join).

Example
gap> gr := Digraph([[1], [1, 2], [1, 3], [1, 2, 3, 4]]);
<digraph with 4 vertices, 9 edges>
gap> PartialOrderDigraphMeetOfVertices(gr, 2, 3);
4
gap> PartialOrderDigraphJoinOfVertices(gr, 2, 3);
1
gap> PartialOrderDigraphMeetOfVertices(gr, 1, 2);
2
gap> PartialOrderDigraphJoinOfVertices(gr, 3, 4);
3
gap> gr := Digraph([[1], [2], [1, 2, 3], [1, 2, 4]]);
<digraph with 4 vertices, 8 edges>
gap> PartialOrderDigraphMeetOfVertices(gr, 3, 4);
fail
gap> PartialOrderDigraphJoinOfVertices(gr, 3, 4);
fail
gap> PartialOrderDigraphMeetOfVertices(gr, 1, 2);
fail
gap> PartialOrderDigraphJoinOfVertices(gr, 1, 2);
fail

5.3 Reachability and connectivity

5.3.1 DigraphDiameter

. DigraphDiameter(digraph) (attribute)

Returns: An integer or fail.
This function returns the diameter of the digraph digraph .
If a digraph digraph is strongly connected and has at least 1 vertex, then the diameter is the

maximum shortest distance between any pair of distinct vertices. Otherwise then the diameter of
digraph is undefined, and this function returns the value fail.

See DigraphShortestDistances (5.3.3).
Example

gap> gr := Digraph([[2], [3], [4, 5], [5], [1, 2, 3, 4, 5]]);
<digraph with 5 vertices, 10 edges>
gap> DigraphDiameter(gr);
3
gap> gr := ChainDigraph(2);
<digraph with 2 vertices, 1 edge>
gap> DigraphDiameter(gr);
fail
gap> IsStronglyConnectedDigraph(gr);
false

Digraphs 55

5.3.2 DigraphShortestDistance (for a digraph and two vertices)

. DigraphShortestDistance(digraph, u, v) (operation)

. DigraphShortestDistance(digraph, list) (operation)

. DigraphShortestDistance(digraph, list1, list2) (operation)

Returns: An integer or fail
If there is a directed path in the digraph digraph between vertex u and vertex v , then this op-

eration returns the length of the shortest such directed path. If no such directed path exists, then this
operation returns fail. See section 1.1.1 for the definition of a directed path.

If the second form is used, then list should be a list of length two, containing two positive
integers which correspond to the vertices u and v .

Note that as usual, a vertex is considered to be at distance 0 from itself .
If the third form is used, then list1 and list2 are both lists of vertices. The shortest directed

path between list1 and list2 is then the length of the shortest directed path which starts with a
vertex in list1 and terminates at a vertex in list2 , if such directed path exists. If list1 and list2
have non-empty intersection, the operation returns 0.

Example
gap> gr := Digraph([[2], [3], [1, 4], [1, 3], [5]]);
<digraph with 5 vertices, 7 edges>
gap> DigraphShortestDistance(gr, 1, 3);
2
gap> DigraphShortestDistance(gr, [3, 3]);
0
gap> DigraphShortestDistance(gr, 5, 2);
fail
gap> DigraphShortestDistance(gr, [1, 2], [4, 5]);
2
gap> DigraphShortestDistance(gr, [1, 3], [3, 5]);
0

5.3.3 DigraphShortestDistances

. DigraphShortestDistances(digraph) (attribute)

Returns: A square matrix.
If digraph is a digraph with n vertices, then this function returns an n×n matrix mat, where each

entry is either a non-negative integer, or fail. If n = 0, then an empty list is returned.
If there is a directed path from vertex i to vertex j, then the value of mat[i][j] is the length of

the shortest such directed path. If no such directed path exists, then the value of mat[i][j] is fail.
We use the convention that the distance from every vertex to itself is 0, i.e. mat[i][i] = 0 for all
vertices i.

The method used in this function is a version of the Floyd-Warshall algorithm, and has complexity
O(n3).

Example
gap> gr := Digraph([[1, 2], [3], [1, 2], [4]]);
<digraph with 4 vertices, 6 edges>
gap> mat := DigraphShortestDistances(gr);;
gap> PrintArray(mat);
[[0, 1, 2, fail],

[2, 0, 1, fail],

Digraphs 56

[1, 1, 0, fail],
[fail, fail, fail, 0]]

5.3.4 DigraphLongestDistanceFromVertex

. DigraphLongestDistanceFromVertex(digraph, v) (operation)

Returns: An integer, or infinity.
If digraph is a digraph and v is a vertex in digraph , then this operation returns the length of the

longest directed walk in digraph which begins at vertex v . See section 1.1.1 for the definitions of
directed walk, directed cycle, and loop.

• If there exists a directed walk starting at vertex v which traverses a loop or a directed cycle,
then we consider there to be a walk of infinite length from v (realised by repeatedly traversing
the loop/directed cycle), and so the result is infinity. To disallow walks using loops, try using
DigraphRemoveLoops (3.3.23):

DigraphLongestDistanceFromVertex(DigraphRemoveLoops(digraph,v)).

• Otherwise, if all directed walks starting at vertex v have finite length, then the length of the
longest such walk is returned.

Note that the result is 0 if and only if v is a sink of digraph . See DigraphSinks (5.1.5).
Example

gap> gr := Digraph([[2], [3, 4], [], [5], [], [6]]);
<digraph with 6 vertices, 5 edges>
gap> DigraphLongestDistanceFromVertex(gr, 1);
3
gap> DigraphLongestDistanceFromVertex(gr, 3);
0
gap> 3 in DigraphSinks(gr);
true
gap> DigraphLongestDistanceFromVertex(gr, 6);
infinity

5.3.5 DigraphDistanceSet (for a digraph, a pos int, and an int)

. DigraphDistanceSet(digraph, vertex, distance) (operation)

. DigraphDistanceSet(digraph, vertex, distances) (operation)

Returns: A list of vertices
This operation returns the list of all vertices in digraph digraph such that the shortest distance to

a vertex vertex is distance or is in the list distances .
digraph should be a digraph, vertex should be a positive integer, distance should be a non-

negative integer, and distances should be a list of non-negative integers.
Example

gap> gr := Digraph([[2], [3], [1, 4], [1, 3]]);
<digraph with 4 vertices, 6 edges>
gap> DigraphDistanceSet(gr, 2, [1, 2]);
[3, 1, 4]
gap> DigraphDistanceSet(gr, 3, 1);
[1, 4]

Digraphs 57

gap> DigraphDistanceSet(gr, 2, 0);
[2]

5.3.6 DigraphGirth

. DigraphGirth(digraph) (attribute)

Returns: An integer, or infinity.
This attribute returns the girth of the digraph digraph . The girth of a digraph is the length of its

shortest simple circuit. See section 1.1.1 for the definitions of simple circuit, directed cycle, and loop.
If digraph has no directed cycles, then this function will return infinity. If digraph contains

a loop, then this function will return 1.
In the worst case, the method used in this function is a version of the Floyd-Warshall algorithm,

and has complexity O(n ^ 3), where n is the number of vertices in digraph . If the digraph has
known automorphisms [see DigraphGroup (7.2.9)], then the performance is likely to be better.

For symmetric digraphs, see also DigraphUndirectedGirth (5.3.7).
Example

gap> gr := Digraph([[1], [1]]);
<digraph with 2 vertices, 2 edges>
gap> DigraphGirth(gr);
1
gap> gr := Digraph([[2, 3], [3], [4], []]);
<digraph with 4 vertices, 4 edges>
gap> DigraphGirth(gr);
infinity
gap> gr := Digraph([[2, 3], [3], [4], [1]]);
<digraph with 4 vertices, 5 edges>
gap> DigraphGirth(gr);
3

5.3.7 DigraphUndirectedGirth

. DigraphUndirectedGirth(digraph) (attribute)

Returns: An integer or infinity.
If digraph is a symmetric digraph, then this function returns the girth of digraph when treated

as an undirected graph (i.e. each pair of edges [i, j] and [j, i] is treated as a single edge between i and
j).

The girth of an undirected graph is the length of its shortest simple cycle, i.e. the shortest non-
trivial path starting and ending at the same vertex and passing through no vertex or edge more than
once.

If digraph has no cycles, then this function will return infinity.
Example

gap> gr := Digraph([[2, 4], [1, 3], [2, 4], [1, 3]]);
<digraph with 4 vertices, 8 edges>
gap> DigraphUndirectedGirth(gr);
4
gap> gr := Digraph([[2], [1, 3], [2]]);
<digraph with 3 vertices, 4 edges>
gap> DigraphUndirectedGirth(gr);

Digraphs 58

infinity
gap> gr := Digraph([[1], [], [4], [3]]);
<digraph with 4 vertices, 3 edges>
gap> DigraphUndirectedGirth(gr);
1

5.3.8 DigraphConnectedComponents

. DigraphConnectedComponents(digraph) (attribute)

Returns: A record.
This function returns the record wcc corresponding to the weakly connected components of the

digraph digraph . Two vertices of digraph are in the same weakly connected component whenever
they are equal, or there exists a directed path (ignoring the orientation of edges) between them. More
formally, two vertices are in the same weakly connected component of digraph if and only if they are
in the same strongly connected component (see DigraphStronglyConnectedComponents (5.3.10))
of the DigraphSymmetricClosure (3.3.10) of digraph .

The set of weakly connected components is a partition of the vertex set of digraph .
The record wcc has 2 components: comps and id. The component comps is a list of the weakly

connected components of digraph (each of which is a list of vertices). The component id is a list
such that the vertex i is an element of the weakly connected component comps[id[i]].

The method used in this function has complexity O(m+n), where m is the number of edges and n
is the number of vertices in the digraph.

Example
gap> gr := Digraph([[2], [3, 1], []]);
<digraph with 3 vertices, 3 edges>
gap> DigraphConnectedComponents(gr);
rec(comps := [[1, 2, 3]], id := [1, 1, 1])
gap> gr := Digraph([[1], [1, 2], []]);
<digraph with 3 vertices, 3 edges>
gap> DigraphConnectedComponents(gr);
rec(comps := [[1, 2], [3]], id := [1, 1, 2])
gap> gr := EmptyDigraph(0);
<digraph with 0 vertices, 0 edges>
gap> DigraphConnectedComponents(gr);
rec(comps := [], id := [])

5.3.9 DigraphConnectedComponent

. DigraphConnectedComponent(digraph, vertex) (operation)

Returns: A list of vertices.
If vertex is a vertex in the digraph digraph , then this operation returns the connected component

of vertex in digraph . See DigraphConnectedComponents (5.3.8) for more information.
Example

gap> gr := Digraph([[3], [2], [1, 2], [4]]);
<digraph with 4 vertices, 5 edges>
gap> DigraphConnectedComponent(gr, 3);
[1, 2, 3]
gap> DigraphConnectedComponent(gr, 2);
[1, 2, 3]

Digraphs 59

gap> DigraphConnectedComponent(gr, 4);
[4]

5.3.10 DigraphStronglyConnectedComponents

. DigraphStronglyConnectedComponents(digraph) (attribute)

Returns: A record.
This function returns the record scc corresponding to the strongly connected components of the

digraph digraph . Two vertices of digraph are in the same strongly connected component whenever
they are equal, or there is a directed path from each vertex to the other. The set of strongly connected
components is a partition of the vertex set of digraph .

The record scc has 2 components: comps and id. The component comps is a list of the strongly
connected components of digraph (each of which is a list of vertices). The component id is a list
such that the vertex i is an element of the strongly connected component comps[id[i]].

The method used in this function is a non-recursive version of Gabow’s Algorithm [Gab00] and
has complexity O(m+ n) where m is the number of edges (counting multiple edges as one) and n is
the number of vertices in the digraph.

Example
gap> gr := Digraph([[2], [3, 1], []]);
<digraph with 3 vertices, 3 edges>
gap> DigraphStronglyConnectedComponents(gr);
rec(comps := [[3], [1, 2]], id := [2, 2, 1])

5.3.11 DigraphStronglyConnectedComponent

. DigraphStronglyConnectedComponent(digraph, vertex) (operation)

Returns: A list of vertices.
If vertex is a vertex in the digraph digraph , then this operation returns the strongly connected

component of vertex in digraph . See DigraphStronglyConnectedComponents (5.3.10) for more
information.

Example
gap> gr := Digraph([[3], [2], [1, 2], [3]]);
<digraph with 4 vertices, 5 edges>
gap> DigraphStronglyConnectedComponent(gr, 3);
[1, 3]
gap> DigraphStronglyConnectedComponent(gr, 2);
[2]
gap> DigraphStronglyConnectedComponent(gr, 4);
[4]

5.3.12 DigraphBicomponents

. DigraphBicomponents(digraph) (attribute)

Returns: A pair of lists of vertices, or fail.
If digraph is a bipartite digraph, i.e. if it satisfies IsBipartiteDigraph (6.1.3),

then DigraphBicomponents returns a pair of bicomponents of digraph . Otherwise,
DigraphBicomponents returns fail.

Digraphs 60

For a bipartite digraph, the vertices can be partitioned into two non-empty sets such that the source
and range of any edge are in distinct sets. The parts of this partition are called bicomponents of
digraph . Equivalently, a pair of bicomponents of digraph consists of the color-classes of a 2-
coloring of digraph .

For a bipartite digraph with at least 3 vertices, there is a unique pair of bicomponents of bipartite
if and only if the digraph is connected. See IsConnectedDigraph (6.3.3) for more information.

Example
gap> gr := CycleDigraph(3);
<digraph with 3 vertices, 3 edges>
gap> DigraphBicomponents(gr);
fail
gap> gr := ChainDigraph(5);
<digraph with 5 vertices, 4 edges>
gap> DigraphBicomponents(gr);
[[1, 3, 5], [2, 4]]
gap> gr := Digraph([[5], [1, 4], [5], [5], []]);
<digraph with 5 vertices, 5 edges>
gap> DigraphBicomponents(gr);
[[1, 3, 4], [2, 5]]

5.3.13 ArticulationPoints

. ArticulationPoints(digraph) (attribute)

Returns: A list of vertices.
A connected digraph is biconnected if it is still connected (in the sense of IsConnectedDigraph

(6.3.3)) when any vertex is removed. If the digraph digraph is not biconnected but is connected,
then any vertex v of digraph whose removal makes the resulting digraph disconnected is called an
articulation point.

ArticulationPoints returns a list of the articulation points of digraph , if any, and, in particu-
lar, returns the empty list if digraph is not connected.

Multiple edges and loops are ignored by this method.
The method used in this operation has complexity O(m+ n) where m is the number of edges

(counting multiple edges as one, and not counting loops) and n is the number of vertices in the digraph.
See also IsBiconnectedDigraph (6.3.4).

Example
gap> ArticulationPoints(CycleDigraph(5));
[]
gap> digraph := Digraph([[2, 7], [3, 5], [4], [2], [6], [1], []]);;
gap> ArticulationPoints(digraph);
[2, 1]
gap> ArticulationPoints(ChainDigraph(5));
[4, 3, 2]
gap> ArticulationPoints(NullDigraph(5));
[]

5.3.14 DigraphPeriod

. DigraphPeriod(digraph) (attribute)

Returns: An integer.

Digraphs 61

This function returns the period of the digraph digraph .
If a digraph digraph has at least one directed cycle, then the period is the greatest positive integer

which divides the lengths of all directed cycles of digraph . If digraph has no directed cycles, then
this function returns 0. See section 1.1.1 for the definition of a directed cycle.

A digraph with a period of 1 is said to be aperiodic. See IsAperiodicDigraph (6.3.6).
Example

gap> gr := Digraph([[6], [1], [2], [3], [4, 4], [5]]);
<multidigraph with 6 vertices, 7 edges>
gap> DigraphPeriod(gr);
6
gap> gr := Digraph([[2], [3, 5], [4], [5], [1, 2]]);
<digraph with 5 vertices, 7 edges>
gap> DigraphPeriod(gr);
1
gap> gr := ChainDigraph(2);
<digraph with 2 vertices, 1 edge>
gap> DigraphPeriod(gr);
0
gap> IsAcyclicDigraph(gr);
true

5.3.15 DigraphFloydWarshall

. DigraphFloydWarshall(digraph, func, nopath, edge) (operation)

Returns: A matrix.
If digraph is a digraph with n vertices, then this operation returns an n×n matrix mat containing

the output of a generalised version of the Floyd-Warshall algorithm, applied to digraph .
The operation DigraphFloydWarshall is customised by the arguments func , nopath , and

edge . The arguments nopath and edge can be arbitrary GAP objects. The argument func must
be a function which accepts 4 arguments: the matrix mat, followed by 3 postive integers. The function
func is where the work to calculate the desired outcome must be performed.

This method initialises the matrix mat by setting entry mat[i][j] to equal edge if there is an
edge with source i and range j, and by setting entry mat[i][j] to equal nopath otherwise. The final
part of DigraphFloydWarshall then calls the function func inside three nested for loops, over the
vertices of digraph :

for i in DigraphsVertices(digraph) do
for j in DigraphsVertices(digraph) do

for k in DigraphsVertices(digraph) do
func(mat, i, j, k);

od;
od;

od;

The matrix mat is then returned as the result. An example of using DigraphFloydWarshall to
calculate the shortest (non-zero) distances between the vertices of a digraph is shown below:

Example
gap> gr := DigraphFromDigraph6String("&EAHQeDB");
<digraph with 6 vertices, 12 edges>

Digraphs 62

gap> func := function(mat, i, j, k)
> if mat[i][k] <> -1 and mat[k][j] <> -1 then
> if (mat[i][j] = -1) or (mat[i][j] > mat[i][k] + mat[k][j]) then
> mat[i][j] := mat[i][k] + mat[k][j];
> fi;
> fi;
> end;
function(mat, i, j, k) ... end
gap> shortest_distances := DigraphFloydWarshall(gr, func, -1, 1);;
gap> Display(shortest_distances);
[[3, -1, -1, 2, 1, 2],

[4, 2, 1, 3, 2, 1],
[3, 1, 2, 2, 1, 2],
[1, -1, -1, 1, 1, 2],
[2, -1, -1, 1, 2, 1],
[3, -1, -1, 2, 1, 1]]

5.3.16 IsReachable

. IsReachable(digraph, u, v) (operation)

Returns: true or false.
This operation returns true if there exists a non-trivial directed walk from vertex u to vertex v in

the digraph digraph , and false if there does not exist such a directed walk. See section 1.1.1 for the
definition of a non-trivial directed walk.

The method for IsReachable has worst case complexity of O(m+ n) where m is the number of
edges and n the number of vertices in digraph .

Example
gap> gr := Digraph([[2], [3], [2, 3]]);
<digraph with 3 vertices, 4 edges>
gap> IsReachable(gr, 1, 3);
true
gap> IsReachable(gr, 2, 1);
false
gap> IsReachable(gr, 3, 3);
true
gap> IsReachable(gr, 1, 1);
false

5.3.17 DigraphPath

. DigraphPath(digraph, u, v) (operation)

Returns: A pair of lists, or fail.
If there exists a non-trivial directed path (or a non-trivial cycle, in the case that u = v) from vertex u

to vertex v in the digraph digraph , then this operation returns such a directed path (or directed cycle).
Otherwise, this operation returns fail. See Section ‘Definitions’ for the definition of a directed path
and a directed cycle.

A directed path (or directed cycle) of non-zero length n-1, (v1,e1,v2,e2, ...,en−1,vn), is repre-
sented by a pair of lists [v,a] as follows:

• v is the list [v1,v2, ...,vn].

Digraphs 63

• a is the list of positive integers [a1,a2, ...,an−1] where for each each i < n, ai is the position of
vi+1 in OutNeighboursOfVertex(digraph,vi) corresponding to the edge ei. This is can be
useful if the position of a vertex in a list of out-neighours is significant, for example in orbit
digraphs.

The method for DigraphPath has worst case complexity of O(m+n) where m is the number of edges
and n the number of vertices in digraph .

Example
gap> gr := Digraph([[2], [3], [2, 3]]);
<digraph with 3 vertices, 4 edges>
gap> DigraphPath(gr, 1, 3);
[[1, 2, 3], [1, 1]]
gap> DigraphPath(gr, 2, 1);
fail
gap> DigraphPath(gr, 3, 3);
[[3, 3], [2]]
gap> DigraphPath(gr, 1, 1);
fail

5.3.18 DigraphShortestPath

. DigraphShortestPath(digraph, u, v) (operation)

Returns: A pair of lists, or fail.
Returns the shortest directed path in the digraph digraph from the vertex u to the vertex v, if such

a path exists. If u = v, then the shortest non-trivial cycle is returned, again, if it exists. Otherwise, this
operation returns fail. See Section ‘Definitions’ for the definition of a directed path and a directed
cycle.

See DigraphPath (5.3.17) for details on the output. The method for DigraphShortestPath has
worst case complexity of O(m+ n) where m is the number of edges and n the number of vertices in
digraph .

Example
gap> gr := Digraph([[1, 2], [3], [2, 4], [1], [2, 4]]);
<digraph with 5 vertices, 8 edges>
gap> DigraphShortestPath(gr, 5, 1);
[[5, 4, 1], [2, 1]]
gap> DigraphShortestPath(gr, 3, 3);
[[3, 2, 3], [1, 1]]
gap> DigraphShortestPath(gr, 5, 5);
fail
gap> DigraphShortestPath(gr, 1, 1);
[[1, 1], [1]]

5.3.19 IteratorOfPaths

. IteratorOfPaths(digraph, u, v) (operation)

Returns: An iterator.
If digraph is a digraph or a list of adjacencies which defines a digraph - see OutNeighbours

(5.2.6) - then this operation returns an iterator of the non-trivial directed paths (or directed cycles, in
the case that u = v) in digraph from the vertex u to the vertex v .

Digraphs 64

See DigraphPath (5.3.17) for more information about the repesentation of a directed path or
directed cycle which is used, and see (Reference: Iterators) for more information about iterators.
See Section ‘Definitions’ for the definition of a directed path and a directed cycle.

Example
gap> gr := Digraph([[1, 4, 4, 2], [3, 5], [2, 3], [1, 2], [4]]);
<multidigraph with 5 vertices, 11 edges>
gap> iter := IteratorOfPaths(gr, 1, 4);
<iterator>
gap> NextIterator(iter);
[[1, 4], [2]]
gap> NextIterator(iter);
[[1, 4], [3]]
gap> NextIterator(iter);
[[1, 2, 5, 4], [4, 2, 1]]
gap> IsDoneIterator(iter);
true
gap> iter := IteratorOfPaths(gr, 4, 3);
<iterator>
gap> NextIterator(iter);
[[4, 1, 2, 3], [1, 4, 1]]

5.3.20 DigraphAllSimpleCircuits

. DigraphAllSimpleCircuits(digraph) (attribute)

Returns: A list of lists of vertices.
If digraph is a digraph, then DigraphAllSimpleCircuits returns a list of the simple circuits in

digraph .
See section 1.1.1 for the definition of a simple circuit, and related notions. Note that a loop is a

simple circuit.
For a digraph without multiple edges, a simple circuit is uniquely determined by its subsequence of

vertices. However this is not the case for a multidigraph. The attribute DigraphAllSimpleCircuits
ignores multiple edges, and identifies a simple circuit using only its subsequence of vertices. For ex-
ample, although the simple circuits (v,e,v) and (v,e′,v) (for distinct edges e and e′) are mathematically
distinct, DigraphAllSimpleCircuits considers them to be the same.

With this approach, a directed circuit of length n can be determined by a list of its
first n vertices. Thus a simple circuit (v1,e1,v2,e2, ...,en−1,vn,en+1,v1) can be represented as
the list [v1, . . . ,vn], or any cyclic permutation thereof. For each simple circuit of digraph ,
DigraphAllSimpleCircuits(digraph) includes precisely one such list to represent the circuit.

Example
gap> gr := Digraph([[], [3], [2, 4], [5, 4], [4]]);
<digraph with 5 vertices, 6 edges>
gap> DigraphAllSimpleCircuits(gr);
[[4], [4, 5], [2, 3]]
gap> gr := ChainDigraph(10);;
gap> DigraphAllSimpleCircuits(gr);
[]
gap> gr := Digraph([[3], [1], [1]]);
<digraph with 3 vertices, 3 edges>
gap> DigraphAllSimpleCircuits(gr);
[[1, 3]]

Digraphs 65

gap> gr := Digraph([[1, 1]]);
<multidigraph with 1 vertex, 2 edges>
gap> DigraphAllSimpleCircuits(gr);
[[1]]

5.3.21 DigraphLongestSimpleCircuit

. DigraphLongestSimpleCircuit(digraph) (attribute)

Returns: A list of vertices, or fail.
If digraph is a digraph, then DigraphLongestSimpleCircuit returns the longest simple circuit

in digraph . See section 1.1.1 for the definition of simple circuit, and the definition of length for a
simple circuit.

This attribute computes DigraphAllSimpleCircuits(digraph) to find all the simple circuits
of digraph , and returns one of maximal length. A simple circuit is represented as a list of vertices, in
the same way as described in DigraphAllSimpleCircuits (5.3.20).

If digraph has no simple circuits, then this attribute returns fail. If digraph has multiple simple
circuits of maximal length, then this attribute returns one of them.

Example
gap> gr := Digraph([[], [3], [2, 4], [5, 4], [4]]);;
gap> DigraphLongestSimpleCircuit(gr);
[4, 5]
gap> gr := ChainDigraph(10);;
gap> DigraphLongestSimpleCircuit(gr);
fail
gap> gr := Digraph([[3], [1], [1, 4], [1, 1]]);;
gap> DigraphLongestSimpleCircuit(gr);
[1, 3, 4]

5.3.22 DigraphLayers

. DigraphLayers(digraph, vertex) (operation)

Returns: A list.
This operation returns a list list such that list[i] is the list of vertices whose minimum distance

from the vertex vertex in digraph is i - 1. Vertex vertex is assumed to be at distance 0 from
itself.

Example
gap> gr := CompleteDigraph(4);;
gap> DigraphLayers(gr, 1);
[[1], [2, 3, 4]]

5.3.23 DigraphDegeneracy

. DigraphDegeneracy(digraph) (attribute)

Returns: A non-negative integer, or fail.
If digraph is a symmetric digraph without multiple edges - see IsSymmetricDigraph (6.1.10)

and IsMultiDigraph (6.1.8) - then this attribute returns the degeneracy of digraph .

Digraphs 66

The degeneracy of a digraph is the least integer k such that every induced of digraph contains a
vertex whose number of neighbours (excluding itself) is at most k. Note that this means that loops are
ignored.

If digraph is not symmetric or has multiple edges then this attribute returns fail.
Example

gap> gr := DigraphSymmetricClosure(ChainDigraph(5));;
gap> DigraphDegeneracy(gr);
1
gap> gr := CompleteDigraph(5);;
gap> DigraphDegeneracy(gr);
4
gap> gr := Digraph([[1], [2, 4, 5], [3, 4], [2, 3, 4], [2], []]);
<digraph with 6 vertices, 10 edges>
gap> DigraphDegeneracy(gr);
1

5.3.24 DigraphDegeneracyOrdering

. DigraphDegeneracyOrdering(digraph) (attribute)

Returns: A list of integers, or fail.
If digraph is a digraph for which DigraphDegeneracy(digraph) is a non-negative integer k -

see DigraphDegeneracy (5.3.23) - then this attribute returns a degeneracy ordering of the vertices of
the vertices of digraph .

A degeneracy ordering of digraph is a list ordering of the vertices of digraph ordered such
that for any position i of the list, the vertex ordering[i] has at most k neighbours in later position
of the list.

If DigraphDegeneracy(digraph) returns fail, then this attribute returns fail.
Example

gap> gr := DigraphSymmetricClosure(ChainDigraph(5));;
gap> DigraphDegeneracyOrdering(gr);
[5, 4, 3, 2, 1]
gap> gr := CompleteDigraph(5);;
gap> DigraphDegeneracyOrdering(gr);
[5, 4, 3, 2, 1]
gap> gr := Digraph([[1], [2, 4, 5], [3, 4], [2, 3, 4], [2], []]);
<digraph with 6 vertices, 10 edges>
gap> DigraphDegeneracyOrdering(gr);
[1, 6, 5, 2, 4, 3]

5.3.25 HamiltonianPath

. HamiltonianPath(digraph) (attribute)

Returns: A list or fail.
Returns a Hamiltonian path if one exists, fail if not.
A Hamiltonian path of a digraph with n vertices is directed cycle of length n. If digraph is a

digraph that contains a Hamiltonian path, then this function returns one, described in the form used by
DigraphAllSimpleCircuits (5.3.20). Note if digraph has 0 or 1 vertices, then HamiltonianPath
returns [] or [1], respectively.

Digraphs 67

The method used in this attribute has the same worst case complexity as DigraphMonomorphism
(7.3.4).

Example
gap> g := Digraph([[]]);
<digraph with 1 vertex, 0 edges>
gap> HamiltonianPath(g);
[1]
gap> g := Digraph([[2], [1]]);
<digraph with 2 vertices, 2 edges>
gap> HamiltonianPath(g);
[1, 2]
gap> g := Digraph([[3], [], [2]]);
<digraph with 3 vertices, 2 edges>
gap> HamiltonianPath(g);
fail
gap> g := Digraph([[2], [3], [1]]);
<digraph with 3 vertices, 3 edges>
gap> HamiltonianPath(g);
[1, 2, 3]

5.4 Cayley graphs of groups

5.4.1 GroupOfCayleyDigraph

. GroupOfCayleyDigraph(digraph) (attribute)

. SemigroupOfCayleyDigraph(digraph) (attribute)

Returns: A group or semigroup.
If digraph is a Cayley graph of a group G and digraph belongs to the category

IsCayleyDigraph (3.1.2), then GroupOfCayleyDigraph returns G.
If digraph is a Cayley graph of a semigroup S and digraph belongs to the category

IsCayleyDigraph (3.1.2), then SemigroupOfCayleyDigraph returns S.
See also GeneratorsOfCayleyDigraph (5.4.2).

Example
gap> G := DihedralGroup(IsPermGroup, 8);
Group([(1,2,3,4), (2,4)])
gap> digraph := CayleyDigraph(G);
<digraph with 8 vertices, 16 edges>
gap> GroupOfCayleyDigraph(digraph) = G;
true

5.4.2 GeneratorsOfCayleyDigraph

. GeneratorsOfCayleyDigraph(digraph) (attribute)

Returns: A list of generators.
If digraph is a Cayley graph of a group or semigroup with respect to a set of generators gens and

digraph belongs to the category IsCayleyDigraph (3.1.2), then GeneratorsOfCayleyDigraph
return the list of generators gens over which digraph is defined.

See also GroupOfCayleyDigraph (5.4.1) or SemigroupOfCayleyDigraph (5.4.1).

Digraphs 68

Example
gap> G := DihedralGroup(IsPermGroup, 8);
Group([(1,2,3,4), (2,4)])
gap> digraph := CayleyDigraph(G);
<digraph with 8 vertices, 16 edges>
gap> GeneratorsOfCayleyDigraph(digraph) = GeneratorsOfGroup(G);
true
gap> digraph := CayleyDigraph(G, [()]);
<digraph with 8 vertices, 8 edges>
gap> GeneratorsOfCayleyDigraph(digraph) = [()];
true

5.5 Associated semigroups

5.5.1 AsSemigroup

. AsSemigroup(filt, digraph) (operation)

. AsMonoid(filt, digraph) (operation)

Returns: A semilattice of partial perms.
The operation AsSemigroup requires that filt be equal to IsPartialPermSemigroup

(Reference: IsPartialPermSemigroup). If digraph is a IsJoinSemilatticeDigraph
(6.1.15) or IsLatticeDigraph (6.1.15) then AsSemigroup returns a semigroup of par-
tial perms which is isomorphic to the semigroup whose elements are the vertices of
digraph with the binary operation PartialOrderDigraphJoinOfVertices (5.2.15). If
digraph satisfies IsMeetSemilatticeDigraph (6.1.15) but not IsJoinSemilatticeDigraph
(6.1.15) then AsSemigroup returns a semigroup of partial perms which is isomorphic to
the semigroup whose elements are the vertices of digraph with the binary operation
PartialOrderDigraphMeetOfVertices (5.2.15).

The operation AsMonoid behaves similarly to AsSemigroup except that filt may also be
equal to IsPartialPermMonoid (Reference: IsPartialPermMonoid), digraph must satisfy
IsLatticeDigraph (6.1.15), and the output satisfies IsMonoid (Reference: IsMonoid).

The output of both of these operations is guaranteed to be of minimal degree (see
DegreeOfPartialPermSemigroup (Reference: DegreeOfPartialPermSemigroup)). Furthermore
the GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) of the output is guaranteed to
be the unique generating set of minimal size.

Example
gap> di := Digraph([[1], [1, 2], [1, 3], [1, 4], [1, 2, 3, 5]]);
<digraph with 5 vertices, 11 edges>
gap> S := AsSemigroup(IsPartialPermSemigroup, di);
<partial perm semigroup of rank 3 with 4 generators>
gap> ForAll(Elements(S), IsIdempotent);
true
gap> IsInverseSemigroup(S);
true
gap> Size(S);
5
gap> di := Digraph([[1], [1, 2], [1, 2, 3]]);
<digraph with 3 vertices, 6 edges>
gap> M := AsMonoid(IsPartialPermMonoid, di);

Digraphs 69

<partial perm monoid of rank 2 with 3 generators>
gap> Size(M);
3

5.6 Planarity

5.6.1 KuratowskiPlanarSubdigraph

. KuratowskiPlanarSubdigraph(digraph) (attribute)

Returns: A list or fail.
KuratowskiPlanarSubdigraph returns the list of out-neighbours of a (not necessarily induced)

subdigraph of the digraph digraph that witnesses the fact that digraph is not planar, or fail if
digraph is planar. In other words, KuratowskiPlanarSubdigraph returns the out-neighbours of a
subdigraph of digraph that is homeomorphic to the complete graph with 5 vertices, or to the complete
bipartite graph with vertex sets of sizes 3 and 3.

The directions and multiplicities of any edges in digraph are ignored when considering whether
or not digraph is planar.

See also IsPlanarDigraph (6.4.1) and SubdigraphHomeomorphicToK33 (5.6.5).
This method uses the reference implementation in edge-addition-planarity-suite by John Boyer of

the algorithms described in [BM06].
Example

gap> D := Digraph([[3, 5, 10], [8, 9, 10], [1, 4], [3, 6],
> [1, 7, 11], [4, 7], [6, 8], [2, 7], [2, 11], [1, 2], [5, 9]]);
<digraph with 11 vertices, 25 edges>
gap> KuratowskiPlanarSubdigraph(D);
fail
gap> D := Digraph([[2, 4, 7, 9, 10], [1, 3, 4, 6, 9, 10], [6, 10],
> [2, 5, 8, 9], [1, 2, 3, 4, 6, 7, 9, 10], [3, 4, 5, 7, 9, 10],
> [3, 4, 5, 6, 9, 10], [3, 4, 5, 7, 9], [2, 3, 5, 6, 7, 8], [3, 5]]);
<digraph with 10 vertices, 50 edges>
gap> IsPlanarDigraph(D);
false
gap> KuratowskiPlanarSubdigraph(D);
[[2, 9, 7], [3], [6], [5, 9], [6], [], [4],

[7, 9, 3], [], []]

5.6.2 KuratowskiOuterPlanarSubdigraph

. KuratowskiOuterPlanarSubdigraph(digraph) (attribute)

Returns: A list or fail.
KuratowskiOuterPlanarSubdigraph returns the list of out-neighbours of a (not necessarily

induced) subdigraph of the digraph digraph that witnesses the fact that digraph is not outer planar,
or fail if digraph is outer planar. In other words, KuratowskiOuterPlanarSubdigraph returns
the out-neighbours of a subdigraph of digraph that is homeomorphic to the complete graph with 4
vertices, or to the complete bipartite graph with vertex sets of sizes 2 and 3.

The directions and multiplicities of any edges in digraph are ignored when considering whether
or not digraph is outer planar.

https://github.com/graph-algorithms/edge-addition-planarity-suite

Digraphs 70

See also IsOuterPlanarDigraph (6.4.2), SubdigraphHomeomorphicToK4 (5.6.5), and
SubdigraphHomeomorphicToK23 (5.6.5).

This method uses the reference implementation in edge-addition-planarity-suite by John Boyer of
the algorithms described in [BM06].

Example
gap> D := Digraph([[3, 5, 10], [8, 9, 10], [1, 4], [3, 6],
> [1, 7, 11], [4, 7], [6, 8], [2, 7], [2, 11], [1, 2], [5, 9]]);
<digraph with 11 vertices, 25 edges>
gap> KuratowskiOuterPlanarSubdigraph(D);
[[3, 5, 10], [9, 8, 10], [4], [6], [11], [7], [8],

[], [11], [], []]
gap> D := Digraph([[2, 4, 7, 9, 10], [1, 3, 4, 6, 9, 10], [6, 10],
> [2, 5, 8, 9], [1, 2, 3, 4, 6, 7, 9, 10], [3, 4, 5, 7, 9, 10],
> [3, 4, 5, 6, 9, 10], [3, 4, 5, 7, 9], [2, 3, 5, 6, 7, 8], [3, 5]]);
<digraph with 10 vertices, 50 edges>
gap> IsOuterPlanarDigraph(D);
false
gap> KuratowskiOuterPlanarSubdigraph(D);
[[], [], [], [8, 9], [], [], [9, 4], [7, 9], [],

[]]

5.6.3 PlanarEmbedding

. PlanarEmbedding(digraph) (attribute)

Returns: A list or fail.
If digraph is a planar digraph, then PlanarEmbedding returns the list of out-neighbours of a

subdigraph of digraph such that each vertex’s neighbours are given in clockwise order. If digraph
is not planar, then fail is returned.

The directions and multiplicities of any edges in digraph are ignored by PlanarEmbedding.
See also IsPlanarDigraph (6.4.1).
This method uses the reference implementation in edge-addition-planarity-suite by John Boyer of

the algorithms described in [BM06].
Example

gap> D := Digraph([[3, 5, 10], [8, 9, 10], [1, 4], [3, 6],
> [1, 7, 11], [4, 7], [6, 8], [2, 7], [2, 11], [1, 2], [5, 9]]);
<digraph with 11 vertices, 25 edges>
gap> PlanarEmbedding(D);
[[3, 10, 5], [10, 8, 9], [4], [6], [11, 7], [7], [8],

[], [11], [], []]
gap> D := Digraph([[2, 4, 7, 9, 10], [1, 3, 4, 6, 9, 10], [6, 10],
> [2, 5, 8, 9], [1, 2, 3, 4, 6, 7, 9, 10], [3, 4, 5, 7, 9, 10],
> [3, 4, 5, 6, 9, 10], [3, 4, 5, 7, 9], [2, 3, 5, 6, 7, 8], [3, 5]]);
<digraph with 10 vertices, 50 edges>
gap> PlanarEmbedding(D);
fail

5.6.4 OuterPlanarEmbedding

. OuterPlanarEmbedding(digraph) (attribute)

Returns: A list or fail.

https://github.com/graph-algorithms/edge-addition-planarity-suite
https://github.com/graph-algorithms/edge-addition-planarity-suite

Digraphs 71

If digraph is an outer planar digraph, then OuterPlanarEmbedding returns the list of out-
neighbours of a subdigraph of digraph such that each vertex’s neighbours are given in clockwise
order. If digraph is not outer planar, then fail is returned.

The directions and multiplicities of any edges in digraph are ignored by
OuterPlanarEmbedding.

See also IsOuterPlanarDigraph (6.4.2).
This method uses the reference implementation in edge-addition-planarity-suite by John Boyer of

the algorithms described in [BM06].
Example

gap> D := Digraph([[3, 5, 10], [8, 9, 10], [1, 4], [3, 6],
> [1, 7, 11], [4, 7], [6, 8], [2, 7], [2, 11], [1, 2], [5, 9]]);
<digraph with 11 vertices, 25 edges>
gap> OuterPlanarEmbedding(D);
fail
gap> D := Digraph([[2, 4, 7, 9, 10], [1, 3, 4, 6, 9, 10], [6, 10],
> [2, 5, 8, 9], [1, 2, 3, 4, 6, 7, 9, 10], [3, 4, 5, 7, 9, 10],
> [3, 4, 5, 6, 9, 10], [3, 4, 5, 7, 9], [2, 3, 5, 6, 7, 8], [3, 5]]);
<digraph with 10 vertices, 50 edges>
gap> OuterPlanarEmbedding(D);
fail
gap> OuterPlanarEmbedding(CompleteBipartiteDigraph(2, 2));
[[3, 4], [4, 3], [], []]

5.6.5 SubdigraphHomeomorphicToK23

. SubdigraphHomeomorphicToK23(digraph) (attribute)

. SubdigraphHomeomorphicToK33(digraph) (attribute)

. SubdigraphHomeomorphicToK4(digraph) (attribute)

Returns: A list or fail.
These attributes return the list of out-neighbours of a subdigraph of the digraph digraph which is

homeomorphic to one of the following: the complete bipartite graph with vertex sets of sizes 2 and 3;
the complete bipartite graph with vertex sets of sizes 3 and 3; or the complete graph with 4 vertices.
If digraph has no such subdigraphs, then fail is returned.

See also IsPlanarDigraph (6.4.1) and IsOuterPlanarDigraph (6.4.2) for more details.
This method uses the reference implementation in edge-addition-planarity-suite by John Boyer of

the algorithms described in [BM06].
Example

gap> D := Digraph([[3, 5, 10], [8, 9, 10], [1, 4], [3, 6], [1, 7, 11],
> [4, 7], [6, 8], [2, 7], [2, 11], [1, 2], [5, 9]]);
<digraph with 11 vertices, 25 edges>
gap> SubdigraphHomeomorphicToK4(D);
[[3, 5, 10], [9, 8, 10], [4], [6], [7, 11], [7], [8],

[], [11], [], []]
gap> SubdigraphHomeomorphicToK23(D);
[[3, 5, 10], [9, 8, 10], [4], [6], [11], [7], [8],

[], [11], [], []]
gap> D := Digraph([[3, 5, 10], [8, 9, 10], [1, 4], [3, 6], [1, 11],
> [4, 7], [6, 8], [2, 7], [2, 11], [1, 2], [5, 9]]);
<digraph with 11 vertices, 24 edges>
gap> SubdigraphHomeomorphicToK4(D);

https://github.com/graph-algorithms/edge-addition-planarity-suite
https://github.com/graph-algorithms/edge-addition-planarity-suite

Digraphs 72

fail
gap> SubdigraphHomeomorphicToK23(D);
[[3, 10, 5], [10, 8, 9], [4], [6], [11], [7], [8],

[], [11], [], []]
gap> SubdigraphHomeomorphicToK33(D);
fail
gap> SubdigraphHomeomorphicToK23(NullDigraph(0));
fail
gap> SubdigraphHomeomorphicToK33(CompleteDigraph(5));
fail
gap> SubdigraphHomeomorphicToK33(CompleteBipartiteDigraph(3, 3));
[[4, 6, 5], [4, 5, 6], [6, 5, 4], [], [], []]
gap> SubdigraphHomeomorphicToK4(CompleteDigraph(3));
fail

Chapter 6

Properties of digraphs

6.1 Edge properties

6.1.1 DigraphHasLoops

. DigraphHasLoops(digraph) (property)

Returns: true or false.
Returns true if the digraph digraph has loops, and false if it does not. A loop is an edge with

equal source and range.
Example

gap> gr := Digraph([[1, 2], [2]]);
<digraph with 2 vertices, 3 edges>
gap> DigraphEdges(gr);
[[1, 1], [1, 2], [2, 2]]
gap> DigraphHasLoops(gr);
true
gap> gr := Digraph([[2, 3], [1], [2]]);
<digraph with 3 vertices, 4 edges>
gap> DigraphEdges(gr);
[[1, 2], [1, 3], [2, 1], [3, 2]]
gap> DigraphHasLoops(gr);
false

6.1.2 IsAntisymmetricDigraph

. IsAntisymmetricDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is antisymmetric, and false if it is not.
A digraph is antisymmetric if whenever there is an edge with source u and range v, and an edge

with source v and range u, then the vertices u and v are equal.
Example

gap> gr1 := Digraph([[2], [1, 3], [2, 3]]);
<digraph with 3 vertices, 5 edges>
gap> IsAntisymmetricDigraph(gr1);
false
gap> DigraphEdges(gr1){[1, 2]};
[[1, 2], [2, 1]]

73

Digraphs 74

gap> gr2 := Digraph([[1, 2], [3, 3], [1]]);
<multidigraph with 3 vertices, 5 edges>
gap> IsAntisymmetricDigraph(gr2);
true
gap> DigraphEdges(gr2);
[[1, 1], [1, 2], [2, 3], [2, 3], [3, 1]]

6.1.3 IsBipartiteDigraph

. IsBipartiteDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is bipartite, and false if it is not. A digraph is

bipartite if and only if the vertices of digraph can be partitioned into two non-empty sets such that
the source and range of any edge of digraph lie in distinct sets. Equivalently, a digraph is bipartite if
and only if it is 2-colorable; see DigraphGreedyColouring (7.3.14).

See also DigraphBicomponents (5.3.12).
Example

gap> gr := ChainDigraph(4);
<digraph with 4 vertices, 3 edges>
gap> IsBipartiteDigraph(gr);
true
gap> gr := CycleDigraph(3);
<digraph with 3 vertices, 3 edges>
gap> IsBipartiteDigraph(gr);
false

6.1.4 IsCompleteBipartiteDigraph

. IsCompleteBipartiteDigraph(digraph) (property)

Returns: true or false.
Returns true if the digraph digraph is a complete bipartite digraph, and false if it is not.
A digraph is a complete bipartite digraph if it is bipartite, see IsBipartiteDigraph (6.1.3), and

there exists a unique edge with source i and range j if and only if i and j lie in different bicomponents
of digraph , see DigraphBicomponents (5.3.12).

Equivalently, a bipartite digraph with bicomponents of size m and n is complete precisely when it
has 2mn edges, none of which are multiple edges.

See also CompleteBipartiteDigraph (3.5.3).
Example

gap> gr := CycleDigraph(2);
<digraph with 2 vertices, 2 edges>
gap> IsCompleteBipartiteDigraph(gr);
true
gap> gr := CycleDigraph(4);
<digraph with 4 vertices, 4 edges>
gap> IsBipartiteDigraph(gr);
true
gap> IsCompleteBipartiteDigraph(gr);
false

Digraphs 75

6.1.5 IsCompleteDigraph

. IsCompleteDigraph(digraph) (property)

Returns: true or false.
Returns true if the digraph digraph is complete, and false if it is not.
A digraph is complete if it has no loops, and for all distinct vertices i and j, there is exactly one

edge with source i and range j. Equivalently, a digraph with n vertices is complete precisely when it
has n(n−1) edges, no loops, and no multiple edges.

Example
gap> gr := Digraph([[2, 3], [1, 3], [1, 2]]);
<digraph with 3 vertices, 6 edges>
gap> IsCompleteDigraph(gr);
true
gap> gr := Digraph([[2, 2], [1]]);
<multidigraph with 2 vertices, 3 edges>
gap> IsCompleteDigraph(gr);
false

6.1.6 IsEmptyDigraph

. IsEmptyDigraph(digraph) (property)

. IsNullDigraph(digraph) (property)

Returns: true or false.
Returns true if the digraph digraph is empty, and false if it is not. A digraph is empty if it has

no edges.
IsNullDigraph is a synonym for IsEmptyDigraph.

Example
gap> gr := Digraph([[], []]);
<digraph with 2 vertices, 0 edges>
gap> IsEmptyDigraph(gr);
true
gap> IsNullDigraph(gr);
true
gap> gr := Digraph([[], [1]]);
<digraph with 2 vertices, 1 edge>
gap> IsEmptyDigraph(gr);
false
gap> IsNullDigraph(gr);
false

6.1.7 IsFunctionalDigraph

. IsFunctionalDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is functional.
A digraph is functional if every vertex is the source of a unique edge.

Example
gap> gr1 := Digraph([[3], [2], [2], [1], [6], [5]]);
<digraph with 6 vertices, 6 edges>
gap> IsFunctionalDigraph(gr1);

Digraphs 76

true
gap> gr2 := Digraph([[1, 2], [1]]);
<digraph with 2 vertices, 3 edges>
gap> IsFunctionalDigraph(gr2);
false
gap> gr3 := Digraph(3, [1, 2, 3], [2, 3, 1]);
<digraph with 3 vertices, 3 edges>
gap> IsFunctionalDigraph(gr3);
true

6.1.8 IsMultiDigraph

. IsMultiDigraph(digraph) (property)

Returns: true or false.
A multidigraph is one that has at least two edges with equal source and range.

Example
gap> gr := Digraph(["a", "b", "c"], ["a", "b", "b"], ["b", "c", "a"]);
<digraph with 3 vertices, 3 edges>
gap> IsMultiDigraph(gr);
false
gap> gr := DigraphFromDigraph6String("&Bug");
<digraph with 3 vertices, 6 edges>
gap> IsDuplicateFree(DigraphEdges(gr));
true
gap> IsMultiDigraph(gr);
false
gap> gr := Digraph([[1, 2, 3, 2], [2, 1], [3]]);
<multidigraph with 3 vertices, 7 edges>
gap> IsDuplicateFree(DigraphEdges(gr));
false
gap> IsMultiDigraph(gr);
true

6.1.9 IsReflexiveDigraph

. IsReflexiveDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is reflexive, and false if it is not. A digraph is

reflexive if it has a loop at every vertex.
Example

gap> gr := Digraph([[1, 2], [2]]);
<digraph with 2 vertices, 3 edges>
gap> IsReflexiveDigraph(gr);
true
gap> gr := Digraph([[3, 1], [4, 2], [3], [2, 1]]);
<digraph with 4 vertices, 7 edges>
gap> IsReflexiveDigraph(gr);
false

Digraphs 77

6.1.10 IsSymmetricDigraph

. IsSymmetricDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is symmetric, and false if it is not.
A symmetric digraph is one where for each non-loop edge, having source u and range v, there is

a corresponding edge with source v and range u. If there are n edges with source u and range v, then
there must be precisely n edges with source v and range u. In other words, a symmetric digraph has a
symmetric adjacency matrix AdjacencyMatrix (5.2.1).

Example
gap> gr1 := Digraph([[2], [1, 3], [2, 3]]);
<digraph with 3 vertices, 5 edges>
gap> IsSymmetricDigraph(gr1);
true
gap> adj1 := AdjacencyMatrix(gr1);;
gap> Display(adj1);
[[0, 1, 0],

[1, 0, 1],
[0, 1, 1]]

gap> adj1 = TransposedMat(adj1);
true
gap> gr1 = DigraphReverse(gr1);
true
gap> gr2 := Digraph([[2, 3], [1, 3], [2, 3]]);
<digraph with 3 vertices, 6 edges>
gap> IsSymmetricDigraph(gr2);
false
gap> adj2 := AdjacencyMatrix(gr2);;
gap> Display(adj2);
[[0, 1, 1],

[1, 0, 1],
[0, 1, 1]]

gap> adj2 = TransposedMat(adj2);
false

6.1.11 IsTournament

. IsTournament(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is a tournament, and false if it is not.
A tournament is an orientation of a complete (undirected) graph. Specifically, a tournament is a

digraph which has a unique directed edge (of some orientation) between any pair of distinct vertices,
and no loops.

Example
gap> gr := Digraph([[2, 3, 4], [3, 4], [4], []]);
<digraph with 4 vertices, 6 edges>
gap> IsTournament(gr);
true
gap> gr := Digraph([[2], [1], [3]]);
<digraph with 3 vertices, 3 edges>

Digraphs 78

gap> IsTournament(gr);
false

6.1.12 IsTransitiveDigraph

. IsTransitiveDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is transitive, and false if it is not. A digraph is

transitive if whenever [i, j] and [j, k] are edges of the digraph, then [i, k] is also an
edge of the digraph.

Let n be the number of vertices of an arbitrary digraph, and let m be the number of edges.
For general digraphs, the methods used for this property use a version of the Floyd-Warshall
algorithm, and have complexity O(n3). However for digraphs which are topologically sortable
[DigraphTopologicalSort (5.1.7)], then methods with complexity O(m+ n+m · n) will be used
when appropriate.

Example
gap> gr := Digraph([[1, 2], [3], [3]]);
<digraph with 3 vertices, 4 edges>
gap> IsTransitiveDigraph(gr);
false
gap> gr2 := Digraph([[1, 2, 3], [3], [3]]);
<digraph with 3 vertices, 5 edges>
gap> IsTransitiveDigraph(gr2);
true
gap> gr2 = DigraphTransitiveClosure(gr);
true
gap> gr3 := Digraph([[1, 2, 2, 3], [3, 3], [3]]);
<multidigraph with 3 vertices, 7 edges>
gap> IsTransitiveDigraph(gr3);
true

6.1.13 IsPreorderDigraph

. IsPreorderDigraph(digraph) (property)

. IsQuasiorderDigraph(digraph) (property)

Returns: true or false.
A digraph is a preorder digraph if and only if the digraph satisifies both IsReflexiveDigraph

(6.1.9) and IsTransitiveDigraph (6.1.12). A preorder digraph (or quasiorder digraph) digraph
corresponds to the preorder relation ≤ defined by x≤ y if and only if [x, y] is an edge of digraph .

Example
gap> gr := Digraph([[1], [2, 3], [2, 3]]);
<digraph with 3 vertices, 5 edges>
gap> IsPreorderDigraph(gr);
true
gap> gr := Digraph([[1 .. 4], [1 .. 4], [1 .. 4], [1 .. 4]]);
<digraph with 4 vertices, 16 edges>
gap> IsPreorderDigraph(gr);
true
gap> gr := Digraph([[2], [3], [4], [5], [1]]);

Digraphs 79

<digraph with 5 vertices, 5 edges>
gap> IsPreorderDigraph(gr);
false
gap> gr := Digraph([[1], [1, 2], [2, 3]]);
<digraph with 3 vertices, 5 edges>
gap> IsPreorderDigraph(gr);
false

6.1.14 IsPartialOrderDigraph

. IsPartialOrderDigraph(digraph) (property)

Returns: true or false.
A digraph is a partial order digraph if and only if the digraph satisifies all of IsReflexiveDigraph

(6.1.9), IsAntisymmetricDigraph (6.1.2) and IsTransitiveDigraph (6.1.12). A partial order
digraph corresponds to the partial order relation ≤ defined by x≤ y if and only if [x, y] is an edge
of digraph .

Example
gap> gr := Digraph([[1, 3], [2, 3], [3]]);
<digraph with 3 vertices, 5 edges>
gap> IsPartialOrderDigraph(gr);
true
gap> gr := CycleDigraph(5);
<digraph with 5 vertices, 5 edges>
gap> IsPartialOrderDigraph(gr);
false
gap> gr := Digraph([[1, 1], [1, 1, 2], [3], [3, 3, 4, 4]]);
<multidigraph with 4 vertices, 10 edges>
gap> IsPartialOrderDigraph(gr);
true

6.1.15 IsMeetSemilatticeDigraph

. IsMeetSemilatticeDigraph(digraph) (property)

. IsJoinSemilatticeDigraph(digraph) (property)

. IsLatticeDigraph(digraph) (property)

Returns: true or false.
IsMeetSemilatticeDigraph returns true if the digraph digraph is a meet semilattice;

IsJoinSemilatticeDigraph returns true if the digraph digraph is a join semilattice; and
IsLatticeDigraph returns true if the digraph digraph is both a meet and a join semilattice.

For a partial order digraph IsPartialOrderDigraph (6.1.14) the corresponding partial order is
the relation ≤, defined by x ≤ y if and only if [x, y] is an edge. A digraph is a meet semilattice if
it is a partial order and every pair of vertices has a greatest lower bound (meet) with respect to the
aforementioned relation. A join semilattice is a partial order where every pair of vertices has a least
upper bound (join) with respect to the relation.

Example
gap> gr := Digraph([[1, 3], [2, 3], [3]]);
<digraph with 3 vertices, 5 edges>
gap> IsMeetSemilatticeDigraph(gr);
false

Digraphs 80

gap> IsJoinSemilatticeDigraph(gr);
true
gap> IsLatticeDigraph(gr);
false
gap> gr := Digraph([[1], [2], [1 .. 3]]);
<digraph with 3 vertices, 5 edges>
gap> IsJoinSemilatticeDigraph(gr);
false
gap> IsMeetSemilatticeDigraph(gr);
true
gap> IsLatticeDigraph(gr);
false
gap> gr := Digraph([[1 .. 4], [2, 4], [3, 4], [4]]);
<digraph with 4 vertices, 9 edges>
gap> IsMeetSemilatticeDigraph(gr);
true
gap> IsJoinSemilatticeDigraph(gr);
true
gap> IsLatticeDigraph(gr);
true
gap> gr := Digraph([[1, 1, 1], [1, 1, 2, 2],
> [1, 3, 3], [1, 2, 3, 3, 4]]);
<multidigraph with 4 vertices, 15 edges>
gap> IsMeetSemilatticeDigraph(gr);
true
gap> IsJoinSemilatticeDigraph(gr);
true
gap> IsLatticeDigraph(gr);
true

6.2 Regularity

6.2.1 IsInRegularDigraph

. IsInRegularDigraph(digraph) (property)

Returns: true or false.
This property is true if there is an integer n such that for every vertex v of digraph

digraph there are exactly n edges terminating in v. See also IsOutRegularDigraph (6.2.2) and
IsRegularDigraph (6.2.3).

Example
gap> IsInRegularDigraph(CompleteDigraph(4));
true
gap> IsInRegularDigraph(ChainDigraph(4));
false

6.2.2 IsOutRegularDigraph

. IsOutRegularDigraph(digraph) (property)

Returns: true or false.

Digraphs 81

This property is true if there is an integer n such that for every vertex v of digraph digraph there
are exactly n edges starting at v. See also IsInRegularDigraph (6.2.1) and IsRegularDigraph
(6.2.3).

Example
gap> IsOutRegularDigraph(CompleteDigraph(4));
true
gap> IsOutRegularDigraph(ChainDigraph(4));
false

6.2.3 IsRegularDigraph

. IsRegularDigraph(digraph) (property)

Returns: true or false.
This property is true if there is an integer n such that for every vertex v of digraph digraph

there are exactly n edges starting and terminating at v. In other words, the property is true
if digraph is both in-regular and and out-regular. See also IsInRegularDigraph (6.2.1) and
IsOutRegularDigraph (6.2.2).

Example
gap> IsRegularDigraph(CompleteDigraph(4));
true
gap> IsRegularDigraph(ChainDigraph(4));
false

6.2.4 IsDistanceRegularDigraph

. IsDistanceRegularDigraph(digraph) (property)

Returns: true or false.
If digraph is a connected symmetric graph, this property returns true if for any two vertices u

and v of digraph and any two integers i and j between 0 and the diameter of digraph , the number
of vertices at distance i from u and distance j from v depends only on i, j, and the distance between
vertices u and v.

Alternatively, a distance regular graph is a graph for which there exist integers b_i, c_i, and
i such that for any two vertices u, v in digraph which are distance i apart, there are exactly b_i
neighbors of v which are at distance i - 1 away from u, and c_i neighbors of v which are at distance
i + 1 away from u. This definition is used to check whether digraph is distance regular.

In the case where digraph is not symmetric or not connected, the property is false.
Example

gap> gr := DigraphSymmetricClosure(ChainDigraph(5));;
gap> IsDistanceRegularDigraph(gr);
false
gap> gr := Digraph([[2, 3, 4], [1, 3, 4], [1, 2, 4], [1, 2, 3]]);
<digraph with 4 vertices, 12 edges>
gap> IsDistanceRegularDigraph(gr);
true

Digraphs 82

6.3 Connectivity and cycles

6.3.1 IsAcyclicDigraph

. IsAcyclicDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is acyclic, and false if it is not. A digraph is acyclic

if every directed cycle on the digraph is trivial. See section 1.1.1 for the definition of a directed cycle,
and of a trivial directed cycle.

The method used in this operation has complexity O(m+ n) where m is the number of edges
(counting multiple edges as one) and n is the number of vertices in the digraph.

Example
gap> Petersen := Graph(SymmetricGroup(5), [[1, 2]], OnSets,
> function(x, y)
> return IsEmpty(Intersection(x, y));
> end);;
gap> gr := Digraph(Petersen);
<digraph with 10 vertices, 30 edges>
gap> IsAcyclicDigraph(gr);
false
gap> gr := DigraphFromDiSparse6String(
> ".b_OGCIDBaPGkULEbQHCeRIdrHcuZMfRyDAbPhTi|zF");
<digraph with 35 vertices, 34 edges>
gap> IsAcyclicDigraph(gr);
true
gap> IsAcyclicDigraph(ChainDigraph(10));
true
gap> IsAcyclicDigraph(CycleDigraph(10));
false

6.3.2 IsChainDigraph

. IsChainDigraph(digraph) (property)

Returns: true or false.
IsChainDigraph returns true if the digraph digraph is isomorphic to the chain digraph with

the same number of vertices as digraph , and false if it is not; see ChainDigraph (3.5.1).
A digraph is a chain if and only if it is a directed tree, in which every vertex has out degree at most

one; see IsDirectedTree (6.3.7) and OutDegrees (5.2.8).
Example

gap> gr := Digraph([[1, 3], [2, 3], [3]]);
<digraph with 3 vertices, 5 edges>
gap> IsChainDigraph(gr);
false
gap> gr := ChainDigraph(5);
<digraph with 5 vertices, 4 edges>
gap> IsChainDigraph(gr);
true
gap> gr := DigraphReverse(gr);
<digraph with 5 vertices, 4 edges>
gap> IsChainDigraph(gr);
true

Digraphs 83

6.3.3 IsConnectedDigraph

. IsConnectedDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is weakly connected and false if it is not. A

digraph digraph is weakly connected if it is possible to travel from any vertex to any other vertex by
traversing edges in either direction (possibly against the orientation of some of them).

The method used in this function has complexity O(m) if the digraph’s DigraphSource (5.2.5)
attribute is set, otherwise it has complexity O(m+ n) (where m is the number of edges and n is the
number of vertices of the digraph).

Example
gap> gr := Digraph([[2], [3], []]);;
gap> IsConnectedDigraph(gr);
true
gap> gr := Digraph([[1, 3], [4], [3], []]);;
gap> IsConnectedDigraph(gr);
false

6.3.4 IsBiconnectedDigraph

. IsBiconnectedDigraph(digraph) (property)

Returns: true or false.
A connected digraph is biconnected if it is still connected (in the sense of IsConnectedDigraph

(6.3.3)) when any vertex is removed. IsBiconnectedDigraph returns true if the digraph digraph is
biconnected, and false if it is not. In particular, IsBiconnectedDigraph returns false if digraph
is not connected.

Multiple edges and loops are ignored by this method.
The method used in this operation has complexity O(m+ n) where m is the number of edges

(counting multiple edges as one, and not counting loops) and n is the number of vertices in the digraph.
See also ArticulationPoints (5.3.13).

Example
gap> IsBiconnectedDigraph(Digraph([[1, 3], [2, 3], [3]]));
false
gap> IsBiconnectedDigraph(CycleDigraph(5));
true
gap> digraph := Digraph([[1, 1], [1, 1, 2], [3], [3, 3, 4, 4]]);;
gap> IsBiconnectedDigraph(digraph);
false

6.3.5 IsStronglyConnectedDigraph

. IsStronglyConnectedDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is strongly connected and false if it is not.
A digraph digraph is strongly connected if there is a directed path from every vertex to every

other vertex. See section 1.1.1 for the definition of a directed path.
The method used in this operation is based on Gabow’s Algorithm [Gab00] and has complexity

O(m+ n), where m is the number of edges (counting multiple edges as one) and n is the number of
vertices in the digraph.

Digraphs 84

Example
gap> gr := CycleDigraph(250000);
<digraph with 250000 vertices, 250000 edges>
gap> IsStronglyConnectedDigraph(gr);
true
gap> gr := DigraphRemoveEdges(gr, [[250000, 1]]);
<digraph with 250000 vertices, 249999 edges>
gap> IsStronglyConnectedDigraph(gr);
false

6.3.6 IsAperiodicDigraph

. IsAperiodicDigraph(digraph) (property)

Returns: true or false.
This property is true if the digraph digraph is aperiodic, i.e. if its DigraphPeriod (5.3.14) is

equal to 1. Otherwise, the property is false.
Example

gap> gr := Digraph([[6], [1], [2], [3], [4, 4], [5]]);
<multidigraph with 6 vertices, 7 edges>
gap> IsAperiodicDigraph(gr);
false
gap> gr := Digraph([[2], [3, 5], [4], [5], [1, 2]]);
<digraph with 5 vertices, 7 edges>
gap> IsAperiodicDigraph(gr);
true

6.3.7 IsDirectedTree

. IsDirectedTree(digraph) (property)

Returns: true or false.
Returns true if the digraph digraph is a directed tree, and false if it is not.
A directed tree is an acyclic digraph with precisely 1 source, such that no two vertices share an

out-neighbour. Note the empty digraph is not considered a directed tree as it has no source.
See also DigraphSources (5.1.6).

Example
gap> gr := Digraph([[], [2]]);
<digraph with 2 vertices, 1 edge>
gap> IsDirectedTree(gr);
false
gap> gr := Digraph([[3], [3], []]);
<digraph with 3 vertices, 2 edges>
gap> IsDirectedTree(gr);
false
gap> gr := Digraph([[2], [3], []]);
<digraph with 3 vertices, 2 edges>
gap> IsDirectedTree(gr);
true
gap> gr := Digraph([[2, 3], [6], [4, 5], [], [], []]);
<digraph with 6 vertices, 5 edges>

Digraphs 85

gap> IsDirectedTree(gr);
true

6.3.8 IsUndirectedTree

. IsUndirectedTree(digraph) (property)

. IsUndirectedForest(digraph) (property)

Returns: true or false.
The property IsUndirectedTree returns true if the digraph digraph is an undirected tree, and

the property IsUndirectedForest returns true if digraph is an undirected forest; otherwise, these
properties return false.

An undirected tree is a symmetric digraph without loops, in which for any pair of distinct vertices
u and v, there is exactly one directed path from u to v. See IsSymmetricDigraph (6.1.10) and
DigraphHasLoops (6.1.1), and see section 1.1.1 for the definition of directed path. This definition
implies that an undirected tree has no multiple edges.

An undirected forest is a digraph, each of whose connected components is an undirected tree.
In other words, an undirected forest is isomorphic to a disjoint union of undirected trees. See
DigraphConnectedComponents (5.3.8) and DigraphDisjointUnion (3.3.26). In particular, every
undirected tree is an undirected forest.

Please note that the digraph with zero vertices is considered to be neither an undirected tree nor an
undirected forest.

Example
gap> gr := Digraph([[3], [3], [1, 2]]);
<digraph with 3 vertices, 4 edges>
gap> IsUndirectedTree(gr);
true
gap> IsSymmetricDigraph(gr) and not DigraphHasLoops(gr);
true
gap> gr := Digraph([[3], [5], [1, 4], [3], [2]]);
<digraph with 5 vertices, 6 edges>
gap> IsConnectedDigraph(gr);
false
gap> IsUndirectedTree(gr);
false
gap> IsUndirectedForest(gr);
true
gap> gr := Digraph([[1, 2], [1], [2]]);
<digraph with 3 vertices, 4 edges>
gap> IsUndirectedTree(gr) or IsUndirectedForest(gr);
false
gap> IsSymmetricDigraph(gr) or not DigraphHasLoops(gr);
false

6.3.9 IsEulerianDigraph

. IsEulerianDigraph(digraph) (property)

Returns: true or false.
This property returns true if the digraph digraph is Eulerian.

Digraphs 86

A digraph is called Eulerian if there exists a directed circuit on the digraph which includes every
edge exactly once. See section 1.1.1 for the definition of a directed circuit.

Example
gap> gr := Digraph([[]]);
<digraph with 1 vertex, 0 edges>
gap> IsEulerianDigraph(gr);
true
gap> gr := Digraph([[2], []]);
<digraph with 2 vertices, 1 edge>
gap> IsEulerianDigraph(gr);
false
gap> gr := Digraph([[3], [], [2]]);
<digraph with 3 vertices, 2 edges>
gap> IsEulerianDigraph(gr);
false
gap> gr := Digraph([[2], [3], [1]]);
<digraph with 3 vertices, 3 edges>
gap> IsEulerianDigraph(gr);
true

6.3.10 IsHamiltonianDigraph

. IsHamiltonianDigraph(digraph) (property)

Returns: true or false.
If digraph is Hamiltonian, then this property returns true, and false if it is not.
A digraph with n vertices is Hamiltonian if it has a directed cycle of length n. See Section 1.1.1

for the definition of a directed cycle. Note the empty digraphs on 0 and 1 vertices are considered to be
Hamiltonian.

The method used in this operation has the worst case complexity as DigraphMonomorphism
(7.3.4).

Example
gap> g := Digraph([[]]);
<digraph with 1 vertex, 0 edges>
gap> IsHamiltonianDigraph(g);
true
gap> g := Digraph([[2], [1]]);
<digraph with 2 vertices, 2 edges>
gap> IsHamiltonianDigraph(g);
true
gap> g := Digraph([[3], [], [2]]);
<digraph with 3 vertices, 2 edges>
gap> IsHamiltonianDigraph(g);
false
gap> g := Digraph([[2], [3], [1]]);
<digraph with 3 vertices, 3 edges>
gap> IsHamiltonianDigraph(g);
true

Digraphs 87

6.3.11 IsCycleDigraph

. IsCycleDigraph(digraph) (property)

Returns: true or false.
IsCycleDigraph returns true if the digraph digraph is isomorphic to the cycle digraph with

the same number of vertices as digraph , and false if it is not; see CycleDigraph (3.5.5).
A digraph is a cycle if and only if it is strongly connected and has the same number of edges as

vertices.
Example

gap> gr := Digraph([[1, 3], [2, 3], [3]]);
<digraph with 3 vertices, 5 edges>
gap> IsCycleDigraph(gr);
false
gap> gr := CycleDigraph(5);
<digraph with 5 vertices, 5 edges>
gap> IsCycleDigraph(gr);
true
gap> gr := OnDigraphs(gr, (1, 2, 3));
<digraph with 5 vertices, 5 edges>
gap> gr = CycleDigraph(5);
false
gap> IsCycleDigraph(gr);
true

6.4 Planarity

6.4.1 IsPlanarDigraph

. IsPlanarDigraph(digraph) (property)

Returns: true or false.
A planar digraph is a digraph that can be embedded in the plane in such a way that its edges do

not intersect. A digraph is planar if and only if it does not have a subdigraph that is homeomorphic to
either the complete graph on 5 vertices or the complete bipartite graph with vertex sets of sizes 3 and
3.

IsPlanarDigraph returns true if the digraph digraph is planar and false if it is not. The
directions and multiplicities of any edges in digraph are ignored by IsPlanarDigraph.

See also IsOuterPlanarDigraph (6.4.2).
This method uses the reference implementation in edge-addition-planarity-suite by John Boyer of

the algorithms described in [BM06].
Example

gap> IsPlanarDigraph(CompleteDigraph(4));
true
gap> IsPlanarDigraph(CompleteDigraph(5));
false
gap> IsPlanarDigraph(CompleteBipartiteDigraph(2, 3));
true
gap> IsPlanarDigraph(CompleteBipartiteDigraph(3, 3));
false

https://github.com/graph-algorithms/edge-addition-planarity-suite

Digraphs 88

6.4.2 IsOuterPlanarDigraph

. IsOuterPlanarDigraph(digraph) (property)

Returns: true or false.
An outer planar digraph is a digraph that can be embedded in the plane in such a way that its

edges do not intersect, and all vertices belong to the unbounded face of the embedding. A digraph is
outer planar if and only if it does not have a subdigraph that is homeomorphic to either the complete
graph on 4 vertices or the complete bipartite graph with vertex sets of sizes 2 and 3.

IsOuterPlanarDigraph returns true if the digraph digraph is outer planar and false if it is
not. The directions and multiplicities of any edges in digraph are ignored by IsPlanarDigraph.

See also IsPlanarDigraph (6.4.1). This method uses the reference implementation in edge-
addition-planarity-suite by John Boyer of the algorithms described in [BM06].

Example
gap> IsOuterPlanarDigraph(CompleteDigraph(4));
false
gap> IsOuterPlanarDigraph(CompleteDigraph(5));
false
gap> IsOuterPlanarDigraph(CompleteBipartiteDigraph(2, 3));
false
gap> IsOuterPlanarDigraph(CompleteBipartiteDigraph(3, 3));
false
gap> IsOuterPlanarDigraph(CycleDigraph(10));
true

https://github.com/graph-algorithms/edge-addition-planarity-suite
https://github.com/graph-algorithms/edge-addition-planarity-suite

Chapter 7

Homomorphisms

7.1 Acting on digraphs

7.1.1 OnDigraphs (for a digraph and a perm)

. OnDigraphs(digraph, perm) (operation)

. OnDigraphs(digraph, trans) (operation)

Returns: A digraph.
If digraph is a digraph, and the second argument perm is a permutation of the vertices of

digraph , then this operation returns a digraph constructed by relabelling the vertices of digraph
according to perm . Note that for an automorphism f of a digraph, we have OnDigraphs(digraph,
f) = digraph .

If the second argument is a transformation trans of the vertices of digraph , then this oper-
ation returns a digraph constructed by transforming the source and range of each edge according
to trans . Thus a vertex which does not appear in the image of trans will be isolated in the re-
turned digraph, and the returned digraph may contain multiple edges, even if digraph does not.
If trans is mathematically a permutation, then the result coincides with OnDigraphs(digraph,
AsPermutation(trans)).

The DigraphVertexLabels (5.1.9) of digraph will not be retained in the returned digraph.
Example

gap> gr := Digraph([[3], [1, 3, 5], [1], [1, 2, 4], [2, 3, 5]]);
<digraph with 5 vertices, 11 edges>
gap> new := OnDigraphs(gr, (1, 2));
<digraph with 5 vertices, 11 edges>
gap> OutNeighbours(new);
[[2, 3, 5], [3], [2], [2, 1, 4], [1, 3, 5]]
gap> gr := Digraph([[2], [], [2]]);
<digraph with 3 vertices, 2 edges>
gap> t := Transformation([1, 2, 1]);;
gap> new := OnDigraphs(gr, t);
<multidigraph with 3 vertices, 2 edges>
gap> OutNeighbours(new);
[[2, 2], [], []]
gap> ForAll(DigraphEdges(gr),
> e -> IsDigraphEdge(new, [e[1] ^ t, e[2] ^ t]));
true

89

Digraphs 90

7.1.2 OnMultiDigraphs

. OnMultiDigraphs(digraph, pair) (operation)

. OnMultiDigraphs(digraph, perm1, perm2) (operation)

Returns: A digraph.
If digraph is a digraph, and pair is a pair consisting of a permutation of the vertices and a

permutation of the edges of digraph , then this operation returns a digraph constructed by relabelling
the vertices and edges of digraph according to perm[1] and perm[2] , respectively.

In its second form, OnMultiDigraphs returns a digraph with vertices and edges permuted by
perm1 and perm2 , respectively.

Note that OnDigraphs(digraph, perm)=OnMultiDigraphs(digraph, [perm, ()]) where
perm is a permutation of the vertices of digraph . If you are only interested in the action of a permu-
tation on the vertices of a digraph, then you can use OnDigraphs instead of OnMultiDigraphs.

Example
gap> gr1 := Digraph([
> [3, 6, 3], [], [3], [9, 10], [9], [], [], [10, 4, 10], [], []]);
<multidigraph with 10 vertices, 10 edges>
gap> p := BlissCanonicalLabelling(gr1);
[(1,9,5,3,10,6,4,7), (1,7,9,5,2,8,4,10,3,6)]
gap> gr2 := OnMultiDigraphs(gr1, p);
<multidigraph with 10 vertices, 10 edges>
gap> OutNeighbours(gr2);
[[], [], [5], [], [], [], [5, 6], [6, 7, 6],

[10, 4, 10], [10]]

7.2 Isomorphisms and canonical labellings

From version 0.11.0 of Digraphs it is possible to use either bliss or nauty (via NautyTracesInterface)
to calculate canonical labellings and automorphism groups of digraphs; see [JK07] and [MP14] for
more details about bliss and nauty, respectively.

7.2.1 DigraphsUseNauty

. DigraphsUseNauty() (function)

. DigraphsUseBliss() (function)

Returns: Nothing.
These functions can be used to specify whether nauty or bliss should be used by default by Di-

graphs. If NautyTracesInterface is not available, then these functions do nothing. Otherwise, by
calling DigraphsUseNauty subsequent computations will default to using nauty rather than bliss,
where possible.

You can call these functions at any point in a GAP session, as many times as you like,
it is guaranteed that existing digraphs remain valid, and that comparison of existing digraphs
and newly created digraphs via IsIsomorphicDigraph (7.2.14), IsIsomorphicDigraph (7.2.15),
IsomorphismDigraphs (7.2.16), and IsomorphismDigraphs (7.2.17) are also valid.

It is also possible to compute the automorphism group of a specific digraph using both nauty and
bliss using NautyAutomorphismGroup (7.2.4) and BlissAutomorphismGroup (7.2.3), respectively.

http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
https://github.com/sebasguts/NautyTracesInterface
http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
http://pallini.di.uniroma1.it/
http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/
http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
http://www.tcs.tkk.fi/Software/bliss/

Digraphs 91

7.2.2 AutomorphismGroup (for a digraph)

. AutomorphismGroup(digraph) (attribute)

Returns: A permutation group.
If digraph is a digraph, then this attribute contains the group of automorphisms of digraph . An

automorphism of digraph is an isomorphism from digraph to itself. See IsomorphismDigraphs
(7.2.16) for more information about isomorphisms of digraphs.

The form in which the automorphism group is returned depends on whether digraph has multiple
edges; see IsMultiDigraph (6.1.8).

for a digraph without multiple edges
If digraph has no multiple edges, then the automorphism group is returned as a group of
permutations on the vertices of digraph .

for a multidigraph
If digraph is a multidigraph, then the automorphism group is a group of permutations on the
vertices and edges of digraph .

For convenience, the group is returned as the direct product G of the group of automorphisms
of the vertices of digraph with the stabiliser of the vertices in the automorphism group of
the edges. These two groups can be accessed using the operation Projection (Reference:
Projection for a domain and a positive integer), with the second argument being 1 or 2,
respectively.

The permutations in the group Projection(G, 1) act on the vertices of digraph , and the
permutations in the group Projection(G, 2) act on the indices of DigraphEdges(digraph).

By default, the automorphism group is found using bliss by Tommi Junttila and Petteri Kaski. If Nau-
tyTracesInterface is available, then nauty by Brendan Mckay and Adolfo Piperno can be used instead;
see BlissAutomorphismGroup (7.2.3), NautyAutomorphismGroup (7.2.4), DigraphsUseBliss
(7.2.1), and DigraphsUseNauty (7.2.1).

Example
gap> johnson := DigraphFromGraph6String("E}lw");
<digraph with 6 vertices, 24 edges>
gap> G := AutomorphismGroup(johnson);
Group([(3,4), (2,3)(4,5), (1,2)(5,6)])
gap> cycle := CycleDigraph(9);
<digraph with 9 vertices, 9 edges>
gap> G := AutomorphismGroup(cycle);
Group([(1,2,3,4,5,6,7,8,9)])
gap> IsCyclic(G) and Size(G) = 9;
true
gap> gr := DigraphEdgeUnion(CycleDigraph(3), CycleDigraph(3));
<multidigraph with 3 vertices, 6 edges>
gap> G := AutomorphismGroup(gr);
Group([(1,2,3), (8,9), (6,7), (4,5)])
gap> Range(Projection(G, 1));
Group([(1,2,3)])
gap> Range(Projection(G, 2));
Group([(5,6), (3,4), (1,2)])
gap> Size(G);
24

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 92

gap> gr := Digraph([[2], [3, 3], [3], [2]]);
<multidigraph with 4 vertices, 5 edges>
gap> G := AutomorphismGroup(gr);
Group([(1,2), (3,4)])
gap> P1 := Projection(G, 1);
1st projection of Group([(1,2), (3,4)])
gap> P2 := Projection(G, 2);
2nd projection of Group([(1,2), (3,4)])
gap> DigraphVertices(gr);
[1 .. 4]
gap> Range(P1);
Group([(1,4)])
gap> DigraphEdges(gr);
[[1, 2], [2, 3], [2, 3], [3, 3], [4, 2]]
gap> Range(P2);
Group([(2,3)])

7.2.3 BlissAutomorphismGroup

. BlissAutomorphismGroup(digraph[, colours]) (attribute)

Returns: A permutation group.
If digraph is a digraph, then this attribute contains the group of automorphisms of digraph as

calculated using bliss by Tommi Junttila and Petteri Kaski.
The attribute AutomorphismGroup (7.2.2) and operation AutomorphismGroup (7.2.5) returns the

value of either BlissAutomorphismGroup or NautyAutomorphismGroup (7.2.4). These groups are,
of course, equal but their generating sets may differ.

See also DigraphsUseBliss (7.2.1), and DigraphsUseNauty (7.2.1).
Example

gap> BlissAutomorphismGroup(JohnsonDigraph(5, 2));
Group([(3,4)(6,7)(8,9), (2,3)(5,6)(9,10), (2,5)(3,6)(4,7), (1,2)(6,8)
(7,9)])

7.2.4 NautyAutomorphismGroup

. NautyAutomorphismGroup(digraph[, colours]) (attribute)

Returns: A permutation group.
If digraph is a digraph, then this attribute contains the group of automorphisms of digraph

as calculated using nauty by Brendan Mckay and Adolfo Piperno via NautyTracesInterface. The
attribute AutomorphismGroup (7.2.2) and operation AutomorphismGroup (7.2.5) returns the value
of either NautyAutomorphismGroup or BlissAutomorphismGroup (7.2.3). These groups are, of
course, equal but their generating sets may differ.

See also DigraphsUseBliss (7.2.1), and DigraphsUseNauty (7.2.1).
Example

gap> NautyAutomorphismGroup(JohnsonDigraph(5, 2));
Group([(3,4)(6,7)(8,9), (2,3)(5,6)(9,10), (2,5)(3,6)(4,7), (1,2)(6,8)(7,9)])

http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
https://github.com/sebasguts/NautyTracesInterface

Digraphs 93

7.2.5 AutomorphismGroup (for a digraph and a homogeneous list)

. AutomorphismGroup(digraph, colours) (operation)

Returns: A permutation group.
This operation computes the automorphism group of a coloured digraph. A coloured digraph can

be specified by its underlying digraph digraph and its colouring colours . Let n be the number of
vertices of digraph . The colouring colours may have one of the following two forms:

• a list of n integers, where colours[i] is the colour of vertex i, using the colours [1 .. m]
for some m <= n; or

• a list of non-empty disjoint lists whose union is DigraphVertices(digraph), such that
colours[i] is the list of all vertices with colour i.

The automorphism group of a coloured digraph digraph with colouring colours is the group con-
sisting of its automorphisms; an automorphism of digraph is an isomorphism of coloured digraphs
from digraph to itself. This group is equal to the subgroup of AutomorphismGroup(digraph)
consisting of those automorphisms that preserve the colouring specified by colours . See
AutomorphismGroup (7.2.2), and see IsomorphismDigraphs (7.2.17) for more information about
isomorphisms of coloured digraphs.

The form in which the automorphism group is returned depends on whether digraph has multiple
edges; see IsMultiDigraph (6.1.8).

for a digraph without multiple edges
If digraph has no multiple edges, then the automorphism group is returned as a group of
permutations on the vertices of digraph .

for a multidigraph
If digraph is a multidigraph, then the automorphism group is a group of permutations on the
vertices and edges of digraph .

For convenience, the group is returned as the direct product G of the group of automorphisms
of the vertices of digraph with the stabiliser of the vertices in the automorphism group of
the edges. These two groups can be accessed using the operation Projection (Reference:
Projection for a domain and a positive integer), with the second argument being 1 or 2,
respectively.

The permutations in the group Projection(G, 1) act on the vertices of digraph , and the
permutations in the group Projection(G, 2) act on the indices of DigraphEdges(digraph).

By default, the automorphism group is found using bliss by Tommi Junttila and Petteri Kaski. If Nau-
tyTracesInterface is available, then nauty by Brendan Mckay and Adolfo Piperno can be used instead;
see BlissAutomorphismGroup (7.2.3), NautyAutomorphismGroup (7.2.4), DigraphsUseBliss
(7.2.1), and DigraphsUseNauty (7.2.1).

Example
gap> cycle := CycleDigraph(9);
<digraph with 9 vertices, 9 edges>
gap> G := AutomorphismGroup(cycle);;
gap> IsCyclic(G) and Size(G) = 9;
true
gap> colours := [[1, 4, 7], [2, 5, 8], [3, 6, 9]];;
gap> H := AutomorphismGroup(cycle, colours);;

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 94

gap> Size(H);
3
gap> H = AutomorphismGroup(cycle, [1, 2, 3, 1, 2, 3, 1, 2, 3]);
true
gap> H = SubgroupByProperty(G, p -> OnTuplesSets(colours, p) = colours);
true
gap> IsTrivial(AutomorphismGroup(cycle, [1, 1, 2, 2, 2, 2, 2, 2, 2]));
true
gap> gr := Digraph([[2], [3, 3], [3], [2], [2]]);
<multidigraph with 5 vertices, 6 edges>
gap> G := AutomorphismGroup(gr, [1, 1, 2, 3, 1]);
Group([(1,2), (3,4)])
gap> P1 := Projection(G, 1);
1st projection of Group([(1,2), (3,4)])
gap> P2 := Projection(G, 2);
2nd projection of Group([(1,2), (3,4)])
gap> DigraphVertices(gr);
[1 .. 5]
gap> Range(P1);
Group([(1,5)])
gap> DigraphEdges(gr);
[[1, 2], [2, 3], [2, 3], [3, 3], [4, 2], [5, 2]]
gap> Range(P2);
Group([(2,3)])

7.2.6 BlissCanonicalLabelling (for a digraph)

. BlissCanonicalLabelling(digraph) (attribute)

. NautyCanonicalLabelling(digraph) (attribute)

Returns: A permutation, or a list of two permutations.
A function ρ that maps a digraph to a digraph is a canonical representative map if the following

two conditions hold for all digraphs G and H:

• ρ(G) and G are isomorphic as digraphs; and

• ρ(G) = ρ(H) if and only if G and H are isomorphic as digraphs.

A canonical labelling of a digraph G (under ρ) is an isomorphism of G onto its canonical repre-
sentative, ρ(G). See IsomorphismDigraphs (7.2.16) for more information about isomorphisms of
digraphs.

BlissCanonicalLabelling returns a canonical labelling of the digraph digraph found using
bliss by Tommi Junttila and Petteri Kaski. NautyCanonicalLabelling returns a canonical labelling
of the digraph digraph found using nauty by Brendan McKay and Adolfo Piperno. Note that the
canonical labellings returned by bliss and nauty are not usually the same (and may depend of the
version used).

The form of the canonical labelling returned by BlissCanonicalLabelling depends on whether
digraph has multiple edges; see IsMultiDigraph (6.1.8).

for a digraph without multiple edges
If the digraph digraph has no multiple edges, then the canonical labelling of digraph is given

http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/

Digraphs 95

as a permutation of its vertices. The canonical representative of digraph can be created from
digraph and its canonical labelling p by using the operation OnDigraphs (7.1.1):

Example
gap> OnDigraphs(digraph, p);

for a multidigraph
The canonical labelling of the multidigraph digraph is given as a pair P of permutations. The
first, P[1], is a permutation of the vertices of digraph . The second, P[2], is a permutation
of the edges of digraph ; it acts on the indices of the list DigraphEdges(digraph). The
canonical representative of digraph can be created from digraph and its canonical labelling
P by using the operation OnMultiDigraphs (7.1.2):

Example
gap> OnMultiDigraphs(digraph, P);

Example
gap> digraph1 := DigraphFromDiSparse6String(".ImNS_AiB?qRN");
<digraph with 10 vertices, 8 edges>
gap> BlissCanonicalLabelling(digraph1);
(1,3,4)(2,10,6,7,9,8)
gap> p := (1, 2, 7, 5)(3, 9)(6, 10, 8);;
gap> digraph2 := OnDigraphs(digraph1, p);
<digraph with 10 vertices, 8 edges>
gap> digraph1 = digraph2;
false
gap> OnDigraphs(digraph1, BlissCanonicalLabelling(digraph1)) =
> OnDigraphs(digraph2, BlissCanonicalLabelling(digraph2));
true
gap> gr := DigraphFromDiSparse6String(".ImEk|O@SK?od");
<multidigraph with 10 vertices, 10 edges>
gap> BlissCanonicalLabelling(gr);
[(1,9,7,5)(2,10,3), (1,6,9)(2,5,10,4,8)(3,7)]
gap> gr := Digraph([[2], [3, 3], [3], [2], [2]]);
<multidigraph with 5 vertices, 6 edges>
gap> BlissCanonicalLabelling(gr, [1, 2, 2, 1, 3]);
[(1,2,4), (1,2,6,4,3,5)]

7.2.7 BlissCanonicalLabelling (for a digraph and a list)

. BlissCanonicalLabelling(digraph, colours) (operation)

. NautyCanonicalLabelling(digraph, colours) (operation)

Returns: A permutation.
A function ρ that maps a coloured digraph to a coloured digraph is a canonical representative map

if the following two conditions hold for all coloured digraphs G and H:

• ρ(G) and G are isomorphic as coloured digraphs; and

• ρ(G) = ρ(H) if and only if G and H are isomorphic as coloured digraphs.

A canonical labelling of a coloured digraph G (under ρ) is an isomorphism of G onto its canonical
representative, ρ(G). See IsomorphismDigraphs (7.2.17) for more information about isomorphisms
of coloured digraphs.

Digraphs 96

A coloured digraph can be specified by its underlying digraph digraph and its colouring
colours . Let n be the number of vertices of digraph . The colouring colours may have one of
the following two forms:

• a list of n integers, where colours[i] is the colour of vertex i, using the colours [1 .. m]
for some m <= n; or

• a list of non-empty disjoint lists whose union is DigraphVertices(digraph), such that
colours[i] is the list of all vertices with colour i.

If digraph and colours together form a coloured digraph, BlissCanonicalLabelling returns a
canonical labelling of the digraph digraph found using bliss by Tommi Junttila and Petteri Kaski.
Similarly, NautyCanonicalLabelling returns a canonical labelling of the digraph digraph found
using nauty by Brendan McKay and Adolfo Piperno. Note that the canonical labellings returned by
bliss and nauty are not usually the same (and may depend of the version used).

The form of the canonical labelling returned by BlissCanonicalLabelling depends on whether
digraph has multiple edges; see IsMultiDigraph (6.1.8).

for a digraph without multiple edges
If the digraph digraph has no multiple edges, then the canonical labelling of digraph is given
as a permutation of its vertices. The canonical representative of digraph can be created from
digraph and its canonical labelling p by using the operation OnDigraphs (7.1.1):

Example
gap> OnDigraphs(digraph, p);

for a multidigraph
The canonical labelling of the multidigraph digraph is given as a pair P of permutations. The
first, P[1], is a permutation of the vertices of digraph . The second, P[2], is a permutation
of the edges of digraph ; it acts on the indices of the list DigraphEdges(digraph). The
canonical representative of digraph can be created from digraph and its canonical labelling
P by using the operation OnMultiDigraphs (7.1.2):

Example
gap> OnMultiDigraphs(digraph, P);

In either case, the colouring of the canonical representative can easily be constructed. A vertex v (in
digraph) has colour i if and only if the vertex v ^ p (in the canonical representative) has colour
i, where p is the permutation of the canonical labelling that acts on the vertices of digraph . In
particular, if colours has the first form that is described above, then the colouring of the canonical
representative is given by:

Example
gap> List(DigraphVertices(digraph), i -> colours[i / p]);

On the other hand, if colours has the second form above, then the canonical representative has
colouring:

Example
gap> OnTuplesSets(colours, p);

http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/
http://www.tcs.tkk.fi/Software/bliss/
http://pallini.di.uniroma1.it/

Digraphs 97

Example
gap> digraph := DigraphFromDiSparse6String(".ImNS_AiB?qRN");
<digraph with 10 vertices, 8 edges>
gap> colours := [[1, 2, 8, 9, 10], [3, 4, 5, 6, 7]];;
gap> p := BlissCanonicalLabelling(digraph, colours);
(2,3,7,10)(4,6,9,5,8)
gap> OnDigraphs(digraph, p);
<digraph with 10 vertices, 8 edges>
gap> OnTuplesSets(colours, p);
[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]
gap> colours := [1, 1, 1, 1, 2, 3, 1, 3, 2, 1];;
gap> p := BlissCanonicalLabelling(digraph, colours);
(2,3,4,6,10,5,8,9,7)
gap> OnDigraphs(digraph, p);
<digraph with 10 vertices, 8 edges>
gap> List(DigraphVertices(digraph), i -> colours[i / p]);
[1, 1, 1, 1, 1, 1, 2, 2, 3, 3]

7.2.8 BlissCanonicalDigraph

. BlissCanonicalDigraph(digraph) (attribute)

. NautyCanonicalDigraph(digraph) (attribute)

Returns: A digraph.
The attribute BlissCanonicalLabelling returns the canonical representative found by applying

BlissCanonicalLabelling (7.2.6). The digraph returned is canonical in the sense that

• BlissCanonicalDigraph(digraph) and digraph are isomorphic as digraphs; and

• If gr is any digraph then BlissCanonicalDigraph(gr) and
BlissCanonicalDigraph(digraph) are equal if and only if gr and digraph are iso-
morphic as digraphs.

Analogously, the attribute NautyCanonicalLabelling returns the canonical representative found by
applying NautyCanonicalLabelling (7.2.6).

Example
gap> digraph := Digraph([[1], [2, 3], [3], [1, 2, 3]]);
<digraph with 4 vertices, 7 edges>
gap> canon := BlissCanonicalDigraph(digraph);
<digraph with 4 vertices, 7 edges>
gap> OutNeighbours(canon);
[[1], [2, 4], [1, 2, 4], [4]]

7.2.9 DigraphGroup

. DigraphGroup(digraph) (attribute)

Returns: A permutation group.
If digraph was created knowing a subgroup of its automorphism group, then this group is stored

in the attribute DigraphGroup. If digraph is not created knowing a subgroup of its automorphism
group, then DigraphGroup returns the entire automorphism group of digraph .

Digraphs 98

Note that certain other constructor operations such as CayleyDigraph (3.1.10),
BipartiteDoubleDigraph (3.3.32), and DoubleDigraph (3.3.31), may not require a group
as one of the arguments, but use the standard constructor method using a group, and hence set the
DigraphGroup attribute for the resulting digraph.

Example
gap> n := 4;;
gap> adj := function(x, y)
> return (((x - y) mod n) = 1) or (((x - y) mod n) = n - 1);
> end;;
gap> group := CyclicGroup(IsPermGroup, n);
Group([(1,2,3,4)])
gap> digraph := Digraph(group, [1 .. n], \^, adj);
<digraph with 4 vertices, 8 edges>
gap> HasDigraphGroup(digraph);
true
gap> DigraphGroup(digraph);
Group([(1,2,3,4)])
gap> AutomorphismGroup(digraph);
Group([(2,4), (1,2)(3,4)])
gap> ddigraph := DoubleDigraph(digraph);
<digraph with 8 vertices, 32 edges>
gap> HasDigraphGroup(ddigraph);
true
gap> DigraphGroup(ddigraph);
Group([(1,2,3,4)(5,6,7,8), (1,5)(2,6)(3,7)(4,8)])
gap> AutomorphismGroup(ddigraph) =
> Group([(6, 8), (5, 7), (4, 6), (3, 5), (2, 4),
> (1, 2)(3, 4)(5, 6)(7, 8)]);
true
gap> digraph := Digraph([[2, 3], [], []]);
<digraph with 3 vertices, 2 edges>
gap> HasDigraphGroup(digraph);
false
gap> HasAutomorphismGroup(digraph);
false
gap> DigraphGroup(digraph);
Group([(2,3)])
gap> HasAutomorphismGroup(digraph);
true
gap> group := DihedralGroup(8);
<pc group of size 8 with 3 generators>
gap> digraph := CayleyDigraph(group);
<digraph with 8 vertices, 24 edges>
gap> HasDigraphGroup(digraph);
true
gap> DigraphGroup(digraph);
Group([(1,2)(3,8)(4,6)(5,7), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)
(5,8)])

Digraphs 99

7.2.10 DigraphOrbits

. DigraphOrbits(digraph) (attribute)

Returns: A list of lists of integers.
DigraphOrbits returns the orbits of the action of the DigraphGroup (7.2.9) on the set of vertices

of digraph .
Example

gap> G := Group([(2, 3)(7, 8, 9), (1, 2, 3)(4, 5, 6)(8, 9)]);;
gap> gr := EdgeOrbitsDigraph(G, [1, 2]);
<digraph with 9 vertices, 6 edges>
gap> DigraphOrbits(gr);
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

7.2.11 DigraphOrbitReps

. DigraphOrbitReps(digraph) (attribute)

Returns: A list of integers.
DigraphOrbitReps returns a list of orbit representatives of the action of the DigraphGroup

(7.2.9) on the set of vertices of digraph .
Example

gap> digraph := CayleyDigraph(AlternatingGroup(4));
<digraph with 12 vertices, 24 edges>
gap> DigraphOrbitReps(digraph);
[1]
gap> digraph := DigraphFromDigraph6String("&IGO??S?‘?_@?a?CK?O");
<digraph with 10 vertices, 14 edges>
gap> DigraphOrbitReps(digraph);
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

7.2.12 DigraphSchreierVector

. DigraphSchreierVector(digraph) (attribute)

Returns: A list of integers.
DigraphSchreierVector returns the so-called Schreier vector of the action of the

DigraphGroup (7.2.9) on the set of vertices of digraph . The Schreier vector is a list sch of in-
tegers with length DigraphNrVertices(digraph) where:

sch[i] < 0:
implies that i is an orbit representative and DigraphOrbitReps(digraph)[-sch[i]] = i.

sch[i] > 0:
implies that i / gens[sch[i]] is one step closer to the root (or representative) of the tree,
where gens is the generators of DigraphGroup(digraph).

Example
gap> digraph := CayleyDigraph(AlternatingGroup(4));
<digraph with 12 vertices, 24 edges>
gap> sch := DigraphSchreierVector(digraph);
[-1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1]
gap> DigraphOrbitReps(digraph);
[1]

Digraphs 100

gap> gens := GeneratorsOfGroup(DigraphGroup(digraph));
[(1,5,7)(2,4,8)(3,6,9)(10,11,12), (1,2,3)(4,7,10)(5,9,11)(6,8,12)]
gap> 10 / gens[sch[10]];
7
gap> 7 / gens[sch[7]];
5
gap> 5 / gens[sch[5]];
1

7.2.13 DigraphStabilizer

. DigraphStabilizer(digraph, v) (operation)

Returns: A permutation group.
DigraphStabilizer returns the stabilizer of the vertex v under of the action of the

DigraphGroup (7.2.9) on the set of vertices of digraph .
Example

gap> digraph := DigraphFromDigraph6String("&GYHPQgWTIIPW");
<digraph with 8 vertices, 24 edges>
gap> DigraphStabilizer(digraph, 8);
Group(())
gap> DigraphStabilizer(digraph, 2);
Group(())

7.2.14 IsIsomorphicDigraph (for digraphs)

. IsIsomorphicDigraph(digraph1, digraph2) (operation)

Returns: true or false.
This operation returns true if there exists an isomorphism from the digraph digraph1 to the

digraph digraph2 . See IsomorphismDigraphs (7.2.16) for more information about isomorphisms
of digraphs.

By default, an isomorphism is found using the canonical labellings of the digraphs obtained
from bliss by Tommi Junttila and Petteri Kaski. If NautyTracesInterface is available, then nauty
by Brendan Mckay and Adolfo Piperno can be used instead; see DigraphsUseBliss (7.2.1), and
DigraphsUseNauty (7.2.1).

Example
gap> digraph1 := CycleDigraph(4);
<digraph with 4 vertices, 4 edges>
gap> digraph2 := CycleDigraph(5);
<digraph with 5 vertices, 5 edges>
gap> IsIsomorphicDigraph(digraph1, digraph2);
false
gap> digraph2 := DigraphReverse(digraph1);
<digraph with 4 vertices, 4 edges>
gap> IsIsomorphicDigraph(digraph1, digraph2);
true
gap> digraph1 := DigraphFromDiSparse6String(".IiGdqrHiogeaF");
<multidigraph with 10 vertices, 10 edges>
gap> digraph2 := DigraphFromDiSparse6String(".IiK‘K@FFSouF_|^");
<multidigraph with 10 vertices, 10 edges>
gap> IsIsomorphicDigraph(digraph1, digraph2);

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 101

false
gap> digraph1 := Digraph([[3], [], []]);
<digraph with 3 vertices, 1 edge>
gap> digraph2 := Digraph([[], [], [2]]);
<digraph with 3 vertices, 1 edge>
gap> IsIsomorphicDigraph(digraph1, digraph2);
true

7.2.15 IsIsomorphicDigraph (for digraphs and homogeneous lists)

. IsIsomorphicDigraph(digraph1, digraph2, colours1, colours2) (operation)

Returns: true or false.
This operation tests for isomorphism of coloured digraphs. A coloured digraph can be specified

by its underlying digraph digraph1 and its colouring colours1 . Let n be the number of vertices of
digraph1 . The colouring colours1 may have one of the following two forms:

• a list of n integers, where colours[i] is the colour of vertex i, using the colours [1 .. m]
for some m <= n; or

• a list of non-empty disjoint lists whose union is DigraphVertices(digraph), such that
colours[i] is the list of all vertices with colour i.

If digraph1 and digraph2 are digraphs without multiple edges, and colours1 and colours2 are
colourings of digraph1 and digraph2 , respectively, then this operation returns true if there exists
an isomorphism between these two coloured digraphs. See IsomorphismDigraphs (7.2.17) for more
information about isomorphisms of coloured digraphs.

By default, an isomorphism is found using the canonical labellings of the digraphs obtained
from bliss by Tommi Junttila and Petteri Kaski. If NautyTracesInterface is available, then nauty
by Brendan Mckay and Adolfo Piperno can be used instead; see DigraphsUseBliss (7.2.1), and
DigraphsUseNauty (7.2.1).

Example
gap> digraph1 := ChainDigraph(4);
<digraph with 4 vertices, 3 edges>
gap> digraph2 := ChainDigraph(3);
<digraph with 3 vertices, 2 edges>
gap> IsIsomorphicDigraph(digraph1, digraph2,
> [[1, 4], [2, 3]], [[1, 2], [3]]);
false
gap> digraph2 := DigraphReverse(digraph1);
<digraph with 4 vertices, 3 edges>
gap> IsIsomorphicDigraph(digraph1, digraph2,
> [1, 1, 1, 1], [1, 1, 1, 1]);
true
gap> IsIsomorphicDigraph(digraph1, digraph2,
> [1, 2, 2, 1], [1, 2, 2, 1]);
true
gap> IsIsomorphicDigraph(digraph1, digraph2,
> [1, 1, 2, 2], [1, 1, 2, 2]);
false
gap> digraph1 := Digraph([[2, 1, 2], [1, 2, 1]]);
<multidigraph with 2 vertices, 6 edges>

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 102

gap> IsIsomorphicDigraph(digraph1, digraph1, [2, 1], [1, 2]);
true
gap> IsIsomorphicDigraph(digraph1, digraph1, [1, 1], [1, 2]);
false

7.2.16 IsomorphismDigraphs (for digraphs)

. IsomorphismDigraphs(digraph1, digraph2) (operation)

Returns: A permutation, or a pair of permutations, or fail.
This operation returns an isomorphism between the digraphs digraph1 and digraph2 if one

exists, else this operation returns fail.

for digraphs without multiple edges
An isomorphism from a digraph digraph1 to a digraph digraph2 is a bijection p from the
vertices of digraph1 to the vertices of digraph2 with the following property: for all vertices
i and j of digraph1 , [i, j] is an edge of digraph1 if and only if [i ^ p, j ^ p] is an
edge of digraph2 .

If there exists such an isomorphism, then this operation returns one. The form of this isomor-
phism is a permutation p of the vertices of digraph1 such that

OnDigraphs(digraph1, p) = digraph2.

for multidigraphs
An isomorphism from a multidigraph digraph1 to a multidigraph digraph2 is a bijection
P[1] from the vertices of digraph1 to the vertices of digraph2 and a bijection P[2] from
the indices of edges of digraph1 to the indices of edges of digraph2 with the following
property: [i, j] is the kth edge of digraph1 if and only if [i ^ P[1], j ^ P[1]] is the
(k ^ P[2])th edge of digraph2 .

If there exists such an isomorphism, then this operation returns one. The form of this isomor-
phism is a pair of permutations P -– where the first is a permutation of the vertices of digraph1
and the second is a permutation of the indices of DigraphEdges(digraph1) –- such that

OnMultiDigraphs(digraph1, P) = digraph2 .

By default, an isomorphism is found using the canonical labellings of the digraphs obtained from
bliss by Tommi Junttila and Petteri Kaski. If NautyTracesInterface is available, then nauty by
Brendan Mckay and Adolfo Piperno can be used instead; see DigraphsUseBliss (7.2.1), and
DigraphsUseNauty (7.2.1).

Example
gap> digraph1 := CycleDigraph(4);
<digraph with 4 vertices, 4 edges>
gap> digraph2 := CycleDigraph(5);
<digraph with 5 vertices, 5 edges>
gap> IsomorphismDigraphs(digraph1, digraph2);
fail
gap> digraph1 := CompleteBipartiteDigraph(10, 5);
<digraph with 15 vertices, 100 edges>
gap> digraph2 := CompleteBipartiteDigraph(5, 10);
<digraph with 15 vertices, 100 edges>
gap> p := IsomorphismDigraphs(digraph1, digraph2);

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 103

(1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)
gap> OnDigraphs(digraph1, p) = digraph2;
true
gap> digraph1 := DigraphFromDiSparse6String(".ImNS_?DSE@ce[~");
<multidigraph with 10 vertices, 10 edges>
gap> digraph2 := DigraphFromDiSparse6String(".IkOlQefi_kgOf");
<multidigraph with 10 vertices, 10 edges>
gap> IsomorphismDigraphs(digraph1, digraph2);
[(1,9,5,3,10,6,4,7,2), (1,8,6,3,7)(2,9,4,10,5)]
gap> digraph1 := DigraphByEdges([[7, 10], [7, 10]], 10);
<multidigraph with 10 vertices, 2 edges>
gap> digraph2 := DigraphByEdges([[2, 3], [2, 3]], 10);
<multidigraph with 10 vertices, 2 edges>
gap> IsomorphismDigraphs(digraph1, digraph2);
[(2,4,6,8,9,10,3,5,7), ()]

7.2.17 IsomorphismDigraphs (for digraphs and homogeneous lists)

. IsomorphismDigraphs(digraph1, digraph2, colours1, colours2) (operation)

Returns: A permutation, or fail.
This operation searches for an isomorphism between coloured digraphs. A coloured digraph can

be specified by its underlying digraph digraph1 and its colouring colours1 . Let n be the number of
vertices of digraph1 . The colouring colours1 may have one of the following two forms:

• a list of n integers, where colours[i] is the colour of vertex i, using the colours [1 .. m]
for some m <= n; or

• a list of non-empty disjoint lists whose union is DigraphVertices(digraph), such that
colours[i] is the list of all vertices with colour i.

An isomorphism between coloured digraphs is an isomorphism between the underlying digraphs that
preserves the colourings. See IsomorphismDigraphs (7.2.16) for more information about isomor-
phisms of digraphs. More precisely, let f be an isomorphism of digraphs from the digraph digraph1
(with colouring colours1) to the digraph digraph2 (with colouring colours2), and let p be the
permutation of the vertices of digraph1 that corresponds to f. Then f preserves the colourings of
digraph1 and digraph2 – and hence is an isomorphism of coloured digraphs – if colours1[i] =
colours2[i ^ p] for all vertices i in digraph1 .

This operation returns such an isomorphism if one exists, else it returns fail.
By default, an isomorphism is found using the canonical labellings of the digraphs obtained

from bliss by Tommi Junttila and Petteri Kaski. If NautyTracesInterface is available, then nauty
by Brendan Mckay and Adolfo Piperno can be used instead; see DigraphsUseBliss (7.2.1), and
DigraphsUseNauty (7.2.1).

Example
gap> digraph1 := ChainDigraph(4);
<digraph with 4 vertices, 3 edges>
gap> digraph2 := ChainDigraph(3);
<digraph with 3 vertices, 2 edges>
gap> IsomorphismDigraphs(digraph1, digraph2,
> [[1, 4], [2, 3]], [[1, 2], [3]]);
fail

http://www.tcs.tkk.fi/Software/bliss/
https://github.com/sebasguts/NautyTracesInterface
http://pallini.di.uniroma1.it/

Digraphs 104

gap> digraph2 := DigraphReverse(digraph1);
<digraph with 4 vertices, 3 edges>
gap> colours1 := [1, 1, 1, 1];;
gap> colours2 := [1, 1, 1, 1];;
gap> p := IsomorphismDigraphs(digraph1, digraph2, colours1, colours2);
(1,4)(2,3)
gap> OnDigraphs(digraph1, p) = digraph2;
true
gap> List(DigraphVertices(digraph1), i -> colours1[i ^ p]) = colours2;
true
gap> colours1 := [1, 1, 2, 2];;
gap> colours2 := [2, 2, 1, 1];;
gap> p := IsomorphismDigraphs(digraph1, digraph2, colours1, colours2);
(1,4)(2,3)
gap> OnDigraphs(digraph1, p) = digraph2;
true
gap> List(DigraphVertices(digraph1), i -> colours1[i ^ p]) = colours2;
true
gap> IsomorphismDigraphs(digraph1, digraph2,
> [1, 1, 2, 2], [1, 1, 2, 2]);
fail
gap> digraph1 := Digraph([[2, 2], [2], [1]]);
<multidigraph with 3 vertices, 4 edges>
gap> digraph2 := Digraph([[1], [1, 1], [2]]);
<multidigraph with 3 vertices, 4 edges>
gap> IsomorphismDigraphs(digraph1, digraph2, [1, 2, 2], [2, 1, 2]);
[(1,2), (1,2,3)]

7.2.18 RepresentativeOutNeighbours

. RepresentativeOutNeighbours(digraph) (attribute)

Returns: An immutable list of immutable lists.
This function returns the list out of out-neighbours of each representative of the orbits of the

action of DigraphGroup (7.2.9) on the vertex set of the digraph digraph .
More specifically, if reps is the list of orbit representatives, then a vertex j appears in out[i]

each time there exists an edge with source reps[i] and range j in digraph .
If DigraphGroup (7.2.9) is trivial, then OutNeighbours (5.2.6) is returned.

Example
gap> digraph := Digraph([
> [2, 1, 3, 4, 5], [3, 5], [2], [1, 2, 3, 5], [1, 2, 3, 4]]);
<digraph with 5 vertices, 16 edges>
gap> DigraphGroup(digraph);
Group(())
gap> RepresentativeOutNeighbours(digraph);
[[2, 1, 3, 4, 5], [3, 5], [2], [1, 2, 3, 5], [1, 2, 3, 4]]
gap> digraph := DigraphFromDigraph6String("&GYHPQgWTIIPW");
<digraph with 8 vertices, 24 edges>
gap> DigraphGroup(digraph);
Group([(1,2)(3,4)(5,6)(7,8), (1,3,2,4)(5,7,6,8), (1,5)(2,6)(3,8)
(4,7)])

Digraphs 105

gap> Set(RepresentativeOutNeighbours(digraph), Set);
[[2, 3, 5]]

7.2.19 IsDigraphIsomorphism

. IsDigraphIsomorphism(src, ran, x) (operation)

. IsDigraphAutomorphism(digraph, x) (operation)

Returns: true or false.
IsDigraphIsomorphism returns true if the permutation or transformation x is an isomorphism

from the digraph src to the digraph ran .
IsDigraphAutomorphism returns true if the permutation or transformation x is an automor-

phism of the digraph digraph .
A permutation or transformation x is an isomorphism from a digraph src to a digraph ran if the

following hold:

• x is a bijection from the vertices of src to those of ran ;

• [u ^ x, v ^ x] is an edge of ran if and only if [u, v] is an edge of src ; and

• x fixes every i which is not a vertex of src .

See also AutomorphismGroup (7.2.2).
For some digraphs, it can be faster to use IsDigraphAutomorphism than to test membership in

the automorphism group of digraph .
Example

gap> src := Digraph([[1], [1, 2], [1, 3]]);
<digraph with 3 vertices, 5 edges>
gap> IsDigraphAutomorphism(src, (1, 2, 3));
false
gap> IsDigraphAutomorphism(src, (2, 3));
true
gap> IsDigraphAutomorphism(src, (2, 3)(4, 5));
false
gap> IsDigraphAutomorphism(src, (1, 4));
false
gap> IsDigraphAutomorphism(src, ());
true
gap> ran := Digraph([[2, 1], [2], [2, 3]]);
<digraph with 3 vertices, 5 edges>
gap> IsDigraphIsomorphism(src, ran, (1, 2));
true
gap> IsDigraphIsomorphism(ran, src, (1, 2));
true
gap> IsDigraphIsomorphism(ran, src, (1, 2));
true
gap> IsDigraphIsomorphism(src, Digraph([[3], [1, 3], [2]]), (1, 2, 3));
false

Digraphs 106

7.2.20 IsDigraphColouring

. IsDigraphColouring(digraph, list) (operation)

. IsDigraphColouring(digraph, t) (operation)

Returns: true or false.
The operation IsDigraphColouring verifies whether or not the list list describes a proper

colouring of the digraph digraph .
A list list describes a proper colouring of a digraph digraph if list consists of positive in-

tegers, the length of list equals the number of vertices in digraph , and for any vertices u, v of
digraph if u and v are adjacent, then list[u] >< list[v].

A transformation t describes a proper colouring of a digraph digraph , if
ImageListOfTransformation(t, DigraphNrVertices(digraph)) is a proper colouring
of digraph .

See also IsDigraphHomomorphism (7.3.10).
Example

gap> D := JohnsonDigraph(5, 3);
<digraph with 10 vertices, 60 edges>
gap> IsDigraphColouring(D, [1, 2, 3, 3, 2, 1, 4, 5, 6, 7]);
true
gap> IsDigraphColouring(D, [1, 2, 3, 3, 2, 1, 2, 5, 6, 7]);
false
gap> IsDigraphColouring(D, [1, 2, 3, 3, 2, 1, 2, 5, 6, -1]);
false
gap> IsDigraphColouring(D, [1, 2, 3]);
false
gap> IsDigraphColouring(D, IdentityTransformation);
true

7.3 Homomorphisms of digraphs

The following methods exist to find homomorphisms between digraphs. If an argument to one of these
methods is a digraph with multiple edges, then the multiplicity of edges will be ignored in order to
perform the calculation; the digraph will be treated as if it has no multiple edges.

7.3.1 HomomorphismDigraphsFinder

. HomomorphismDigraphsFinder(D1, D2, hook, user_param, max_results, hint,
injective, image, partial_map, colors1, colors2[, order]) (function)

Returns: The argument user_param .
This function finds homomorphisms from the digraph D1 to the digraph D2 subject to the condi-

tions imposed by the other arguments as described below.
If f and g are homomorphisms found by HomomorphismDigraphsFinder, then f cannot be ob-

tained from g by right multiplying by an automorphism of D2 .

hook
This argument should be a function or fail.

If hook is a function, then it must have two arguments user_param (see below) and a transfor-
mation t. The function hook(user_param, t) is called every time a new homomorphism t
is found by HomomorphismDigraphsFinder.

Digraphs 107

If hook is fail, then a default function is used which simply adds every new homomorphism
found by HomomorphismDigraphsFinder to user_param , which must be a mutable list in this
case.

user_param
If hook is a function, then user_param can be any GAP object. The object user_param is
used as the first argument of the function hook . For example, user_param might be a trans-
formation semigroup, and hook(user_param, t) might set user_param to be the closure of
user_param and t.

If the value of hook is fail, then the value of user_param must be a mutable list.

max_results
This argument should be a positive integer or infinity. HomomorphismDigraphsFinder will
return after it has found max_results homomorphisms or the search is complete, whichever
happens first.

hint
This argument should be a positive integer or fail.

If hint is a positive integer, then only homorphisms of rank hint are found.

If hint is fail, then no restriction is put on the rank of homomorphisms found.

injective
This argument should be 0, 1, or 2. If it is 2, then only embeddings are found, if it is 1, then
only injective homomorphisms are found, and if it is 0 there are no restrictions imposed by this
argument.

For backwards compatibility, injective can also be false or true which correspond to the
values 0 and 1 described in the previous paragraph, respectively.

image
This argument should be a subset of the vertices of the graph D2 .
HomomorphismDigraphsFinder only finds homomorphisms from D1 to the subgraph of
D2 induced by the vertices image .

partial_map
This argument should be a partial map from D1 to D2 , that is, a (not necessarily dense) list
of vertices of the digraph D2 of length no greater than the number vertices in the digraph D1 .
HomomorphismDigraphsFinder only finds homomorphisms extending partial_map (if any).

colors1
This should be a list representing possible colours of vertices in the digraph D1 ; see
AutomorphismGroup (7.2.5) for details of the permissible values for this argument.

colors2
This should be a list representing possible colours of vertices in the digraph D2 ; see
AutomorphismGroup (7.2.5) for details of the permissible values for this argument.

order
The optional final argument order specifies the order the vertices in D1 appear in the search for

Digraphs 108

homomorphisms. The value of this parameter can have a large impact on the runtime of the func-
tion. It seems in many cases to be a good idea for this to be the DigraphWelshPowellOrder
(7.3.15), i.e. vertices ordered from highest to lowest degree.

Example
gap> D := ChainDigraph(10);
<digraph with 10 vertices, 9 edges>
gap> D := DigraphSymmetricClosure(D);
<digraph with 10 vertices, 18 edges>
gap> HomomorphismDigraphsFinder(D, D, fail, [], infinity, 2, 0,
> [3, 4], [], fail, fail);
[Transformation([3, 4, 3, 4, 3, 4, 3, 4, 3, 4]),

Transformation([4, 3, 4, 3, 4, 3, 4, 3, 4, 3])]
gap> D2 := CompleteDigraph(6);;
gap> HomomorphismDigraphsFinder(D, D2, fail, [], 1, fail, 0,
> [1 .. 6], [1, 2, 1], fail, fail);
[Transformation([1, 2, 1, 3, 4, 5, 6, 1, 2, 1])]
gap> func := function(user_param, t)
> Add(user_param, t * user_param[1]);
> end;;
gap> HomomorphismDigraphsFinder(D, D2, func, [Transformation([2, 2])],
> 3, fail, 0, [1 .. 6], [1, 2, 1], fail, fail);
[Transformation([2, 2]),

Transformation([2, 2, 2, 3, 4, 5, 6, 2, 2, 2]),
Transformation([2, 2, 2, 3, 4, 5, 6, 2, 2, 3]),
Transformation([2, 2, 2, 3, 4, 5, 6, 2, 2, 4])]

7.3.2 DigraphHomomorphism

. DigraphHomomorphism(digraph1, digraph2) (operation)

Returns: A transformation, or fail.
A homomorphism from digraph1 to digraph2 is a mapping from the vertex set of digraph1 to

a subset of the vertices of digraph2 , such that every pair of vertices [i,j] which has an edge i->j
is mapped to a pair of vertices [a,b] which has an edge a->b. Note that non-adjacent vertices can
still be mapped to adjacent vertices.

DigraphHomomorphism returns a single homomorphism between digraph1 and digraph2 if it
exists, otherwise it returns fail.

Example
gap> gr1 := ChainDigraph(3);;
gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);
<digraph with 5 vertices, 6 edges>
gap> DigraphHomomorphism(gr1, gr1);
IdentityTransformation
gap> map := DigraphHomomorphism(gr1, gr2);
Transformation([3, 1, 5, 4, 5])
gap> IsDigraphHomomorphism(gr1, gr2, map);
true

Digraphs 109

7.3.3 HomomorphismsDigraphs

. HomomorphismsDigraphs(digraph1, digraph2) (operation)

. HomomorphismsDigraphsRepresentatives(digraph1, digraph2) (operation)

Returns: A list of transformations.
HomomorphismsDigraphsRepresentatives finds every DigraphHomomorphism (7.3.2) be-

tween digraph1 and digraph2 , up to right multiplication by an element of the AutomorphismGroup
(7.2.2) of digraph2 . In other words, every homomorphism f between digraph1
and digraph2 can be written as the composition f = g * x, where g is one of the
HomomorphismsDigraphsRepresentatives and x is an automorphism of digraph2 .

HomomorphismsDigraphs returns all homomorphisms between digraph1 and digraph2 .
Example

gap> gr1 := ChainDigraph(3);;
gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);
<digraph with 5 vertices, 6 edges>
gap> HomomorphismsDigraphs(gr1, gr2);
[Transformation([1, 3, 1]), Transformation([1, 3, 3]),

Transformation([1, 5, 4, 4, 5]), Transformation([2, 2, 2]),
Transformation([3, 1, 3]), Transformation([3, 1, 5, 4, 5]),
Transformation([3, 3, 1]), Transformation([3, 3, 3])]

gap> HomomorphismsDigraphsRepresentatives(gr1, CompleteDigraph(3));
[Transformation([2, 1]), Transformation([2, 1, 2])]

7.3.4 DigraphMonomorphism

. DigraphMonomorphism(digraph1, digraph2) (operation)

Returns: A transformation, or fail.
DigraphMonomorphism returns a single injective DigraphHomomorphism (7.3.2) between

digraph1 and digraph2 if one exists, otherwise it returns fail.
Example

gap> gr1 := ChainDigraph(3);;
gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);
<digraph with 5 vertices, 6 edges>
gap> DigraphMonomorphism(gr1, gr1);
IdentityTransformation
gap> DigraphMonomorphism(gr1, gr2);
Transformation([3, 1, 5, 4, 5])

7.3.5 MonomorphismsDigraphs

. MonomorphismsDigraphs(digraph1, digraph2) (operation)

. MonomorphismsDigraphsRepresentatives(digraph1, digraph2) (operation)

Returns: A list of transformations.
These operations behave the same as HomomorphismsDigraphs (7.3.3) and

HomomorphismsDigraphsRepresentatives (7.3.3), except they only return injective homo-
morphisms.

Example
gap> gr1 := ChainDigraph(3);;
gap> gr2 := Digraph([[3, 5], [2], [3, 1], [], [4]]);

Digraphs 110

<digraph with 5 vertices, 6 edges>
gap> MonomorphismsDigraphs(gr1, gr2);
[Transformation([1, 5, 4, 4, 5]),

Transformation([3, 1, 5, 4, 5])]
gap> MonomorphismsDigraphsRepresentatives(gr1, CompleteDigraph(3));
[Transformation([2, 1])]

7.3.6 DigraphEpimorphism

. DigraphEpimorphism(digraph1, digraph2) (operation)

Returns: A transformation, or fail.
DigraphEpimorphism returns a single surjective DigraphHomomorphism (7.3.2) between

digraph1 and digraph2 if one exists, otherwise it returns fail.
Example

gap> gr1 := DigraphReverse(ChainDigraph(4));
<digraph with 4 vertices, 3 edges>
gap> gr2 := DigraphRemoveEdge(CompleteDigraph(3), [1, 2]);
<digraph with 3 vertices, 5 edges>
gap> DigraphEpimorphism(gr2, gr1);
fail
gap> DigraphEpimorphism(gr1, gr2);
Transformation([3, 1, 2, 3])

7.3.7 EpimorphismsDigraphs

. EpimorphismsDigraphs(digraph1, digraph2) (operation)

. EpimorphismsDigraphsRepresentatives(digraph1, digraph2) (operation)

Returns: A list of transformations.
These operations behave the same as HomomorphismsDigraphs (7.3.3) and

HomomorphismsDigraphsRepresentatives (7.3.3), except they only return surjective homo-
morphisms.

Example
gap> gr1 := DigraphReverse(ChainDigraph(4));
<digraph with 4 vertices, 3 edges>
gap> gr2 := DigraphSymmetricClosure(CycleDigraph(3));
<digraph with 3 vertices, 6 edges>
gap> EpimorphismsDigraphsRepresentatives(gr1, gr2);
[Transformation([3, 1, 2, 1]), Transformation([3, 1, 2, 3]),

Transformation([2, 1, 2, 3])]
gap> EpimorphismsDigraphs(gr1, gr2);
[Transformation([1, 2, 1, 3]), Transformation([1, 2, 3, 1]),

Transformation([1, 2, 3, 2]), Transformation([1, 3, 1, 2]),
Transformation([1, 3, 2, 1]), Transformation([1, 3, 2, 3]),
Transformation([2, 1, 2, 3]), Transformation([2, 1, 3, 1]),
Transformation([2, 1, 3, 2]), Transformation([2, 3, 1, 2]),
Transformation([2, 3, 1, 3]), Transformation([2, 3, 2, 1]),
Transformation([3, 1, 2, 1]), Transformation([3, 1, 2, 3]),
Transformation([3, 1, 3, 2]), Transformation([3, 2, 1, 2]),
Transformation([3, 2, 1, 3]), Transformation([3, 2, 3, 1])]

Digraphs 111

7.3.8 DigraphEmbedding

. DigraphEmbedding(digraph1, digraph2) (operation)

Returns: A transformation, or fail.
An embedding of a digraph digraph1 into another digraph digraph2 is a

DigraphMonomorphism (7.3.4) from digraph1 to digraph2 which has the additional prop-
erty that a pair of vertices [i, j] which have no edge i -> j in digraph1 are mapped to a pair of
vertices [a, b] which have no edge a->b in digraph2 .

In other words, an embedding t is an isomorphism from digraph1 to the InducedSubdigraph
(3.3.2) of digraph2 on the image of t.

DigraphEmbedding returns a single embedding if one exists, otherwise it returns fail.
Example

gap> gr := ChainDigraph(3);
<digraph with 3 vertices, 2 edges>
gap> DigraphEmbedding(gr, CompleteDigraph(4));
fail
gap> DigraphEmbedding(gr, Digraph([[3], [1, 4], [1], [3]]));
Transformation([2, 4, 3, 4])

7.3.9 EmbeddingsDigraphs

. EmbeddingsDigraphs(D1, D2) (operation)

. EmbeddingsDigraphsRepresentatives(D1, D2) (operation)

Returns: A list of transformations.
These operations behave the same as HomomorphismsDigraphs (7.3.3) and

HomomorphismsDigraphsRepresentatives (7.3.3), except they only return embeddings of
D1 into D2 .

See also IsDigraphEmbedding (7.3.11).
Example

gap> D1 := NullDigraph(2);
<digraph with 2 vertices, 0 edges>
gap> D2 := CycleDigraph(5);
<digraph with 5 vertices, 5 edges>
gap> EmbeddingsDigraphsRepresentatives(D1, D2);
[Transformation([1, 3, 3]), Transformation([1, 4, 3, 4])]
gap> EmbeddingsDigraphs(D1, D2);
[Transformation([1, 3, 3]), Transformation([1, 4, 3, 4]),

Transformation([2, 4, 4, 5, 1]),
Transformation([2, 5, 4, 5, 1]),
Transformation([3, 1, 5, 1, 2]),
Transformation([3, 5, 5, 1, 2]),
Transformation([4, 1, 1, 2, 3]),
Transformation([4, 2, 1, 2, 3]),
Transformation([5, 2, 2, 3, 4]),
Transformation([5, 3, 2, 3, 4])]

7.3.10 IsDigraphHomomorphism

. IsDigraphHomomorphism(src, ran, x) (operation)

. IsDigraphEpimorphism(src, ran, x) (operation)

Digraphs 112

. IsDigraphMonomorphism(src, ran, x) (operation)

. IsDigraphEndomorphism(digraph, x) (operation)

Returns: true or false.
IsDigraphHomomorphism returns true if the permutation or transformation x is a homomor-

phism from the digraph src to the digraph ran .
IsDigraphEpimorphism returns true if the permutation or transformation x is a surjective ho-

momorphism from the digraph src to the digraph ran .
IsDigraphMonomorphism returns true if the permutation or transformation x is an injective

homomorphism from the digraph src to the digraph ran .
IsDigraphEndomorphism returns true if the permutation or transformation x is an endomor-

phism of the digraph digraph .
A permutation or transformation x is a homomorphism from a digraph src to a digraph ran if the

following hold:

• [u ^ x, v ^ x] is an edge of ran whenever [u, v] is an edge of src ; and

• x fixes every i which is not a vertex of src .

See also GeneratorsOfEndomorphismMonoid (7.3.12).
Example

gap> src := Digraph([[1], [1, 2], [1, 3]]);
<digraph with 3 vertices, 5 edges>
gap> ran := Digraph([[1], [1, 2]]);
<digraph with 2 vertices, 3 edges>
gap> IsDigraphHomomorphism(src, ran, Transformation([1, 2, 2]));
true
gap> IsDigraphHomomorphism(src, ran, Transformation([2, 1, 2]));
false
gap> IsDigraphHomomorphism(src, ran, Transformation([3, 3, 3]));
false
gap> IsDigraphHomomorphism(src, src, Transformation([3, 3, 3]));
true
gap> IsDigraphEndomorphism(src, Transformation([3, 3, 3]));
true
gap> IsDigraphEpimorphism(src, ran, Transformation([3, 3, 3]));
false
gap> IsDigraphMonomorphism(src, ran, Transformation([1, 2, 2]));
false
gap> IsDigraphEpimorphism(src, ran, Transformation([1, 2, 2]));
true
gap> IsDigraphMonomorphism(ran, src, ());
true

7.3.11 IsDigraphEmbedding

. IsDigraphEmbedding(src, ran, x) (operation)

Returns: true or false.
IsDigraphEmbedding returns true if the permutation or transformation x is a embedding of the

digraph src into the digraph ran .

Digraphs 113

A permutation or transformation x is a embedding of a digraph src into a digraph ran if x is
a monomorphism from src to ran and the inverse of x is a monomorphism from the subdigraph of
ran induced by the image of x to src . See also IsDigraphHomomorphism (7.3.10).

Example
gap> src := Digraph([[1], [1, 2]]);
<digraph with 2 vertices, 3 edges>
gap> ran := Digraph([[1], [1, 2], [1, 3]]);
<digraph with 3 vertices, 5 edges>
gap> IsDigraphMonomorphism(src, ran, ());
true
gap> IsDigraphEmbedding(src, ran, ());
true
gap> ran := Digraph([[1, 2], [1, 2], [1, 3]]);
<digraph with 3 vertices, 6 edges>
gap> IsDigraphMonomorphism(src, ran, IdentityTransformation);
true
gap> IsDigraphEmbedding(src, ran, IdentityTransformation);
false

7.3.12 GeneratorsOfEndomorphismMonoid

. GeneratorsOfEndomorphismMonoid(digraph[, colors][, limit]) (function)

. GeneratorsOfEndomorphismMonoidAttr(digraph) (attribute)

Returns: A list of transformations.
An endomorphism of digraph is a homomorphism DigraphHomomorphism (7.3.2) from

digraph back to itself. GeneratorsOfEndomorphismMonoid, called with a single argument, returns
a generating set for the monoid of all endomorphisms of digraph .

If the colors argument is specified, then GeneratorsOfEndomorphismMonoid will return a
generating set for the monoid of endomorphisms which respect the given colouring. The colouring
colors can be in one of two forms:

• A list of positive integers of size the number of vertices of digraph , where colors[i] is the
colour of vertex i.

• A list of lists, such that colors[i] is a list of all vertices with colour i.

If the limit argument is specified, then it will return only the first limit homomorphisms, where
limit must be a positive integer or infinity.

Example
gap> gr := Digraph(List([1 .. 3], x -> [1 .. 3]));;
gap> GeneratorsOfEndomorphismMonoid(gr);
[Transformation([1, 3, 2]), Transformation([2, 1]),

IdentityTransformation, Transformation([1, 2, 1]),
Transformation([1, 2, 2]), Transformation([1, 1, 2]),
Transformation([1, 1, 1])]

gap> GeneratorsOfEndomorphismMonoid(gr, 3);
[Transformation([1, 3, 2]), Transformation([2, 1]),

IdentityTransformation]
gap> gr := CompleteDigraph(3);;
gap> GeneratorsOfEndomorphismMonoid(gr);

Digraphs 114

[Transformation([1, 3, 2]), Transformation([2, 1]),
IdentityTransformation]

gap> GeneratorsOfEndomorphismMonoid(gr, [1, 2, 2]);
[Transformation([1, 3, 2]), IdentityTransformation]
gap> GeneratorsOfEndomorphismMonoid(gr, [[1], [2, 3]]);
[Transformation([1, 3, 2]), IdentityTransformation]

7.3.13 DigraphColouring (for a digraph and a number of colours)

. DigraphColouring(digraph, n) (operation)

. DigraphColoring(digraph, n) (operation)

Returns: A transformation, or fail.
A proper colouring of a digraph is a labelling of its vertices in such a way that adjacent vertices

have different labels. A proper n-colouring is a proper colouring that uses exactly n colours. Equiva-
lently, a proper (n-)colouring of a digraph can be defined to be a DigraphEpimorphism (7.3.6) from
a digraph onto the complete digraph (with n vertices); see CompleteDigraph (3.5.2). Note that a
digraph with loops (DigraphHasLoops (6.1.1)) does not have a proper n-colouring for any value n.

If digraph is a digraph and n is a non-negative integer, then DigraphColouring(digraph, n)
returns an epimorphism from digraph onto the complete digraph with n vertices if one exists, else it
returns fail.

See also DigraphGreedyColouring (7.3.14) and
Note that a digraph with at least two vertices has a 2-colouring if and only if it is bipartite, see

IsBipartiteDigraph (6.1.3).
Example

gap> DigraphColouring(CompleteDigraph(5), 4);
fail
gap> DigraphColouring(ChainDigraph(10), 1);
fail
gap> gr := ChainDigraph(10);;
gap> t := DigraphColouring(gr, 2);
Transformation([1, 2, 1, 2, 1, 2, 1, 2, 1, 2])
gap> ForAll(DigraphEdges(gr), e -> e[1] ^ t <> e[2] ^ t);
true
gap> DigraphGreedyColouring(gr);
Transformation([2, 1, 2, 1, 2, 1, 2, 1, 2, 1])

7.3.14 DigraphGreedyColouring (for a digraph and vertex order)

. DigraphGreedyColouring(digraph, order) (operation)

. DigraphGreedyColouring(digraph, func) (operation)

. DigraphGreedyColouring(digraph) (attribute)

Returns: A transformation, or fail.
A proper colouring of a digraph is a labelling of its vertices in such a way that adjacent vertices

have different labels. Note that a digraph with loops (DigraphHasLoops (6.1.1)) does not have any
proper colouring.

If digraph is a digraph and order is a dense list consisting of all of the vertices of digraph
(in any order), then DigraphGreedyColouring uses a greedy algorithm with the specified order to
obtain some proper colouring of digraph , which may not use the minimal number of colours.

Digraphs 115

If digraph is a digraph and func is a function whose argument is a digraph, and
that returns a dense list order , then DigraphGreedyColouring(digraph, func) returns
DigraphGreedyColouring(digraph, func(digraph)).

If the optional second argument (either a list or a function), is not specified, then
DigraphWelshPowellOrder (7.3.15) is used by default.

See also DigraphColouring (7.3.13).
Example

gap> DigraphGreedyColouring(ChainDigraph(10));
Transformation([2, 1, 2, 1, 2, 1, 2, 1, 2, 1])
gap> DigraphGreedyColouring(ChainDigraph(10), [1 .. 10]);
Transformation([1, 2, 1, 2, 1, 2, 1, 2, 1, 2])

7.3.15 DigraphWelshPowellOrder

. DigraphWelshPowellOrder(digraph) (attribute)

Returns: A list of the vertices.
DigraphWelshPowellOrder returns a list of all of the vertices of the digraph digraph ordered

according to the sum of the number of out- and in-neighbours, from highest to lowest.
Example

gap> DigraphWelshPowellOrder(Digraph([[4], [9], [9], [],
> [4, 6, 9], [1], [], [],
> [4, 5], [4, 5]]));
[5, 9, 4, 1, 6, 10, 2, 3, 7, 8]

7.3.16 ChromaticNumber

. ChromaticNumber(digraph) (attribute)

Returns: A non-negative integer.
A proper colouring of a digraph is a labelling of its vertices in such a way that adjacent

vertices have different labels. Equivalently, a proper digraph colouring can be defined to be a
DigraphEpimorphism (7.3.6) from a digraph onto a complete digraph.

If digraph is a digraph without loops (see DigraphHasLoops (6.1.1), then ChromaticNumber
returns the least non-negative integer n such that there is a proper colouring of digraph with n colours.
In other words, for a digraph with at least one vertex, ChromaticNumber returns the least num-
ber n such that DigraphColouring(digraph, n) does not return fail. See DigraphColouring
(7.3.13).

Example
gap> ChromaticNumber(NullDigraph(10));
1
gap> ChromaticNumber(CompleteDigraph(10));
10
gap> ChromaticNumber(CompleteBipartiteDigraph(5, 5));
2
gap> ChromaticNumber(Digraph([[], [3], [5], [2, 3], [4]]));
3
gap> ChromaticNumber(NullDigraph(0));
0

Chapter 8

Finding cliques and independent sets

In Digraphs, a clique of a digraph is a set of mutually adjacent vertices of the digraph, and an in-
dependent set is a set of mutually non-adjacent vertices of the digraph. A maximal clique is a clique
which is not properly contained in another clique, and a maximal independent set is an independent set
which is not properly contained in another independent set. Using this definition in Digraphs, cliques
and independent sets are both permitted, but not required, to contain vertices at which there is a loop.
Another name for a clique is a complete subgraph.

Digraphs provides extensive functionality for computing cliques and independent sets of a di-
graph, whether maximal or not. The fundamental algorithm used in most of the methods in Digraphs
to calculate cliques and independent sets is a version of the Bron-Kerbosch algorithm. Calculating
the cliques and independent sets of a digraph is a well-known and hard problem, and searching for
cliques or independent sets in a digraph can be very length, even for a digraph with a small number of
vertices. Digraphs uses several strategies to increase the performance of these calculations.

From the definition of cliques and independent sets, it follows that the presence of loops and multi-
ple edges in a digraph is irrelevant to the existence of cliques and independent sets in the digraph. See
DigraphHasLoops (6.1.1) and IsMultiDigraph (6.1.8) for more information about these properties.
Therefore given a digraph digraph , the cliques and independent sets of digraph are equal to the
cliques and independent sets of the digraph:

• DigraphRemoveLoops(DigraphRemoveAllMultipleEdges(digraph)).

See DigraphRemoveLoops (3.3.23) and DigraphRemoveAllMultipleEdges (3.3.24) for more in-
formation about these attributes. Furthermore, the cliques of this digraph are equal to the cliques of
the digraph formed by removing any edge [u,v] for which the corresponding reverse edge [v,u]
is not present. Therefore, overall, the cliques of digraph are equal to the cliques of the symmetric
digraph:

• MaximalSymmetricSubdigraphWithoutLoops(digraph).

See MaximalSymmetricSubdigraphWithoutLoops (3.3.4) for more information about this attribute.
The AutomorphismGroup (7.2.2) of this symmetric digraph contains the automorphism group of
digraph as a subgroup. By performing the search for maximal cliques with the help of this larger
automorphism group to reduce the search space, the computation time may be reduced. The functions
and attributes which return representatives of cliques of digraph will return orbit representatives of
cliques under the action of the automorphism group of the maximal symmetric subdigraph without
loops on sets of vertices.

116

Digraphs 117

The independent sets of a digraph are equal to the independent sets of the
DigraphSymmetricClosure (3.3.10). Therefore, overall, the independent sets of digraph
are equal to the independent sets of the symmetric digraph:

• DigraphSymmetricClosure(DigraphRemoveLoops(DigraphRemoveAllMultipleEdges(
digraph))).

Again, the automorphism group of this symmetric digraph contains the automorphism group of
digraph . Since a search for independent sets is equal to a search for cliques in the DigraphDual
(3.3.9), the methods used in Digraphs usually transform a search for independent sets into a search
for cliques, as described above. The functions and attributes which return representatives of inde-
pendent sets of digraph will return orbit representatives of independent sets under the action of the
automorphism group of the symmetric closure of the digraph formed by removing loops and multiple
edges.

Please note that in Digraphs, cliques and indepedent sets are not required to be maximal. Some
authors use the word clique to mean maximal clique, and some authors use the phrase independent set
to mean maximal independent set, but please note that Digraphs does not use this definition.

8.1 Finding cliques

8.1.1 IsClique

. IsClique(digraph, l) (operation)

. IsMaximalClique(digraph, l) (operation)

Returns: true or false.
If digraph is a digraph and l is a duplicate-free list of vertices of digraph , then

IsClique(digraph,l) returns true if l is a clique of digraph and false if it is not. Similarly,
IsMaximalClique(digraph,l) returns true if l is a maximal clique of digraph and false if it
is not.

A clique of a digraph is a set of mutually adjacent vertices of the digraph. A maximal clique is a
clique which is not properly contained in another clique. A clique is permitted, but not required, to
contain vertices at which there is a loop.

Example
gap> gr := CompleteDigraph(4);;
gap> IsClique(gr, [1, 3, 2]);
true
gap> IsMaximalClique(gr, [1, 3, 2]);
false
gap> IsMaximalClique(gr, DigraphVertices(gr));
true
gap> gr := Digraph([[1, 2, 4, 4], [1, 3, 4], [2, 1], [1, 2]]);
<multidigraph with 4 vertices, 11 edges>
gap> IsClique(gr, [2, 3, 4]);
false
gap> IsMaximalClique(gr, [1, 2, 4]);
true

Digraphs 118

8.1.2 CliquesFinder

. CliquesFinder(digraph, hook, user_param, limit, include, exclude, max, size,
reps) (function)

Returns: The argument user_param .
This function finds cliques of the digraph digraph subject to the conditions imposed by the other

arguments as described below. Note that a clique is represented by a list of the vertices which it
contains.

Let G denote the automorphism group of the maximal symmetric subdigraph of digraph with-
out loops (see AutomorphismGroup (7.2.2) and MaximalSymmetricSubdigraphWithoutLoops
(3.3.4)).

hook
This argument should be a function or fail.

If hook is a function, then it should have two arguments user_param (see below) and a clique
c. The function hook(user_param, c) is called every time a new clique c is found by
CliquesFinder.

If hook is fail, then a default function is used which simply adds every new clique found by
CliquesFinder to user_param , which must be a list in this case.

user_param
If hook is a function, then user_param can be any GAP object. The object user_param is
used as the first argument for the function hook . For example, user_param might be a list, and
hook(user_param, c) might add the size of the clique c to the list user_param .

If the value of hook is fail, then the value of user_param must be a list.

limit
This argument should be a positive integer or infinity. CliquesFinder will return after it
has found limit cliques or the search is complete.

include and exclude
These arguments should each be a (possibly empty) duplicate-free list of vertices of digraph
(i.e. positive integers less than the number of vertices of digraph).

CliquesFinder will only look for cliques containing all of the vertices in include and con-
taining none of the vertices in exclude .

Note that the search may be much more efficient if each of these lists is invariant under the
action of G on sets of vertices.

max This argument should be true or false. If max is true then CliquesFinder will only search
for maximal cliques. If max is false then non-maximal cliques may be found.

size
This argument should be fail or a positive integer. If size is a positive integer then
CliquesFinder will only search for cliques which contain precisely size vertices. If size is
fail then cliques of any size may be found.

reps
This argument should be true or false.

Digraphs 119

If reps is true then the arguments include and exclude are each required to be invariant
under the action of G on sets of vertices. In this case, CliquesFinder will find representatives
of the orbits of the desired cliques under the action of G, although representatives may be re-
turned which are in the same orbit. If reps is false then CliquesFinder will not take this into
consideration.

For a digraph such that G is non-trivial, the search for clique representatives can be much more
efficient than the search for all cliques.

This function uses a version of the Bron-Kerbosch algorithm.
Example

gap> gr := CompleteDigraph(5);
<digraph with 5 vertices, 20 edges>
gap> user_param := [];;
gap> f := function(a, b) # Calculate size of clique
> AddSet(user_param, Size(b));
> end;;
gap> CliquesFinder(gr, f, user_param, infinity, [], [], false, fail,
> true);
[1, 2, 3, 4, 5]
gap> CliquesFinder(gr, fail, [], 5, [2, 4], [3], false, fail, false);
[[2, 4], [1, 2, 4], [2, 4, 5], [1, 2, 4, 5]]
gap> CliquesFinder(gr, fail, [], 2, [2, 4], [3], false, fail, false);
[[2, 4], [1, 2, 4]]
gap> CliquesFinder(gr, fail, [], infinity, [], [], true, 5, false);
[[1, 2, 3, 4, 5]]
gap> CliquesFinder(gr, fail, [], infinity, [1, 3], [], false, 3, false);
[[1, 2, 3], [1, 3, 4], [1, 3, 5]]
gap> CliquesFinder(gr, fail, [], infinity, [1, 3], [], true, 3, false);
[]

8.1.3 DigraphClique

. DigraphClique(digraph[, include[, exclude[, size]]]) (function)

. DigraphMaximalClique(digraph[, include[, exclude[, size]]]) (function)

Returns: A list of positive integers, or fail.
If digraph is a digraph, then these functions returns a clique of digraph if one exists which

satisfies the arguments, else it returns fail. A clique is defined by the set of vertices which it contains;
see IsClique (8.1.1) and IsMaximalClique (8.1.1).

The optional arguments include and exclude must each be a (possibly empty) duplicate-free
list of vertices of digraph , and the optional argument size must be a positive integer. By default,
include and exclude are empty. These functions will search for a clique of digraph which includes
the vertices of include and which does not include any vertices in exclude ; if the argument size
is supplied, then additionally the clique will be required to contain precisely size vertices.

If include is not a clique, then these functions return fail. Otherwise, the functions behave in
the following way, depending on the number of arguments:

One or two arguments
If one or two arguments are supplied, then DigraphClique and DigraphMaximalClique
greedily enlarge the clique include until it can not continue. The result is guaranteed

Digraphs 120

to be a maximal clique. This may or may not return an answer more quickly than using
DigraphMaximalCliques (8.1.4). with a limit of 1.

Three arguments
If three arguments are supplied, then DigraphClique greedily enlarges the clique include
until it can not continue, although this clique may not be maximal.

Given three arguments, DigraphMaximalClique returns the maximal clique returned by
DigraphMaximalCliques(digraph, include, exclude, 1) if one exists, else fail.

Four arguments
If four arguments are supplied, then DigraphClique returns the clique returned by
DigraphCliques(digraph, include, exclude, 1, size) if one exists, else fail. This
clique may not be maximal.

Given four arguments, DigraphMaximalClique returns the maximal clique returned by
DigraphMaximalCliques(digraph, include, exclude, 1, size) if one exists, else
fail.

Example
gap> gr := Digraph([[2, 3, 4], [1, 3], [1, 2], [1, 5], []]);
<digraph with 5 vertices, 9 edges>
gap> IsSymmetricDigraph(gr);
false
gap> DigraphClique(gr);
[5]
gap> DigraphMaximalClique(gr);
[5]
gap> DigraphClique(gr, [1, 2]);
[1, 2, 3]
gap> DigraphMaximalClique(gr, [1, 3]);
[1, 3, 2]
gap> DigraphClique(gr, [1], [2]);
[1, 4]
gap> DigraphMaximalClique(gr, [1], [3, 4]);
fail
gap> DigraphClique(gr, [1, 5]);
fail
gap> DigraphClique(gr, [], [], 2);
[1, 2]

8.1.4 DigraphMaximalCliques

. DigraphMaximalCliques(digraph[, include[, exclude[, limit[, size]]]]) (function)

. DigraphMaximalCliquesReps(digraph[, include[, exclude[, limit[, size]]]])
(function)

. DigraphCliques(digraph[, include[, exclude[, limit[, size]]]]) (function)

. DigraphCliquesReps(digraph[, include[, exclude[, limit[, size]]]]) (function)

. DigraphMaximalCliquesAttr(digraph) (attribute)

. DigraphMaximalCliquesRepsAttr(digraph) (attribute)

Returns: A list of lists of positive integers.

Digraphs 121

If digraph is digraph, then these functions and attributes use CliquesFinder (8.1.2) to return
cliques of digraph . A clique is defined by the set of vertices which it contains; see IsClique (8.1.1)
and IsMaximalClique (8.1.1).

The optional arguments include and exclude must each be a (possibly empty) list of vertices
of digraph , the optional argument limit must be either a positive integer or infinity, and the
optional argument size must be a positive integer. If not specified, then include and exclude are
empty lists, and limit is infinity.

The functions will return as many suitable cliques as possible, up to the number limit . These
functions will find cliques which contain all of the vertices of include and which do not contain any
of the vertices of exclude . The argument size restricts the search to those cliques which contain
precisely size vertices. If the function or attribute has Maximal in its name, then only maximal
cliques will be returned; otherwise non-maximal cliques may be returned.

Let G denote the automorphism group of maximal symmetric subdigraph of digraph with-
out loops (see AutomorphismGroup (7.2.2) and MaximalSymmetricSubdigraphWithoutLoops
(3.3.4)).

Distinct cliques
DigraphMaximalCliques and DigraphCliques each return a duplicate-free list of at most
limit cliques of digraph which satisfy the arguments.

The computation may be significantly faster if include and exclude are invariant under the
action of G on sets of vertices.

Orbit representatives of cliques
To use DigraphMaximalCliquesReps or DigraphCliquesReps, the arguments include and
exclude must each be invariant under the action of G on sets of vertices.

If this is the case, then DigraphMaximalCliquesReps and DigraphCliquesReps each re-
turn a duplicate-free list of at most limit orbits representatives (under the action of G on sets
vertices) of cliques of digraph which satisfy the arguments.

The representatives are not guaranteed to be in distinct orbits. However, if lim is not specified,
or fewer than lim results are returned, then there will be at least one representative from each
orbit of maximal cliques.

Example
gap> gr := Digraph([
> [2, 3], [1, 3], [1, 2, 4], [3, 5, 6], [4, 6], [4, 5]]);
<digraph with 6 vertices, 14 edges>
gap> IsSymmetricDigraph(gr);
true
gap> G := AutomorphismGroup(gr);
Group([(5,6), (1,2), (1,5)(2,6)(3,4)])
gap> DigraphMaximalCliques(gr);
[[1, 2, 3], [4, 5, 6], [3, 4]]
gap> DigraphMaximalCliquesReps(gr);
[[1, 2, 3], [3, 4]]
gap> Orbit(G, [1, 2, 3], OnSets);
[[1, 2, 3], [4, 5, 6]]
gap> Orbit(G, [3, 4], OnSets);
[[3, 4]]
gap> DigraphMaximalCliquesReps(gr, [3, 4], [], 1);

Digraphs 122

[[3, 4]]
gap> DigraphMaximalCliques(gr, [1, 2], [5, 6], 1, 2);
[]
gap> DigraphCliques(gr, [1], [5, 6], infinity, 2);
[[1, 2], [1, 3]]

8.1.5 CliqueNumber

. CliqueNumber(digraph) (attribute)

Returns: A non-negative integer.
If digraph is a digraph, then CliqueNumber(digraph) returns the largest integer n such that

digraph contains a clique with n vertices as an induced subdigraph.
A clique of a digraph is a set of mutually adjacent vertices of the digraph. Loops and multiple

edges are ignored for the purpose of determining the clique number of a digraph.
Example

gap> gr := CompleteDigraph(4);;
gap> CliqueNumber(gr);
4
gap> gr := Digraph([[1, 2, 4, 4], [1, 3, 4], [2, 1], [1, 2]]);
<multidigraph with 4 vertices, 11 edges>
gap> CliqueNumber(gr);
3

8.2 Finding independent sets

8.2.1 IsIndependentSet

. IsIndependentSet(digraph, l) (operation)

. IsMaximalIndependentSet(digraph, l) (operation)

Returns: true or false.
If digraph is a digraph and l is a duplicate-free list of vertices of digraph , then

IsIndependentSet(digraph,l) returns true if l is an independent set of digraph and false
if it is not. Similarly, IsMaximalIndependentSet(digraph,l) returns true if l is a maximal
independent set of digraph and false if it is not.

An independent set of a digraph is a set of mutually non-adjacent vertices of the digraph. A
maximal independent set is an independent set which is not properly contained in another independent
set. An independent set is permitted, but not required, to contain vertices at which there is a loop.

Example
gap> gr := CycleDigraph(4);;
gap> IsIndependentSet(gr, [1]);
true
gap> IsMaximalIndependentSet(gr, [1]);
false
gap> IsIndependentSet(gr, [1, 4, 3]);
false
gap> IsIndependentSet(gr, [2, 4]);
true
gap> IsMaximalIndependentSet(gr, [2, 4]);
true

Digraphs 123

8.2.2 DigraphIndependentSet

. DigraphIndependentSet(digraph[, include[, exclude[, size]]]) (function)

. DigraphMaximalIndependentSet(digraph[, include[, exclude[, size]]]) (function)

Returns: A lists of positive integers, or fail.
If digraph is a digraph, then these functions returns a independent set of digraph if one exists

which satisfies the arguments, else it returns fail. A independent set is defined by the set of vertices
which it contains; see IsIndependentSet (8.2.1) and IsMaximalIndependentSet (8.2.1).

The optional arguments include and exclude must each be a (possibly empty) duplicate-free
list of vertices of digraph , and the optional argument size must be a positive integer. By default,
include and exclude are empty. These functions will search for a independent set of digraph
which includes the vertices of include and which does not include any vertices in exclude ; if the
argument size is supplied, then additionally the independent set will be required to contain precisely
size vertices.

If include is not a independent set, then these functions return fail. Otherwise, the functions
behave in the following way, depending on the number of arguments:

One or two arguments
If one or two arguments are supplied, then DigraphIndependentSet and
DigraphMaximalIndependentSet greedily enlarge the independent set include until
it can not continue. The result is guaranteed to be a maximal independent set. This may or may
not return an answer more quickly than using DigraphMaximalIndependentSets (8.2.3).
with a limit of 1.

Three arguments
If three arguments are supplied, then DigraphIndependentSet greedily enlarges the indepen-
dent set include until it can not continue, although this independent set may not be maximal.

Given three arguments, DigraphMaximalIndependentSet returns the maximal independent
set returned by DigraphMaximalIndependentSets(digraph, include, exclude, 1) if
one exists, else fail.

Four arguments
If four arguments are supplied, then DigraphIndependentSet returns the independent set
returned by DigraphIndependentSets(digraph, include, exclude, 1, size) if one
exists, else fail. This independent set may not be maximal.

Given four arguments, DigraphMaximalIndependentSet returns the maximal indepen-
dent set returned by DigraphMaximalIndependentSets(digraph, include, exclude,
1, size) if one exists, else fail.

Example
gap> gr := ChainDigraph(6);
<digraph with 6 vertices, 5 edges>
gap> DigraphIndependentSet(gr);
[6, 4, 2]
gap> DigraphMaximalIndependentSet(gr);
[6, 4, 2]
gap> DigraphIndependentSet(gr, [2, 4]);
[2, 4, 6]
gap> DigraphMaximalIndependentSet(gr, [1, 3]);
[1, 3, 6]

Digraphs 124

gap> DigraphIndependentSet(gr, [2, 4], [6]);
[2, 4]
gap> DigraphMaximalIndependentSet(gr, [2, 4], [6]);
fail
gap> DigraphIndependentSet(gr, [1], [], 2);
[1, 3]
gap> DigraphMaximalIndependentSet(gr, [1], [], 2);
fail
gap> DigraphMaximalIndependentSet(gr, [1], [], 3);
[1, 3, 5]

8.2.3 DigraphMaximalIndependentSets

. DigraphMaximalIndependentSets(digraph[, include[, exclude[, limit[,
size]]]]) (function)

. DigraphMaximalIndependentSetsReps(digraph[, include[, exclude[, limit[,
size]]]]) (function)

. DigraphIndependentSets(digraph[, include[, exclude[, limit[, size]]]]) (func-

tion)

. DigraphIndependentSetsReps(digraph[, include[, exclude[, limit[, size]]]])
(function)

. DigraphMaximalIndependentSetsAttr(digraph) (attribute)

. DigraphMaximalIndependentSetsRepsAttr(digraph) (attribute)

Returns: A list of lists of positive integers.
If digraph is digraph, then these functions and attributes use CliquesFinder (8.1.2) to return

independent sets of digraph . An independent set is defined by the set of vertices which it contains;
see IsMaximalIndependentSet (8.2.1) and IsIndependentSet (8.2.1).

The optional arguments include and exclude must each be a (possibly empty) list of vertices
of digraph , the optional argument limit must be either a positive integer or infinity, and the
optional argument size must be a positive integer. If not specified, then include and exclude are
empty lists, and limit is infinity.

The functions will return as many suitable independent sets as possible, up to the number limit .
These functions will find independent sets which contain all of the vertices of include and which do
not contain any of the vertices of exclude The argument size restricts the search to those cliques
which contain precisely size vertices. If the function or attribute has Maximal in its name, then only
maximal independent sets will be returned; otherwise non-maximal independent sets may be returned.

Let G denote the AutomorphismGroup (7.2.2) of the DigraphSymmetricClosure (3.3.10) of the
digraph formed from digraph by removing loops and ignoring the multiplicity of edges.

Distinct independent sets
DigraphMaximalIndependentSets and DigraphIndependentSets each return a duplicate-
free list of at most limit independent sets of digraph which satisfy the arguments.

The computation may be significantly faster if include and exclude are invariant under the
action of G on sets of vertices.

Representatives of distinct orbits of independent sets
To use DigraphMaximalIndependentSetsReps or DigraphIndependentSetsReps, the ar-
guments include and exclude must each be invariant under the action of G on sets of vertices.

Digraphs 125

If this is the case, then DigraphMaximalIndependentSetsReps and
DigraphIndependentSetsReps each return a list of at most limit orbits representa-
tives (under the action of G on sets of vertices) of independent sets of digraph which satisfy
the arguments.

The representatives are not guaranteed to be in distinct orbits. However, if lim is not specified,
or fewer than lim results are returned, then there will be at least one representative from each
orbit of maximal independent sets.

Example
gap> gr := CycleDigraph(5);
<digraph with 5 vertices, 5 edges>
gap> DigraphMaximalIndependentSetsReps(gr);
[[1, 3]]
gap> DigraphIndependentSetsReps(gr);
[[1], [1, 3]]
gap> Set(DigraphMaximalIndependentSets(gr));
[[1, 3], [1, 4], [2, 4], [2, 5], [3, 5]]
gap> DigraphMaximalIndependentSets(gr, [1]);
[[1, 3], [1, 4]]
gap> DigraphIndependentSets(gr, [], [4, 5]);
[[1], [2], [3], [1, 3]]
gap> DigraphIndependentSets(gr, [], [4, 5], 1, 2);
[[1, 3]]

Chapter 9

Visualising and IO

9.1 Visualising a digraph

9.1.1 Splash

. Splash(str[, opts]) (function)

Returns: Nothing.
This function attempts to convert the string str into a pdf document and open this document, i.e.

to splash it all over your monitor.
The string str must correspond to a valid dot or LaTeX text file and you must have have

GraphViz and pdflatex installed on your computer. For details about these file formats, see
http://www.latex-project.org and http://www.graphviz.org.

This function is provided to allow convenient, immediate viewing of the pictures produced by the
function DotDigraph (9.1.2).

The optional second argument opts should be a record with components corresponding to various
options, given below.

path this should be a string representing the path to the directory where you want Splash to do its
work. The default value of this option is "~/".

directory
this should be a string representing the name of the directory in path where you want Splash
to do its work. This function will create this directory if does not already exist.

The default value of this option is "tmp.viz" if the option path is present, and the result of
DirectoryTemporary (Reference: DirectoryTemporary) is used otherwise.

filename
this should be a string representing the name of the file where str will be written. The default
value of this option is "vizpicture".

viewer
this should be a string representing the name of the program which should open the files pro-
duced by GraphViz or pdflatex.

type this option can be used to specify that the string str contains a LATEX or dot document. You
can specify this option in str directly by making the first line "%latex" or "//dot". There is
no default value for this option, this option must be specified in str or in opt.type .

126

http://www.latex-project.org
http://www.graphviz.org

Digraphs 127

engine
this option can be used to specify the GraphViz engine to use to render a dot document. The
valid choices are "dot", "neato", "circo", "twopi", "fdp", "sfdp", and "patchwork".
Please refer to the GraphViz documentation for details on these engines. The default value for
this option is "dot", and it must be specified in opt.engine .

filetype
this should be a string representing the type of file which Splash should produce. For LATEX
files, this option is ignored and the default value "pdf" is used.

This function was written by Attila Egri-Nagy and Manuel Delgado with some minor changes by J.
D. Mitchell.

Example
gap> Splash(DotDigraph(RandomDigraph(4)));

9.1.2 DotDigraph

. DotDigraph(digraph) (attribute)

. DotVertexLabelledDigraph(digraph) (operation)

Returns: A string.
DotDigraph produces a graphical representation of the digraph digraph . Vertices are displayed

as circles, numbered consistently with digraph . Edges are displayed as arrowed lines between ver-
tices, with the arrowhead of each line pointing towards the range of the edge.

DotVertexLabelledDigraph differs from DotDigraph only in that the values in
DigraphVertexLabels (5.1.9) are used to label the vertices in the produced picture rather
than the numbers 1 to the number of vertices of the digraph.

The output is in dot format (also known as GraphViz) format. For details about this file format,
and information about how to display or edit this format see http://www.graphviz.org.

The string returned by DotDigraph or DotVertexLabelledDigraph can be written to a file using
the command FileString (GAPDoc: FileString).

Example
gap> adj := List([1 .. 4], x -> [1, 1, 1, 1]);
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]
gap> adj[1][3] := 0;
0
gap> gr := DigraphByAdjacencyMatrix(adj);
<digraph with 4 vertices, 15 edges>
gap> FileString("dot/k4.dot", DotDigraph(gr));
154

9.1.3 DotSymmetricDigraph

. DotSymmetricDigraph(digraph) (attribute)

Returns: A string.
This function produces a graphical representation of the symmetric digraph digraph .

DotSymmetricDigraph will return an error if digraph is not a symmetric digraph. See
IsSymmetricDigraph (6.1.10).

http://www.graphviz.org

Digraphs 128

Vertices are displayed as circles, numbered consistently with digraph . Since digraph is sym-
metric, for every non-loop edge there is a complementary edge with opposite source and range.
DotSymmetricDigraph displays each pair of complementary edges as a single line between the rele-
vant vertices, with no arrowhead.

The output is in dot format (also known as GraphViz) format. For details about this file format,
and information about how to display or edit this format see http://www.graphviz.org.

The string returned by DotSymmetricDigraph can be written to a file using the command
FileString (GAPDoc: FileString).

Example
gap> star := Digraph([[2, 2, 3, 4], [1, 1], [1], [1, 4]]);
<multidigraph with 4 vertices, 9 edges>
gap> IsSymmetricDigraph(star);
true
gap> FileString("dot/star.dot", DotSymmetricDigraph(gr));
83

9.1.4 DotPartialOrderDigraph

. DotPartialOrderDigraph(digraph) (attribute)

Returns: A string.
This function produces a graphical representation of a partial order digraph digraph .

DotPartialOrderDigraph will return an error if digraph is not a partial order digraph. See
IsPartialOrderDigraph (6.1.14).

Since digraph is a partial order, it is both reflexive and transitive.
The output of DotPartialOrderDigraph is the DotDigraph (9.1.2) of the
DigraphReflexiveTransitiveReduction (3.3.12) of digraph .

The output is in dot format (also known as GraphViz) format. For details about this file format,
and information about how to display or edit this format see http://www.graphviz.org.

The string returned by DotPartialOrderDigraph can be written to a file using the command
FileString (GAPDoc: FileString).

Example
gap> poset := Digraph([[1, 4], [2], [2, 3, 4], [4]);
gap> IsPartialOrderDigraph(gr);
true
gap> FileString("dot/poset.dot", DotPartialOrderDigraph(gr));
83

9.1.5 DotPreorderDigraph

. DotPreorderDigraph(digraph) (attribute)

. DotQuasiorderDigraph(digraph) (attribute)

Returns: A string.
This function produces a graphical representation of a preorder digraph digraph .

DotPreorderDigraph will return an error if digraph is not a preorder digraph. See
IsPreorderDigraph (6.1.13).

A preorder digraph is reflexive and transitive but in general it is not anti-symmetric and may have
strongly connected components containing more than one vertex. The QuotientDigraph (3.3.7) Q

http://www.graphviz.org
http://www.graphviz.org

Digraphs 129

obtained by forming the quotient of digraph by the partition of its vertices into the strongly con-
nected components satisfies IsPartialOrderDigraph (6.1.14). Thus every vertex of Q corresponds
to a strongly connected component of digraph . The output of DotPreorderDigraph displays the
DigraphReflexiveTransitiveReduction (3.3.12) of Q with vertices displayed as rounded rectan-
gles labelled by all of the vertices of digraph in the corresponding strongly connected component.

The output is in dot format (also known as GraphViz) format. For details about this file format,
and information about how to display or edit this format see http://www.graphviz.org.

The string returned by DotPreorderDigraph can be written to a file using the command
FileString (GAPDoc: FileString).

Example
gap> preset := Digraph([[1, 2, 4, 5], [1, 2, 4, 5], [3, 4], [4], [1, 2, 4, 5]);
gap> IsPreorderDigraph(gr);
true
gap> FileString("dot/preset.dot", DotProrderDigraph(gr));
83

9.2 Reading and writing graphs to a file

This section describes different ways to store and read graphs from a file in the Digraphs package.

Graph6
Graph6 is a graph data format for storing undirected graphs with no multiple edges nor loops
of size up to 236−1 in printable chracters. The format consists of two parts. The first part uses
one to eight bytes to store the number of vertices. And the second part is the upper half of the
adjacency matrix converted into ASCII characters. For a more detail description see Graph6.

Sparse6
Sparse6 is a graph data format for storing undirected graphs with possibly multiple edges or
loops. The maximal number of vertices allowed is 236− 1. The format consists of two parts.
The first part uses one to eight bytes to store the number of vertices. And the second part only
stores information about the edges. Therefore, the Sparse6 format return a more compact
encoding then Graph6 for sparse graph, i.e. graphs where the number of edges is much less
than the number of vertices squared. For a more detail description see Sparse6.

Digraph6
Digraph6 is a new format based on Graph6 , but designed for digraphs. The entire adjacency
matrix is stored, and therefore there is support for directed edges and single-vertex loops. How-
ever, multiple edges are not supported.

DiSparse6
DiSparse6 is a new format based on Sparse6 , but designed for digraphs. In this format the list
of edges is partitioned into inceasing and decreasing edges, depending whether the edge has its
source bigger than the range. Then both sets of edges are written separetly in Sparse6 format
with a separation symbol in between.

9.2.1 DigraphFromGraph6String

. DigraphFromGraph6String(str) (operation)

. DigraphFromDigraph6String(str) (operation)

http://www.graphviz.org
 http://cs.anu.edu.au/~bdm/data/formats.txt
 http://cs.anu.edu.au/~bdm/data/formats.txt

Digraphs 130

. DigraphFromSparse6String(str) (operation)

. DigraphFromDiSparse6String(str) (operation)

Returns: A digraph.
If str is a string encoding a graph in Graph6, Digraph6, Sparse6 or DiSparse6 format, then the

corresponding function returns a digraph. In the case of either Graph6 or Sparse6, formats which
do not support directed edges, this will be a digraph such that for every edge, the edge going in the
opposite direction is also present.

Example
gap> DigraphFromGraph6String("?");
<digraph with 0 vertices, 0 edges>
gap> DigraphFromGraph6String("C]");
<digraph with 4 vertices, 8 edges>
gap> DigraphFromGraph6String("H?AAEM{");
<digraph with 9 vertices, 22 edges>
gap> DigraphFromDigraph6String("&?");
<digraph with 0 vertices, 0 edges>
gap> DigraphFromDigraph6String("&CQFG");
<digraph with 4 vertices, 6 edges>
gap> DigraphFromDigraph6String("&IM[SrKLc~lhesbU[F_");
<digraph with 10 vertices, 51 edges>
gap> DigraphFromDiSparse6String(".CaWBGA?b");
<multidigraph with 4 vertices, 9 edges>

9.2.2 Graph6String

. Graph6String(digraph) (operation)

. Digraph6String(digraph) (operation)

. Sparse6String(digraph) (operation)

. DiSparse6String(digraph) (operation)

Returns: A string.
These four functions return a highly compressed string fully describing the digraph digraph .
Graph6 and Digraph6 are formats best used on small, dense graphs, if applicable. For larger,

sparse graphs use Sparse6 and Disparse6 (this latter also preserves multiple edges).
See WriteDigraphs (9.2.5).

Example
gap> gr := Digraph([[2, 3], [1], [1]]);
<digraph with 3 vertices, 4 edges>
gap> Sparse6String(gr);
":Bc"
gap> DiSparse6String(gr);
".Bc{f"

9.2.3 DigraphFile

. DigraphFile(filename[, coder][, mode]) (function)

Returns: An IO file object.
If filename is a string representing the name of a file, then DigraphFile returns an IO package

file object for that file.

 http://gap-packages.github.io/io/

Digraphs 131

If the optional argument coder is specified and is a function which either encodes a digraph as a
string, or decodes a string into a digraph, then this function will be used when reading or writing to the
returned file object. If the optional argument coder is not specified, then the encoding of the digraphs
in the returned file object must be specified in the the file extension. The file extension must be one
of: .g6, .s6, .d6, .ds6, .txt, .p, or .pickle; more details of these file formats is given below.

If the optional argument mode is specified, then it must be one of: "w" (for write), "a" (for
append), or "r" (for read). If mode is not specified, then "r" is used by default.

If filename ends in one of: .gz, .bz2, or .xz, then the digraphs which are read from, or written
to, the returned file object are decompressed, or compressed, appropriately.

The file object returned by DigraphFile can be given as the first argument for either of the
functions ReadDigraphs (9.2.4) or WriteDigraphs (9.2.5). The purpose of this is to reduce the
overhead of recreating the file object inside the functions ReadDigraphs (9.2.4) or WriteDigraphs
(9.2.5) when, for example, reading or writing many digraphs in a loop.

The currently supported file formats, and associated filename extensions, are:

graph6 (.g6)
A standard and widely-used format for undirected graphs, with no support for loops or multiple
edges. Only symmetric graphs are allowed – each edge is combined with its converse edge to
produce a single undirected edge. This format is best used for "dense" graphs – those with many
edges per vertex.

sparse6 (.s6)
Unlike graph6, sparse6 has support for loops and multiple edges. However, its use is still limited
to symmetric graphs. This format is better-suited to "sparse" graphs – those with few edges per
vertex.

digraph6 (.d6)
This format is based on graph6, but stores direction information - therefore is not limited to
symmetric graphs. Loops are allowed, but multiple edges are not. Best compression with
"dense" graphs.

disparse6 (.ds6)
Any type of digraph can be encoded in disparse6: directions, loops, and multiple edges are all
allowed. Similar to sparse6, this has the best compression rate with "sparse" graphs.

plain text (.txt)
This is a human-readable format which stores graphs in the form 0 7 0 8 1 7 2 8 3 8 4
8 5 8 6 8 i.e. pairs of vertices describing edges in a graph. More specifically, the vertices
making up one edge must be separated by a single space, and pairs of vertices must be separated
by two spaces.

See ReadPlainTextDigraph (9.2.12) for a more flexible way to store digraphs in a plain text
file.

pickled (.p or .pickle)
Digraphs are pickled using the IO package. This is particularly good when the DigraphGroup
(7.2.9) is non-trivial.

Example
gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/man.d6.gz");;
gap> file := DigraphFile(filename, "w");;

 http://gap-packages.github.io/io/

Digraphs 132

gap> for i in [1 .. 10] do
> WriteDigraphs(file, Digraph([[1, 3], [2], [1, 2]]));
> od;
gap> IO_Close(file);;
gap> file := DigraphFile(filename, "r");;
gap> ReadDigraphs(file, 9);
<digraph with 3 vertices, 5 edges>

9.2.4 ReadDigraphs

. ReadDigraphs(filename[, decoder][, n]) (function)

Returns: A digraph, or a list of digraphs.
If filename is a string containing the name of a file containing encoded digraphs or an IO file

object created using DigraphFile (9.2.3), then ReadDigraphs returns the digraphs encoded in the
file as a list. Note that if filename is a compressed file, which has been compressed appropriately to
give a filename extension of .gz, .bz2, or .xz, then ReadDigraphs can read filename without it
first needing to be decompressed.

If the optional argument decoder is specified and is a function which decodes a string into a
digraph, then ReadDigraphs will use decoder to decode the digraphs contained in filename .

If the optional argument n is specified, then ReadDigraphs returns the n th digraph encoded in
the file filename .

If the optional argument decoder is not specified, then ReadDigraphs will deduce which decoder
to use based on the filename extension of filename (after removing the compression-related filename
extensions .gz, .bz2, and .xz). For example, if the filename extension is .g6, then ReadDigraphs
will use the graph6 decoder DigraphFromGraph6String (9.2.1).

The currently supported file formats, and associated filename extensions, are:

graph6 (.g6)
A standard and widely-used format for undirected graphs, with no support for loops or multiple
edges. Only symmetric graphs are allowed – each edge is combined with its converse edge to
produce a single undirected edge. This format is best used for "dense" graphs – those with many
edges per vertex.

sparse6 (.s6)
Unlike graph6, sparse6 has support for loops and multiple edges. However, its use is still limited
to symmetric graphs. This format is better-suited to "sparse" graphs – those with few edges per
vertex.

digraph6 (.d6)
This format is based on graph6, but stores direction information - therefore is not limited to
symmetric graphs. Loops are allowed, but multiple edges are not. Best compression with
"dense" graphs.

disparse6 (.ds6)
Any type of digraph can be encoded in disparse6: directions, loops, and multiple edges are all
allowed. Similar to sparse6, this has the best compression rate with "sparse" graphs.

plain text (.txt)
This is a human-readable format which stores graphs in the form 0 7 0 8 1 7 2 8 3 8 4

 http://gap-packages.github.io/io/

Digraphs 133

8 5 8 6 8 i.e. pairs of vertices describing edges in a graph. More specifically, the vertices
making up one edge must be separated by a single space, and pairs of vertices must be separated
by two spaces.

See ReadPlainTextDigraph (9.2.12) for a more flexible way to store digraphs in a plain text
file.

pickled (.p or .pickle)
Digraphs are pickled using the IO package. This is particularly good when the DigraphGroup
(7.2.9) is non-trivial.

Example
gap> ReadDigraphs(
> Concatenation(DIGRAPHS_Dir(), "/data/graph5.g6.gz"), 10);
<digraph with 5 vertices, 8 edges>
gap> ReadDigraphs(
> Concatenation(DIGRAPHS_Dir(), "/data/graph5.g6.gz"), 17);
<digraph with 5 vertices, 12 edges>
gap> ReadDigraphs(
> Concatenation(DIGRAPHS_Dir(), "/data/tree9.4.txt"));
[<digraph with 9 vertices, 8 edges>,

<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>,
<digraph with 9 vertices, 8 edges>]

9.2.5 WriteDigraphs

. WriteDigraphs(filename, digraphs[, encoder][, mode]) (function)

If digraphs is a list of digraphs or a digraph and filename is a string or an IO file object
created using DigraphFile (9.2.3), then WriteDigraphs writes the digraphs to the file represented
by filename . If the supplied filename ends in one of the extensions .gz, .bz2, or .xz, then the file
will be compressed appropriately. Excluding these extensions, if the file ends with an extension in
the list below, the corresponding graph format will be used to encode it. If such an extension is not
included, an appropriate format will be chosen intelligently, and an extension appended, to minimise
file size.

For more verbose information on the progress of the function, set the info level of InfoDigraphs
to 1 or higher, using SetInfoLevel.

The currently supported file formats are:

graph6 (.g6)
A standard and widely-used format for undirected graphs, with no support for loops or multiple

 http://gap-packages.github.io/io/
 http://gap-packages.github.io/io/

Digraphs 134

edges. Only symmetric graphs are allowed – each edge is combined with its converse edge to
produce a single undirected edge. This format is best used for "dense" graphs – those with many
edges per vertex.

sparse6 (.s6)
Unlike graph6, sparse6 has support for loops and multiple edges. However, its use is still limited
to symmetric graphs. This format is better-suited to "sparse" graphs – those with few edges per
vertex.

digraph6 (.d6)
This format is based on graph6, but stores direction information - therefore is not limited to
symmetric graphs. Loops are allowed, but multiple edges are not. Best compression with
"dense" graphs.

disparse6 (.ds6)
Any type of digraph can be encoded in disparse6: directions, loops, and multiple edges are all
allowed. Similar to sparse6, this has the best compression rate with "sparse" graphs.

plain text (.txt)
This is a human-readable format which stores graphs in the form 0 7 0 8 1 7 2 8 3 8 4
8 5 8 6 8 i.e. pairs of vertices describing edges in a graph. More specifically, the vertices
making up one edge must be separated by a single space, and pairs of vertices must be separated
by two spaces.

See ReadPlainTextDigraph (9.2.12) for a more flexible way to store digraphs in a plain text
file.

pickled (.p or .pickle)
Digraphs are pickled using the IO package. This is particularly good when the DigraphGroup
(7.2.9) is non-trivial.

Example
gap> grs := [];;
gap> grs[1] := Digraph([]);
<digraph with 0 vertices, 0 edges>
gap> grs[2] := Digraph([[1, 3], [2], [1, 2]]);
<digraph with 3 vertices, 5 edges>
gap> grs[3] := Digraph([
> [6, 7], [6, 9], [1, 3, 4, 5, 8, 9],
> [1, 2, 3, 4, 5, 6, 7, 10], [1, 5, 6, 7, 10], [2, 4, 5, 9, 10],
> [3, 4, 5, 6, 7, 8, 9, 10], [1, 3, 5, 7, 8, 9], [1, 2, 5],
> [1, 2, 4, 6, 7, 8]]);
<digraph with 10 vertices, 51 edges>
gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/man.d6.gz");;
gap> WriteDigraphs(filename, grs, "w");
IO_OK
gap> ReadDigraphs(filename);
[<digraph with 0 vertices, 0 edges>,

<digraph with 3 vertices, 5 edges>,
<digraph with 10 vertices, 51 edges>]

 http://gap-packages.github.io/io/

Digraphs 135

9.2.6 IteratorFromDigraphFile

. IteratorFromDigraphFile(filename[, decoder]) (function)

Returns: An iterator.
If filename is a string representing the name of a file containing encoded digraphs, then

IteratorFromDigraphFile returns an iterator for which the value of NextIterator (Reference:
NextIterator) is the next digraph encoded in the file.

If the optional argument decoder is specified and is a function which decodes a string into a
digraph, then IteratorFromDigraphFile will use decoder to decode the digraphs contained in
filename .

The purpose of this function is to easily allow looping over digraphs encoded in a file when loading
all of the encoded digraphs would require too much memory.

To see what file types are available, see WriteDigraphs (9.2.5).
Example

gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/man.d6.gz");;
gap> file := DigraphFile(filename, "w");;
gap> for i in [1 .. 10] do
> WriteDigraphs(file, Digraph([[1, 3], [2], [1, 2]]));
> od;
gap> IO_Close(file);;
gap> iter := IteratorFromDigraphFile(filename);
<iterator>
gap> for x in iter do od;

9.2.7 DigraphPlainTextLineEncoder

. DigraphPlainTextLineEncoder(delimiter1[, delimiter2], offset) (function)

. DigraphPlainTextLineDecoder(delimiter1[, delimiter2], offset) (function)

Returns: A string.
These two functions return a function which encodes or decodes a digraph in a plain text format.
DigraphPlainTextLineEncoder returns a function which takes a single digraph as an argument.

The function returns a string describing the edges of that digraph; each edge is written as a pair of
integers separated by the string delimiter2 , and the edges themselves are separated by the string
delimiter1 . DigraphPlainTextLineDecoder returns the corresponding decoder function, which
takes a string argument in this format and returns a digraph.

If only one delimiter is passed as an argument to DigraphPlainTextLineDecoder , it will return
a function which decodes a single edge, returning its contents as a list of integers.

The argument offset should be an integer, which will describe a number to be added to each
vertex before it is encoded, or after it is decoded. This may be used, for example, to label vertices
starting at 0 instead of 1.

Note that the number of vertices of a digraph is not stored, and so vertices which are not connected
to any edge may be lost.

Example
gap> gr := Digraph([[2, 3], [1], [1]]);
<digraph with 3 vertices, 4 edges>
gap> enc := DigraphPlainTextLineEncoder(" ", " ", -1);;
gap> dec := DigraphPlainTextLineDecoder(" ", " ", 1);;
gap> enc(gr);
"0 1 0 2 1 0 2 0"

Digraphs 136

gap> dec(last);
<digraph with 3 vertices, 4 edges>

9.2.8 TournamentLineDecoder

. TournamentLineDecoder(str) (function)

Returns: A digraph.
This function takes a string str , decodes it, and then returns the tournament [see IsTournament

(6.1.11)] which it defines, according to the following rules.
The characters of the string str represent the entries in the upper triangle of a tournament’s

adjacency matrix. The number of vertices n will be detected from the length of the string and will be
as large as possible.

The first character represents the possible edge 1 -> 2, the second represents 1 -> 3 and so on
until 1 -> n; then the following character represents 2 -> 3, and so on up to the character which
represents the edge n-1 -> n.

If a character of the string with corresponding edge i -> j is equal to 1, then the edge i -> j is
present in the tournament. Otherwise, the edge i -> j is present instead. In this way, all the possible
edges are encoded one-by-one.

Example
gap> gr := TournamentLineDecoder("100001");
<digraph with 4 vertices, 6 edges>
gap> OutNeighbours(gr);
[[2], [], [1, 2, 4], [1, 2]]

9.2.9 AdjacencyMatrixUpperTriangleLineDecoder

. AdjacencyMatrixUpperTriangleLineDecoder(str) (function)

Returns: A digraph.
This function takes a string str , decodes it, and then returns the topologically sorted digraph [see

DigraphTopologicalSort (5.1.7)] which it defines, according to the following rules.
The characters of the string str represent the entries in the upper triangle of a digraph’s adjacency

matrix. The number of vertices n will be detected from the length of the string and will be as large as
possible.

The first character represents the possible edge 1 -> 2, the second represents 1 -> 3 and so on
until 1 -> n; then the following character represents 2 -> 3, and so on up to the character which
represents the edge n-1 -> n. If a character of the string with corresponding edge i -> j is equal
to 1, then this edge is present in the digraph. Otherwise, it is not present. In this way, all the possible
edges are encoded one-by-one.

In particular, note that there exists no edge [i, j] if j ≤ i. In order words, the digraph will be
topologically sorted.

Example
gap> gr := AdjacencyMatrixUpperTriangleLineDecoder("100001");
<digraph with 4 vertices, 2 edges>
gap> OutNeighbours(gr);
[[2], [], [4], []]
gap> gr := AdjacencyMatrixUpperTriangleLineDecoder("111111x111");
<digraph with 5 vertices, 9 edges>

Digraphs 137

gap> OutNeighbours(gr);
[[2, 3, 4, 5], [3, 4], [4, 5], [5], []]

9.2.10 TCodeDecoder

. TCodeDecoder(str) (function)

Returns: A digraph.
If str is a string consisting of at least two non-negative integers separated by spaces, then this

function will attempt to return the digraph which it defines as a TCode string.
The first integer of the string defines the number of vertices v in the digraph, and the second

defines the number of edges e. The following 2e integers should be vertex numbers in the range [0
.. v-1]. These integers are read in pairs and define the digraph’s edges. This function will return
an error if str has fewer than 2e+2 entries.

Note that the vertex numbers will be incremented by 1 in the digraph returned. Hence the string
fragment 0 6 will describe the edge [1,7].

Example
gap> gr := TCodeDecoder("3 2 0 2 2 1");
<digraph with 3 vertices, 2 edges>
gap> OutNeighbours(gr);
[[3], [], [2]]
gap> gr := TCodeDecoder("12 3 0 10 5 2 8 8");
<digraph with 12 vertices, 3 edges>
gap> OutNeighbours(gr);
[[11], [], [], [], [], [3], [], [], [9], [],

[], []]

9.2.11 PlainTextString

. PlainTextString(digraph) (operation)

. DigraphFromPlainTextString(s) (operation)

Returns: A string.
PlainTextString takes a single digraph, and returns a string describing the edges of that digraph.

DigraphFromPlainTextString takes such a string and returns the digraph which it describes. Each
edge is written as a pair of integers separated by a single space. The edges themselves are separated
by a double space. Vertex numbers are reduced by 1 when they are encoded, so that vertices in the
string are labelled starting at 0.

Note that the number of vertices of a digraph is not stored, and so vertices which are not connected
to any edge may be lost.

Example
gap> gr := Digraph([[2, 3], [1], [1]]);
<digraph with 3 vertices, 4 edges>
gap> PlainTextString(gr);
"0 1 0 2 1 0 2 0"
gap> DigraphFromPlainTextString(last);
<digraph with 3 vertices, 4 edges>

Digraphs 138

9.2.12 WritePlainTextDigraph

. WritePlainTextDigraph(filename, digraph, delimiter, offset) (function)

. ReadPlainTextDigraph(filename, delimiter, offset, ignore) (function)

These functions write and read a single digraph in a human-readable plain text format as follows:
each line contains a single edge, and each edge is written as a pair of integers separated by the string
delimiter .

filename should be the name of a file which will be written to or read from, and offset
should be an integer which is added to each vertex number as it is written or read. For example,
if WritePlainTextDigraph is called with offset -1, then the vertices will be numbered in the file
starting from 0 instead of 1 - ReadPlainTextDigraph would then need to be called with offset 1
to convert back to the original graph.

ignore should be a list of characters which will be ignored when reading the graph.
Example

gap> gr := Digraph([[1, 2, 3], [1, 1], [2]]);
<multidigraph with 3 vertices, 6 edges>
gap> filename := Concatenation(DIGRAPHS_Dir(), "/tst/out/plain.txt");;
gap> WritePlainTextDigraph(filename, gr, ",", -1);
gap> ReadPlainTextDigraph(filename, ",", 1, [’/’, ’%’]);
<multidigraph with 3 vertices, 6 edges>

9.2.13 WriteDIMACSDigraph

. WriteDIMACSDigraph(filename, digraph) (operation)

. ReadDIMACSDigraph(filename) (operation)

These operations write or read the single symmetric digraph digraph to or from a file in
DIMACS format, as appropriate. The operation WriteDIMACSDigraph records the vertices and
edges of digraph . The vertex labels of digraph will be recorded only if they are integers. See
IsSymmetricDigraph (6.1.10) and DigraphVertexLabels (5.1.9).

The first argument filename should be the name of the file which will be written to or read from.
A file can contain one symmetric digraph in DIMACS format. If filename ends in one of .gz, .bz2,
or .xz, then the file is compressed, or decompressed, appropriately.

The DIMACS format is described as follows. Each line in the DIMACS file has one of four types:

• A line beginning with c and followed by any number of characters is a comment line, and is
ignored.

• A line beginning with p defines the numbers of vertices and edges the digraph. This line has the
format p edge <nr_vertices> <nr_edges>, where <nr_vertices> and <nr_edges> are
replaced by the relevant integers. There must be exactly one such line in the file, and it must
occur before any of the following kinds of line.

Although it is required to be present, the value of <nr_edges> will be ignored. The correct
number of edges will be deduced from the rest of the information in the file.

• A line of the form e <v> <w>, where <v> and <w> are integers in the range [1 ..
<nr_vertices>], specifies that there is a (symmetric) edge in the digraph between the ver-

Digraphs 139

tices <v> and <w>. A symmetric edge only needs to be defined once; an additional line e <v>
<w>, or e <w> <v>, will be interpreted as an additional, multiple, edge. Loops are permitted.

• A line of the form n <v> <label>, where <v> is an integer in the range [1 ..
<nr_vertices>] and <label> is an integer, signifies that the vertex <v> has the label <label>
in the digraph. If a label is not specified for a vertex, then ReadDIMACSDigraph will assign the
label 1, according to the DIMACS specification.

A detailed definition of the DIMACS format can be found at
http://mat.gsia.cmu.edu/COLOR/general/ccformat.ps, in Section 2.1. Note that optional
descriptor lines, as described in Section 2.1, will be ignored.

Example
gap> gr := Digraph([[2], [1, 3, 4], [2, 4], [2, 3]]);
<digraph with 4 vertices, 8 edges>
gap> filename := Concatenation(DIGRAPHS_Dir(),
> "/tst/out/dimacs.dimacs");;
gap> WriteDIMACSDigraph(filename, gr);;
gap> ReadDIMACSDigraph(filename);
<digraph with 4 vertices, 8 edges>

http://mat.gsia.cmu.edu/COLOR/general/ccformat.ps

Appendix A

Grape to Digraphs Command Map

Below is a table of Grape commands with the Digraphs counterparts. The sections in this chapter
correspond to the chapters in the Grape manual.

A.1 Functions to construct and modify graphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
Graph Digraph (3.1.5)
EdgeOrbitsGraph EdgeOrbitsDigraph (3.1.8)
NullGraph NullDigraph (3.5.6)
CompleteGraph CompleteDigraph (3.5.2)
JohnsonGraph JohnsonDigraph (3.5.7)
CayleyGraph CayleyDigraph (3.1.10)
AddEdgeOrbit DigraphAddEdgeOrbit (3.3.16)
RemoveEdgeOrbit DigraphRemoveEdgeOrbit (3.3.21)
AssignVertexNames SetDigraphVertexLabels (5.1.9)

A.2 Functions to inspect graphs, vertices and edges

The table in this section contains more information when viewed in html format.

140

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

Digraphs 141

Grape command Digraphs command
IsGraph IsDigraph (3.1.1)
OrderGraph DigraphNrVertices (5.1.2)
IsVertex(graph, v) v in DigraphVertices(digraph)
VertexName DigraphVertexLabel (5.1.8)
VertexNames DigraphVertexLabels (5.1.9)
Vertices DigraphVertices (5.1.1)
VertexDegree OutDegreeOfVertex (5.2.10)
VertexDegrees OutDegreeSet (5.2.8)
IsLoopy DigraphHasLoops (6.1.1)
IsSimpleGraph IsSymmetricDigraph (6.1.10)
Adjacency OutNeighboursOfVertex (5.2.11)
IsEdge IsDigraphEdge (5.1.14)
DirectedEdges DigraphEdges (5.1.3)
UndirectedEdges None
Distance DigraphShortestDistance (5.3.2)
Diameter DigraphDiameter (5.3.1)
Girth DigraphUndirectedGirth (5.3.7)
IsConnectedGraph IsStronglyConnectedDigraph (6.3.5)
IsBipartite IsBipartiteDigraph (6.1.3)
IsNullGraph IsNullDigraph (6.1.6)
IsCompleteGraph IsCompleteDigraph (6.1.5)

A.3 Functions to determine regularity properties of graphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
IsRegularGraph IsOutRegularDigraph (6.2.2)
LocalParameters None
GlobalParameters None
IsDistanceRegular IsDistanceRegularDigraph (6.2.4)
CollapsedAdjacencyMat None
OrbitalGraphColadjMats None
VertexTransitiveDRGs None

A.4 Some special vertex subsets of a graph

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
ConnectedComponent DigraphConnectedComponent (5.3.9)
ConnectedComponents DigraphConnectedComponents (5.3.8)
Bicomponents DigraphBicomponents (5.3.12)
DistanceSet DigraphDistanceSet (5.3.5)
Layers DigraphLayers (5.3.22)
IndependentSet DigraphIndependentSet (8.2.2)

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

Digraphs 142

A.5 Functions to construct new graphs from old

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
InducedSubgraph InducedSubdigraph (3.3.2)
DistanceSetInduced None
DistanceGraph DistanceDigraph (3.3.34)
ComplementGraph DigraphDual (3.3.9)
PointGraph None
EdgeGraph EdgeUndirectedDigraph (3.3.30)
SwitchedGraph None
UnderlyingGraph DigraphSymmetricClosure (3.3.10)
QuotientGraph QuotientDigraph (3.3.7)
BipartiteDouble BipartiteDoubleDigraph (3.3.32)
GeodesicsGraph None
CollapsedIndependentOrbitsGraph None
CollapsedCompleteOrbitsGraph None
NewGroupGraph None

A.6 Vertex-Colouring and Complete Subgraphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
VertexColouring DigraphGreedyColouring (7.3.14)
CompleteSubgraphs DigraphCliques (8.1.4)
CompleteSubgraphsOfGivenSize DigraphCliques (8.1.4)

A.7 Automorphism groups and isomorphism testing for graphs

The table in this section contains more information when viewed in html format.

Grape command Digraphs command
AutGroupGraph AutomorphismGroup (7.2.2)
GraphIsomorphism IsomorphismDigraphs (7.2.16)
IsIsomorphicGraph IsIsomorphicDigraph (7.2.14)
GraphIsomorphismClassRepresentatives None

http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/

References

[BM06] John M. Boyer and Wendy J. Myrvold. On the cutting edge: Simplified o(n) planarity by
edge addition. In Graph Algorithms and Applications 5, pages 241–273. WORLD SCIEN-
TIFIC, jun 2006. 69, 70, 71, 87, 88

[CK86] R. Calderbank and W. M. Kantor. The geometry of two-weight codes. Bull. London Math.
Soc., 18(2):97–122, 1986. 12

[Gab00] Harold N. Gabow. Path-based depth-first search for strong and biconnected components.
Information Processing Letters, 74(34):107 – 114, 2000. 59, 83

[JK07] Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling tool for large
and sparse graphs. In David Applegate, Gerth Stølting Brodal, Daniel Panario, and Robert
Sedgewick, editors, Proceedings of the Ninth Workshop on Algorithm Engineering and Ex-
periments and the Fourth Workshop on Analytic Algorithms and Combinatorics, pages 135–
149. SIAM, 2007. 5, 90

[MP14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}. Journal of
Symbolic Computation, 60(0):94 – 112, 2014. 6, 90

[vLS81] J. H. van Lint and A. Schrijver. Construction of strongly regular graphs, two-weight codes
and partial geometries by finite fields. Combinatorica, 1(1):63–73, 1981. 12

143

Index

< (for digraphs), 37
= (for digraphs), 37

AdjacencyMatrix, 47
AdjacencyMatrixMutableCopy, 47
AdjacencyMatrixUpperTriangleLine-

Decoder, 136
ArticulationPoints, 60
AsBinaryRelation, 15
AsDigraph, 15
AsGraph, 16
AsMonoid, 68
AsSemigroup, 68
AsTransformation, 17
AutomorphismGroup

for a digraph, 91
for a digraph and a homogeneous list, 93

BipartiteDoubleDigraph, 32
BlissAutomorphismGroup, 92
BlissCanonicalDigraph, 97
BlissCanonicalLabelling

for a digraph, 94
for a digraph and a list, 95

BooleanAdjacencyMatrix, 48
BooleanAdjacencyMatrixMutableCopy, 48

CayleyDigraph, 14
ChainDigraph, 34
CharacteristicPolynomial, 47
ChromaticNumber, 115
CliqueNumber, 122
CliquesFinder, 118
CompleteBipartiteDigraph, 35
CompleteDigraph, 34
CompleteMultipartiteDigraph, 35
CycleDigraph, 35

Digraph, 11
for a group, list, function, and function, 11

for a list and function, 11
Digraph6String, 130
DigraphAddAllLoops, 32
DigraphAddEdge, 24
DigraphAddEdgeOrbit, 25
DigraphAddEdges, 25
DigraphAddVertex, 23
DigraphAddVertices, 24
DigraphAdjacencyFunction, 48
DigraphAllSimpleCircuits, 64
DigraphBicomponents, 59
DigraphByAdjacencyMatrix, 13
DigraphByEdges, 13
DigraphByInNeighbors, 14
DigraphByInNeighbours, 14
DigraphClique, 119
DigraphCliques, 120
DigraphCliquesReps, 120
DigraphClosure

for a digraph and positive integer, 33
DigraphColoring

for a digraph and a number of colours, 114
DigraphColouring

for a digraph and a number of colours, 114
DigraphConnectedComponent, 58
DigraphConnectedComponents, 58
DigraphCopy, 17
DigraphDegeneracy, 65
DigraphDegeneracyOrdering, 66
DigraphDiameter, 54
DigraphDisjointUnion

for a list of digraphs, 29
for an arbitrary number of digraphs, 29

DigraphDistanceSet
for a digraph, a pos int, and a list, 56
for a digraph, a pos int, and an int, 56

DigraphDual, 21
DigraphEdgeLabel, 44

144

Digraphs 145

DigraphEdgeLabels, 44
DigraphEdges, 41
DigraphEdgeUnion

for a list of digraphs, 30
for an arbitrary number of digraphs, 30

DigraphEmbedding, 111
DigraphEpimorphism, 110
DigraphFamily, 10
DigraphFile, 130
DigraphFloydWarshall, 61
DigraphFromDigraph6String, 129
DigraphFromDiSparse6String, 130
DigraphFromGraph6String, 129
DigraphFromPlainTextString, 137
DigraphFromSparse6String, 130
DigraphGirth, 57
DigraphGreedyColouring

for a digraph, 114
for a digraph and vertex order, 114
for a digraph and vertex order function, 114

DigraphGroup, 97
DigraphHasLoops, 73
DigraphHomomorphism, 108
DigraphIndependentSet, 123
DigraphIndependentSets, 124
DigraphIndependentSetsReps, 124
DigraphInEdges, 45
DigraphJoin

for a list of digraphs, 30
for an arbitrary number of digraphs, 30

DigraphLayers, 65
DigraphLongestDistanceFromVertex, 56
DigraphLongestSimpleCircuit, 65
DigraphLoops, 53
DigraphMaximalClique, 119
DigraphMaximalCliques, 120
DigraphMaximalCliquesAttr, 120
DigraphMaximalCliquesReps, 120
DigraphMaximalCliquesRepsAttr, 120
DigraphMaximalIndependentSet, 123
DigraphMaximalIndependentSets, 124
DigraphMaximalIndependentSetsAttr, 124
DigraphMaximalIndependentSetsReps, 124
DigraphMaximalIndependentSetsRepsAttr,

124
DigraphMonomorphism, 109

DigraphNrEdges, 41
DigraphNrVertices, 40
DigraphOrbitReps, 99
DigraphOrbits, 99
DigraphOutEdges, 45
DigraphPath, 62
DigraphPeriod, 60
DigraphPlainTextLineDecoder, 135
DigraphPlainTextLineEncoder, 135
DigraphRange, 49
DigraphReflexiveTransitiveClosure, 22
DigraphReflexiveTransitiveReduction, 23
DigraphRemoveAllMultipleEdges, 28
DigraphRemoveEdge, 26
DigraphRemoveEdgeOrbit, 27
DigraphRemoveEdges, 27
DigraphRemoveLoops, 28
DigraphRemoveVertex, 26
DigraphRemoveVertices , 26
DigraphReverse, 21
DigraphReverseEdge, 28
DigraphReverseEdges, 28
Digraphs package overview, 5
DigraphSchreierVector, 99
DigraphShortestDistance

for a digraph and a list, 55
for a digraph and two vertices, 55
for a digraph, a list, and a list, 55

DigraphShortestDistances, 55
DigraphShortestPath, 63
DigraphSinks, 42
DigraphsMakeDoc, 9
DigraphSource, 49
DigraphSources, 42
DigraphStabilizer, 100
DigraphsTestInstall, 9
DigraphsTestStandard, 9
DigraphStronglyConnectedComponent, 59
DigraphStronglyConnectedComponents, 59
DigraphsUseBliss, 90
DigraphsUseNauty, 90
DigraphSymmetricClosure, 21
DigraphTopologicalSort, 42
DigraphTransitiveClosure, 22
DigraphTransitiveReduction, 23
DigraphType, 10

Digraphs 146

DigraphUndirectedGirth, 57
DigraphVertexLabel, 42
DigraphVertexLabels, 43
DigraphVertices, 40
DigraphWelshPowellOrder, 115
DiSparse6String, 130
DistanceDigraph

for digraph and int, 32
for digraph and list, 32

DotDigraph, 127
DotPartialOrderDigraph, 128
DotPreorderDigraph, 128
DotQuasiorderDigraph, 128
DotSymmetricDigraph, 127
DotVertexLabelledDigraph, 127
DoubleDigraph, 31

EdgeDigraph, 31
EdgeOrbitsDigraph, 14
EdgeUndirectedDigraph, 31
EmbeddingsDigraphs, 111
EmbeddingsDigraphsRepresentatives, 111
EmptyDigraph, 35
EpimorphismsDigraphs, 110
EpimorphismsDigraphsRepresentatives,

110

GeneratorsOfCayleyDigraph, 67
GeneratorsOfEndomorphismMonoid, 113
GeneratorsOfEndomorphismMonoidAttr, 113
Graph, 16
Graph6String, 130
GroupOfCayleyDigraph, 67

HamiltonianPath, 66
HomomorphismDigraphsFinder, 106
HomomorphismsDigraphs, 109
HomomorphismsDigraphsRepresentatives,

109

InDegreeOfVertex, 52
InDegrees, 51
InDegreeSequence, 51
InDegreeSet, 51
InducedSubdigraph, 17
InNeighbors, 50
InNeighborsMutableCopy, 50
InNeighborsOfVertex, 53

InNeighbours, 50
InNeighboursMutableCopy, 50
InNeighboursOfVertex, 53
IsAcyclicDigraph, 82
IsAntisymmetricDigraph, 73
IsAperiodicDigraph, 84
IsBiconnectedDigraph, 83
IsBipartiteDigraph, 74
IsCayleyDigraph, 10
IsChainDigraph, 82
IsClique, 117
IsCompleteBipartiteDigraph, 74
IsCompleteDigraph, 75
IsConnectedDigraph, 83
IsCycleDigraph, 87
IsDigraph, 10
IsDigraphAutomorphism, 105
IsDigraphColouring, 106

for a transformation, 106
IsDigraphEdge

for digraph and list, 45
for digraph and two pos ints, 45

IsDigraphEmbedding, 112
IsDigraphEndomorphism, 112
IsDigraphEpimorphism, 111
IsDigraphHomomorphism, 111
IsDigraphIsomorphism, 105
IsDigraphMonomorphism, 112
IsDigraphWithAdjacencyFunction, 10
IsDirectedTree, 84
IsDistanceRegularDigraph, 81
IsEmptyDigraph, 75
IsEulerianDigraph, 85
IsFunctionalDigraph, 75
IsHamiltonianDigraph, 86
IsIndependentSet, 122
IsInRegularDigraph, 80
IsIsomorphicDigraph

for digraphs, 100
for digraphs and homogeneous lists, 101

IsJoinSemilatticeDigraph, 79
IsLatticeDigraph, 79
IsMatching, 46
IsMaximalClique, 117
IsMaximalIndependentSet, 122
IsMaximalMatching, 46

Digraphs 147

IsMeetSemilatticeDigraph, 79
IsMultiDigraph, 76
IsNullDigraph, 75
IsomorphismDigraphs

for digraphs, 102
for digraphs and homogeneous lists, 103

IsOuterPlanarDigraph, 88
IsOutRegularDigraph, 80
IsPartialOrderDigraph, 79
IsPerfectMatching, 46
IsPlanarDigraph, 87
IsPreorderDigraph, 78
IsQuasiorderDigraph, 78
IsReachable, 62
IsReflexiveDigraph, 76
IsRegularDigraph, 81
IsStronglyConnectedDigraph, 83
IsSubdigraph, 37
IsSymmetricDigraph, 77
IsTournament, 77
IsTransitiveDigraph, 78
IsUndirectedForest, 85
IsUndirectedSpanningForest, 38
IsUndirectedSpanningTree, 38
IsUndirectedTree, 85
IteratorFromDigraphFile, 135
IteratorOfPaths, 63

JohnsonDigraph, 36

KuratowskiOuterPlanarSubdigraph, 69
KuratowskiPlanarSubdigraph, 69

LineDigraph, 31
LineUndirectedDigraph, 31

MaximalAntiSymmetricSubdigraph, 19
MaximalSymmetricSubdigraph, 18
MaximalSymmetricSubdigraphWithout-

Loops, 18
MonomorphismsDigraphs, 109
MonomorphismsDigraphsRepresentatives,

109

NautyAutomorphismGroup, 92
NautyCanonicalDigraph, 97
NautyCanonicalLabelling

for a digraph, 94

for a digraph and a list, 95
NullDigraph, 35

OnDigraphs
for a digraph and a perm, 89
for a digraph and a transformation, 89

OnMultiDigraphs, 90
for a digraph, perm, and perm, 90

OutDegreeOfVertex, 52
OutDegrees, 51
OutDegreeSequence, 51
OutDegreeSet, 51
OuterPlanarEmbedding, 70
OutNeighbors, 49
OutNeighborsMutableCopy, 49
OutNeighborsOfVertex, 52
OutNeighbours, 49
OutNeighboursMutableCopy, 49
OutNeighboursOfVertex, 52

PartialOrderDigraphJoinOfVertices
for a digraph and two vertices, 53

PartialOrderDigraphMeetOfVertices
for a digraph and two vertices, 53

PlainTextString, 137
PlanarEmbedding, 70

QuotientDigraph, 20

RandomDigraph, 33
RandomMultiDigraph, 34
RandomTournament, 34
ReadDigraphs, 132
ReadDIMACSDigraph, 138
ReadPlainTextDigraph, 138
ReducedDigraph, 18
RepresentativeOutNeighbours, 104

SemigroupOfCayleyDigraph, 67
SetDigraphEdgeLabel, 44
SetDigraphEdgeLabels

for a digraph and a function, 44
for a digraph and a list of lists, 44

SetDigraphVertexLabel, 42
SetDigraphVertexLabels, 43
Sparse6String, 130
Splash, 126
SubdigraphHomeomorphicToK23, 71

Digraphs 148

SubdigraphHomeomorphicToK33, 71
SubdigraphHomeomorphicToK4, 71

TCodeDecoder, 137
TournamentLineDecoder, 136

UndirectedSpanningForest, 19
UndirectedSpanningTree, 19

WriteDigraphs, 133
WriteDIMACSDigraph, 138
WritePlainTextDigraph, 138

	 The Digraphs package
	Introduction

	Installing Digraphs
	For those in a hurry
	Optional package dependencies
	Compiling the kernel module
	Rebuilding the documentation
	Testing your installation

	Creating digraphs
	Creating digraphs
	Changing representations
	New digraphs from old
	Random digraphs
	Standard examples

	Operators
	Operators for digraphs

	Attributes and operations
	Vertices and edges
	Neighbours and degree
	Reachability and connectivity
	Cayley graphs of groups
	Associated semigroups
	Planarity

	Properties of digraphs
	Edge properties
	Regularity
	Connectivity and cycles
	Planarity

	Homomorphisms
	Acting on digraphs
	Isomorphisms and canonical labellings
	Homomorphisms of digraphs

	Finding cliques and independent sets
	Finding cliques
	Finding independent sets

	Visualising and IO
	Visualising a digraph
	Reading and writing graphs to a file

	 Grape to Digraphs Command Map
	 Functions to construct and modify graphs
	 Functions to inspect graphs, vertices and edges
	 Functions to determine regularity properties of graphs
	 Some special vertex subsets of a graph
	 Functions to construct new graphs from old
	 Vertex-Colouring and Complete Subgraphs
	 Automorphism groups and isomorphism testing for graphs

	References
	Index

