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Abstract
The Semigroups package is a GAP package containing methods for semigroups, monoids, and inverse semi-
groups. There are particularly efficient methods for semigroups or ideals consisting of transformations, partial
permutations, bipartitions, partitioned binary relations, subsemigroups of regular Rees 0-matrix semigroups,
and matrices of various semirings including boolean matrices, matrices over finite fields, and certain tropical
matrices.

Semigroups contains efficient methods for creating semigroups, monoids, and inverse semigroup, calcu-
lating their Green’s structure, ideals, size, elements, group of units, small generating sets, testing membership,
finding the inverses of a regular element, factorizing elements over the generators, and so on. It is possible to
test if a semigroup satisfies a particular property, such as if it is regular, simple, inverse, completely regular, and
a variety of further properties.

There are methods for finding presentations for a semigroup, the congruences of a semigroup, the
normalizer of a semigroup in a permutation group, the maximal subsemigroups of a finite semigroup, smaller
degree partial permutation representations, and the character tables of inverse semigroups. There are functions
for producing pictures of the Green’s structure of a semigroup, and for drawing graphical representations of
certain types of elements.

Copyright
© 2011-19 by J. D. Mitchell et al.

Semigroups is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
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Chapter 1

The Semigroups package

1.1 Introduction

This is the manual for the Semigroups package for GAP version 3.1.1. Semigroups 3.1.1 is a
distant descendant of the Monoid package for GAP 3 by Goetz Pfeiffer, Steve A. Linton, Edmund F.
Robertson, and Nik Ruskuc.

Semigroups 3.1.1 contains efficient methods for creating semigroups, monoids, inverse semi-
groups and their ideals, calculating their Green’s structure, size, elements, group of units, minimal
ideal, and testing membership, finding the inverses of a regular element, and factorizing elements
over the generators, and much more; see below for more details.

There are methods for finding: congruences of semigroups, the normalizer of a semigroup in
a permutation group (using the method from [ABMN10]), the maximal subsemigroups of a finite
semigroup (based on [GGR68] and described in [DMW18]), smaller degree partial permutation rep-
resentations (based on [Sch92]) and the character table of an inverse semigroup. There are functions
for producing pictures of the Green’s structure of a semigroup (inspired by sgpviz), and for drawing
graphical representations of the elements of certain semigroups.

Many standard examples of semigroups and classes of semigroups are provided; see Section 8.
Semigroups also provides functions to read and write collections of elements of a semigroup to a
file; see ReadGenerators (20.1.1) and WriteGenerators (20.1.2).

There are functions in Semigroups to define and manipulate free inverse semigroups and free
bands; this part of the package was written by Julius Jonušas; see Chapters 10.

From Version 3.0.0, Semigroups includes a copy of the libsemigroups C++ library which con-
tains an implementation of the Froidure-Pin Algorithm.

MINOR NOTE OF CAUTION: Semigroups contains different methods for some GAP library func-
tions, and so you might notice that GAP behaves differently when Semigroups is loaded. For more
details about semigroups in GAP or Green’s relations in particular, see (Reference: Semigroups) or
(Reference: Green’s Relations).

If you find a bug or an issue with the package, please visit the issue tracker.

1.2 Overview

This manual is organised as follows:

Part I: generators
the different types of generators that are introduced in Semigroups are described in Chap-

8
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ters 3, 4, and 5. These include Bipartition (3.2.1), PBR (4.2.1), and Matrix (5.1.5), which
supplement those already defined in the GAP library, such as Transformation (Reference:
Transformation for an image list) or PartialPerm (Reference: PartialPerm for a domain
and image).

Part II: semigroups and ideals
functions and operations for creating semigroups, monoids, and their ideals, in general, and
various options, are described in Chapters 6 and 7.

Part III: standard examples and constructions
standard examples of semigroups, such as FullBooleanMatMonoid (8.6.1) or
UniformBlockBijectionMonoid (8.3.8), are described in Chapter 8, and standard con-
structions, such as TrivialSemigroup (9.1.1), RightZeroSemigroup (9.1.5), are described
in Chapter 9.

Part IV: further classes of semigroups and monoids
free objects in the categories of inverse semigroups, and bands, are described in Chapter 10,
and graph inverse semigroups, which are a generalisation of polycyclic monoids, are described
in Chapter 11.

Part V: the structure of a semigroup or monoid
the functionality of the Semigroups package for determining various structural properties of a
given semigroup or monoid are described in Chapters 13, 14, and 15. Attributes and properties
specific to inverse semigroups are described in Chapter 16.

Part VI: congruences, quotients, and homomorphisms
methods for creating and manipulating congruences and homomorphisms are described by
Chapters 17 and 18.

Part VII: utilities and helper functions
functions for reading and writing semigroups and their elements, and for visualising semi-
groups, and some of their elements, can be found in Chapters 19 and 20.



Chapter 2

Installing Semigroups

2.1 For those in a hurry

In this section we give a brief description of how to start using Semigroups.
It is assumed that you have a working copy of GAP with version number 4.9.0 or higher. The

most up-to-date version of GAP and instructions on how to install it can be obtained from the main
GAP webpage http://www.gap-system.org.

The following is a summary of the steps that should lead to a successful installation of Semi-
groups:

• ensure that the IO package version 4.5.1 or higher is available. IO must be compiled before
Semigroups can be loaded.

• ensure that the Orb package version 4.8.1 or higher is available. Orb and Semigroups both
perform better if Orb is compiled.

• ensure that the Digraphs package version 0.12.0 or higher is available. Digraphs must be com-
piled before Semigroups can be loaded.

• ensure that the genss package version 1.6.5 or higher is available.

• download the package archive semigroups-3.1.1.tar.gz from the Semigroups package
webpage.

• unzip and untar the file, this should create a directory called semigroups-3.1.1.

• locate the pkg directory of your GAP directory, which contains the directories lib, doc and so
on. Move the directory semigroups-3.1.1 into the pkg directory.

• from version 3.0.0, it is necessary to compile the Semigroups package. Semigroups uses
the libsemigroups C++ library, which requires a compiler implementing the C++11 standard.
Inside the pkg/semigroups-3.1.1 directory, type

./configure
make

Further information about this step can be found in Section 2.3.

10

http://www.gap-system.org
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html 
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https://gap-packages.github.io/Semigroups
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• start GAP in the usual way (i.e. type gap at the command line).

• type LoadPackage("semigroups");

PLEASE NOTE THAT from version 3.0.0: Semigroups can only be loaded if it has been compiled.
If you want to check that the package is working correctly, you should run some of the tests

described in Section 2.5.

2.2 Package dependencies

The Semigroups package is written in GAP and C++ and requires the Orb, IO, Digraphs and genss
packages. The Orb package is used to efficiently compute components of actions, which underpin
many of the features of Semigroups. The IO package is used to read and write elements of a semi-
group to a file. The genss package is used in a non-deterministic version of the operation Normalizer
(14.11.1) and in calculating the stabiliser of a Rees 0-matrix semigroup’s matrix. The Digraphs pack-
age is used in a variety of ways in the Semigroups package, in particular, to apply standard graph
theoretic algorithms to certain data structures.

2.3 Compiling the kernel module

As of version 3.0.0, the Semigroups package has a GAP kernel module written in C/C++ and this
must be compiled. The kernel module contains low-level functions relating to the enumeration of
certain types of semigroups, and it is not possible to use the Semigroups package without compiling
it.

To compile the kernel component inside the pkg/semigroups-3.1.1 directory, type

./configure
make

If you are using GCC to compile Semigroups, then version 5.0 or higher is required. Trying to
compile Semigroups with an earlier version of GCC will result in an error at compile time. Semi-
groups supports GCC version 5.0 or higher, and clang version 5.0 or higher.

If you installed the package in another pkg directory other than the standard pkg directory in your
GAP installation, then you have to do two things. Firstly during compilation you have to use the
option –with-gaproot=PATH of the configure script where PATH is a path to the main GAP root
directory (if not given the default ../.. is assumed).

If you installed GAP on several architectures, you must execute the configure/make step for each
of the architectures. You can either do this immediately after configuring and compiling GAP itself
on this architecture, or alternatively set the environment variable CONFIGNAME to the name of the
configuration you used when compiling GAP before running ./configure. Note however that your
compiler choice and flags (environment variables CC and CFLAGS) need to be chosen to match the setup
of the original GAP compilation. For example you have to specify 32-bit or 64-bit mode correctly!

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html 
https://gap-packages.github.io/Digraphs
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/orb.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html 
 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html 
https://gap-packages.github.io/Digraphs
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2.4 Rebuilding the documentation

The Semigroups package comes complete with pdf, html, and text versions of the documentation.
However, you might find it necessary, at some point, to rebuild the documentation. To rebuild the
documentation use the SemigroupsMakeDoc (2.4.1).

2.4.1 SemigroupsMakeDoc

. SemigroupsMakeDoc() (function)

Returns: Nothing.
This function should be called with no argument to compile the Semigroups documentation.

2.5 Testing your installation

In this section we describe how to test that Semigroups is working as intended. To quickly test
that Semigroups is installed correctly use SemigroupsTestInstall (2.5.1) - this will take a few
seconds. For more extensive tests use SemigroupsTestStandard (2.5.2) - this may take several
minutes. Finally, for lengthy benchmarking tests use SemigroupsTestExtreme (2.5.3) - this may
take more than half an hour.

If something goes wrong, then please review the instructions in Section 2.1 and ensure that Semi-
groups has been properly installed. If you continue having problems, please use the issue tracker to
report the issues you are having.

2.5.1 SemigroupsTestInstall

. SemigroupsTestInstall() (function)

Returns: true or false.
This function should be called with no argument to test your installation of Semigroups is work-

ing correctly. These tests should take no more than a few seconds to complete. To more comprehen-
sively test that Semigroups is installed correctly use SemigroupsTestStandard (2.5.2).

2.5.2 SemigroupsTestStandard

. SemigroupsTestStandard() (function)

Returns: A list indicating which tests passed and failed and the time take to run each file.
This function should be called with no argument to comprehensively test that Semigroups is

working correctly. These tests should take no more than a few minutes to complete. To quickly test
that Semigroups is installed correctly use SemigroupsTestInstall (2.5.1).

Each test file is run twice, once when the methods for IsActingSemigroup (6.1.3) are enabled
and once when they are disabled.

2.5.3 SemigroupsTestExtreme

. SemigroupsTestExtreme() (function)

Returns: A list indicating which tests passed and failed and the time take to run each file.
This function should be called with no argument to run some long-running tests, which

could be used to benchmark Semigroups or test your hardware. These tests should take

https://github.com/gap-packages/Semigroups/issues
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no more than around half an hour to complete. To quickly test that Semigroups is in-
stalled correctly use SemigroupsTestInstall (2.5.1), or to test all aspects of the package use
SemigroupsTestStandard (2.5.2).

Each test file is run twice, once when the methods for semigroups satisfying IsActingSemigroup
(6.1.3) are enabled and once when they are disabled.

2.5.4 SemigroupsTestAll

. SemigroupsTestAll() (function)

Returns: true or false.
This function should be called with no argument to compile the Semigroups package’s docu-

mentation, run the standard suite of tests, and run all the examples from the documentation to ensure
that their output is correct. The value returned is true if all the tests succeed, and false otherwise.
The whole process should take no more than a few minutes.

See SemigroupsMakeDoc (2.4.1) and SemigroupsTestStandard (2.5.2).

2.6 More information during a computation

2.6.1 InfoSemigroups

. InfoSemigroups (info class)

InfoSemigroups is the info class of the Semigroups package. The info level is initially set
to 0 and no info messages are displayed. To increase the amount of information displayed during a
computation increase the info level to 2 or 3. To stop all info messages from being displayed, set the
info level to 0. See also (Reference: Info Functions) and SetInfoLevel (Reference: InfoLevel).



Chapter 3

Bipartitions and blocks

In this chapter we describe the functions in Semigroups for creating and manipulating bipartitions
and semigroups of bipartitions. We begin by describing what these objects are.

A partition of a set X is a set of pairwise disjoint non-empty subsets of X whose union is X . A
partition of X is the collection of equivalence classes of an equivalence relation on X , and vice versa.

Let n ∈N, let n= {1,2, . . . ,n}, and let −n= {−1,−2, . . . ,−n}.
The partition monoid of degree n is the set of all partitions of n∪-n with a multiplication we

describe below. To avoid conflict with other uses of the word "partition" in GAP, and to reflect their
definition, we have opted to refer to the elements of the partition monoid as bipartitions of degree n;
we will do so from this point on.

Let x be any bipartition of degree n. Then x is a set of pairwise disjoint non-empty subsets of n∪-n
whose union is n∪-n; these subsets are called the blocks of x. A block containing elements of both n
and -n is called a transverse block. If i, j∈n∪-n belong to the same block of a bipartition x, then we
write (i, j)∈x.

Let x and y be bipartitions of degree n. Their product xy can be described as follows. Define
n’= {1′,2′, . . . ,n′}. From x, create a partition x’ of the set n∪n’ by replacing each negative point -i in
a block of x by the point i’, and create from y a partition y’ of the set n’∪-n by replacing each positive
point i in a block of y by the point i’. Then define a relation on the set n∪n’∪-n, where i and j are
related if they are related in either x’ or y’, and let p be the transitive closure of this relation. Finally,
define xy to be the bipartition of degree n defined by the restriction of the equivalence relation p to the
set n∪-n.

Equivalently, the product xy is defined to be the bipartition where i, j∈n∪-n (we assume without
loss of generality that i≥ j) belong to the same block of xy if either:

• i= j,

• i, j ∈ n and (i, j)∈ x, or

• i, j ∈ -n and (i, j)∈ y;

or there exists r ∈N and k(1),k(2), . . . ,k(r) ∈ n , and one of the following holds:

• r = 2s−1 for some s≥ 1 , i∈n, j∈ -n and

(i,−k(1)) ∈ x, (k(1),k(2)) ∈ y, (−k(2),−k(3)) ∈ x, . . . ,

. . . , (−k(2s−2),−k(2s−1)) ∈ x, (k(2s−1), j) ∈ y;

14
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• r = 2s for some s≥ 1 , and either i, j∈n, and

(i,−k(1))∈ x, (k(1),k(2))∈ y, (−k(2),−k(3))∈ x, . . . ,(k(2s−1),k(2s))∈ y, (−k(2s), j)∈ x,

or i, j∈-n, and

(i,k(1)) ∈ y, (−k(1),−k(2)) ∈ x, (k(2),k(3)) ∈ y, . . . ,(−k(2s−1),−k(2s)) ∈ x, (k(2s), j) ∈ y.

This multiplication can be shown to be associative, and so the collection of all bipartitions of any
particular degree is a monoid; the identity element of the partition monoid of degree n is the bipartition
{{i,−i} : i ∈ n}. A bipartition is a unit if and only if each block is of the form {i,- j} for some i, j∈n.
Hence the group of units is isomorphic to the symmetric group on n.

Let x be a bipartition of degree n. Then we define x∗ to be the bipartition obtained from x by
replacing i by -i and -i by i in every block of x for all i∈n. It is routine to verify that if x and y are
arbitrary bipartitions of equal degree, then

(x∗)∗ = x, xx∗x = x, x∗xx∗ = x∗, (xy)∗ = y∗x∗.

In this way, the partition monoid is a regular *-semigroup.
A bipartition x of degree n is called planar if there do not exist distinct blocks A,U ∈ x, along with

a,b ∈ A and u,v ∈U , such that a < u < b < v. Define p to be the bipartition of degree n with blocks
{{i,−(i+1)} : i ∈ {1, . . . ,n−1}} and {n,−1} . Note that p is a unit. A bipartition x of degree n is
called annular if x = piyp j for some planar bipartition y of degree n, and some integers i and j.

From a graphical perspective, as on Page 873 in [HR05], a bipartition of degree n is planar if it can
be represented as a graph without edges crossing inside of the rectangle formed by its vertices n∪-n.
Similarly, as shown in Figure 2 in [Aui12], a bipartition of degree n is annular if it can be represented
as a graph without edges crossing inside an annulus.

3.1 The family and categories of bipartitions

3.1.1 IsBipartition

. IsBipartition(obj) (Category)

Returns: true or false.
Every bipartition in GAP belongs to the category IsBipartition. Basic operations for biparti-

tions are RightBlocks (3.5.5), LeftBlocks (3.5.6), ExtRepOfObj (3.5.3), LeftProjection (3.2.4),
RightProjection (3.2.5), StarOp (3.2.6), DegreeOfBipartition (3.5.1), RankOfBipartition
(3.5.2), multiplication of two bipartitions of equal degree is via *.

3.1.2 IsBipartitionCollection

. IsBipartitionCollection(obj) (Category)

. IsBipartitionCollColl(obj) (Category)

Returns: true or false.
Every collection of bipartitions belongs to the category IsBipartitionCollection. For exam-

ple, bipartition semigroups belong to IsBipartitionCollection.
Every collection of collections of bipartitions belongs to IsBipartitionCollColl. For example,

a list of bipartition semigroups belongs to IsBipartitionCollColl.
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3.2 Creating bipartitions

There are several ways of creating bipartitions in GAP, which are described in this section. The
maximum degree of a bipartition is set as 2 ^ 29 - 1. In reality, it is unlikely to be possible to create
bipartitions of degrees as small as 2 ^ 24 because they require too much memory.

3.2.1 Bipartition

. Bipartition(blocks) (function)

Returns: A bipartition.
Bipartition returns the bipartition x with equivalence classes blocks , which should be a list of

duplicate-free lists whose union is [-n .. -1] union [1 .. n] for some positive integer n.
Bipartition returns an error if the argument does not define a bipartition.

Example
gap> x := Bipartition([[1, -1], [2, 3, -3], [-2]]);
<bipartition: [ 1, -1 ], [ 2, 3, -3 ], [ -2 ]>

3.2.2 BipartitionByIntRep

. BipartitionByIntRep(list) (operation)

Returns: A bipartition.
It is possible to create a bipartition using its internal representation. The argument list must be

a list of positive integers not greater than n, of length 2 * n, and where i appears in the list only if
i-1 occurs earlier in the list.

For example, the internal representation of the bipartition with blocks
Example

[1, -1], [2, 3, -2], [-3]

has internal representation
Example

[1, 2, 2, 1, 2, 3]

The internal representation indicates that the number 1 is in class 1, the number 2 is in class 2, the
number 3 is in class 2, the number -1 is in class 1, the number -2 is in class 2, and -3 is in class 3.
As another example, [1, 3, 2, 1] is not the internal representation of any bipartition since there is
no 2 before the 3 in the second position.

In its first form BipartitionByIntRep verifies that the argument list is the internal represen-
tation of a bipartition.

See also IntRepOfBipartition (3.5.4).
Example

gap> BipartitionByIntRep([1, 2, 2, 1, 3, 4]);
<bipartition: [ 1, -1 ], [ 2, 3 ], [ -2 ], [ -3 ]>

3.2.3 IdentityBipartition

. IdentityBipartition(n) (operation)

Returns: The identity bipartition.
Returns the identity bipartition with degree n .
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Example
gap> IdentityBipartition(10);
<block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ], [ 4, -4 ],
[ 5, -5 ], [ 6, -6 ], [ 7, -7 ], [ 8, -8 ], [ 9, -9 ], [ 10, -10 ]>

3.2.4 LeftOne (for a bipartition)

. LeftOne(x) (attribute)

. LeftProjection(x) (attribute)

Returns: A bipartition.
The LeftProjection of a bipartition x is the bipartition x * Star(x). It is so-named, since

the left and right blocks of the left projection equal the left blocks of x .
The left projection e of x is also a bipartition with the property that e * x = x . LeftOne and

LeftProjection are synonymous.
Example

gap> x := Bipartition([
> [1, 4, -1, -2, -6], [2, 3, 5, -4], [6, -3], [-5]]);;
gap> LeftOne(x);
<block bijection: [ 1, 4, -1, -4 ], [ 2, 3, 5, -2, -3, -5 ],
[ 6, -6 ]>

gap> LeftBlocks(x);
<blocks: [ 1*, 4* ], [ 2*, 3*, 5* ], [ 6* ]>
gap> RightBlocks(LeftOne(x));
<blocks: [ 1*, 4* ], [ 2*, 3*, 5* ], [ 6* ]>
gap> LeftBlocks(LeftOne(x));
<blocks: [ 1*, 4* ], [ 2*, 3*, 5* ], [ 6* ]>
gap> LeftOne(x) * x = x;
true

3.2.5 RightOne (for a bipartition)

. RightOne(x) (attribute)

. RightProjection(x) (attribute)

Returns: A bipartition.
The RightProjection of a bipartition x is the bipartition Star(x) * x . It is so-named, since

the left and right blocks of the right projection equal the right blocks of x .
The right projection e of x is also a bipartition with the property that x * e = x . RightOne and

RightProjection are synonymous.
Example

gap> x := Bipartition([[1, -1, -4], [2, -2, -3], [3, 4], [5, -5]]);;
gap> RightOne(x);
<block bijection: [ 1, 4, -1, -4 ], [ 2, 3, -2, -3 ], [ 5, -5 ]>
gap> RightBlocks(RightOne(x));
<blocks: [ 1*, 4* ], [ 2*, 3* ], [ 5* ]>
gap> LeftBlocks(RightOne(x));
<blocks: [ 1*, 4* ], [ 2*, 3* ], [ 5* ]>
gap> RightBlocks(x);
<blocks: [ 1*, 4* ], [ 2*, 3* ], [ 5* ]>
gap> x * RightOne(x) = x;
true



Semigroups 18

3.2.6 StarOp (for a bipartition)

. StarOp(x) (operation)

. Star(x) (attribute)

Returns: A bipartition.
StarOp returns the unique bipartition g with the property that: x * g * x = x ,

RightBlocks(x) = LeftBlocks(g), and LeftBlocks(x) = RightBlocks(g). The star g can
be obtained from x by changing the sign of every integer in the external representation of x .

Example
gap> x := Bipartition([[1, -4], [2, 3, 4], [5], [-1], [-2, -3], [-5]]);
<bipartition: [ 1, -4 ], [ 2, 3, 4 ], [ 5 ], [ -1 ], [ -2, -3 ],
[ -5 ]>

gap> y := Star(x);
<bipartition: [ 1 ], [ 2, 3 ], [ 4, -1 ], [ 5 ], [ -2, -3, -4 ],
[ -5 ]>

gap> x * y * x = x;
true
gap> LeftBlocks(x) = RightBlocks(y);
true
gap> RightBlocks(x) = LeftBlocks(y);
true

3.2.7 RandomBipartition

. RandomBipartition([rs, ]n) (operation)

. RandomBlockBijection([rs, ]n) (operation)

Returns: A bipartition.
If n is a positive integer, then RandomBipartition returns a random bipartition of degree n , and

RandomBlockBijection returns a random block bijection of degree n .
If the optional first argument rs is a random source, then this is used to generate the bipartition

returned by RandomBipartition and RandomBlockBijection.
Note that neither of these functions has a uniform distribution.

Example
gap> x := RandomBipartition(6);
<bipartition: [ 1, 2, 3, 4 ], [ 5 ], [ 6, -2, -3, -4 ], [ -1, -5 ], [ -6 ]>
gap> x := RandomBlockBijection(4);
<block bijection: [ 1, 4, -2 ], [ 2, -4 ], [ 3, -1, -3 ]>

3.3 Changing the representation of a bipartition

It is possible that a bipartition can be represented as another type of object, or that another type of GAP
object can be represented as a bipartition. In this section, we describe the functions in the Semigroups
package for changing the representation of bipartition, or for changing the representation of another
type of object to that of a bipartition.

The operations AsPermutation (3.3.5), AsPartialPerm (3.3.4), AsTransformation (3.3.3) can
be used to convert bipartitions into permutations, partial permutations, or transformations where ap-
propriate.



Semigroups 19

3.3.1 AsBipartition

. AsBipartition(x[, n]) (operation)

Returns: A bipartition.
AsBipartition returns the bipartition, permutation, transformation, or partial permutation x , as

a bipartition of degree n .
There are several possible arguments for AsBipartition:

permutations
If x is a permutation and n is a positive integer, then AsBipartition(x, n) returns the
bipartition on [1 .. n] with classes [i, i ^ x] for all i = 1 .. n.

If no positive integer n is specified, then the largest moved point of x is used as the value for n ;
see LargestMovedPoint (Reference: LargestMovedPoint for a permutation).

transformations
If x is a transformation and n is a positive integer such that x is a transformation of [1 ..
n], then AsTransformation returns the bipartition with classes (i) f−1 ∪{i} for all i in the
image of x .

If the positive integer n is not specified, then the degree of x is used as the value for n .

partial permutations
If x is a partial permutation and n is a positive integer, then AsBipartition returns the biparti-
tion with classes [i, i ^ x] for i in [1 .. n]. Thus the degree of the returned bipartition
is the maximum of n and the values i ^ x where i in [1 .. n].

If the optional argument n is not present, then the default value of the maximum of the largest
moved point and the largest image of a moved point of x plus 1 is used.

bipartitions
If x is a bipartition and n is a non-negative integer, then AsBipartition returns a bipartition
corresponding to x with degree n .

If n equals the degree of x , then x is returned. If n is less than the degree of x , then this
function returns the bipartition obtained from x by removing the values exceeding n or less
than -n from the blocks of x . If n is greater than the degree of x , then this function returns the
bipartition with the same blocks as x and the singleton blocks i and -i for all i greater than
the degree of x

pbrs If x is a pbr satisfying IsBipartitionPBR (4.5.8) and n is a non-negative integer, then
AsBipartition returns the bipartition corresponding to x with degree n .

Example
gap> x := Transformation([3, 5, 3, 4, 1, 2]);;
gap> AsBipartition(x, 5);
<bipartition: [ 1, 3, -3 ], [ 2, -5 ], [ 4, -4 ], [ 5, -1 ], [ -2 ]>
gap> AsBipartition(x);
<bipartition: [ 1, 3, -3 ], [ 2, -5 ], [ 4, -4 ], [ 5, -1 ],
[ 6, -2 ], [ -6 ]>

gap> AsBipartition(x, 10);
<bipartition: [ 1, 3, -3 ], [ 2, -5 ], [ 4, -4 ], [ 5, -1 ],
[ 6, -2 ], [ 7, -7 ], [ 8, -8 ], [ 9, -9 ], [ 10, -10 ], [ -6 ]>

gap> AsBipartition((1, 3)(2, 4));
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<block bijection: [ 1, -3 ], [ 2, -4 ], [ 3, -1 ], [ 4, -2 ]>
gap> AsBipartition((1, 3)(2, 4), 10);
<block bijection: [ 1, -3 ], [ 2, -4 ], [ 3, -1 ], [ 4, -2 ],
[ 5, -5 ], [ 6, -6 ], [ 7, -7 ], [ 8, -8 ], [ 9, -9 ], [ 10, -10 ]>

gap> x := PartialPerm([1, 2, 3, 4, 5, 6], [6, 7, 1, 4, 3, 2]);;
gap> AsBipartition(x, 11);
<bipartition: [ 1, -6 ], [ 2, -7 ], [ 3, -1 ], [ 4, -4 ], [ 5, -3 ],
[ 6, -2 ], [ 7 ], [ 8 ], [ 9 ], [ 10 ], [ 11 ], [ -5 ], [ -8 ],
[ -9 ], [ -10 ], [ -11 ]>

gap> AsBipartition(x);
<bipartition: [ 1, -6 ], [ 2, -7 ], [ 3, -1 ], [ 4, -4 ], [ 5, -3 ],
[ 6, -2 ], [ 7 ], [ -5 ]>

gap> AsBipartition(Transformation([1, 1, 2]), 1);
<block bijection: [ 1, -1 ]>
gap> x := Bipartition([[1, 2, -2], [3], [4, 5, 6, -1],
> [-3, -4, -5, -6]]);;
gap> AsBipartition(x, 0);
<empty bipartition>
gap> AsBipartition(x, 2);
<bipartition: [ 1, 2, -2 ], [ -1 ]>
gap> AsBipartition(x, 8);
<bipartition: [ 1, 2, -2 ], [ 3 ], [ 4, 5, 6, -1 ], [ 7 ], [ 8 ],
[ -3, -4, -5, -6 ], [ -7 ], [ -8 ]>

gap> x := PBR(
> [[-1, 1, 2, 3, 4], [-1, 1, 2, 3, 4],
> [-1, 1, 2, 3, 4], [-1, 1, 2, 3, 4]],
> [[-1, 1, 2, 3, 4], [-2], [-3], [-4]]);;
gap> AsBipartition(x);
<bipartition: [ 1, 2, 3, 4, -1 ], [ -2 ], [ -3 ], [ -4 ]>
gap> AsBipartition(x, 2);
<bipartition: [ 1, 2, -1 ], [ -2 ]>
gap> AsBipartition(x, 4);
<bipartition: [ 1, 2, 3, 4, -1 ], [ -2 ], [ -3 ], [ -4 ]>
gap> AsBipartition(x, 5);
<bipartition: [ 1, 2, 3, 4, -1 ], [ 5 ], [ -2 ], [ -3 ], [ -4 ],
[ -5 ]>

gap> AsBipartition(x, 0);
<empty bipartition>

3.3.2 AsBlockBijection

. AsBlockBijection(x[, n]) (operation)

Returns: A block bijection.
When the argument x is a partial perm and n is a positive integer which is greater than the max-

imum of the degree and codegree of x , this function returns a block bijection corresponding to x .
This block bijection has the same non-singleton classes as g := AsBipartition(x, n) and one
additional class which is the union the singleton classes of g.

If the optional second argument n is not present, then the maximum of the degree and codegree of
x plus 1 is used by default. If the second argument n is not greater than this maximum, then an error
is given.

This is the value at x of the embedding of the symmetric inverse monoid into the dual symmetric
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inverse monoid given in the FitzGerald-Leech Theorem [FL98].
When the argument x is a partial perm bipartition (see IsPartialPermBipartition (3.5.15))

then this operation returns AsBlockBijection(AsPartialPerm(x)[, n]).
Example

gap> x := PartialPerm([1, 2, 3, 6, 7, 10], [9, 5, 6, 1, 7, 8]);
[2,5][3,6,1,9][10,8](7)
gap> AsBipartition(x, 11);
<bipartition: [ 1, -9 ], [ 2, -5 ], [ 3, -6 ], [ 4 ], [ 5 ],
[ 6, -1 ], [ 7, -7 ], [ 8 ], [ 9 ], [ 10, -8 ], [ 11 ], [ -2 ],
[ -3 ], [ -4 ], [ -10 ], [ -11 ]>

gap> AsBlockBijection(x, 10);
Error, Semigroups: AsBlockBijection (for a partial perm and pos int):
the 2nd argument must be strictly greater than the maximum of the
degree and codegree of the 1st argument,
gap> AsBlockBijection(x, 11);
<block bijection: [ 1, -9 ], [ 2, -5 ], [ 3, -6 ],
[ 4, 5, 8, 9, 11, -2, -3, -4, -10, -11 ], [ 6, -1 ], [ 7, -7 ],
[ 10, -8 ]>

gap> x := Bipartition([[1, -3], [2], [3, -2], [-1]]);;
gap> IsPartialPermBipartition(x);
true
gap> AsBlockBijection(x);
<block bijection: [ 1, -3 ], [ 2, 4, -1, -4 ], [ 3, -2 ]>

3.3.3 AsTransformation (for a bipartition)

. AsTransformation(x) (attribute)

Returns: A transformation.
When the argument x is a bipartition, that mathematically defines a transformation, this function

returns that transformation. A bipartition x defines a transformation if and only if its right blocks are
the image list of a permutation of [1 .. n] where n is the degree of x .

See IsTransBipartition (3.5.12).
Example

gap> x := Bipartition([[1, -3], [2, -2], [3, 5, 10, -7],
> [4, -12], [6, 7, -6], [8, -5], [9, -11],
> [11, 12, -10], [-1], [-4], [-8], [-9]]);;
gap> AsTransformation(x);
Transformation( [ 3, 2, 7, 12, 7, 6, 6, 5, 11, 7, 10, 10 ] )
gap> IsTransBipartition(x);
true
gap> x := Bipartition([[1, 5], [2, 4, 8, 10],
> [3, 6, 7, -1, -2], [9, -4, -6, -9],
> [-3, -5], [-7, -8], [-10]]);;
gap> AsTransformation(x);
Error, Semigroups: AsTransformation (for a bipartition):
the argument does not define a transformation,

3.3.4 AsPartialPerm (for a bipartition)

. AsPartialPerm(x) (operation)

Returns: A partial perm.
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When the argument x is a bipartition that mathematically defines a partial perm, this function
returns that partial perm.

A bipartition x defines a partial perm if and only if its numbers of left and right blocks both equal
its degree.

See IsPartialPermBipartition (3.5.15).
Example

gap> x := Bipartition([[1, -4], [2, -2], [3, -10], [4, -5],
> [5, -9], [6], [7], [8, -6], [9, -3], [10, -8],
> [-1], [-7]]);;
gap> IsPartialPermBipartition(x);
true
gap> AsPartialPerm(x);
[1,4,5,9,3,10,8,6](2)
gap> x := Bipartition([[1, -2, -4], [2, 3, 4, -3], [-1]]);;
gap> IsPartialPermBipartition(x);
false
gap> AsPartialPerm(x);
Error, Semigroups: AsPartialPerm (for a bipartition):
the argument does not define a partial perm,

3.3.5 AsPermutation (for a bipartition)

. AsPermutation(x) (attribute)

Returns: A permutation.
When the argument x is a bipartition that mathematically defines a permutation, this function

returns that permutation.
A bipartition x defines a permutation if and only if its numbers of left, right, and transverse blocks

all equal its degree.
See IsPermBipartition (3.5.14).

Example
gap> x := Bipartition([[1, -6], [2, -4], [3, -2], [4, -5],
> [5, -3], [6, -1]]);;
gap> IsPermBipartition(x);
true
gap> AsPermutation(x);
(1,6)(2,4,5,3)
gap> AsBipartition(last) = x;
true

3.4 Operators for bipartitions

f * g
returns the composition of f and g when f and g are bipartitions.

f < g
returns true if the internal representation of f is lexicographically less than the internal repre-
sentation of g and false if it is not.

f = g
returns true if the bipartition f equals the bipartition g and returns false if it does not.
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3.4.1 PartialPermLeqBipartition

. PartialPermLeqBipartition(x, y) (operation)

Returns: true or false.
If x and y are partial perm bipartitions, i.e. they satisfy IsPartialPermBipartition (3.5.15),

then this function returns AsPartialPerm(x) < AsPartialPerm(y).

3.4.2 NaturalLeqPartialPermBipartition

. NaturalLeqPartialPermBipartition(x, y) (operation)

Returns: true or false.
The natural partial order ≤ on an inverse semigroup S is defined by s ≤ t if there exists an

idempotent e in S such that s = et. Hence if x and y are partial perm bipartitions, then x ≤ y if and
only if AsPartialPerm(x) is a restriction of AsPartialPerm(y).

NaturalLeqPartialPermBipartition returns true if AsPartialPerm(x) is a restriction of
AsPartialPerm(y) and false if it is not. Note that since this is a partial order and not a total order,
it is possible that x and y are incomparable with respect to the natural partial order.

3.4.3 NaturalLeqBlockBijection

. NaturalLeqBlockBijection(x, y) (operation)

Returns: true or false.
The natural partial order ≤ on an inverse semigroup S is defined by s ≤ t if there exists an

idempotent e in S such that s = et. Hence if x and y are block bijections, then x ≤ y if and only if
x contains y .

NaturalLeqBlockBijection returns true if x is contained in y and false if it is not. Note
that since this is a partial order and not a total order, it is possible that x and y are incomparable with
respect to the natural partial order.

Example
gap> x := Bipartition([[1, 2, -3], [3, -1, -2], [4, -4],
> [5, -5], [6, -6], [7, -7],
> [8, -8], [9, -9], [10, -10]]);;
gap> y := Bipartition([[1, -2], [2, -1], [3, -3],
> [4, -4], [5, -5], [6, -6], [7, -7],
> [8, -8], [9, -9], [10, -10]]);;
gap> z := Bipartition([Union([1 .. 10], [-10 .. -1])]);;
gap> NaturalLeqBlockBijection(x, y);
false
gap> NaturalLeqBlockBijection(y, x);
false
gap> NaturalLeqBlockBijection(z, x);
true
gap> NaturalLeqBlockBijection(z, y);
true

3.4.4 PermLeftQuoBipartition

. PermLeftQuoBipartition(x, y) (operation)

Returns: A permutation.
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If x and y are bipartitions with equal left and right blocks, then PermLeftQuoBipartition
returns the permutation of the indices of the right blocks of x (and y ) induced by Star(x) * y .

PermLeftQuoBipartition verifies that x and y have equal left and right blocks, and returns an
error if they do not.

Example
gap> x := Bipartition([[1, 4, 6, 7, 8, 10], [2, 5, -1, -2, -8],
> [3, -3, -6, -7, -9], [9, -4, -5], [-10]]);;
gap> y := Bipartition([[1, 4, 6, 7, 8, 10], [2, 5, -3, -6, -7, -9],
> [3, -4, -5], [9, -1, -2, -8], [-10]]);;
gap> PermLeftQuoBipartition(x, y);
(1,2,3)
gap> Star(x) * y;
<bipartition: [ 1, 2, 8, -3, -6, -7, -9 ], [ 3, 6, 7, 9, -4, -5 ],
[ 4, 5, -1, -2, -8 ], [ 10 ], [ -10 ]>

3.5 Attributes for bipartitons

In this section we describe various attributes that a bipartition can possess.

3.5.1 DegreeOfBipartition

. DegreeOfBipartition(x) (attribute)

. DegreeOfBipartitionCollection(x) (attribute)

Returns: A positive integer.
The degree of a bipartition is, roughly speaking, the number of points where it is defined. More

precisely, if x is a bipartition defined on 2 * n points, then the degree of x is n.
The degree of a collection coll of bipartitions of equal degree is just the degree of any (and every)

bipartition in coll . The degree of collection of bipartitions of unequal degrees is not defined.
Example

gap> x := Bipartition([[1, 7, -3, -8], [2, 6],
> [3], [4, -7, -9], [5, 9, -2],
> [8, -1, -4, -6], [-5]]);;
gap> DegreeOfBipartition(x);
9
gap> S := BrauerMonoid(5);
<regular bipartition *-monoid of degree 5 with 3 generators>
gap> IsBipartitionCollection(S);
true
gap> DegreeOfBipartitionCollection(S);
5

3.5.2 RankOfBipartition

. RankOfBipartition(x) (attribute)

. NrTransverseBlocks(x) (attribute)

Returns: The rank of a bipartition.
When the argument is a bipartition x , RankOfBipartition returns the number of blocks of x

containing both positive and negative entries, i.e. the number of transverse blocks of x .
NrTransverseBlocks is just a synonym for RankOfBipartition.
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Example
gap> x := Bipartition([[1, 2, 6, 7, -4, -5, -7], [3, 4, 5, -1, -3],
> [8, -9], [9, -2], [-6], [-8]]);
<bipartition: [ 1, 2, 6, 7, -4, -5, -7 ], [ 3, 4, 5, -1, -3 ],
[ 8, -9 ], [ 9, -2 ], [ -6 ], [ -8 ]>

gap> RankOfBipartition(x);
4

3.5.3 ExtRepOfObj (for a bipartition)

. ExtRepOfObj(x) (operation)

Returns: A partition of [1 .. 2 * n].
If n is the degree of the bipartition x , then ExtRepOfObj returns the partition of [-n .. -1]

union [1 .. n] corresponding to x as a sorted list of duplicate-free lists.
Example

gap> x := Bipartition([[1, 5, -3], [2, 4, -2, -4], [3, -1, -5]]);
<block bijection: [ 1, 5, -3 ], [ 2, 4, -2, -4 ], [ 3, -1, -5 ]>
gap> ExtRepOfObj(x);
[ [ 1, 5, -3 ], [ 2, 4, -2, -4 ], [ 3, -1, -5 ] ]

3.5.4 IntRepOfBipartition

. IntRepOfBipartition(x) (attribute)

Returns: A list of positive integers.
If x is a bipartition with degree n, then IntRepOfBipartition returns the internal representation

of x : a list of length 2 * n containing positive integers which correspond to the blocks of x .
If i is in [1 .. n], then list[i] refers to the point i; if i is in [n + 1 .. 2 * n], then

list[i] refers to the point n - i (a negative point). Two points lie in the same block of the biparti-
tion if and only if their entries in the list are equal.

See also BipartitionByIntRep (3.2.2).
Example

gap> x := Bipartition([[1, -3], [3, 4], [2, -1, -2], [-4]]);
<bipartition: [ 1, -3 ], [ 2, -1, -2 ], [ 3, 4 ], [ -4 ]>
gap> IntRepOfBipartition(x);
[ 1, 2, 3, 3, 2, 2, 1, 4 ]

3.5.5 RightBlocks

. RightBlocks(x) (attribute)

Returns: The right blocks of a bipartition.
RightBlocks returns the right blocks of the bipartition x .
The right blocks of a bipartition x are just the intersections of the blocks of x with [-n .. -1]

where n is the degree of x , the values in transverse blocks are positive, and the values in non-transverse
blocks are negative.

The right blocks of a bipartition are GAP objects in their own right, and are not simply a list of
blocks of x ; see 3.6 for more information.

The significance of this notion lies in the fact that bipartitions x and y are L -related in the partition
monoid if and only if they have equal right blocks.
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Example
gap> x := Bipartition([[1, 4, 7, 8, -4], [2, 3, 5, -2, -7],
> [6, -1], [-3], [-5, -6, -8]]);;
gap> RightBlocks(x);
<blocks: [ 1* ], [ 2*, 7* ], [ 3 ], [ 4* ], [ 5, 6, 8 ]>
gap> LeftBlocks(x);
<blocks: [ 1*, 4*, 7*, 8* ], [ 2*, 3*, 5* ], [ 6* ]>

3.5.6 LeftBlocks

. LeftBlocks(x) (attribute)

Returns: The left blocks of a bipartition.
LeftBlocks returns the left blocks of the bipartition x .
The left blocks of a bipartition x are just the intersections of the blocks of x with [1..n] where n

is the degree of x , the values in transverse blocks are positive, and the values in non-transverse blocks
are negative.

The left blocks of a bipartition are GAP objects in their own right, and are not simply a list of
blocks of x ; see 3.6 for more information.

The significance of this notion lies in the fact that bipartitions x and y are R-related in the partition
monoid if and only if they have equal left blocks.

Example
gap> x := Bipartition([[1, 4, 7, 8, -4], [2, 3, 5, -2, -7],
> [6, -1], [-3], [-5, -6, -8]]);;
gap> RightBlocks(x);
<blocks: [ 1* ], [ 2*, 7* ], [ 3 ], [ 4* ], [ 5, 6, 8 ]>
gap> LeftBlocks(x);
<blocks: [ 1*, 4*, 7*, 8* ], [ 2*, 3*, 5* ], [ 6* ]>

3.5.7 NrLeftBlocks

. NrLeftBlocks(x) (attribute)

Returns: A non-negative integer.
When the argument is a bipartition x , NrLeftBlocks returns the number of left blocks of x , i.e.

the number of blocks of x intersecting [1 .. n] non-trivially.
Example

gap> x := Bipartition([[1, 2, 3, 4, 5, 6, 8], [7, -2, -3],
> [-1, -4, -7, -8], [-5, -6]]);;
gap> NrLeftBlocks(x);
2
gap> LeftBlocks(x);
<blocks: [ 1, 2, 3, 4, 5, 6, 8 ], [ 7* ]>

3.5.8 NrRightBlocks

. NrRightBlocks(x) (attribute)

Returns: A non-negative integer.
When the argument is a bipartition x , NrRightBlocks returns the number of right blocks of x ,

i.e. the number of blocks of x intersecting [-n .. -1] non-trivially.
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Example
gap> x := Bipartition([[1, 2, 3, 4, 6, -2, -7], [5, -1, -3, -8],
> [7, -4, -6], [8], [-5]]);;
gap> RightBlocks(x);
<blocks: [ 1*, 3*, 8* ], [ 2*, 7* ], [ 4*, 6* ], [ 5 ]>
gap> NrRightBlocks(x);
4

3.5.9 NrBlocks (for blocks)

. NrBlocks(blocks) (attribute)

. NrBlocks(f) (attribute)

Returns: A positive integer.
If blocks is some blocks or f is a bipartition, then NrBlocks returns the number of blocks in

blocks or f , respectively.
Example

gap> blocks := BlocksNC([[-1, -2, -3, -4], [-5], [6]]);
<blocks: [ 1, 2, 3, 4 ], [ 5 ], [ 6* ]>
gap> NrBlocks(blocks);
3
gap> x := Bipartition([
> [1, 5], [2, 4, -2, -4], [3, 6, -1, -5, -6], [-3]]);
<bipartition: [ 1, 5 ], [ 2, 4, -2, -4 ], [ 3, 6, -1, -5, -6 ],
[ -3 ]>

gap> NrBlocks(x);
4

3.5.10 DomainOfBipartition

. DomainOfBipartition(x) (attribute)

Returns: A list of positive integers.
If x is a bipartition, then DomainOfBipartition returns the domain of x . The domain of x

consists of those numbers i in [1 .. n] such that i is contained in a transverse block of x , where
n is the degree of x (see DegreeOfBipartition (3.5.1)).

Example
gap> x := Bipartition([[1, 2], [3, 4, 5, -5], [6, -6],
> [-1, -2, -3], [-4]]);
<bipartition: [ 1, 2 ], [ 3, 4, 5, -5 ], [ 6, -6 ], [ -1, -2, -3 ],
[ -4 ]>

gap> DomainOfBipartition(x);
[ 3, 4, 5, 6 ]

3.5.11 CodomainOfBipartition

. CodomainOfBipartition(x) (attribute)

Returns: A list of positive integers.
If x is a bipartition, then CodomainOfBipartition returns the codomain of x . The codomain of

x consists of those numbers i in [-n .. -1] such that i is contained in a transverse block of x ,
where n is the degree of x (see DegreeOfBipartition (3.5.1)).
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Example
gap> x := Bipartition([[1, 2], [3, 4, 5, -5], [6, -6],
> [-1, -2, -3], [-4]]);
<bipartition: [ 1, 2 ], [ 3, 4, 5, -5 ], [ 6, -6 ], [ -1, -2, -3 ],
[ -4 ]>

gap> CodomainOfBipartition(x);
[ -5, -6 ]

3.5.12 IsTransBipartition

. IsTransBipartition(x) (property)

Returns: true or false.
If the bipartition x defines a transformation, then IsTransBipartition returns true, and if not,

then false is returned.
A bipartition x defines a transformation if and only if the number of left blocks equals the number

of transverse blocks and the number of right blocks equals the degree.
Example

gap> x := Bipartition([[1, 4, -2], [2, 5, -6], [3, -7],
> [6, 7, -9], [8, 9, -1], [10, -5],
> [-3], [-4], [-8], [-10]]);;
gap> IsTransBipartition(x);
true
gap> x := Bipartition([[1, 4, -3, -6], [2, 5, -4, -5],
> [3, 6, -1], [-2]]);;
gap> IsTransBipartition(x);
false
gap> Number(PartitionMonoid(3), IsTransBipartition);
27

3.5.13 IsDualTransBipartition

. IsDualTransBipartition(x) (property)

Returns: true or false.
If the star of the bipartition x defines a transformation, then IsDualTransBipartition returns

true, and if not, then false is returned.
A bipartition is the dual of a transformation if and only if its number of right blocks equals its

number of transverse blocks and its number of left blocks equals its degree.
Example

gap> x := Bipartition([[1, -8, -9], [2, -1, -4], [3],
> [4], [5, -10], [6, -2, -5], [7, -3],
> [8], [9, -6, -7], [10]]);;
gap> IsDualTransBipartition(x);
true
gap> x := Bipartition([[1, 4, -3, -6], [2, 5, -4, -5],
> [3, 6, -1], [-2]]);;
gap> IsTransBipartition(x);
false
gap> Number(PartitionMonoid(3), IsDualTransBipartition);
27
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3.5.14 IsPermBipartition

. IsPermBipartition(x) (property)

Returns: true or false.
If the bipartition x defines a permutation, then IsPermBipartition returns true, and if not,

then false is returned.
A bipartition is a permutation if its numbers of left, right, and transverse blocks all equal its degree.

Example
gap> x := Bipartition([
> [1, 4, -1], [2, -3], [3, 6, -5], [5, -2, -4, -6]]);;
gap> IsPermBipartition(x);
false
gap> x := Bipartition([[1, -3], [2, -4], [3, -6], [4, -1],
> [5, -5], [6, -2], [7, -8], [8, -7]]);;
gap> IsPermBipartition(x);
true

3.5.15 IsPartialPermBipartition

. IsPartialPermBipartition(x) (property)

Returns: true or false.
If the bipartition x defines a partial permutation, then IsPartialPermBipartition returns

true, and if not, then false is returned.
A bipartition x defines a partial permutation if and only if the numbers of left and right blocks of

x equal the degree of x .
Example

gap> x := Bipartition([
> [1, 4, -1], [2, -3], [3, 6, -5], [5, -2, -4, -6]]);;
gap> IsPartialPermBipartition(x);
false
gap> x := Bipartition([[1, -3], [2], [-4], [3, -6], [4, -1],
> [5, -5], [6, -2], [7, -8], [8, -7]]);;
gap> IsPermBipartition(x);
false
gap> IsPartialPermBipartition(x);
true

3.5.16 IsBlockBijection

. IsBlockBijection(x) (property)

Returns: true or false.
If the bipartition x induces a bijection from the quotient of [1 .. n] by the blocks of f to the

quotient of [-n .. -1] by the blocks of f , then IsBlockBijection return true, and if not, then
it returns false.

A bipartition is a block bijection if and only if its number of blocks, left blocks and right blocks
are equal.

Example
gap> x := Bipartition([[1, 4, 5, -2], [2, 3, -1], [6, -5, -6],
> [-3, -4]]);;
gap> IsBlockBijection(x);
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false
gap> x := Bipartition([[1, 2, -3], [3, -1, -2], [4, -4], [5, -5]]);;
gap> IsBlockBijection(x);
true

3.5.17 IsUniformBlockBijection

. IsUniformBlockBijection(x) (property)

Returns: true or false.
If the bipartition x is a block bijection where every block contains an equal number of positive

and negative entries, then IsUniformBlockBijection returns true, and otherwise it returns false.
Example

gap> x := Bipartition([[1, 2, -3, -4], [3, -5], [4, -6],
> [5, -7], [6, -8], [7, -9], [8, -1], [9, -2]]);;
gap> IsBlockBijection(x);
true
gap> x := Bipartition([[1, 2, -3], [3, -1, -2], [4, -4],
> [5, -5]]);;
gap> IsUniformBlockBijection(x);
false

3.5.18 CanonicalBlocks

. CanonicalBlocks(blocks) (attribute)

Returns: Blocks of a bipartition.
If blocks is the blocks of a bipartition, then the function CanonicalBlocks returns a canonical

representative of blocks .
In particular, let C(n) be a largest class such that any element of C(n) is blocks of a bipartition of

degree n and such that for every pair of elements x and y of C(n) the number of signed, and similarly
unsigned, blocks of any given size in both x and y are the same. Then CanonicalBlocks returns a
canonical representative of a class C(n) containing blocks where n is the degree of blocks .

Example
gap> B := BlocksNC([[-1, -3], [2, 4, 7], [5, 6]]);
<blocks: [ 1, 3 ], [ 2*, 4*, 7* ], [ 5*, 6* ]>
gap> CanonicalBlocks(B);
<blocks: [ 1*, 2*, 3* ], [ 4, 5 ], [ 6*, 7* ]>

3.6 Creating blocks and their attributes

As described above the left and right blocks of a bipartition characterise Green’s R- and L -relation
of the partition monoid; see LeftBlocks (3.5.6) and RightBlocks (3.5.5). The left or right blocks
of a bipartition are GAP objects in their own right.

In this section, we describe the functions in the Semigroups package for creating and manipulat-
ing the left or right blocks of a bipartition.
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3.6.1 IsBlocks

. IsBlocks(obj) (Category)

Returns: true or false.
Every blocks object in GAP belongs to the category IsBlocks. Basic operations for blocks

are ExtRepOfObj (3.6.3), RankOfBlocks (3.6.4), DegreeOfBlocks (3.6.5), OnRightBlocks (3.7.1),
and OnLeftBlocks (3.7.2).

3.6.2 BlocksNC

. BlocksNC(classes) (function)

Returns: A blocks.
This function makes it possible to create a GAP object corresponding to the left or right blocks of

a bipartition without reference to any bipartitions.
BlocksNC returns the blocks with equivalence classes classes , which should be a list of

duplicate-free lists consisting solely of positive or negative integers, where the union of the absolute
values of the lists is [1 .. n] for some n. The blocks with positive entries correspond to transverse
blocks and the classes with negative entries correspond to non-transverse blocks.

This method function does not check that its arguments are valid, and should be used with caution.
Example

gap> BlocksNC([[1], [2], [-3, -6], [-4, -5]]);
<blocks: [ 1* ], [ 2* ], [ 3, 6 ], [ 4, 5 ]>

3.6.3 ExtRepOfObj (for a blocks)

. ExtRepOfObj(blocks) (operation)

Returns: A list of integers.
If n is the degree of a bipartition with left or right blocks blocks , then ExtRepOfObj returns the

partition corresponding to blocks as a sorted list of duplicate-free lists.
Example

gap> blocks := BlocksNC([[1, 6], [2, 3, 7], [4, 5], [-8]]);;
gap> ExtRepOfObj(blocks);
[ [ 1, 6 ], [ 2, 3, 7 ], [ 4, 5 ], [ -8 ] ]

3.6.4 RankOfBlocks

. RankOfBlocks(blocks) (attribute)

. NrTransverseBlocks(blocks) (attribute)

Returns: A non-negative integer.
When the argument blocks is the left or right blocks of a bipartition, RankOfBlocks returns the

number of blocks of blocks containing only positive entries, i.e. the number of transverse blocks in
blocks .

NrTransverseBlocks is a synonym of RankOfBlocks in this context.
Example

gap> blocks := BlocksNC([[-1, -2, -4, -6], [3, 10, 12], [5, 7],
> [8], [9], [-11]]);;
gap> RankOfBlocks(blocks);
4
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3.6.5 DegreeOfBlocks

. DegreeOfBlocks(blocks) (attribute)

Returns: A non-negative integer.
The degree of blocks is the number of points n where it is defined, i.e. the union of the blocks in

blocks will be [1 .. n] after taking the absolute value of every element.
Example

gap> blocks := BlocksNC([[-1, -11], [2], [3, 5, 6, 7], [4, 8], [9, 10],
> [12]]);;
gap> DegreeOfBlocks(blocks);
12

3.6.6 ProjectionFromBlocks

. ProjectionFromBlocks(blocks) (attribute)

Returns: A bipartition.
When the argument blocks is the left or right blocks of a bipartition, this operation returns the

unique bipartition whose left and right blocks are equal to blocks .
If blocks is the left blocks of a bipartition x, then this operation returns a bipartition equal to the

left projection of x. The analogous statement holds when blocks is the right blocks of a bipartition.
Example

gap> x := Bipartition([[1], [2, -2, -3], [3], [-1]]);
<bipartition: [ 1 ], [ 2, -2, -3 ], [ 3 ], [ -1 ]>
gap> ProjectionFromBlocks(LeftBlocks(x));
<bipartition: [ 1 ], [ 2, -2 ], [ 3 ], [ -1 ], [ -3 ]>
gap> LeftProjection(x);
<bipartition: [ 1 ], [ 2, -2 ], [ 3 ], [ -1 ], [ -3 ]>
gap> ProjectionFromBlocks(RightBlocks(x));
<bipartition: [ 1 ], [ 2, 3, -2, -3 ], [ -1 ]>
gap> RightProjection(x);
<bipartition: [ 1 ], [ 2, 3, -2, -3 ], [ -1 ]>

3.7 Actions on blocks

Bipartitions act on left and right blocks in several ways, which are described in this section.

3.7.1 OnRightBlocks

. OnRightBlocks(blocks, x) (operation)

Returns: The blocks of a bipartition.
OnRightBlocks returns the right blocks of the product g * x where g is any bipartition whose

right blocks are equal to blocks .
Example

gap> x := Bipartition([[1, 4, 5, 8], [2, 3, 7], [6, -3, -4, -5],
> [-1, -2, -6], [-7, -8]]);;
gap> y := Bipartition([[1, 5], [2, 4, 8, -2], [3, 6, 7, -3, -4],
> [-1, -6, -8], [-5, -7]]);;
gap> RightBlocks(y * x);
<blocks: [ 1, 2, 6 ], [ 3*, 4*, 5* ], [ 7, 8 ]>
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gap> OnRightBlocks(RightBlocks(y), x);
<blocks: [ 1, 2, 6 ], [ 3*, 4*, 5* ], [ 7, 8 ]>

3.7.2 OnLeftBlocks

. OnLeftBlocks(blocks, x) (operation)

Returns: The blocks of a bipartition.
OnLeftBlocks returns the left blocks of the product x * y where y is any bipartition whose left

blocks are equal to blocks .
Example

gap> x := Bipartition([[1, 5, 7, -1, -3, -4, -6], [2, 3, 6, 8],
> [4, -2, -5, -8], [-7]]);;
gap> y := Bipartition([[1, 3, -4, -5], [2, 4, 5, 8], [6, -1, -3],
> [7, -2, -6, -7, -8]]);;
gap> LeftBlocks(x * y);
<blocks: [ 1*, 4*, 5*, 7* ], [ 2, 3, 6, 8 ]>
gap> OnLeftBlocks(LeftBlocks(y), x);
<blocks: [ 1*, 4*, 5*, 7* ], [ 2, 3, 6, 8 ]>

3.8 Semigroups of bipartitions

Semigroups and monoids of bipartitions can be created in the usual way in GAP using the functions
Semigroup (Reference: Semigroup) and Monoid (Reference: Monoid); see Chapter 6 for more
details.

It is possible to create inverse semigroups and monoids of bipartitions using InverseSemigroup
(Reference: InverseSemigroup) and InverseMonoid (Reference: InverseMonoid) when the argu-
ment is a collection of block bijections or partial perm bipartions; see IsBlockBijection (3.5.16)
and IsPartialPermBipartition (3.5.15). Note that every bipartition semigroup in Semigroups is
finite.

3.8.1 IsBipartitionSemigroup

. IsBipartitionSemigroup(S) (filter)

. IsBipartitionMonoid(S) (filter)

Returns: true or false.
A bipartition semigroup is simply a semigroup consisting of bipartitions. An object obj

is a bipartition semigroup in GAP if it satisfies IsSemigroup (Reference: IsSemigroup) and
IsBipartitionCollection (3.1.2).

A bipartition monoid is a monoid consisting of bipartitions. An object obj is a bipartition monoid
in GAP if it satisfies IsMonoid (Reference: IsMonoid) and IsBipartitionCollection (3.1.2).

Note that it is possible for a bipartition semigroup to have a multiplicative neutral element (i.e. an
identity element) but not to satisfy IsBipartitionMonoid. For example,

Example
gap> x := Bipartition([
> [1, 4, -2], [2, 5, -6], [3, -7], [6, 7, -9], [8, 9, -1],
> [10, -5], [-3], [-4], [-8], [-10]]);;
gap> S := Semigroup(x, One(x));
<commutative bipartition monoid of degree 10 with 1 generator>
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gap> IsMonoid(S);
true
gap> IsBipartitionMonoid(S);
true
gap> S := Semigroup([
> Bipartition([
> [1, -3], [2, -8], [3, 8, -1], [4, -4], [5, -5], [6, -6],
> [7, -7], [9, 10, -10], [-2], [-9]]),
> Bipartition([
> [1, -1], [2, -2], [3, -3], [4, -4], [5, -5], [6, -6],
> [7, -7], [8, -8], [9, 10, -10], [-9]])]);;
gap> One(S);
fail
gap> MultiplicativeNeutralElement(S);
<bipartition: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ], [ 4, -4 ], [ 5, -5 ],
[ 6, -6 ], [ 7, -7 ], [ 8, -8 ], [ 9, 10, -10 ], [ -9 ]>

gap> IsMonoid(S);
false

In this example S cannot be converted into a monoid using AsMonoid (Reference: AsMonoid) since
the One (Reference: One) of any element in S differs from the multiplicative neutral element.

For more details see IsMagmaWithOne (Reference: IsMagmaWithOne).

3.8.2 IsBlockBijectionSemigroup

. IsBlockBijectionSemigroup(S) (property)

. IsBlockBijectionMonoid(S) (filter)

Returns: true or false.
A block bijection semigroup is simply a semigroup consisting of block bijections. A block bijec-

tion monoid is a monoid consisting of block bijections.
An object in GAP is a block bijection monoid if it satisfies IsMonoid (Reference: IsMonoid)

and IsBlockBijectionSemigroup.
See IsBlockBijection (3.5.16).

3.8.3 IsPartialPermBipartitionSemigroup

. IsPartialPermBipartitionSemigroup(S) (property)

. IsPartialPermBipartitionMonoid(S) (filter)

Returns: true or false.
A partial perm bipartition semigroup is simply a semigroup consisting of partial perm bipartitions.

A partial perm bipartition monoid is a monoid consisting of partial perm bipartitions.
An object in GAP is a partial perm bipartition monoid if it satisfies IsMonoid (Reference: Is-

Monoid) and IsPartialPermBipartitionSemigroup.
See IsPartialPermBipartition (3.5.15).

3.8.4 IsPermBipartitionGroup

. IsPermBipartitionGroup(S) (property)

Returns: true or false.
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A perm bipartition group is simply a semigroup consisting of perm bipartitions.
See IsPermBipartition (3.5.14).

3.8.5 DegreeOfBipartitionSemigroup

. DegreeOfBipartitionSemigroup(S) (attribute)

Returns: A non-negative integer.
The degree of a bipartition semigroup S is just the degree of any (and every) element of S .

Example
gap> DegreeOfBipartitionSemigroup(JonesMonoid(8));
8



Chapter 4

Partitioned binary relations (PBRs)

In this chapter we describe the functions in Semigroups for creating and manipulating partitioned
binary relations, henceforth referred to by their acronym PBRs. We begin by describing what these
objects are.

PBRs were introduced in the paper [MM11] as, roughly speaking, the maximum generalization of
bipartitions and related objects. Although, mathematically, bipartitions are a special type of PBR, in
Semigroups bipartitions and PBRs are currently distinct types of objects. It is possible to change the
representation from bipartition to PBR, and from PBR to bipartition, when appropriate; see Section
4.3 for more details. The reason for this distinct is largely historical, bipartition appeared in the
literature, and in the Semigroups package, before PBRs.

4.1 The family and categories of PBRs

4.1.1 IsPBR

. IsPBR(obj) (Category)

Returns: true or false.
Every PBR in GAP belongs to the category IsPBR. Basic operations for PBRs are DegreeOfPBR

(4.5.2), ExtRepOfObj (4.5.3), PBRNumber (4.5.4), NumberPBR (4.5.4), StarOp (4.5.1), and multipli-
cation of two PBRs of equal degree is via *.

4.1.2 IsPBRCollection

. IsPBRCollection(obj) (Category)

. IsPBRCollColl(obj) (Category)

Returns: true or false.
Every collection of PBRs belongs to the category IsPBRCollection. For example, PBR semi-

groups belong to IsPBRCollection.
Every collection of collections of PBRs belongs to IsPBRCollColl. For example, a list of PBR

semigroups belongs to IsPBRCollColl.

4.2 Creating PBRs

There are several ways of creating PBRs in GAP, which are described in this section.

36
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4.2.1 PBR

. PBR(left, right) (operation)

Returns: A PBR.
The arguments left and right of this function should each be a list of length n whose entries

are lists of integers in the ranges [-n .. -1] and [1 .. n] for some n greater than 0.
Given such an argument, PBR returns the PBR x where:

• for each i in the range [1 .. n] there is an edge from i to every j in left[i] ;

• for each i in the range [-n .. -1] there is an edge from i to every j in right[-i] ;

PBR returns an error if the argument does not define a PBR.
Example

gap> PBR([[-3, -2, -1, 2, 3], [-1], [-3, -2, 1, 2]],
> [[-2, -1, 1, 2, 3], [3], [-3, -2, -1, 1, 3]]);
PBR([ [ -3, -2, -1, 2, 3 ], [ -1 ], [ -3, -2, 1, 2 ] ],

[ [ -2, -1, 1, 2, 3 ], [ 3 ], [ -3, -2, -1, 1, 3 ] ])

4.2.2 RandomPBR

. RandomPBR(n[, p]) (operation)

Returns: A PBR.
If n is a positive integer and p is an float between 0 and 1, then RandomPBR returns a random PBR

of degree n where the probability of there being an edge from i to j is approximately p.
If the optional second argument is not present, then a random value p is used (chosen with uniform

probability).
Example

gap> RandomPBR(6);
PBR(

[ [ -5, 1, 2, 3 ], [ -6, -3, -1, 2, 5 ], [ -5, -2, 2, 3, 5 ],
[ -6, -4, -1, 2, 3, 6 ], [ -4, -1, 2, 4 ],
[ -5, -3, -1, 1, 2, 3, 5 ] ],

[ [ -6, -4, -2, 1, 3, 5, 6 ], [ -5, -2, 1, 2, 3, 5 ],
[ -6, -5, -2, 1, 5 ], [ -6, -5, -3, -2, 1, 3, 4 ],
[ -6, -5, -4, -2, 3, 5 ], [ -6, -4, -2, -1, 1, 2, 6 ] ])

4.2.3 EmptyPBR

. EmptyPBR(n) (operation)

Returns: A PBR.
If n is a positive integer, then EmptyPBR returns the PBR of degree n with no edges.

Example
gap> x := EmptyPBR(3);
PBR([ [ ], [ ], [ ] ], [ [ ], [ ], [ ] ])
gap> IsEmptyPBR(x);
true
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4.2.4 IdentityPBR

. IdentityPBR(n) (operation)

Returns: A PBR.
If n is a positive integer, then IdentityPBR returns the identity PBR of degree n . This PBR has

2n edges: specifically, for each i in the ranges [1 .. n] and [-n .. -1], the identity PBR has
an edge from i to -i.

Example
gap> x := IdentityPBR(3);
PBR([ [ -1 ], [ -2 ], [ -3 ] ], [ [ 1 ], [ 2 ], [ 3 ] ])
gap> IsIdentityPBR(x);
true

4.2.5 UniversalPBR

. UniversalPBR(n) (operation)

Returns: A PBR.
If n is a positive integer, then UniversalPBR returns the PBR of degree n with 4 * n ^ 2 edges,

i.e. every possible edge.
Example

gap> x := UniversalPBR(2);
PBR([ [ -2, -1, 1, 2 ], [ -2, -1, 1, 2 ] ],

[ [ -2, -1, 1, 2 ], [ -2, -1, 1, 2 ] ])
gap> IsUniversalPBR(x);
true

4.3 Changing the representation of a PBR

It is possible that a PBR can be represented as another type of object, or that another type of GAP
object can be represented as a PBR. In this section, we describe the functions in the Semigroups
package for changing the representation of PBR, or for changing the representation of another type of
object to that of a PBR.

The operations AsPermutation (4.3.4), AsPartialPerm (4.3.3), AsTransformation (4.3.2),
AsBipartition (3.3.1), AsBooleanMat (5.3.2) can be used to convert PBRs into permutations, par-
tial permutations, transformations, bipartitions, and boolean matrices where appropriate.

4.3.1 AsPBR

. AsPBR(x[, n]) (operation)

Returns: A PBR.
AsPBR returns the boolean matrix, bipartition, transformation, partial permutation, or permutation

x as a PBR of degree n .
There are several possible arguments for AsPBR:

bipartitions
If x is a bipartition and n is a positive integer, then AsPBR returns a PBR corresponding to x
with degree n . The resulting PBR has an edge from i to j whenever i and j belong to the same
block of x .
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If the optional second argument n is not specified, then degree of the bipartition x is used by
default.

boolean matrices
If x is a boolean matrix of even dimension 2 * m and n is a positive integer, then AsPBR returns
a PBR corresponding to x with degree n . If the optional second argument n is not specified,
then dimension of the boolean matrix x is used by default.

transformations, partial perms, permutations
If x is a transformation, partial perm, or permutation and n is a positive integer, then AsPBR
is a synonym for AsPBR(AsBipartition(x, n)). If the optional second argument n is not
specified, then AsPBR is a synonym for AsPBR(AsBipartition(x)). See AsBipartition
(3.3.1) for more details.

Example
gap> x := Bipartition([[1, 2, -1], [3, -2], [4, -3, -4]]);
<block bijection: [ 1, 2, -1 ], [ 3, -2 ], [ 4, -3, -4 ]>
gap> AsPBR(x, 2);
PBR([ [ -1, 1, 2 ], [ -1, 1, 2 ] ], [ [ -1, 1, 2 ], [ -2 ] ])
gap> AsPBR(x, 5);
PBR([ [ -1, 1, 2 ], [ -1, 1, 2 ], [ -2, 3 ], [ -4, -3, 4 ], [ ] ],

[ [ -1, 1, 2 ], [ -2, 3 ], [ -4, -3, 4 ], [ -4, -3, 4 ], [ ] ])
gap> AsPBR(x);
PBR([ [ -1, 1, 2 ], [ -1, 1, 2 ], [ -2, 3 ], [ -4, -3, 4 ] ],

[ [ -1, 1, 2 ], [ -2, 3 ], [ -4, -3, 4 ], [ -4, -3, 4 ] ])
gap> mat := Matrix(IsBooleanMat, [[1, 0, 0, 1],
> [0, 1, 1, 0],
> [1, 0, 1, 1],
> [0, 0, 0, 1]]);;
gap> AsPBR(mat);
PBR([ [ -2, 1 ], [ -1, 2 ] ], [ [ -2, -1, 1 ], [ -2 ] ])
gap> AsPBR(mat, 2);
PBR([ [ 1 ] ], [ [ -1 ] ])
gap> AsPBR(mat, 6);
PBR([ [ -2, 1 ], [ -1, 2 ], [ ] ], [ [ -2, -1, 1 ], [ -2 ], [ ] ])
gap> x := Transformation([2, 2, 1]);;
gap> AsPBR(x);
PBR([ [ -2 ], [ -2 ], [ -1 ] ], [ [ 3 ], [ 1, 2 ], [ ] ])
gap> AsPBR(x, 2);
PBR([ [ -2 ], [ -2 ] ], [ [ ], [ 1, 2 ] ])
gap> AsPBR(x, 4);
PBR([ [ -2 ], [ -2 ], [ -1 ], [ -4 ] ],

[ [ 3 ], [ 1, 2 ], [ ], [ 4 ] ])
gap> x := PartialPerm([4, 3]);
[1,4][2,3]
gap> AsPBR(x);
PBR([ [ -4 ], [ -3 ], [ ], [ ] ], [ [ ], [ ], [ 2 ], [ 1 ] ])
gap> AsPBR(x, 2);
PBR([ [ ], [ ] ], [ [ ], [ ] ])
gap> AsPBR(x, 5);
PBR([ [ -4 ], [ -3 ], [ ], [ ], [ ] ],

[ [ ], [ ], [ 2 ], [ 1 ], [ ] ])
gap> x := (1, 3)(2, 4);
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(1,3)(2,4)
gap> AsPBR(x);
PBR([ [ -3, 1 ], [ -4, 2 ], [ -1, 3 ], [ -2, 4 ] ],

[ [ -1, 3 ], [ -2, 4 ], [ -3, 1 ], [ -4, 2 ] ])
gap> AsPBR(x, 5);
PBR([ [ -3, 1 ], [ -4, 2 ], [ -1, 3 ], [ -2, 4 ], [ -5, 5 ] ],

[ [ -1, 3 ], [ -2, 4 ], [ -3, 1 ], [ -4, 2 ], [ -5, 5 ] ])

4.3.2 AsTransformation (for a PBR)

. AsTransformation(x) (attribute)

Returns: A transformation.
When the argument x is a PBR which satisfies IsTransformationPBR (4.5.9), then this attribute

returns that transformation.
Example

gap> x := PBR([[-3], [-3], [-2]], [[], [3], [1, 2]]);;
gap> IsTransformationPBR(x);
true
gap> AsTransformation(x);
Transformation( [ 3, 3, 2 ] )
gap> x := PBR([[1], [1, 2]], [[-2, -1], [-2, -1]]);;
gap> AsTransformation(x);
Error, Semigroups: AsTransformation: usage,
the argument <x> must be a transformation PBR,

4.3.3 AsPartialPerm (for a PBR)

. AsPartialPerm(x) (operation)

Returns: A partial perm.
When the argument x is a PBR which satisfies IsPartialPermPBR (4.5.11), then this function

returns that partial perm.
Example

gap> x := PBR([[-1, 1], [-3, 2], [-4, 3], [4], [5]],
> [[-1, 1], [-2], [-3, 2], [-4, 3], [-5]]);;
gap> IsPartialPermPBR(x);
true
gap> AsPartialPerm(x);
[2,3,4](1)

4.3.4 AsPermutation (for a PBR)

. AsPermutation(x) (attribute)

Returns: A permutation.
When the argument x is a PBR which satisfies IsPermPBR (4.5.12), then this attribute returns that

permutation.
Example

gap> x := PBR([[-1, 1], [-4, 2], [-2, 3], [-3, 4]],
> [[-1, 1], [-2, 3], [-3, 4], [-4, 2]]);;
gap> IsPermPBR(x);
true
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gap> AsPermutation(x);
(2,4,3)

4.4 Operators for PBRs

x * y
returns the product of x and y when x and y are PBRs.

x < y
returns true if the degree of x is less than the degree of y , or the degrees are equal and the
out-neighbours of x (as a list of list of positive integers) is lexicographically less than the out-
neighbours of y .

x = y
returns true if the PBR x equals the PBR y and returns false if it does not.

4.5 Attributes for PBRs

In this section we describe various attributes that a PBR can possess.

4.5.1 StarOp (for a PBR)

. StarOp(x) (operation)

. Star(x) (attribute)

Returns: A PBR.
StarOp returns the unique PBR y obtained by exchanging the positive and negative numbers in x

(i.e. multiplying ExtRepOfObj (4.5.3) by -1 and swapping its first and second components).
Example

gap> x := PBR([[], [-1], []], [[-3, -2, 2, 3], [-2, 1], []]);;
gap> Star(x);
PBR([ [ -3, -2, 2, 3 ], [ -1, 2 ], [ ] ], [ [ ], [ 1 ], [ ] ])

4.5.2 DegreeOfPBR

. DegreeOfPBR(x) (attribute)

. DegreeOfPBRCollection(x) (attribute)

Returns: A positive integer.
The degree of a PBR is, roughly speaking, the number of points where it is defined. More pre-

cisely, if x is a PBR defined on 2 * n points, then the degree of x is n.
The degree of a collection coll of PBRs of equal degree is just the degree of any (and every)

PBR in coll . The degree of collection of PBRs of unequal degrees is not defined.
Example

gap> x := PBR([[-2], [-2, -1, 2, 3], [-1, 1, 2, 3]],
> [[-1, 1], [2, 3], [-3, 2, 3]]);
PBR([ [ -2 ], [ -2, -1, 2, 3 ], [ -1, 1, 2, 3 ] ],

[ [ -1, 1 ], [ 2, 3 ], [ -3, 2, 3 ] ])
gap> DegreeOfPBR(x);
3
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gap> S := FullPBRMonoid(2);
<pbr monoid of degree 2 with 10 generators>
gap> DegreeOfPBRCollection(S);
2

4.5.3 ExtRepOfObj (for a PBR)

. ExtRepOfObj(x) (operation)

Returns: A pair of lists of lists of integers.
If n is the degree of the PBR x , then ExtRepOfObj returns the argument required by PBR (4.2.1)

to create a PBR equal to x , i.e. PBR(ExtRepOfObj(x)) returns a PBR equal to x .
Example

gap> x := PBR([[-1, 1], [-2, 2]],
> [[-2, -1, 1], [-1, 1, 2]]);
PBR([ [ -1, 1 ], [ -2, 2 ] ], [ [ -2, -1, 1 ], [ -1, 1, 2 ] ])
gap> ExtRepOfObj(x);
[ [ [ -1, 1 ], [ -2, 2 ] ], [ [ -2, -1, 1 ], [ -1, 1, 2 ] ] ]

4.5.4 PBRNumber

. PBRNumber(m, n) (operation)

. NumberPBR(mat) (operation)

Returns: A PBR, or a positive integer.
These functions implement a bijection from the set of all PBRs of degree n and the numbers [1

.. 2 ^ (4 * n ^ 2)].
More precisely, if m and n are positive integers such that m is at most 2 ^ (4 * n ^ 2), then

PBRNumber returns the m th PBR of degree n .
If mat is a PBR of degree n , then NumberPBR returns the number in [1 .. 2 ^ (4 * n ^ 2)]

that corresponds to mat .
Example

gap> S := FullPBRMonoid(1);
<pbr monoid of degree 1 with 4 generators>
gap> List(S, NumberPBR);
[ 3, 15, 5, 7, 8, 1, 4, 11, 13, 16, 6, 2, 9, 12, 14, 10 ]

4.5.5 IsEmptyPBR

. IsEmptyPBR(x) (property)

Returns: true or false.
A PBR is EMPTY if it has no edges. IsEmptyPBR returns true if the PBR x is empty and false

if it is not.
Example

gap> x := PBR([[]], [[]]);;
gap> IsEmptyPBR(x);
true
gap> x := PBR([[-2, 1], [2]], [[-1], [-2, 1]]);
PBR([ [ -2, 1 ], [ 2 ] ], [ [ -1 ], [ -2, 1 ] ])
gap> IsEmptyPBR(x);
false
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4.5.6 IsIdentityPBR

. IsIdentityPBR(x) (property)

Returns: true or false.
A PBR of degree n is the IDENTITY PBR of degree n if it is the identity of the full PBR monoid

of degree n. The identity PBR of degree n has 2n edges. Specifically, for each i in the ranges [1 ..
n] and [-n .. -1], the identity PBR has an edge from i to -i.

IsIdentityPBR returns true is the PBR x is an identity PBR and false if it is not.
Example

gap> x := PBR([[-2], [-1]], [[1], [2]]);
PBR([ [ -2 ], [ -1 ] ], [ [ 1 ], [ 2 ] ])
gap> IsIdentityPBR(x);
false
gap> x := PBR([[-1]], [[1]]);
PBR([ [ -1 ] ], [ [ 1 ] ])
gap> IsIdentityPBR(x);
true

4.5.7 IsUniversalPBR

. IsUniversalPBR(x) (property)

Returns: true or false.
A PBR of degree n is UNIVERSAL if it has 4 * n ^ 2 edges, i.e. every possible edge.

Example
gap> x := PBR([[]], [[]]);
PBR([ [ ] ], [ [ ] ])
gap> IsUniversalPBR(x);
false
gap> x := PBR([[-2, 1], [2]], [[-1], [-2, 1]]);
PBR([ [ -2, 1 ], [ 2 ] ], [ [ -1 ], [ -2, 1 ] ])
gap> IsUniversalPBR(x);
false
gap> x := PBR([[-1, 1]], [[-1, 1]]);
PBR([ [ -1, 1 ] ], [ [ -1, 1 ] ])
gap> IsUniversalPBR(x);
true

4.5.8 IsBipartitionPBR

. IsBipartitionPBR(x) (property)

. IsBlockBijectionPBR(x) (property)

Returns: true or false.
If the PBR x defines a bipartition, then IsBipartitionPBR returns true, and if not, then it

returns false.
A PBR x defines a bipartition if and only if when considered as a boolean matrix it is an equiva-

lence.
If x satisfies IsBipartitionPBR and when considered as a bipartition it is a block bijection, then

IsBlockBijectionPBR returns true.
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Example
gap> x := PBR([[-1, 3], [-1, 3], [-2, 1, 2, 3]],
> [[-2, -1, 2], [-2, -1, 1, 2, 3],
> [-2, -1, 1, 2]]);
PBR([ [ -1, 3 ], [ -1, 3 ], [ -2, 1, 2, 3 ] ],

[ [ -2, -1, 2 ], [ -2, -1, 1, 2, 3 ], [ -2, -1, 1, 2 ] ])
gap> IsBipartitionPBR(x);
false
gap> x := PBR([[-2, -1, 1], [2, 3], [2, 3]],
> [[-2, -1, 1], [-2, -1, 1], [-3]]);
PBR([ [ -2, -1, 1 ], [ 2, 3 ], [ 2, 3 ] ],

[ [ -2, -1, 1 ], [ -2, -1, 1 ], [ -3 ] ])
gap> IsBipartitionPBR(x);
true
gap> IsBlockBijectionPBR(x);
false

4.5.9 IsTransformationPBR

. IsTransformationPBR(x) (property)

Returns: true or false.
If the PBR x defines a transformation, then IsTransformationPBR returns true, and if not, then

false is returned.
A PBR x defines a transformation if and only if it satisfies IsBipartitionPBR (4.5.8) and when

it is considered as a bipartition it satisfies IsTransBipartition (3.5.12).
With this definition, AsPBR (4.3.1) and AsTransformation (4.3.2) define mutually inverse iso-

morphisms from the full transformation monoid of degree n to the submonoid of the full PBR monoid
of degree n consisting of all the elements satisfying IsTransformationPBR.

Example
gap> x := PBR([[-3], [-1], [-3]], [[2], [], [1, 3]]);
PBR([ [ -3 ], [ -1 ], [ -3 ] ], [ [ 2 ], [ ], [ 1, 3 ] ])
gap> IsTransformationPBR(x);
true
gap> x := AsTransformation(x);
Transformation( [ 3, 1, 3 ] )
gap> AsPBR(x) * AsPBR(x) = AsPBR(x ^ 2);
true
gap> Number(FullPBRMonoid(1), IsTransformationPBR);
1
gap> x := PBR([[-2, -1, 2], [-2, 1, 2]], [[-1, 1], [-2]]);
PBR([ [ -2, -1, 2 ], [ -2, 1, 2 ] ], [ [ -1, 1 ], [ -2 ] ])
gap> IsTransformationPBR(x);
false

4.5.10 IsDualTransformationPBR

. IsDualTransformationPBR(x) (property)

Returns: true or false.
If the PBR x defines a dual transformation, then IsDualTransformationPBR returns true, and

if not, then false is returned.
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A PBR x defines a dual transformation if and only if Star(x) satisfies IsTransformationPBR
(4.5.9).

Example
gap> x := PBR([[-3, 1, 3], [-1, 2], [-3, 1, 3]],
> [[-1, 2], [-2], [-3, 1, 3]]);
PBR([ [ -3, 1, 3 ], [ -1, 2 ], [ -3, 1, 3 ] ],

[ [ -1, 2 ], [ -2 ], [ -3, 1, 3 ] ])
gap> IsDualTransformationPBR(x);
false
gap> IsDualTransformationPBR(Star(x));
true
gap> Number(FullPBRMonoid(1), IsDualTransformationPBR);
1

4.5.11 IsPartialPermPBR

. IsPartialPermPBR(x) (property)

Returns: true or false.
If the PBR x defines a partial permutation, then IsPartialPermPBR returns true, and if not,

then false is returned.
A PBR x defines a partial perm if and only if it satisfies IsBipartitionPBR (4.5.8) and and when

it is considered as a bipartition it satisfies IsPartialPermBipartition (3.5.15).
With this definition, AsPBR (4.3.1) and AsPartialPerm (4.3.3) define mutually inverse isomor-

phisms from the symmetric inverse monoid of degree n to the submonoid of the full PBR monoid of
degree n consisting of all the elements satisfying IsPartialPermPBR.

Example
gap> x := PBR([[-1, 1], [2]], [[-1, 1], [-2]]);
PBR([ [ -1, 1 ], [ 2 ] ], [ [ -1, 1 ], [ -2 ] ])
gap> IsPartialPermPBR(x);
true
gap> x := PartialPerm([3, 1]);
[2,1,3]
gap> AsPBR(x) * AsPBR(x) = AsPBR(x ^ 2);
true
gap> Number(FullPBRMonoid(1), IsPartialPermPBR);
2

4.5.12 IsPermPBR

. IsPermPBR(x) (property)

Returns: true or false.
If the PBR x defines a permutation, then IsPermPBR returns true, and if not, then false is

returned.
A PBR x defines a permutation if and only if it satisfies IsBipartitionPBR (4.5.8) and and when

it is considered as a bipartition it satisfies IsPermBipartition (3.5.14).
With this definition, AsPBR (4.3.1) and AsPermutation (4.3.4) define mutually inverse isomor-

phisms from the symmetric group of degree n to the subgroup of the full PBR monoid of degree n
consisting of all the elements satisfying IsPermPBR (i.e. the GroupOfUnits (14.8.1) of the full PBR
monoid of degree n).
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Example
gap> x := PBR([[-2, 1], [-4, 2], [-1, 3], [-3, 4]],
> [[-1, 3], [-2, 1], [-3, 4], [-4, 2]]);;
gap> IsPermPBR(x);
true
gap> x := (1, 5)(2, 4, 3);
(1,5)(2,4,3)
gap> y := (1, 4, 3)(2, 5);
(1,4,3)(2,5)
gap> AsPBR(x) * AsPBR(y) = AsPBR(x * y);
true
gap> Number(FullPBRMonoid(1), IsPermPBR);
1

4.6 Semigroups of PBRs

Semigroups and monoids of PBRs can be created in the usual way in GAP using the functions
Semigroup (Reference: Semigroup) and Monoid (Reference: Monoid); see Chapter 6 for more
details.

It is possible to create inverse semigroups and monoids of PBRs using InverseSemigroup
(Reference: InverseSemigroup) and InverseMonoid (Reference: InverseMonoid) when the ar-
gument is a collection of PBRs satisfying IsBipartitionPBR (4.5.8) and when considered as bipar-
titions, the collection satisfies IsGeneratorsOfInverseSemigroup.

Note that every PBR semigroup in Semigroups is finite.

4.6.1 IsPBRSemigroup

. IsPBRSemigroup(S) (filter)

. IsPBRMonoid(S) (filter)

Returns: true or false.
A PBR semigroup is simply a semigroup consisting of PBRs. An object obj is a PBR semigroup

in GAP if it satisfies IsSemigroup (Reference: IsSemigroup) and IsPBRCollection (4.1.2).
A PBR monoid is a monoid consisting of PBRs. An object obj is a PBR monoid in GAP if it

satisfies IsMonoid (Reference: IsMonoid) and IsPBRCollection (4.1.2).
Note that it is possible for a PBR semigroup to have a multiplicative neutral element (i.e. an

identity element) but not to satisfy IsPBRMonoid. For example,
Example

gap> x := PBR([[-2, -1, 3], [-2, 2], [-3, -2, 1, 2, 3]],
> [[-3, -2, -1, 2, 3], [-3, -2, -1, 2, 3], [-1]]);;
gap> S := Semigroup(x, One(x));
<commutative pbr monoid of degree 3 with 1 generator>
gap> IsMonoid(S);
true
gap> IsPBRMonoid(S);
true
gap> S := Semigroup([
> PBR([[-2, 1], [-3, 2], [-1, 3], [-4, 4, 5], [-4, 4, 5]],
> [[-1, 3], [-2, 1], [-3, 2], [-4, 4, 5], [-5]]),
> PBR([[-2, 1], [-1, 2], [-3, 3], [-4, 4, 5], [-4, 4, 5]],
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> [[-1, 2], [-2, 1], [-3, 3], [-4, 4, 5], [-5]]),
> PBR([[-1, 1, 3], [-2, 2], [-1, 1, 3], [-4, 4, 5], [-4, 4, 5]],
> [[-1, 1, 3], [-2, 2], [-3], [-4, 4, 5], [-5]])]);
<pbr semigroup of degree 5 with 3 generators>
gap> One(S);
fail
gap> MultiplicativeNeutralElement(S);
PBR([ [ -1, 1 ], [ -2, 2 ], [ -3, 3 ], [ -4, 4, 5 ], [ -4, 4, 5 ] ],

[ [ -1, 1 ], [ -2, 2 ], [ -3, 3 ], [ -4, 4, 5 ], [ -5 ] ])
gap> IsPBRMonoid(S);
false

In this example S cannot be converted into a monoid using AsMonoid (Reference: AsMonoid) since
the One (Reference: One) of any element in S differs from the multiplicative neutral element.

For more details see IsMagmaWithOne (Reference: IsMagmaWithOne).

4.6.2 DegreeOfPBRSemigroup

. DegreeOfPBRSemigroup(S) (attribute)

Returns: A non-negative integer.
The degree of a PBR semigroup S is just the degree of any (and every) element of S .

Example
gap> S := Semigroup(
> PBR([[-1, 1], [-2, 2], [-3, 3]],
> [[-1, 1], [-2, 2], [-3, 3]]),
> PBR([[1, 2], [1, 2], [-3, 3]],
> [[-2, -1], [-2, -1], [-3, 3]]),
> PBR([[-1, 1], [2, 3], [2, 3]],
> [[-1, 1], [-3, -2], [-3, -2]]));
<pbr semigroup of degree 3 with 3 generators>
gap> DegreeOfPBRSemigroup(S);
3



Chapter 5

Matrices over semirings

In this chapter we describe the functionality in Semigroups for creating matrices over semirings.
ONLY SQUARE MATRICES ARE CURRENTLY SUPPORTED. We use the term MATRIX to mean
SQUARE MATRIX everywhere in this manual.

For reference, matrices over the following semirings are currently supported:

the Boolean semiring
the set {0,1} where 0+0 = 0, 0+1 = 1+1 = 1+0 = 1, 1 ·0 = 0 ·0 = 0 ·1 = 0, and 1 ·1 = 1.

the max-plus semiring
the set of integers and negative infinity Z∪{−∞} with operations max and plus.

the min-plus semiring
the set of integers and infinity Z∪{∞} with operations min and plus;

tropical max-plus semirings
the set {−∞,0,1, . . . , t} for some threshold t with operations max and plus;

tropical min-plus semirings
the set {0,1, . . . , t,∞} for some threshold t with operations min and plus;

the semiring Nt,p

the semiring Nt,p = {0,1, . . . , t, t + 1, . . . , t + p− 1} for some threshold t and period p under
addition and multiplication modulo the congruence t = t + p;

the integers
the usual ring of integers;

finite fields
the finite fields GF(q^d) for prime q and some positive integer d.

With the exception of matrices of finite fields, semigroups of matrices in Semigroups are of the
second type described in Section 1.1. In other words, a version of the Froidure-Pin Algorithm [FP97]
is used to compute semigroups of these types, i.e it is possible that all of the elements of such a
semigroup are enumerated and stored in the memory of your computer.

48
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5.1 Creating matrices over semirings

In this section we describe the two main operations for creating matrices over semirings in Semi-
groups, and the categories, attributes, and operations which apply to every matrix over one of the
semirings given at the start of this chapter.

There are several special methods for boolean matrices, which can be found in Section 5.3. There
are also several special methods for finite fields, which can be found in section 5.4.

5.1.1 IsMatrixOverSemiring

. IsMatrixOverSemiring(obj) (Category)

Returns: true or false.
Every matrix over a semiring in Semigroups is a member of the category

IsMatrixOverSemiring, which is a subcategory of IsMultiplicativeElementWithOne
(Reference: IsMultiplicativeElementWithOne), IsAssociativeElement (Reference: IsAssocia-
tiveElement), and IsPositionalObjectRep; see (Reference: Representation).

Every matrix over a semiring in Semigroups is a square matrix.
Basic operations for matrices over semirings are: DimensionOfMatrixOverSemiring (5.1.3),

TransposedMat (Reference: TransposedMat), and One (Reference: One).

5.1.2 IsMatrixOverSemiringCollection

. IsMatrixOverSemiringCollection(obj) (Category)

. IsMatrixOverSemiringCollColl(obj) (Category)

Returns: true or false.
Every collection of matrices over the same semiring belongs to the category

IsMatrixOverSemiringCollection. For example, semigroups of matrices over a semiring
belong to IsMatrixOverSemiringCollection.

Every collection of collections of matrices over the same semiring belongs to the category
IsMatrixOverSemiringCollColl. For example, a list of semigroups of matrices over semirings
belongs to IsMatrixOverSemiringCollColl.

5.1.3 DimensionOfMatrixOverSemiring

. DimensionOfMatrixOverSemiring(mat) (attribute)

Returns: A positive integer.
If mat is a matrix over a semiring (i.e. belongs to the category IsMatrixOverSemiring (5.1.1)),

then mat is a square n by n matrix. DimensionOfMatrixOverSemiring returns the dimension n of
mat .

Example
gap> x := BooleanMat([[1, 0, 0, 1],
> [0, 1, 1, 0],
> [1, 0, 1, 1],
> [0, 0, 0, 1]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [0, 1, 1, 0], [1, 0, 1, 1],

[0, 0, 0, 1]])
gap> DimensionOfMatrixOverSemiring(x);
4
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5.1.4 DimensionOfMatrixOverSemiringCollection

. DimensionOfMatrixOverSemiringCollection(coll) (attribute)

Returns: A positive integer.
If coll is a collection of matrices over a semiring (i.e. belongs to the category

IsMatrixOverSemiringCollection (5.1.2)), then the elements of coll are square n by n matrices.
DimensionOfMatrixOverSemiringCollection returns the dimension n of these matrices.

Example
gap> x := BooleanMat([[1, 0, 0, 1],
> [0, 1, 1, 0],
> [1, 0, 1, 1],
> [0, 0, 0, 1]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [0, 1, 1, 0], [1, 0, 1, 1],

[0, 0, 0, 1]])
gap> DimensionOfMatrixOverSemiringCollection(Semigroup(x));
4

5.1.5 Matrix (for a filter and a matrix)

. Matrix(filt, mat[, threshold[, period]]) (operation)

. Matrix(semiring, mat) (operation)

Returns: A matrix over semiring.
This operation can be used to construct a matrix over a semiring in Semigroups.
In its first form, the first argument filt specifies the filter to be used to create the matrix, the

second argument mat is a GAP matrix (i.e. a list of lists) compatible with filt , the third and fourth
arguments threshold and period (if required) must be positive integers.

filt
This must be one of the filters given in Section 5.1.8.

mat This must be a list of n lists each of length n (i.e. a square matrix), consisting of elements be-
longing to the underlying semiring described by filt , and threshold and period if present.
An error is given if mat is not compatible with the other arguments.

For example, if filt is IsMaxPlusMatrix, then the entries of mat must belong to the max-plus
semiring, i.e. they must be integers or -∞.

The supported semirings are fully described at the start of this chapter.

threshold
If filt is any of IsTropicalMaxPlusMatrix (5.1.8), IsTropicalMinPlusMatrix (5.1.8),
or IsNTPMatrix (5.1.8), then this argument specifies the threshold of the underlying semiring
of the matrix being created.

period
If filt is IsNTPMatrix (5.1.8), then this argument specifies the period of the underlying semir-
ing of the matrix being created.

In its second form, the arguments should be a semiring semiring and matrix mat with entries in
semiring . Currently, the only supported semirings are finite fields of prime order, and the integers
Integers (Reference: Integers).

The function BooleanMat (5.3.1) is provided for specifically creating boolean matrices.
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Example
gap> Matrix(IsBooleanMat, [[1, 0, 0, 0],
> [0, 0, 0, 0],
> [1, 1, 1, 1],
> [1, 0, 1, 1]]);
Matrix(IsBooleanMat, [[1, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1],

[1, 0, 1, 1]])
gap> Matrix(IsMaxPlusMatrix, [[4, 0, -2],
> [1, -3, 0],
> [5, -1, -4]]);
Matrix(IsMaxPlusMatrix, [[4, 0, -2], [1, -3, 0], [5, -1, -4]])
gap> Matrix(IsMinPlusMatrix, [[-1, infinity],
> [1, -1]]);
Matrix(IsMinPlusMatrix, [[-1, infinity], [1, -1]])
gap> Matrix(IsTropicalMaxPlusMatrix, [[3, 2, 4],
> [3, 1, 1],
> [-infinity, 1, 1]],
> 9);
Matrix(IsTropicalMaxPlusMatrix, [[3, 2, 4], [3, 1, 1],

[-infinity, 1, 1]], 9)
gap> Matrix(IsTropicalMinPlusMatrix, [[1, 1, 1],
> [0, 3, 0],
> [1, 1, 3]],
> 9);
Matrix(IsTropicalMinPlusMatrix, [[1, 1, 1], [0, 3, 0], [1, 1, 3]], 9)
gap> Matrix(IsNTPMatrix, [[0, 0, 0],
> [2, 0, 1],
> [2, 2, 2]],
> 2, 1);
Matrix(IsNTPMatrix, [[0, 0, 0], [2, 0, 1], [2, 2, 2]], 2, 1)
gap> Matrix(IsIntegerMatrix, [[-1, -2, 0],
> [0, 3, -1],
> [1, 0, -3]]);
Matrix(IsIntegerMatrix, [[-1, -2, 0], [0, 3, -1], [1, 0, -3]])
gap> Matrix(Integers, [[-1, -2, 0],
> [0, 3, -1],
> [1, 0, -3]]);
Matrix(IsIntegerMatrix, [[-1, -2, 0], [0, 3, -1], [1, 0, -3]])

5.1.6 AsMatrix (for a filter and a matrix)

. AsMatrix(filt, mat) (operation)

. AsMatrix(filt, mat, threshold) (operation)

. AsMatrix(filt, mat, threshold, period) (operation)

Returns: A matrix.
This operation can be used to change the representation of certain matrices over semirings. If

mat is a matrix over a semiring (in the category IsMatrixOverSemiring (5.1.1)), then AsMatrix
returns a new matrix corresponding to mat of the type specified by the filter filt , and if applicable
the arguments threshold and period . The dimension of the matrix mat is not changed by this
operation.

The version of the operation with arguments filt and mat can be applied to:
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• IsMinPlusMatrix (5.1.8) and a tropical min-plus matrix (i.e. convert a tropical min-plus ma-
trix to a (non-tropical) min-plus matrix);

• IsMaxPlusMatrix (5.1.8) and a tropical max-plus matrix;

• IsIntegerMatrix (5.1.8) and an ntp matrix.

The version of the operation with arguments filt , mat , and threshold can be applied to:

• IsTropicalMinPlusMatrix (5.1.8), a tropical min-plus or min-plus matrix, and a value for
the threshold of the resulting matrix.

• IsTropicalMaxPlusMatrix (5.1.8) and a tropical max-plus, or max-plus matrix, and a value
for the threshold of the resulting matrix.

The version of the operation with arguments filt , mat , threshold , and period can be applied to
IsNTPMatrix (5.1.8) and an ntp matrix, or integer matrix.

When converting matrices with negative entries to an ntp, tropical max-plus, or tropical min-plus
matrix, the entry is replaced with its absolute value.

When converting non-tropical matrices to tropical matrices entries higher than the specified
threshold are reduced to the threshold.

Example
gap> mat := Matrix(IsTropicalMinPlusMatrix, [[0, 1, 3],
> [1, 1, 6],
> [0, 4, 2]], 10);;
gap> AsMatrix(IsMinPlusMatrix, mat);
Matrix(IsMinPlusMatrix, [[0, 1, 3], [1, 1, 6], [0, 4, 2]])
gap> mat := Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
> [0, 1, 3],
> [4, 1, 0]], 10);;
gap> AsMatrix(IsMaxPlusMatrix, mat);
Matrix(IsMaxPlusMatrix, [[-infinity, -infinity, 3], [0, 1, 3],

[4, 1, 0]])
gap> mat := Matrix(IsNTPMatrix, [[1, 2, 2],
> [0, 2, 0],
> [1, 3, 0]], 4, 5);;
gap> AsMatrix(IsIntegerMatrix, mat);
Matrix(IsIntegerMatrix, [[1, 2, 2], [0, 2, 0], [1, 3, 0]])
gap> mat := Matrix(IsMinPlusMatrix, [[0, 1, 3], [1, 1, 6], [0, 4, 2]]);;
gap> mat := AsMatrix(IsTropicalMinPlusMatrix, mat, 2);
Matrix(IsTropicalMinPlusMatrix, [[0, 1, 2], [1, 1, 2], [0, 2, 2]], 2)
gap> mat := AsMatrix(IsTropicalMinPlusMatrix, mat, 1);
Matrix(IsTropicalMinPlusMatrix, [[0, 1, 1], [1, 1, 1], [0, 1, 1]], 1)
gap> mat := Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
> [0, 1, 3],
> [4, 1, 0]], 10);;
gap> AsMatrix(IsTropicalMaxPlusMatrix, mat, 4);
Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],

[0, 1, 3], [4, 1, 0]], 4)
gap> mat := Matrix(IsMaxPlusMatrix, [[-infinity, -infinity, 3],
> [0, 1, 3],
> [4, 1, 0]]);;
gap> AsMatrix(IsTropicalMaxPlusMatrix, mat, 10);
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Matrix(IsTropicalMaxPlusMatrix, [[-infinity, -infinity, 3],
[0, 1, 3], [4, 1, 0]], 10)

gap> mat := Matrix(IsNTPMatrix, [[0, 1, 0],
> [1, 3, 1],
> [1, 0, 1]], 10, 10);;
gap> mat := AsMatrix(IsNTPMatrix, mat, 5, 6);
Matrix(IsNTPMatrix, [[0, 1, 0], [1, 3, 1], [1, 0, 1]], 5, 6)
gap> mat := AsMatrix(IsNTPMatrix, mat, 2, 6);
Matrix(IsNTPMatrix, [[0, 1, 0], [1, 3, 1], [1, 0, 1]], 2, 6)
gap> mat := AsMatrix(IsNTPMatrix, mat, 2, 1);
Matrix(IsNTPMatrix, [[0, 1, 0], [1, 2, 1], [1, 0, 1]], 2, 1)
gap> mat := AsMatrix(IsIntegerMatrix, mat);
Matrix(IsIntegerMatrix, [[0, 1, 0], [1, 2, 1], [1, 0, 1]])
gap> AsMatrix(IsNTPMatrix, mat, 1, 2);
Matrix(IsNTPMatrix, [[0, 1, 0], [1, 2, 1], [1, 0, 1]], 1, 2)

5.1.7 RandomMatrix (for a filter and a matrix)

. RandomMatrix(filt, dim[, threshold[, period]]) (function)

. RandomMatrix(semiring, dim) (function)

Returns: A matrix over semiring.
This operation can be used to construct a random matrix over a semiring in Semigroups. The

usage of RandomMatrix is similar to that of Matrix (5.1.5).
In its first form, the first argument filt specifies the filter to be used to create the matrix, the

second argument dim is dimension of the matrix, the third and fourth arguments threshold and
period (if required) must be positive integers.

filt
This must be one of the filters given in Section 5.1.8.

dim This must be a positive integer.

threshold
If filt is any of IsTropicalMaxPlusMatrix (5.1.8), IsTropicalMinPlusMatrix (5.1.8),
or IsNTPMatrix (5.1.8), then this argument specifies the threshold of the underlying semiring
of the matrix being created.

period
If filt is IsNTPMatrix (5.1.8), then this argument specifies the period of the underlying semir-
ing of the matrix being created.

In its second form, the arguments should be a semiring semiring and dimension dim . Currently,
the only supported semirings are finite fields of prime order and the integers Integers (Reference:
Integers).

Example
gap> RandomMatrix(IsBooleanMat, 3);
Matrix(IsBooleanMat, [[1, 0, 0], [1, 0, 1], [1, 0, 1]])
gap> RandomMatrix(IsMaxPlusMatrix, 2);
Matrix(IsMaxPlusMatrix, [[1, -infinity], [1, 0]])
gap> RandomMatrix(IsMinPlusMatrix, 3);
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Matrix(IsMinPlusMatrix, [[infinity, 2, infinity], [4, 0, -2], [1, -3, 0]])
gap> RandomMatrix(IsTropicalMaxPlusMatrix, 3, 5);
Matrix(IsTropicalMaxPlusMatrix, [[5, 1, 4], [1, -infinity, 1], [1, 0, 2]],

5)
gap> RandomMatrix(IsTropicalMinPlusMatrix, 3, 2);
Matrix(IsTropicalMinPlusMatrix, [[1, -infinity, -infinity], [1, 1, 1],

[2, 2, 1]], 2)
gap> RandomMatrix(IsNTPMatrix, 3, 2, 5);
Matrix(IsNTPMatrix, [[1, 1, 1], [1, 1, 0], [3, 0, 1]], 2, 5)
gap> RandomMatrix(IsIntegerMatrix, 2);
Matrix(IsIntegerMatrix, [[1, 3], [0, 0]])
gap> RandomMatrix(Integers, 2);
Matrix(IsIntegerMatrix, [[-1, 0], [0, -1]])
gap> RandomMatrix(GF(5), 1);
Matrix(GF(5), [[Z(5)^0]])

5.1.8 Matrix filters

. IsBooleanMat(obj) (Category)

. IsMatrixOverFiniteField(obj) (Category)

. IsMaxPlusMatrix(obj) (Category)

. IsMinPlusMatrix(obj) (Category)

. IsTropicalMatrix(obj) (Category)

. IsTropicalMaxPlusMatrix(obj) (Category)

. IsTropicalMinPlusMatrix(obj) (Category)

. IsNTPMatrix(obj) (Category)

. IsIntegerMatrix(obj) (Category)

Returns: true or false.
Every matrix over a semiring in Semigroups is a member of one of these categories, which are

subcategory of IsMatrixOverSemiring (5.1.1).
IsTropicalMatrix is a supercategory of IsTropicalMaxPlusMatrix and

IsTropicalMinPlusMatrix.
Basic operations for matrices over semirings include: multiplication via \*,

DimensionOfMatrixOverSemiring (5.1.3), One (Reference: One), the underlying list of
lists used to create the matrix can be accessed using AsList (5.1.10), the rows of mat can be accessed
using mat[i] where i is between 1 and the dimension of the matrix, it also possible to loop over
the rows of a matrix; for tropical matrices ThresholdTropicalMatrix (5.1.11); for ntp matrices
ThresholdNTPMatrix (5.1.12) and PeriodNTPMatrix (5.1.12).

For matrices over finite fields see Section 5.4; for Boolean matrices more details can be found in
Section 5.3.

5.1.9 Matrix collection filters

. IsBooleanMatCollection(obj) (Category)

. IsBooleanMatCollColl(obj) (Category)

. IsMatrixOverFiniteFieldCollection(obj) (Category)

. IsMatrixOverFiniteFieldCollColl(obj) (Category)

. IsMaxPlusMatrixCollection(obj) (Category)
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. IsMaxPlusMatrixCollColl(obj) (Category)

. IsMinPlusMatrixCollection(obj) (Category)

. IsMinPlusMatrixCollColl(obj) (Category)

. IsTropicalMatrixCollection(obj) (Category)

. IsTropicalMaxPlusMatrixCollection(obj) (Category)

. IsTropicalMaxPlusMatrixCollColl(obj) (Category)

. IsTropicalMinPlusMatrixCollection(obj) (Category)

. IsTropicalMinPlusMatrixCollColl(obj) (Category)

. IsNTPMatrixCollection(obj) (Category)

. IsNTPMatrixCollColl(obj) (Category)

. IsIntegerMatrixCollection(obj) (Category)

. IsIntegerMatrixCollColl(obj) (Category)

Returns: true or false.
Every collection of matrices over the same semiring in Semigroups belongs to one of the cate-

gories above. For example, semigroups of boolean matrices belong to IsBooleanMatCollection.
Similarly, every collection of collections of matrices over the same semiring in Semigroups

belongs to one of the categories above.

5.1.10 AsList

. AsList(mat) (attribute)

. AsMutableList(mat) (operation)

Returns: A list of lists.
If mat is a matrix over a semiring (in the category IsMatrixOverSemiring (5.1.1)), then AsList

returns the underlying list of lists of semiring elements corresponding to mat . In this case, the returned
list and all of its entries are immutable.

The operation AsMutableList returns a mutable copy of the underlying list of lists of the matrix
over semiring mat .

Example
gap> mat := Matrix(IsIntegerMatrix, [[0, 2],
> [3, 5]]);
Matrix(IsIntegerMatrix, [[0, 2], [3, 5]])
gap> AsList(mat);
[ [ 0, 2 ], [ 3, 5 ] ]
gap> mat := Matrix(GF(7), [[Z(7) ^ 3, Z(7) ^ 2],
> [Z(7) ^ 4, Z(7)]]);
Matrix(GF(7), [[Z(7)^3, Z(7)^2], [Z(7)^4, Z(7)]])
gap> list := AsList(mat);
[ [ Z(7)^3, Z(7)^2 ], [ Z(7)^4, Z(7) ] ]
gap> IsMutable(list);
false
gap> IsMutable(list[1]);
false
gap> list := AsMutableList(mat);
[ [ Z(7)^3, Z(7)^2 ], [ Z(7)^4, Z(7) ] ]
gap> IsMutable(list);
true
gap> IsMutable(list[1]);
true
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gap> mat = Matrix(BaseDomain(mat), AsList(mat));
true

5.1.11 ThresholdTropicalMatrix

. ThresholdTropicalMatrix(mat) (attribute)

Returns: A positive integer.
If mat is a tropical matrix (i.e. belongs to the category IsTropicalMatrix (5.1.8)), then

ThresholdTropicalMatrix returns the threshold (i.e. the largest integer) of the underlying semir-
ing.

Example
gap> mat := Matrix(IsTropicalMaxPlusMatrix,
> [[0, 3, 0, 2],
> [1, 1, 1, 0],
> [-infinity, 1, -infinity, 1],
> [0, -infinity, 2, -infinity]], 10);
Matrix(IsTropicalMaxPlusMatrix, [[0, 3, 0, 2], [1, 1, 1, 0],

[-infinity, 1, -infinity, 1], [0, -infinity, 2, -infinity]], 10)
gap> ThresholdTropicalMatrix(mat);
10
gap> mat := Matrix(IsTropicalMaxPlusMatrix,
> [[0, 3, 0, 2],
> [1, 1, 1, 0],
> [-infinity, 1, -infinity, 1],
> [0, -infinity, 2, -infinity]], 3);
Matrix(IsTropicalMaxPlusMatrix, [[0, 3, 0, 2], [1, 1, 1, 0],

[-infinity, 1, -infinity, 1], [0, -infinity, 2, -infinity]], 3)
gap> ThresholdTropicalMatrix(mat);
3

5.1.12 ThresholdNTPMatrix

. ThresholdNTPMatrix(mat) (attribute)

. PeriodNTPMatrix(mat) (attribute)

Returns: A positive integer.
An NTP MATRIX is a matrix with entries in a semiring Nt,p = {0,1, . . . , t, t +1, . . . , t + p−1} for

some threshold t and period p under addition and multiplication modulo the congruence t = t + p.
If mat is a ntp matrix (i.e. belongs to the category IsNTPMatrix (5.1.8)), then

ThresholdNTPMatrix and PeriodNTPMatrix return the threshold and period of the underlying
semiring, respectively.

Example
gap> mat := Matrix(IsNTPMatrix, [[1, 1, 0],
> [2, 1, 0],
> [0, 1, 1]],
> 1, 2);
Matrix(IsNTPMatrix, [[1, 1, 0], [2, 1, 0], [0, 1, 1]], 1, 2)
gap> ThresholdNTPMatrix(mat);
1
gap> PeriodNTPMatrix(mat);
2
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gap> mat := Matrix(IsNTPMatrix, [[2, 1, 3],
> [0, 5, 1],
> [4, 1, 0]],
> 3, 4);
Matrix(IsNTPMatrix, [[2, 1, 3], [0, 5, 1], [4, 1, 0]], 3, 4)
gap> ThresholdNTPMatrix(mat);
3
gap> PeriodNTPMatrix(mat);
4

5.2 Operators for matrices over semirings

mat1 * mat2
returns the product of the matrices mat1 and mat2 of equal dimension over the same semiring
using the usual matrix multiplication with the operations + and * from the underlying semiring.

mat1 < mat2
returns true if when considered as a list of rows, the matrix mat1 is short-lex less than the
matrix mat2 , and false if this is not the case. This means that a matrix of lower dimension is
less than a matrix of higher dimension.

mat1 = mat2
returns true if the matrix mat1 equals the matrix mat2 (i.e. the entries are equal and the
underlying semirings are equal) and returns false if it does not.

5.3 Boolean matrices

In this section we describe the operations, properties, and attributes in Semigroups specifically for
Boolean matrices. These include:

• NumberBooleanMat (5.3.6)

• Successors (5.3.5)

• IsRowTrimBooleanMat (5.3.9), IsColTrimBooleanMat (5.3.9), and IsTrimBooleanMat
(5.3.9),

• CanonicalBooleanMat (5.3.8)

• IsSymmetricBooleanMat (5.3.10)

• IsAntiSymmetricBooleanMat (5.3.13)

• IsTransitiveBooleanMat (5.3.12)

• IsReflexiveBooleanMat (5.3.11)

• IsTotalBooleanMat (5.3.14)

• IsOntoBooleanMat (5.3.14)
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• IsPartialOrderBooleanMat (5.3.15)

• IsEquivalenceBooleanMat (5.3.16)

5.3.1 BooleanMat

. BooleanMat(arg) (function)

Returns: A boolean matrix.
BooleanMat returns the boolean matrix mat defined by its argument. The argument can be any of

the following:

a matrix with entries 0 and/or 1
the argument arg is list of n lists of length n consisting of the values 0 and 1;

a matrix with entries true and/or false
the argument arg is list of n lists of length n consisting of the values true and false;

successors
the argument arg is list of n sublists of consisting of positive integers not greater than n. In this
case, the entry j in the sublist in position i of arg indicates that the entry in position (i, j)
of the created boolean matrix is true.

BooleanMat returns an error if the argument is not one of the above types.
Example

gap> x := BooleanMat([[true, false], [true, true]]);
Matrix(IsBooleanMat, [[1, 0], [1, 1]])
gap> y := BooleanMat([[1, 0], [1, 1]]);
Matrix(IsBooleanMat, [[1, 0], [1, 1]])
gap> z := BooleanMat([[1], [1, 2]]);
Matrix(IsBooleanMat, [[1, 0], [1, 1]])
gap> x = y;
true
gap> y = z;
true
gap> Display(x);
1 0
1 1

5.3.2 AsBooleanMat

. AsBooleanMat(x[, n]) (operation)

Returns: A boolean matrix.
AsBooleanMat returns the pbr, bipartition, permutation, transformation, or partial permutation x ,

as a boolean matrix of dimension n .
There are several possible arguments for AsBooleanMat:

permutations
If x is a permutation and n is a positive integer, then AsBooleanMat(x, n) returns the boolean
matrix mat of dimension n such that mat[i][j] = true if and only if j = i ^ x.

If no positive integer n is specified, then the largest moved point of x is used as the value for n ;
see LargestMovedPoint (Reference: LargestMovedPoint for a permutation).
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transformations
If x is a transformation and n is a positive integer such that x is a transformation of [1 .. n],
then AsTransformation returns the boolean matrix mat of dimension n such that mat[i][j]
= true if and only if j = i ^ x.

If the positive integer n is not specified, then the degree of f is used as the value for n .

partial permutations
If x is a partial permutation and n is a positive integer such that i ^ x <= n for all i in [1 ..
n], then AsBooleanMat returns the boolean matrix mat of dimension n such that mat[i][j]
= true if and only if j = i ^ x.

If the optional argument n is not present, then the default value of the maximum of degree and
the codegree of x is used.

bipartitions
If x is a bipartition and n is any non-negative integer, then AsBooleanMat returns the boolean
matrix mat of dimension n such that mat[i][j] = true if and only if i and j belong to the
same block of x .

If the optional argument n is not present, then twice the degree of x is used by default.

pbrs If x is a pbr and n is any non-negative integer, then AsBooleanMat returns the boolean matrix
mat of dimension n such that mat[i][j] = true if and only if i and j are related in x .

If the optional argument n is not present, then twice the degree of x is used by default.
Example

gap> Display(AsBooleanMat((1, 2), 5));
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
gap> Display(AsBooleanMat((1, 2)));
0 1
1 0
gap> x := Transformation([1, 3, 4, 1, 3]);;
gap> Display(AsBooleanMat(x));
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
gap> Display(AsBooleanMat(x, 4));
1 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0
gap> x := PartialPerm([1, 2, 3, 6, 8, 10],
> [2, 6, 7, 9, 1, 5]);
[3,7][8,1,2,6,9][10,5]
gap> Display(AsBooleanMat(x));
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
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0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
gap> x := Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]);
<bipartition: [ 1, 4, -2, -3 ], [ 2, 3, 5, -5 ], [ -1, -4 ]>
gap> y := AsBooleanMat(x);
<10x10 boolean matrix>
gap> Display(y);
1 0 0 1 0 0 1 1 0 0
0 1 1 0 1 0 0 0 0 1
0 1 1 0 1 0 0 0 0 1
1 0 0 1 0 0 1 1 0 0
0 1 1 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0
1 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0 1 0
0 1 1 0 1 0 0 0 0 1
gap> IsEquivalenceBooleanMat(y);
true
gap> AsBooleanMat(x, 1);
Matrix(IsBooleanMat, [[1]])
gap> Display(AsBooleanMat(x, 1));
1
gap> Display(AsBooleanMat(x, 2));
1 0
0 1
gap> Display(AsBooleanMat(x, 3));
1 0 0
0 1 1
0 1 1
gap> Display(AsBooleanMat(x, 11));
1 0 0 1 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 0 1 0
0 1 1 0 1 0 0 0 0 1 0
1 0 0 1 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0
1 0 0 1 0 0 1 1 0 0 0
1 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0
0 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
gap> x := PBR(
> [[-1, 1], [2, 3], [-3, 2, 3]],
> [[-1, 1, 2], [-3, -1, 1, 3], [-3, -1, 1, 2, 3]]);;
gap> AsBooleanMat(x);
Matrix(IsBooleanMat, [[1, 0, 0, 1, 0, 0], [0, 1, 1, 0, 0, 0],
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[0, 1, 1, 0, 0, 1], [1, 1, 0, 1, 0, 0], [1, 0, 1, 1, 0, 1],
[1, 1, 1, 1, 0, 1]])

gap> Display(AsBooleanMat(x));
1 0 0 1 0 0
0 1 1 0 0 0
0 1 1 0 0 1
1 1 0 1 0 0
1 0 1 1 0 1
1 1 1 1 0 1

5.3.3 \in

. \in(mat1, mat2) (operation)

Returns: true or false.
If mat1 and mat2 are boolean matrices, then mat1 in mat2 returns true if the binary relation

defined by mat1 is a subset of that defined by mat2 .
Example

gap> x := BooleanMat([[1, 0, 0, 1], [0, 0, 0, 0],
> [1, 0, 1, 1], [0, 1, 1, 1]]);;
gap> y := BooleanMat([[1, 0, 1, 0], [1, 1, 1, 0],
> [0, 1, 1, 0], [1, 1, 1, 1]]);;
gap> x in y;
false
gap> y in y;
true

5.3.4 OnBlist

. OnBlist(blist, mat) (function)

Returns: A boolean list.
If blist is a boolean list of length n and mat is boolean matrices of dimension n, then OnBlist

returns the product of blist (thought of as a row vector over the boolean semiring) and mat .
Example

gap> mat := BooleanMat([[1, 0, 0, 1],
> [0, 0, 0, 0],
> [1, 0, 1, 1],
> [0, 1, 1, 1]]);;
gap> blist := BlistList([1 .. 4], [1, 2]);
[ true, true, false, false ]
gap> OnBlist(blist, mat);
[ true, false, false, true ]

5.3.5 Successors

. Successors(mat) (attribute)

Returns: A list of lists of positive integers.
A row of a boolean matrix of dimension n can be thought of of as the characteristic function of a

subset S of [1 .. n], i.e. i in S if and only if the ith component of the row equals 1. We refer to
the subset S as the SUCCESSORS of the row.

If mat is a boolean matrix, then Successors returns the list of successors of the rows of mat .
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Example
gap> mat := BooleanMat([[1, 0, 1, 1],
> [1, 0, 0, 0],
> [0, 0, 1, 0],
> [1, 1, 0, 0]]);;
gap> Successors(mat);
[ [ 1, 3, 4 ], [ 1 ], [ 3 ], [ 1, 2 ] ]

5.3.6 BooleanMatNumber

. BooleanMatNumber(m, n) (operation)

. NumberBooleanMat(mat) (operation)

Returns: A boolean matrix, or a positive integer.
These functions implement a bijection from the set of all boolean matrices of dimension n and the

numbers [1 .. 2 ^ (n ^ 2)].
More precisely, if m and n are positive integers such that m is at most 2 ^ (n ^ 2), then

BooleanMatNumber returns the m th n by n boolean matrix.
If mat is an n by n boolean matrix, then NumberBooleanMat returns the number in [1 .. 2 ^

(n ^ 2)] that corresponds to mat .
Example

gap> mat := BooleanMat([[0, 1, 1, 0],
> [1, 0, 1, 1],
> [1, 1, 0, 1],
> [0, 1, 0, 1]]);;
gap> NumberBooleanMat(mat);
27606
gap> Display(BooleanMatNumber(27606, 4));
0 1 1 0
1 0 1 1
1 1 0 1
0 1 0 1

5.3.7 BlistNumber

. BlistNumber(m, n) (function)

. NumberBlist(blist) (function)

Returns: A boolean list, or a positive integer.
These functions implement a bijection from the set of all boolean lists of length n and the numbers

[1 .. 2 ^ n].
More precisely, if m and n are positive integers such that m is at most 2 ^ n , then BlistNumber

returns the m th boolean list of length n .
If blist is a boolean list of length n , then NumberBlist returns the number in [1 .. 2 ^ n]

that corresponds to blist .
Example

gap> blist := BlistList([1 .. 10], []);
[ false, false, false, false, false, false, false, false, false,

false ]
gap> NumberBlist(blist);
1
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gap> blist := BlistList([1 .. 10], [10]);
[ false, false, false, false, false, false, false, false, false, true
]

gap> NumberBlist(blist);
2
gap> BlistNumber(1, 10);
[ false, false, false, false, false, false, false, false, false,

false ]
gap> BlistNumber(2, 10);
[ false, false, false, false, false, false, false, false, false, true
]

5.3.8 CanonicalBooleanMat (for a perm group, perm group and boolean matrix)

. CanonicalBooleanMat(G, H, mat) (operation)

. CanonicalBooleanMat(G, mat) (operation)

. CanonicalBooleanMat(mat) (attribute)

Returns: A boolean matrix.
This operation returns a fixed representative of the orbit of the boolean matrix mat under the

action of the permutation group G on its rows and the permutation group H on its columns.
In its second form, when only a single permutation group G is specified, G acts on the rows and

columns of mat independently.
In its third form, when only a boolean matrix is specified, CanonicalBooleanMat returns a fixed

representative of the orbit of mat under the action of the symmetric group on its rows, and, indepen-
dently, on its columns. In other words, CanonicalBooleanMat returns a canonical boolean matrix
equivalent to mat up to rearranging rows and columns. This version of CanonicalBooleanMat uses
Digraphs and its interface with the bliss library for computing automorphism groups and canonical
forms of graphs [JK07]. As a consequence, CanonicalBooleanMat with a single argument is signif-
icantly faster than the versions with 2 or 3 arguments.

Example
gap> mat := BooleanMat([[1, 1, 1, 0, 0, 0],
> [0, 0, 0, 1, 0, 1],
> [1, 0, 0, 1, 0, 1],
> [0, 0, 0, 0, 0, 0],
> [0, 1, 1, 1, 1, 1],
> [0, 1, 1, 0, 1, 0]]);
Matrix(IsBooleanMat, [[1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 1],

[1, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1],
[0, 1, 1, 0, 1, 0]])

gap> CanonicalBooleanMat(mat);
Matrix(IsBooleanMat, [[0, 0, 1, 1, 1, 0], [1, 1, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 0, 1],
[1, 1, 1, 1, 0, 1]])

gap> Display(CanonicalBooleanMat(mat));
0 0 1 1 1 0
1 1 0 0 1 0
0 0 0 0 0 0
0 0 1 1 0 0
1 1 0 0 0 1
1 1 1 1 0 1

https://gap-packages.github.io/Digraphs
http://www.tcs.tkk.fi/Software/bliss/
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gap> Display(CanonicalBooleanMat(Group((1, 3)), mat));
0 1 1 0 0 1
0 0 1 0 0 1
1 1 0 1 0 0
0 0 0 0 0 0
1 0 1 1 1 1
1 0 0 1 1 0
gap> Display(CanonicalBooleanMat(Group((1, 3)), Group(()), mat));
1 1 1 0 0 0
0 0 0 1 0 1
0 1 0 1 0 1
0 0 0 0 0 0
1 0 1 1 1 1
1 0 1 0 1 0

5.3.9 IsRowTrimBooleanMat

. IsRowTrimBooleanMat(mat) (property)

. IsColTrimBooleanMat(mat) (property)

. IsTrimBooleanMat(mat) (property)

Returns: true or false.
A row or column of a boolean matrix of dimension n can be thought of of as the characteristic

function of a subset S of [1 .. n], i.e. i in S if and only if the ith component of the row or
column equals 1.

A boolean matrix is ROW TRIM if no subset induced by a row of mat is contained in the subset
induced by any other row of mat . COLUMN TRIM is defined analogously. A boolean matrix is TRIM

if it is both row and column trim.
Example

gap> mat := BooleanMat([[0, 1, 1, 0],
> [1, 0, 1, 1],
> [1, 1, 0, 1],
> [0, 1, 1, 1]]);;
gap> IsTrimBooleanMat(mat);
true
gap> mat := BooleanMat([[0, 1, 1, 0],
> [0, 0, 1, 0],
> [1, 0, 0, 1],
> [1, 0, 1, 0]]);;
gap> IsRowTrimBooleanMat(mat);
false
gap> IsColTrimBooleanMat(mat);
false

5.3.10 IsSymmetricBooleanMat

. IsSymmetricBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is SYMMETRIC if it is symmetric about the main diagonal, i.e. mat[i][j] =

mat[j][i] for all i, j in the range [1 .. n] where n is the dimension of mat .
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Example
gap> mat := BooleanMat([[0, 1, 1, 0],
> [1, 0, 1, 1],
> [1, 1, 0, 1],
> [0, 1, 0, 1]]);
Matrix(IsBooleanMat, [[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1],

[0, 1, 0, 1]])
gap> IsSymmetricBooleanMat(mat);
false
gap> mat := BooleanMat([[0, 1, 1, 0],
> [1, 0, 1, 1],
> [1, 1, 0, 1],
> [0, 1, 1, 1]]);
Matrix(IsBooleanMat, [[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1],

[0, 1, 1, 1]])
gap> IsSymmetricBooleanMat(mat);
true

5.3.11 IsReflexiveBooleanMat

. IsReflexiveBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is REFLEXIVE if every entry in the main diagonal is true, i.e. mat[i][i] =

true for all i in the range [1 .. n] where n is the dimension of mat .
Example

gap> mat := BooleanMat([[1, 0, 0, 0],
> [1, 1, 0, 0],
> [0, 1, 0, 1],
> [1, 1, 1, 1]]);
Matrix(IsBooleanMat, [[1, 0, 0, 0], [1, 1, 0, 0], [0, 1, 0, 1],

[1, 1, 1, 1]])
gap> IsReflexiveBooleanMat(mat);
false
gap> mat := BooleanMat([[1, 1, 1, 0],
> [1, 1, 1, 1],
> [1, 1, 1, 1],
> [0, 1, 1, 1]]);
Matrix(IsBooleanMat, [[1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 1, 1],

[0, 1, 1, 1]])
gap> IsReflexiveBooleanMat(mat);
true

5.3.12 IsTransitiveBooleanMat

. IsTransitiveBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is TRANSITIVE if whenever mat[i][j] = true and mat[j][k] = true then

mat[i][k] = true.
Example

gap> x := BooleanMat([[1, 0, 0, 1],
> [1, 0, 1, 1],
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> [1, 1, 1, 0],
> [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 1, 0],

[0, 1, 1, 0]])
gap> IsTransitiveBooleanMat(x);
false
gap> x := BooleanMat([[1, 1, 1, 1],
> [1, 1, 1, 1],
> [1, 1, 1, 1],
> [1, 1, 1, 1]]);
Matrix(IsBooleanMat, [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1],

[1, 1, 1, 1]])
gap> IsTransitiveBooleanMat(x);
true

5.3.13 IsAntiSymmetricBooleanMat

. IsAntiSymmetricBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is ANTI-SYMMETRIC if whenever mat[i][j] = true and mat[j][i] =

true then i = j.
Example

gap> x := BooleanMat([[1, 0, 0, 1],
> [1, 0, 1, 1],
> [1, 1, 1, 0],
> [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 1, 0],

[0, 1, 1, 0]])
gap> IsAntiSymmetricBooleanMat(x);
false
gap> x := BooleanMat([[1, 0, 0, 1],
> [1, 0, 1, 0],
> [1, 0, 1, 0],
> [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 0],

[0, 1, 1, 0]])
gap> IsAntiSymmetricBooleanMat(x);
true

5.3.14 IsTotalBooleanMat

. IsTotalBooleanMat(mat) (property)

. IsOntoBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is TOTAL if there is at least one entry in every row is true. Similarly, a boolean

matrix is ONTO if at least one entry in every column is true.
Example

gap> x := BooleanMat([[1, 0, 0, 1],
> [1, 0, 1, 1],
> [1, 1, 1, 0],
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> [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 1, 0],

[0, 1, 1, 0]])
gap> IsTotalBooleanMat(x);
true
gap> IsOntoBooleanMat(x);
true
gap> x := BooleanMat([[1, 0, 0, 1],
> [1, 0, 1, 0],
> [0, 0, 0, 0],
> [0, 1, 1, 0]]);
Matrix(IsBooleanMat, [[1, 0, 0, 1], [1, 0, 1, 0], [0, 0, 0, 0],

[0, 1, 1, 0]])
gap> IsTotalBooleanMat(x);
false
gap> IsOntoBooleanMat(x);
true

5.3.15 IsPartialOrderBooleanMat

. IsPartialOrderBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is a PARTIAL ORDER if it is reflexive, transitive, and anti-symmetric.

Example
gap> Number(FullBooleanMatMonoid(3), IsPartialOrderBooleanMat);
19

5.3.16 IsEquivalenceBooleanMat

. IsEquivalenceBooleanMat(mat) (property)

Returns: true or false.
A boolean matrix is an EQUIVALENCE if it is reflexive, transitive, and symmetric.

Example
gap> Number(FullBooleanMatMonoid(3), IsEquivalenceBooleanMat);
5
gap> Bell(3);
5

5.4 Matrices over finite fields

In this section we describe the operations, properties, and attributes in Semigroups specifically for
matrices over finite fields. These are in addition to those given elsewhere in this chapter for arbitrary
matrices over semirings.

5.4.1 NewMatrixOverFiniteField (for a filter, a field, an integer, and a list)

. NewMatrixOverFiniteField(filt, F, rows) (operation)

Returns: a new matrix object.
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Creates a new n -by-n matrix over the finite field F with constructing filter filt . The
matrix itself is given by a list rows of rows. Currently the only possible value for filt is
IsPlistMatrixOverFiniteFieldRep.

Example
gap> x := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,
> GF(4),
> Z(4) * [[1, 0], [0, 1]]);
Matrix(GF(2^2), [[Z(2^2), 0*Z(2)], [0*Z(2), Z(2^2)]])
gap> y := NewMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,
> GF(4),
> []);
Matrix(GF(2^2), [])

5.4.2 IdentityMatrixOverFiniteField (for a finite field and a pos int)

. IdentityMatrixOverFiniteField(F, n) (operation)

. IdentityMatrixOverFiniteField(mat, n) (operation)

Given a finite field F and a positive integer n , this operation returns an n -by-n identity matrix with
entries in the finite field F . If instead the first argument is an n -by-n matrix mat whose BaseDomain
(5.4.7) is a finite field F , then IdentityMatrixOverFiniteField(mat, n) returns the same as
IdentityMatrixOverFiniteField(F, n).

Example
gap> x := NewIdentityMatrixOverFiniteField(
> IsPlistMatrixOverFiniteFieldRep, GF(4), 2);
Matrix(GF(2^2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> y := NewZeroMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,
> GF(4), 2);
Matrix(GF(2^2), [[0*Z(2), 0*Z(2)], [0*Z(2), 0*Z(2)]])

5.4.3 NewIdentityMatrixOverFiniteField

. NewIdentityMatrixOverFiniteField(filt, F, n) (operation)

. NewZeroMatrixOverFiniteField(filt, F, n) (operation)

Creates a new n -by-n zero or identity matrix with entries in the finite field F .
Example

gap> x := NewIdentityMatrixOverFiniteField(
> IsPlistMatrixOverFiniteFieldRep, GF(4), 2);
Matrix(GF(2^2), [[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]])
gap> y := NewZeroMatrixOverFiniteField(IsPlistMatrixOverFiniteFieldRep,
> GF(4), 2);
Matrix(GF(2^2), [[0*Z(2), 0*Z(2)], [0*Z(2), 0*Z(2)]])

5.4.4 RowSpaceBasis (for a matrix over finite field)

. RowSpaceBasis(m) (attribute)

. RowSpaceTransformation(m) (attribute)
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. RowSpaceTransformationInv(m) (attribute)

To compute the value of any of the above attributes, a canonical basis for the row space
of m is computed along with an invertible matrix RowSpaceTransformation such that m *
RowSpaceTransformation(m) = RowSpaceBasis(m). RowSpaceTransformationInv(m) is the
inverse of RowSpaceTransformation(m).

Example
gap> x := Matrix(GF(4), Z(4) ^ 0 * [[1, 1, 0], [0, 1, 1], [1, 1, 1]]);
Matrix(GF(2^2), [[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0],

[Z(2)^0, Z(2)^0, Z(2)^0]])
gap> RowSpaceBasis(x);
<rowbasis of rank 3 over GF(2^2)>
gap> RowSpaceTransformation(x);
[ [ 0*Z(2), Z(2)^0, Z(2)^0 ], [ Z(2)^0, Z(2)^0, Z(2)^0 ],

[ Z(2)^0, 0*Z(2), Z(2)^0 ] ]

5.4.5 RowRank (for a matrix over finite field)

. RowRank(m) (attribute)

Returns: Length of a basis of the row space of m .
Example

gap> x := Matrix(GF(5), Z(5) ^ 0 * [[1, 1, 0], [0, 0, 0], [1, 1, 1]]);
Matrix(GF(5), [[Z(5)^0, Z(5)^0, 0*Z(5)], [0*Z(5), 0*Z(5), 0*Z(5)],

[Z(5)^0, Z(5)^0, Z(5)^0]])
gap> RowRank(x);
2

5.4.6 RightInverse (for a matrix over finite field)

. RightInverse(m) (attribute)

. LeftInverse(m) (attribute)

Returns: A matrix over a finite field.
These attributes contain a semigroup left-inverse, and a semigroup right-inverse of the matrix m

respectively.
Example

gap> x := Matrix(GF(4), Z(4) ^ 0 * [[1, 1, 0], [0, 0, 0], [1, 1, 1]]);
Matrix(GF(2^2), [[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2), 0*Z(2)],

[Z(2)^0, Z(2)^0, Z(2)^0]])
gap> LeftInverse(x);
Matrix(GF(2^2), [[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), 0*Z(2), 0*Z(2)],

[Z(2)^0, 0*Z(2), Z(2)^0]])
gap> Display(LeftInverse(x) * x);
Z(2)^0 Z(2)^0 0*Z(2)
0*Z(2) 0*Z(2) 0*Z(2)
0*Z(2) 0*Z(2) Z(2)^0

5.4.7 BaseDomain (for a matrix over finite field)

. BaseDomain(mat) (attribute)

Returns: If mat is a matrix over a finite field (in the category IsMatrixOverSemiring (5.1.1)),
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then BaseDomain returns the finite field specified at the point that mat was created. Every entry in
the matrix mat belongs to BaseDomain(mat).

Example
gap> x := Matrix(GF(5), Z(5) ^ 0 * [[1, 1, 0], [0, 0, 0], [1, 1, 1]]);
Matrix(GF(5), [[Z(5)^0, Z(5)^0, 0*Z(5)], [0*Z(5), 0*Z(5), 0*Z(5)],

[Z(5)^0, Z(5)^0, Z(5)^0]])
gap> BaseDomain(x);
GF(5)

5.4.8 TransposedMatImmutable (for a matrix over finite field)

. TransposedMatImmutable(m) (attribute)

Returns: An immutable matrix.
This attribute contains an immutable copy of m . Note that matrices are immutable by default.

Example
gap> x := Matrix(GF(5), Z(5) ^ 0 * [[1, 1, 0], [0, 0, 0], [1, 1, 1]]);
Matrix(GF(5), [[Z(5)^0, Z(5)^0, 0*Z(5)], [0*Z(5), 0*Z(5), 0*Z(5)],

[Z(5)^0, Z(5)^0, Z(5)^0]])
gap> TransposedMatImmutable(x);
Matrix(GF(5), [[Z(5)^0, 0*Z(5), Z(5)^0], [Z(5)^0, 0*Z(5), Z(5)^0],

[0*Z(5), 0*Z(5), Z(5)^0]])

5.5 Integer Matrices

In this section we describe operations in Semigroups specifically for integer matrices. These are in
addition to those given elsewhere in this chapter for arbitrary matrices over semirings. These include:

• InverseOp (5.5.1)

• IsTorsion (5.5.2)

• Order (5.5.3)

5.5.1 InverseOp (for an integer matrix)

. InverseOp(mat) (operation)

Returns: An integer matrix.
If mat is an integer matrix (i.e. belongs to the category IsIntegerMatrix (5.1.8)) whose inverse

(if it exists) is also an integer matrix, then InverseOp returns the inverse of mat .
An integer matrix has an integer matrix inverse if and only if it has determinant one.

Example
gap> mat := Matrix(IsIntegerMatrix, [[0, 0, -1],
> [0, 1, 0],
> [1, 0, 0]]);;
gap> InverseOp(mat);
Matrix(IsIntegerMatrix, [[0, 0, 1], [0, 1, 0], [-1, 0, 0]])
gap> mat * InverseOp(mat) = One(mat);
true
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5.5.2 IsTorsion (for an integer matrix)

. IsTorsion(mat) (attribute)

Returns: true or false
If mat is an integer matrix (i.e. belongs to the category IsIntegerMatrix (5.1.8)), then

IsTorsion returns true if mat is torsion and false otherwise.
An integer matrix mat is torsion if and only if there exists an integer n such that mat to the power

of n is equal to the identity matrix.
Example

gap> mat := Matrix(IsIntegerMatrix, [[0, 0, -1],
> [0, 1, 0],
> [1, 0, 0]]);;
gap> IsTorsion(mat);
true
gap> mat := Matrix(IsIntegerMatrix, [[0, 0, -1, 0],
> [0, -1, 0, 0],
> [4, 4, 2, -1],
> [1, 1, 0, 3]]);;
gap> IsTorsion(mat);
false

5.5.3 Order

. Order(mat) (attribute)

Returns: An integer or infinity.
If mat is an integer matrix (i.e. belongs to the category IsIntegerMatrix (5.1.8)), then

InverseOp returns the order of mat . The order of mat is the smallest integer power of mat equal to
the identity. If no such integer exists, the order is equal to infinity.

Example
gap> mat := Matrix(IsIntegerMatrix, [[0, 0, -1, 0],
> [0, -1, 0, 0],
> [4, 4, 2, -1],
> [1, 1, 0, 3]]);;
gap> Order(mat);
infinity
gap> mat := Matrix(IsIntegerMatrix, [[0, 0, -1],
> [0, 1, 0],
> [1, 0, 0]]);;
gap> Order(mat);
4

5.6 Max-plus and min-plus matrices

In this section we describe operations in Semigroups specifically for max-plus and min-plus matri-
ces. These are in addition to those given elsewhere in this chapter for arbitrary matrices over semirings.
These include:

• InverseOp (5.6.1)

• RadialEigenvector (5.6.2)
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• SpectralRadius (5.6.3)

• UnweightedPrecedenceDigraph (5.6.4)

5.6.1 InverseOp

. InverseOp(mat) (operation)

Returns: A max-plus matrix.
If mat is an invertible max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)

and is a row permutation applied to the identity), then InverseOp returns the inverse of mat . This
method is described in [Far09].

Example
gap> InverseOp(Matrix(IsMaxPlusMatrix, [[-infinity, -infinity, 0],
> [0, -infinity, -infinity],
> [-infinity, 0, -infinity]]));
Matrix(IsMaxPlusMatrix, [[-infinity, 0, -infinity],

[-infinity, -infinity, 0], [0, -infinity, -infinity]])

5.6.2 RadialEigenvector

. RadialEigenvector(mat) (operation)

Returns: A vector.
If mat is a n by n max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then

RadialEigenvector returns an eigenvector corresponding to the eigenvalue equal to the spectral
radius of mat . This method is described in [Far09].

Example
gap> RadialEigenvector(Matrix(IsMaxPlusMatrix, [[0, -3], [-2, -10]]));
[ 0, -2 ]

5.6.3 SpectralRadius

. SpectralRadius(mat) (operation)

Returns: A rational number.
If mat is a max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then

SpectralRadius returns the supremum of the set of eigenvalues of mat . This method is described
in [BFCGOGJ92].

Example
gap> SpectralRadius(Matrix(IsMaxPlusMatrix, [[-infinity, 1, -4],
> [2, -infinity, 0],
> [0, 1, 1]]));
3/2

5.6.4 UnweightedPrecedenceDigraph

. UnweightedPrecedenceDigraph(mat) (operation)

Returns: A digraph.
If mat is a max-plus matrix (i.e. belongs to the category IsMaxPlusMatrix (5.1.8)), then

UnweightedPrecedenceDigraph returns the unweighted precedence digraph corresponding to mat .
For an n by n matrix mat , the unweighted precedence digraph is defined as the digraph with n

vertices where vertex i is adjacent to vertex j if and only if mat[i][j] is not equal to -infinity.
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Example
gap> UnweightedPrecedenceDigraph(Matrix(IsMaxPlusMatrix, [[2, -2, 0],
> [-infinity, 10, -2], [-infinity, 2, 1]]));
<digraph with 3 vertices, 7 edges>

5.7 Matrix semigroups

In this section we describe operations and attributes in Semigroups specifically for matrix semi-
groups. These are in addition to those given elsewhere in this chapter for arbitrary matrices over
semirings. These include:

• IsXMatrixSemigroup (5.7.1)

• IsFinite (5.7.3)

• IsTorsion (5.7.4)

• NormalizeSemigroup (5.7.5)

Random matrix semigroups can be created by using the function RandomSemigroup (6.7.1). We can
also create a matrix semigroup isomorphic to a given semigroup by using IsomorphismSemigroup
(6.6.1) and AsSemigroup (6.6.3). These functions require a filter, and accept any of the filters in
Section 5.7.1.

There are corresponding functions which can be used for matrix monoids: RandomMonoid (6.7.1),
IsomorphismMonoid (6.6.2), and AsMonoid (6.6.4). These can be used with the filters in Section
5.7.2.

5.7.1 Matrix semigroup filters

. IsMatrixOverSemiringSemigroup(obj) (Category)

. IsBooleanMatSemigroup(obj) (Category)

. IsMatrixOverFiniteFieldSemigroup(obj) (Category)

. IsMaxPlusMatrixSemigroup(obj) (Category)

. IsMinPlusMatrixSemigroup(obj) (Category)

. IsTropicalMatrixSemigroup(obj) (Category)

. IsTropicalMaxPlusMatrixSemigroup(obj) (Category)

. IsTropicalMinPlusMatrixSemigroup(obj) (Category)

. IsNTPMatrixSemigroup(obj) (Category)

. IsIntegerMatrixSemigroup(obj) (Category)

Returns: true or false.
The above are the currently supported types of matrix semigroups. For monoids see Section 5.7.2.

5.7.2 Matrix monoid filters

. IsMatrixOverSemiringMonoid(obj) (Category)

. IsBooleanMatMonoid(obj) (Category)

. IsMatrixOverFiniteFieldMonoid(obj) (Category)

. IsMaxPlusMatrixMonoid(obj) (Category)
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. IsMinPlusMatrixMonoid(obj) (Category)

. IsTropicalMatrixMonoid(obj) (Category)

. IsTropicalMaxPlusMatrixMonoid(obj) (Category)

. IsTropicalMinPlusMatrixMonoid(obj) (Category)

. IsNTPMatrixMonoid(obj) (Category)

. IsIntegerMatrixMonoid(obj) (Category)

Returns: true or false.
The above are the currently supported types of matrix monoids. They correspond to the ma-

trix semigroup types in Section 5.7.1. For matrix semigroups over finite fields there is also
IsMatrixOverFiniteFieldGroup (5.7.7).

5.7.3 IsFinite

. IsFinite(S) (property)

Returns: true or false.
If S is a max-plus or min-plus matrix semigroup (i.e. belongs to the category

IsMaxPlusMatrixSemigroup (5.7.1)), then IsFinite returns true if S is finite and false oth-
erwise. This method is based on [Gau96] (max-plus) and [Sim78] (min-plus). For min-plus matrix
semigroups, this method is only valid if each min-plus matrix in the semigroup contains only non-
negative integers. Note, this method is terminating and does not involve enumerating semigroups.

Example
gap> IsFinite(Semigroup(Matrix(IsMaxPlusMatrix,
> [[0, -3],
> [-2, -10]])));
true
gap> IsFinite(Semigroup(Matrix(IsMaxPlusMatrix,
> [[1, -infinity, 2],
> [-2, 4, -infinity],
> [1, 0, 3]])));
false
gap> IsFinite(Semigroup(Matrix(IsMinPlusMatrix,
> [[infinity, 0],
> [5, 4]])));
false
gap> IsFinite(Semigroup(Matrix(IsMinPlusMatrix,
> [[1, 0],
> [0, infinity]])));
true

5.7.4 IsTorsion

. IsTorsion(S) (attribute)

Returns: true or false.
If S is a max-plus matrix semigroup (i.e. belongs to the category IsMaxPlusMatrixSemigroup

(5.7.1)), then IsTorsion returns true if S is torsion and false otherwise. This method is based on
[Gau96] and draws on [Bur16], [BFCGOGJ92] and [Far09].

Example
gap> IsTorsion(Semigroup(Matrix(IsMaxPlusMatrix,
> [[0, -3],
> [-2, -10]])));
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true
gap> IsTorsion(Semigroup(Matrix(IsMaxPlusMatrix,
> [[1, -infinity, 2],
> [-2, 4, -infinity],
> [1, 0, 3]])));
false

5.7.5 NormalizeSemigroup

. NormalizeSemigroup(S) (operation)

Returns: A semigroup.
This method applies to max-plus matrix semigroups (i.e. those belonging to the category

IsMaxPlusMatrixSemigroup (5.7.1)) that are finitely generated, such that the spectral radius of
the matrix equal to the sum of the generators (with respect to the max-plus semiring) is zero.
NormalizeSemigroup returns a semigroup of matrices all with strictly non-positive entries. Note
that the output is isomorphic to a min-plus matrix semigroup. This method is based on [Gau96] and
[Bur16].

Example
gap> NormalizeSemigroup(Semigroup(Matrix(IsMaxPlusMatrix,
> [[0, -3],
> [-2, -10]])));
<commutative semigroup of 2x2 max-plus matrices with 1 generator>

5.7.6 Matrix groups

For interfacing the semigroups code with GAP’s library code for matrix groups, the Semigroups
package implements matrix groups that delegate to the GAP library. These functions include:

• IsMatrixOverFiniteFieldGroup (5.7.7)

• \^ (5.7.8)

• IsomorphismMatrixGroup (5.7.9)

• AsMatrixGroup (5.7.10)

This type of group only applies to matrices over finite fields (see
IsMatrixOverFiniteFieldSemigroup (5.7.1)).

5.7.7 IsMatrixOverFiniteFieldGroup

. IsMatrixOverFiniteFieldGroup(G) (filter)

Returns: true or false.
A matrix group is simply a group of invertible matrices over a finite field. An ob-

ject in Semigroups is a matrix group if it satisfies IsGroup (Reference: IsGroup) and
IsMatrixOverFiniteFieldCollection (5.1.9).

Example
gap> x := Matrix(GF(4), Z(4) ^ 0 * [[1, 1, 0], [0, 1, 0], [1, 1, 1]]);;
gap> G := Group(x);
<group of 3x3 matrices over GF(2^2) with 1 generator>
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gap> IsMatrixOverFiniteFieldGroup(G);
true
gap> G := Group(Z(4) ^ 0 * [[1, 1, 0], [0, 1, 0], [1, 1, 1]]);
Group([ <an immutable 3x3 matrix over GF2> ])
gap> IsGroup(G);
true
gap> IsMatrixOverFiniteFieldGroup(G);
false

5.7.8 \^ (for a matrix over finite field group and matrix over finite field)

. \^(G, mat) (operation)

Returns: A matrix group over a finite field.
The arguments of this operation, G and mat , must be categories

IsMatrixOverFiniteFieldGroup (5.7.7) and IsMatrixOverFiniteField (5.1.8). If G consists
of d by d matrices over GF(q) and mat is a d by d matrix over GF(q), then G ^ mat returns the
conjugate of G by mat inside GL(d, q).

Example
gap> x := Matrix(GF(4), Z(4) ^ 0 * [[1, 1, 0], [0, 1, 0], [1, 1, 1]]);;
gap> y := Matrix(GF(4), Z(4) ^ 0 * [[1, 0, 0], [1, 0, 1], [1, 1, 1]]);;
gap> G := Group(x);
<group of 3x3 matrices over GF(2^2) with 1 generator>
gap> G ^ y;
<group of 3x3 matrices over GF(2^2) with 1 generator>

5.7.9 IsomorphismMatrixGroup

. IsomorphismMatrixGroup(G) (attribute)

Returns: An isomorphism.
If G belongs to the category IsMatrixOverFiniteFieldGroup (5.7.7), then

IsomorphismMatrixGroup returns an isomorphism from G into a group consisting of GAP
library matrices.

Example
gap> x := Matrix(GF(4), Z(4) ^ 0 * [[1, 1, 0], [0, 1, 0], [1, 1, 1]]);;
gap> G := Group(x);;
gap> iso := IsomorphismMatrixGroup(G);;
gap> Source(iso); Range(iso);
<group of 3x3 matrices over GF(2^2) with 1 generator>
Group(
[

[ [ Z(2)^0, Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2) ],
[ Z(2)^0, Z(2)^0, Z(2)^0 ] ] ])

5.7.10 AsMatrixGroup

. AsMatrixGroup(G) (attribute)

Returns: A group of GAP library matrices over a finite field.
Returns the image of the isomorphism returned by 5.7.9.
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Example
gap> x := Matrix(GF(4), Z(4) ^ 0 * [[1, 1, 0], [0, 1, 0], [1, 1, 1]]);;
gap> G := Group(x);
<group of 3x3 matrices over GF(2^2) with 1 generator>
gap> AsMatrixGroup(G);
Group(
[

[ [ Z(2)^0, Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2) ],
[ Z(2)^0, Z(2)^0, Z(2)^0 ] ] ])



Chapter 6

Creating semigroups and monoids

In this chapter we describe the various ways that semigroups and monoids can be created in Semi-
groups, and the options that are available at the time of creation.

6.1 Underlying algorithms and related representations

Computing the Green’s structure of a semigroup is fundamental to almost every other algorithm for
semigroups. There are two fundamental algorithms in the Semigroups package for computing the
Green’s structure of a semigroup, which are described in the next two subsections.

6.1.1 Acting semigroups

The first type of fundamental algorithms are those described in [MP19], which when applied to a
semigroup with relatively large subgroups are the most efficient methods in the Semigroups package.
For example, the complexity of computing, say, the size of a transformation semigroup that happens to
be a group, is the same as the complexity of the Schreier-Sims Algorithm (polynomial in the number
of points acted on by the transformations) for a permutation group.

In theory, these algorithms can be applied to compute any subsemigroup of a regular semigroup;
but so far in the Semigroups package they are only implemented for semigroups of: transformations
(see (Reference: Transformations)), partial permutations (see (Reference: Partial permutations)),
bipartitions (see Chapter 3), subsemigroups of regular Rees 0-matrix semigroups over permutation
groups (see Chapter (Reference: Rees Matrix Semigroups)), and matrices over a finite field (see
Section 5.4).

We refer to semigroups to which the algorithms in [MP19] can be applied as acting semigroups,
and such semigroups belong to the category IsActingSemigroup (6.1.3).

If you know a priori that the semigroup you want to compute is large and J -trivial, then you can
disable the special methods for acting semigroups when you create the semigroups; see Section 6.3
for more details.

It is harder for the acting semigroup algorithms to compute Green’s L - and H -classes of a
transformation semigroup and the methods used to compute with Green’s R- and D-classes are the
most efficient in Semigroups. Thus, if you are computing with a transformation semigroup, wherever
possible, it is advisable to use the commands relating to Green’s R- or D-classes rather than those
relating to Green’s L - or H -classes. No such difficulties are present when computing with the other
types of acting semigroups in Semigroups.

78
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There are methods in Semigroups for computing individual Green’s classes of an act-
ing semigroup without computing the entire data structure of the underlying semigroup; see
GreensRClassOfElementNC (13.1.3). It is also possible to compute the R-classes, the num-
ber of elements and test membership in a semigroup without computing all the elements; see,
for example, GreensRClasses (13.1.4), RClassReps (13.1.5), IteratorOfRClassReps (13.2.1),
IteratorOfRClasses (13.2.2), or NrRClasses (13.1.9). This may be useful if you want to study a
very large semigroup where computing all the elements of the semigroup is not feasible.

6.1.2 Enumerable semigroups

The second fundamental algorithm is the Froidure-Pin Algorithm [FP97]. The Semigroups package
contains two implementations of the Froidure-Pin Algorithm: one in the libsemigroups C++ library
and the other within the Semigroups package kernel module.

Both implementations outperform the algorithms for acting semigroups when applied to semi-
groups with small (trivial) subgroups. This method is also used to determine the structure of a semi-
group when the algorithms described in [MP19] do not apply. It is possible to specify which methods
should be applied to a given semigroup; see Section 6.3.

We refer to semigroups to which the Froidure-Pin Algorithm can be applied in GAP as enumerable
semigroups, and such semigroups should belong to the representation IsEnumerableSemigroupRep
(6.1.4). Every acting semigroup in Semigroups is an enumerable semigroup since the acting semi-
group data structure does not readily admit computation of certain properties or attributes.

Currently, the libsemigroups implementation of the Froidure-Pin Algorithm can be applied to
semigroups consisting of the following types of elements: transformations (see (Reference: Trans-
formations)), partial permutations (see (Reference: Partial permutations)), bipartitions (see Chap-
ter 3), partitioned binary relations (see Chapter 4) as defined in [MM11]; and matrices over the fol-
lowing semirings:

• the Boolean semiring {0,1}where 0+0= 0, 0+1= 1+1= 1+0= 1, and 1 ·0= 0 ·0= 0 ·1= 0

• finite fields;

• the max-plus semiring of natural numbers and negative infinity N∪{−∞} with operations max
and plus;

• the min-plus semiring of natural numbers and infinity N∪{∞} with operations min and plus;

• the tropical max-plus semiring {−∞,0,1, . . . , t} for some threshold t with operations max and
plus;

• the tropical min-plus semiring {0,1, . . . , t,∞} for some threshold t with operations min and plus;

• the semiring Nt,p = {0,1, . . . , t, t + 1, . . . , t + p− 1} for some threshold t and period p under
addition and multiplication modulo the congruence t = t + p.

(see Chapter 5).
The version of the Froidure-Pin Algorithm [FP97] written in C within the Semigroups pack-

age kernel module can be used to compute any other semigroup in GAP with representation
IsEnumerableSemigroupRep (6.1.4). In theory, any finite semigroup can be computed using this al-
gorithm. However, the condition that the semigroup has representation IsEnumerableSemigroupRep

 https://james-d-mitchell.github.io/libsemigroups/
 https://james-d-mitchell.github.io/libsemigroups/
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(6.1.4) is imposed to avoid this method being used when it is inappropriate (such as for finitely pre-
sented semigroups which happen to be finite). If implementing a new type of semigroup in GAP, then
simply do

Example
InstallTrueMethod(IsGeneratorsOfEnumerableSemigroup,

MyNewSemigroupType);

to make your new semigroup type MyNewSemigroupType use this version of the Froidure-Pin Algo-
rithm.

Mostly due to the way that GAP handles memory, this implementation is approximately 4 times
slower than the implementation in libsemigroups. This version of the Froidure-Pin Algorithm is in-
cluded because it applies to a wider class of semigroups than those currently implemented in libsemi-
groups and it is more straightforward to extend the classes of semigroup to which it applies. From a
usage perspective there is no difference between those enumerable semigroups that are representable
in libsemigroups and those that are not, except that the latter has superior performance.

6.1.3 IsActingSemigroup

. IsActingSemigroup(obj) (Category)

Returns: true or false.
Every acting semigroup, as defined in Section 6.1.1, belongs to this category.

Example
gap> S := Semigroup(Transformation([1, 3, 2]));;
gap> IsActingSemigroup(S);
true
gap> IsEnumerableSemigroupRep(S);
true
gap> S := FreeSemigroup(3);;
gap> IsActingSemigroup(S);
false

6.1.4 IsEnumerableSemigroupRep

. IsEnumerableSemigroupRep(obj) (Representation)

Returns: true or false.
Every semigroup with this representation can have the Froidure-Pin algorithm applied to it; see

Section 6.1.2 for more details.
Basic operations for enumerable semigroups are AsListCanonical (14.1.1),

EnumeratorCanonical (14.1.1), IteratorCanonical (14.1.1), PositionCanonical (14.1.2),
Enumerate (14.1.3), and IsFullyEnumerated (14.1.4).

Example
gap> S := Semigroup(Transformation([1, 3, 2]));;
gap> IsEnumerableSemigroupRep(S);
true
gap> S := FreeSemigroup(3);;
gap> IsEnumerableSemigroupRep(S);
false

 https://james-d-mitchell.github.io/libsemigroups/
 https://james-d-mitchell.github.io/libsemigroups/
 https://james-d-mitchell.github.io/libsemigroups/
 https://james-d-mitchell.github.io/libsemigroups/
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6.2 Semigroups represented by generators

6.2.1 InverseMonoidByGenerators

. InverseMonoidByGenerators(coll[, opts]) (operation)

. InverseSemigroupByGenerators(coll[, opts]) (operation)

Returns: An inverse monoid or semigroup.
If coll is a collection satisfying IsGeneratorsOfInverseSemigroup, then

InverseMonoidByGenerators and InverseSemigroupByGenerators return the inverse monoid
and semigroup generated by coll , respectively.

If present, the optional second argument opts should be a record containing the values of the
options for the semigroup being created, as described in Section 6.3.

6.3 Options when creating semigroups

When using any of the functions:

• InverseSemigroup (Reference: InverseSemigroup),

• InverseMonoid (Reference: InverseMonoid),

• Semigroup (Reference: Semigroup),

• Monoid (Reference: Monoid),

• SemigroupByGenerators (Reference: SemigroupByGenerators),

• MonoidByGenerators (Reference: MonoidByGenerators),

• ClosureSemigroup (6.4.1),

• ClosureMonoid (6.4.1),

• ClosureInverseSemigroup (6.4.1),

• ClosureInverseMonoid (6.4.1),

• SemigroupIdeal (7.1.1)

a record can be given as an optional final argument. The components of this record specify the values
of certain options for the semigroup being created. A list of these options and their default values is
given below.

Assume that S is the semigroup created by one of the functions given above and that either: S is
generated by a collection gens ; or S is an ideal of such a semigroup.

acting
this component should be true or false. Roughly speaking, there are two types of methods in
the Semigroups package: those for semigroups which have to be fully enumerated, and those
for semigroups that do not; see Section 1.1. In order for a semigroup to use the latter meth-
ods in Semigroups it must satisfy IsActingSemigroup (6.1.3). By default any semigroup or
monoid of transformations, partial permutations, Rees 0-matrix elements, or bipartitions satis-
fies IsActingSemigroup.
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There are cases (such as when it is known a priori that the semigroup is D-trivial), when it
might be preferable to use the methods that involve fully enumerating a semigroup. In other
words, it might be desirable to disable the more sophisticated methods for acting semigroups.
If this is the case, then the value of this component can be set false when the semigroup
is created. Following this none of the special methods for acting semigroup will be used to
compute anything about the semigroup.

regular
this component should be true or false. If it is known a priori that the semigroup S being
created is a regular semigroup, then this component can be set to true. In this case, S knows
it is a regular semigroup and can take advantage of the methods for regular semigroups in
Semigroups. It is usually much more efficient to compute with a regular semigroup that to
compute with a non-regular semigroup.

If this option is set to true when the semigroup being defined is NOT regular, then the results
might be unpredictable.

The default value for this option is false.

hashlen
this component should be a positive integer, which roughly specifies the lengths of the hash
tables used internally by Semigroups. Semigroups uses hash tables in several fundamental
methods. The lengths of these tables are a compromise between performance and memory
usage; larger tables provide better performance for large computations but use more memory.
Note that it is unlikely that you will need to specify this option unless you find that GAP runs
out of memory unexpectedly or that the performance of Semigroups is poorer than expected.
If you find that GAP runs out of memory unexpectedly, or you plan to do a large number of
computations with relatively small semigroups (say with tens of thousands of elements), then
you might consider setting hashlen to be less than the default value of 12517 for each of these
semigroups. If you find that the performance of Semigroups is unexpectedly poor, or you plan
to do a computation with a very large semigroup (say, more than 10 million elements), then you
might consider setting hashlen to be greater than the default value of 12517.

You might find it useful to set the info level of the info class InfoOrb to 2 or higher since
this will indicate when hash tables used by Semigroups are being grown; see SetInfoLevel
(Reference: InfoLevel).

small
if this component is set to true, then Semigroups will compute a small subset of gens that
generates S at the time that S is created. This will increase the amount of time required to create
S substantially, but may decrease the amount of time required for subsequent calculations with
S . If this component is set to false, then Semigroups will return the semigroup generated by
gens without modifying gens . The default value for this component is false.

This option is ignored when passed to ClosureSemigroup (6.4.1) or
ClosureInverseSemigroup (6.4.1).

cong_by_ker_trace_threshold
this should be a positive integer, which specifies a semigroup size. If S is a semigroup with
inverse op, and S has a size greater than or equal to this threshold, then any congruence defined
on it may use the "kernel and trace" method to perform calculations. If its size is less than the
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threshold, then other methods will be used instead. The "kernel and trace" method has better
complexity than the generic method, but has large overheads which make it a poor choice for
small semigroups. The default value for this component is 10 ^ 5. See Section 17.7 for more
information about the "kernel and trace" method.

report
this component should be either true or false. If this component is set to true, then some
additional information will be provided during computations performed by the libsemigroups
C++ library.

batch_size
this component should be a positive integer. If S is a semigroup with representation
IsEnumerableSemigroupRep (6.1.4), then when certain computations are performed with S
using the libsemigroups C++ library, then the computations will be executed in batches of size
at least batch_size. This value of this component changes the performance of the libsemi-
groups C++ library — you may wish to tweak this parameter if you experience sub-optimal
performance.

nr_threads
this component should be a positive integer. This number sets the maximum number of threads
that can be used by computations in the libsemigroups C++ library.

Example
gap> S := Semigroup(Transformation([1, 2, 3, 3]),
> rec(hashlen := 100003, small := false));
<commutative transformation semigroup of degree 4 with 1 generator>

The default values of the options described above are stored in a global variable named
SEMIGROUPS.DefaultOptionsRec (6.3.1). If you want to change the default values of these op-
tions for a single GAP session, then you can simply redefine the value in GAP. For example, to
change the option small from the default value of false use:

Example
gap> SEMIGROUPS.DefaultOptionsRec.small := true;
true

If you want to change the default values of the options stored in SEMIGROUPS.DefaultOptionsRec
(6.3.1) for all GAP sessions, then you can edit these values in the file semigroups/gap/options.g.

6.3.1 SEMIGROUPS.DefaultOptionsRec

. SEMIGROUPS.DefaultOptionsRec (global variable)

This global variable is a record whose components contain the default values of certain options
for semigroups. A description of these options is given above in Section 6.3.

The value of SEMIGROUPS.DefaultOptionsRec is defined in the file
semigroups/gap/options.g.

 https://james-d-mitchell.github.io/libsemigroups/
 https://james-d-mitchell.github.io/libsemigroups/
 https://james-d-mitchell.github.io/libsemigroups/
 https://james-d-mitchell.github.io/libsemigroups/
 https://james-d-mitchell.github.io/libsemigroups/
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6.4 New semigroups from old

6.4.1 ClosureSemigroup

. ClosureSemigroup(S, coll[, opts]) (operation)

. ClosureMonoid(S, coll[, opts]) (operation)

. ClosureInverseSemigroup(S, coll[, opts]) (operation)

. ClosureInverseMonoid(S, coll[, opts]) (operation)

Returns: A semigroup, monoid, inverse semigroup, or inverse monoid.
These operations return the semigroup, monoid, inverse semigroup or inverse monoid generated

by the argument S and the collection of elements coll after removing duplicates and elements from
coll that are already in S . In most cases, the new semigroup knows at least as much information
about its structure as was already known about that of S .

When X is any of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid),
InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: Inverse-
Monoid), the argument S of the operation ClosureX must belong to the category IsX, and
ClosureX(S, coll) returns an object in the category IsX such that

Example
ClosureX(S, coll) = X(S, coll);

but may have fewer generators, if for example, coll contains a duplicates or elements already known
to belong to S .

For example, the argument S of ClosureInverseSemigroup must be an inverse
semigroup in the category IsInverseSemigroup (Reference: IsInverseSemigroup).
ClosureInverseSemigroup(S, coll) returns an inverse semigroup which is equal to
InverseSemigroup(S, coll).

If present, the optional third argument opts should be a record containing the values of the options
for the semigroup being created as described in Section 6.3.

Example
gap> gens := [Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
> Transformation([3, 8, 1, 4, 5, 6, 7, 1]),
> Transformation([4, 3, 2, 7, 7, 6, 6, 5]),
> Transformation([7, 1, 7, 4, 2, 5, 6, 3])];;
gap> S := Monoid(gens[1]);;
gap> for x in gens do
> S := ClosureSemigroup(S, x);
> od;
gap> S;
<transformation monoid of degree 8 with 4 generators>
gap> Size(S);
233606
gap> S := Monoid(PartialPerm([1]));
<trivial partial perm group of rank 1 with 1 generator>
gap> T := ClosureMonoid(S, [PartialPerm([2 .. 5])]);
<partial perm monoid of rank 5 with 2 generators>
gap> One(T);
<identity partial perm on [ 1, 2, 3, 4, 5 ]>
gap> T := ClosureSemigroup(S, [PartialPerm([2 .. 5])]);
<partial perm semigroup of rank 4 with 2 generators>
gap> One(T);
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fail
gap> ClosureInverseMonoid(DualSymmetricInverseMonoid(3),
> DClass(DualSymmetricInverseMonoid(3),
> IdentityBipartition(3)));
<inverse block bijection monoid of degree 3 with 3 generators>
gap> S := InverseSemigroup(Bipartition([[1, -1, -3], [2, 3, -2]]),
> Bipartition([[1, -3], [2, -2], [3, -1]]));;
gap> T := ClosureInverseSemigroup(S, DClass(PartitionMonoid(3),
> IdentityBipartition(3)));
<inverse block bijection semigroup of degree 3 with 3 generators>
gap> T := ClosureInverseSemigroup(T, [T.1, T.1, T.1]);
<inverse block bijection semigroup of degree 3 with 3 generators>
gap> S := InverseMonoid([
> PartialPerm([5, 9, 10, 0, 6, 3, 8, 4, 0]),
> PartialPerm([10, 7, 0, 8, 0, 0, 5, 9, 1])]);;
gap> x := PartialPerm([
> 5, 1, 7, 3, 10, 0, 2, 12, 0, 14, 11, 0, 16, 0, 0, 0, 0, 6, 9, 15]);
[4,3,7,2,1,5,10,14][8,12][13,16][18,6][19,9][20,15](11)
gap> S := ClosureInverseSemigroup(S, x);
<inverse partial perm semigroup of rank 19 with 4 generators>
gap> Size(S);
9744
gap> T := Idempotents(SymmetricInverseSemigroup(10));;
gap> S := ClosureInverseSemigroup(S, T);
<inverse partial perm semigroup of rank 19 with 14 generators>

6.4.2 SubsemigroupByProperty (for a semigroup and function)

. SubsemigroupByProperty(S, func) (operation)

. SubsemigroupByProperty(S, func, limit) (operation)

Returns: A semigroup.
SubsemigroupByProperty returns the subsemigroup of the semigroup S generated by those

elements of S fulfilling func (which should be a function returning true or false).
If no elements of S fulfil func , then fail is returned.
If the optional third argument limit is present and a positive integer, then once the subsemigroup

has at least limit elements the computation stops.
Example

gap> func := function(x)
> local n;
> n := DegreeOfTransformation(x);
> return 1 ^ x <> 1 and ForAll([1 .. n], y -> y = 1 or y ^ x = y);
> end;
function( x ) ... end
gap> T := SubsemigroupByProperty(FullTransformationSemigroup(3), func);
<transformation semigroup of size 2, degree 3 with 2 generators>
gap> T := SubsemigroupByProperty(FullTransformationSemigroup(4), func);
<transformation semigroup of size 3, degree 4 with 3 generators>
gap> T := SubsemigroupByProperty(FullTransformationSemigroup(5), func);
<transformation semigroup of size 4, degree 5 with 4 generators>
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6.4.3 InverseSubsemigroupByProperty

. InverseSubsemigroupByProperty(S, func) (operation)

Returns: An inverse semigroup.
InverseSubsemigroupByProperty returns the inverse subsemigroup of the inverse semigroup

S generated by those elements of S fulfilling func (which should be a function returning true or
false).

If no elements of S fulfil func , then fail is returned.
If the optional third argument limit is present and a positive integer, then once the subsemigroup

has at least limit elements the computation stops.
Example

gap> IsIsometry := function(f)
> local n, i, j, k, l;
> n := RankOfPartialPerm(f);
> for i in [1 .. n - 1] do
> k := DomainOfPartialPerm(f)[i];
> for j in [i + 1 .. n] do
> l := DomainOfPartialPerm(f)[j];
> if not AbsInt(k ^ f - l ^ f) = AbsInt(k - l) then
> return false;
> fi;
> od;
> od;
> return true;
> end;;
gap> S := InverseSubsemigroupByProperty(SymmetricInverseSemigroup(5),
> IsIsometry);;
gap> Size(S);
142

6.4.4 DirectProduct

. DirectProduct(S[, T, ...]) (function)

. DirectProductOp(list, S) (operation)

Returns: A transformation semigroup.
The function DirectProduct takes an arbitrary positive number of finite semigroups, and returns

a semigroup that is isomorphic to their direct product.
If these finite semigroups are all partial perm semigroups, all bipartition semigroups, or all PBR

semigroups, then DirectProduct returns a semigroup of the same type. Otherwise, DirectProduct
returns a transformation semigroup.

The operation DirectProductOp is included for consistency with the GAP library (see
DirectProductOp (Reference: DirectProductOp)). It takes exactly two arguments, namely a
non-empty list list of semigroups and one of these semigroups, S , and returns the same result
as CallFuncList(DirectProduct, list).

If D is the direct product of a collection of semigroups, then an embedding of the ith factor into D
can be accessed with the command Embedding(D, i), and a projection of D onto its ith factor can
be accessed with the command Projection(D, i); see Embedding (Reference: Embedding) and
Projection (Reference: Projection) for more information.
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Example
gap> S := InverseMonoid([PartialPerm([2, 1])]);;
gap> T := InverseMonoid([PartialPerm([1, 2, 3])]);;
gap> D := DirectProduct(S, T);
<commutative inverse partial perm monoid of rank 5 with 1 generator>
gap> Elements(D);
[ <identity partial perm on [ 1, 2, 3, 4, 5 ]>, (1,2)(3)(4)(5) ]
gap> S := PartitionMonoid(2);;
gap> D := DirectProduct(S, S, S);; IsRegularSemigroup(D);; D;
<regular bipartition monoid of size 3375, degree 6 with 9 generators>
gap> S := Semigroup([PartialPerm([2, 5, 0, 1, 3]),
> PartialPerm([5, 2, 4, 3])]);;
gap> T := Semigroup([Bipartition([[1, -2], [2], [3, -1, -3]])]);;
gap> D := DirectProduct(S, T);
<transformation semigroup of size 122, degree 9 with 63 generators>
gap> Size(D) = Size(S) * Size(T);
true

6.4.5 WreathProduct

. WreathProduct(M, S) (operation)

Returns: A transformation semigroup.
If M is a transformation monoid (or a permutation group) of degree m, and S is a transformation

semigroup (or permutation group) of degree s, the operation WreathProduct(M, S) returns the
wreath product of M and S , in terms of an embedding in the full transformation monoid of degree m *
s.

Example
gap> T := FullTransformationMonoid(3);;
gap> C := Group((1, 3));;
gap> W := WreathProduct(T, C);;
gap> Size(W);
39366
gap> WW := WreathProduct(C, T);;
gap> Size(WW);
216

6.5 Dual semigroups

The dual semigroup of a semigroup S is the semigroup with the same underlying set of elements but
with reversed multiplication; this is anti-isomorphic to S. In Semigroups a semigroup and its dual
are represented with disjoint sets of elements.

6.5.1 DualSemigroup

. DualSemigroup(S) (attribute)

Returns: The dual semigroup of the given semigroup.
The dual semigroup of a semigroup S is the semigroup with the same underlying set as S , but with

multiplication reversed; this is anti-isomorphic to S . This attribute returns a semigroup isomorphic to
the dual semigroup of S .
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Example

gap> S := Semigroup([Transformation([1, 4, 3, 2, 2]),
> Transformation([5, 4, 4, 1, 2])]);;
gap> D := DualSemigroup(S);
<dual semigroup of <transformation semigroup of degree 5 with 2
generators>>

gap> Size(S) = Size(D);
true
gap> NrDClasses(S) = NrDClasses(D);
true

6.5.2 IsDualSemigroupRep

. IsDualSemigroupRep(sgrp) (Category)

Returns: Returns true if sgrp is represented as a dual semigroup.
Semigroups created using DualSemigroup (6.5.1) normally have this representation. The excep-

tion is semigroups which are the dual of semigroups already lying in this category. That is, a semi-
group has the representation IsDualSemigroupRep if and only if the corresponding dual semigroup
does not.

Example

gap> S := Semigroup([Transformation([3, 5, 1, 1, 2]),
> Transformation([1, 2, 4, 4, 3])]);
<transformation semigroup of degree 5 with 2 generators>
gap> D := DualSemigroup(S);
<dual semigroup of <transformation semigroup of degree 5 with 2
generators>>

gap> IsDualSemigroupRep(D);
true
gap> R := DualSemigroup(D);
<transformation semigroup of degree 5 with 2 generators>
gap> IsDualSemigroupRep(R);
false
gap> R = S;
true
gap> T := Range(IsomorphismTransformationSemigroup(D));
<transformation semigroup of size 16, degree 17 with 2 generators>
gap> IsDualSemigroupRep(T);
false
gap> x := Representative(D);
<Transformation( [ 3, 5, 1, 1, 2 ] ) in the dual semigroup>
gap> V := Semigroup(x);
<dual semigroup of <commutative transformation semigroup of degree 5
with 1 generator>>

gap> IsDualSemigroupRep(V);
true
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6.5.3 IsDualSemigroupElement

. IsDualSemigroupElement(elt) (Category)

Returns: Returns true if elt has the representation of a dual semigroup element.
Elements of a dual semigroup obtained using AntiIsomorphismDualSemigroup (6.5.4)

normally lie in this category. The exception is elements obtained by applying the map
AntiIsomorphismDualSemigroup (6.5.4) to elements already in this category. That is, the ele-
ments of a semigroup lie in the category IsDualSemigroupElement if and only if the elements of
the corresponding dual semigroup do not.

Example

gap> S := SingularPartitionMonoid(4);;
gap> D := DualSemigroup(S);;
gap> s := GeneratorsOfSemigroup(S)[1];;
gap> map := AntiIsomorphismDualSemigroup(S);;
gap> t := s ^ map;
<<block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ], [ 4, -4 ]>

in the dual semigroup>
gap> IsDualSemigroupElement(t);
true
gap> inv := InverseGeneralMapping(map);;
gap> x := t ^ inv;
<block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ], [ 4, -4 ]>
gap> IsDualSemigroupElement(x);
false

6.5.4 AntiIsomorphismDualSemigroup

. AntiIsomorphismDualSemigroup(S) (attribute)

Returns: An anti-isomorphism from S to the corresponding dual semigroup.
The dual semigroup of S mathematically has the same underlying set as S , but is represented

with a different set of elements in Semigroups. This function returns a mapping which is an anti-
isomorphism from S to its dual.

Example

gap> S := PartitionMonoid(3);
<regular bipartition *-monoid of size 203, degree 3 with 4 generators>
gap> map := AntiIsomorphismDualSemigroup(S);
MappingByFunction( <regular bipartition *-monoid of size 203,
degree 3 with 4 generators>, <dual semigroup of

<regular bipartition *-monoid of size 203, degree 3 with 4 generators>
>, function( x ) ... end, function( x ) ... end )

gap> inv := InverseGeneralMapping(map);;
gap> x := Bipartition([[1, -2], [2, -3], [3, -1]]);
<block bijection: [ 1, -2 ], [ 2, -3 ], [ 3, -1 ]>
gap> y := Bipartition([[1], [2, -2], [3, -3], [-1]]);
<bipartition: [ 1 ], [ 2, -2 ], [ 3, -3 ], [ -1 ]>
gap> (x ^ map) * (y ^ map) = (y * x) ^ map;
true
gap> x ^ map;
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<<block bijection: [ 1, -2 ], [ 2, -3 ], [ 3, -1 ]>
in the dual semigroup>

6.6 Changing the representation of a semigroup

The Semigroups package provides two convenient constructors IsomorphismSemigroup (6.6.1)
and IsomorphismMonoid (6.6.2) for changing the representation of a given semigroup or monoid.
These methods can be used to find an isomorphism from any semigroup to a semigroup of any other
type, provided such an isomorphism exists.

Note that at present neither IsomorphismSemigroup (6.6.1) nor IsomorphismMonoid (6.6.2)
can be used to determine whether two given semigroups, or monoids, are isomorphic.

Some methods for IsomorphismSemigroup (6.6.1) and IsomorphismMonoid (6.6.2) are based
on methods for the GAP library operations:

• IsomorphismReesMatrixSemigroup (Reference: IsomorphismReesMatrixSemigroup),

• AntiIsomorphismTransformationSemigroup (Reference: AntiIsomorphismTransfor-
mationSemigroup),

• IsomorphismTransformationSemigroup (Reference: IsomorphismTransformationSemi-
group) and IsomorphismTransformationMonoid (Reference: IsomorphismTransforma-
tionMonoid),

• IsomorphismPartialPermSemigroup (Reference: IsomorphismPartialPermSemigroup)
and IsomorphismPartialPermMonoid (Reference: IsomorphismPartialPermMonoid),

• IsomorphismFpSemigroup (Reference: IsomorphismFpSemigroup) and
IsomorphismFpMonoid.

The operation IsomorphismMonoid (6.6.2) can be used to return an isomorphism from a semi-
group which is mathematically a monoid (but does not below to the category of monoids in GAP
IsMonoid (Reference: IsMonoid)) into a monoid. This is the primary purpose of the opera-
tion IsomorphismMonoid (6.6.2). Either IsomorphismSemigroup (6.6.1) or IsomorphismMonoid
(6.6.2) can be used to change the representation of a monoid, but only the latter is guaranteed to return
an object in the category of monoids.

Example
gap> S := Monoid(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
gap> AsSemigroup(IsBooleanMatSemigroup, S);
<monoid of 10x10 boolean matrices with 2 generators>
gap> AsMonoid(IsBooleanMatMonoid, S);
<monoid of 10x10 boolean matrices with 2 generators>
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
gap> AsSemigroup(IsBooleanMatSemigroup, S);
<semigroup of 10x10 boolean matrices with 2 generators>
gap> AsMonoid(IsBooleanMatMonoid, S);
<monoid of 8x8 boolean matrices with 2 generators>
gap> M := Monoid([
> Bipartition([[1, -3], [2, 3, 6], [4, 7, -6], [5, -8], [8, -4, -5],
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> [-1], [-2], [-7]]),
> Bipartition([[1, 3, -6], [2, -8], [4, 8, -1], [5], [6, -3, -4],
> [7], [-2], [-5], [-7]]),
> Bipartition([[1, 2, 4, -3, -7, -8], [3, 5, 6, 8, -4, -6],
> [7, -1, -2, -5]])]);;
gap> AsMonoid(IsPBRMonoid, M);
<pbr monoid of size 163, degree 163 with 3 generators>
gap> AsSemigroup(IsPBRSemigroup, M);
<pbr semigroup of size 163, degree 8 with 4 generators>

There are some further methods in Semigroups for obtaining an isomorphism from a Rees matrix,
or 0-matrix, semigroup to another such semigroup with particular properties; RMSNormalization
(6.6.7) and RZMSNormalization (6.6.6).

6.6.1 IsomorphismSemigroup

. IsomorphismSemigroup(filt, S) (operation)

Returns: An isomorphism of semigroups.
IsomorphismSemigroup can be used to find an isomorphism from a given semigroup to a semi-

group of another type, provided such an isomorphism exists.
The first argument filt must be of the form IsXSemigroup, for example,

IsTransformationSemigroup (Reference: IsTransformationSemigroup), IsFpSemigroup
(Reference: IsFpSemigroup), and IsPBRSemigroup (4.6.1) are some possible values for filt .
Note that filt should not be of the form IsXMonoid; see IsomorphismMonoid (6.6.2). The second
argument S should be a semigroup.

IsomorphismSemigroup returns an isomorphism from S to a semigroup T of the type described
by filt , if such an isomorphism exists. More precisely, if T is the range of the returned isomorphism,
then filt(T) will return true. For example, if filt is IsTransformationSemigroup, then the
range of the returned isomorphism will be a transformation semigroup.

An error is returned if there is no isomorphism from S to a semigroup satisfying filt . For exam-
ple, there is no method for IsomorphismSemigroup when filt is, say, IsReesMatrixSemigroup
(Reference: IsReesMatrixSemigroup) and when S is a non-simple semigroup. Similarly, there is
no method when filt is IsPartialPermSemigroup (Reference: IsPartialPermSemigroup) and
when S is a non-inverse semigroup.

In some cases, if no better method is installed, IsomorphismSemigroup returns an isomorphism
found by composing an isomorphism from S to a transformation semigroup T, and an isomorphism
from T to a semigroup of type filt .

Note that if the argument S belongs to the category of monoids IsMonoid (Reference: Is-
Monoid), then IsomorphismSemigroup will often, but not always, return a monoid isomorphism.

Example
gap> S := Semigroup([
> Bipartition([
> [1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([
> [1, -4], [2, 3, 4, 5], [6], [-1, -6], [-2, -3], [-5]])]);
<bipartition semigroup of degree 6 with 2 generators>
gap> IsomorphismSemigroup(IsTransformationSemigroup, S);
MappingByFunction( <bipartition semigroup of size 11, degree 6 with 2
generators>, <transformation semigroup of size 11, degree 12 with 2
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generators>, function( x ) ... end, function( x ) ... end )
gap> IsomorphismSemigroup(IsBooleanMatSemigroup, S);
MappingByFunction( <bipartition semigroup of size 11, degree 6 with 2
generators>, <semigroup of size 11, 12x12 boolean matrices with 2
generators>, function( x ) ... end, function( x ) ... end )

gap> IsomorphismSemigroup(IsFpSemigroup, S);
MappingByFunction( <bipartition semigroup of size 11, degree 6 with 2
generators>, <fp semigroup on the generators

[ s1, s2 ]>, function( x ) ... end, function( x ) ... end )
gap> S := InverseSemigroup([
> PartialPerm([1, 2, 3, 6, 8, 10],
> [2, 6, 7, 9, 1, 5]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],
> [3, 8, 1, 9, 4, 10, 5, 6])]);;
gap> IsomorphismSemigroup(IsBipartitionSemigroup, S);
MappingByFunction( <inverse partial perm semigroup of rank 10 with 2
generators>, <inverse bipartition semigroup of degree 10 with 2
generators>, function( x ) ... end, <Operation "AsPartialPerm"> )

gap> S := SymmetricInverseMonoid(4);
<symmetric inverse monoid of degree 4>
gap> IsomorphismSemigroup(IsBlockBijectionSemigroup, S);
MappingByFunction( <symmetric inverse monoid of degree 4>,
<inverse block bijection monoid of degree 5 with 3 generators>
, function( x ) ... end, function( x ) ... end )

gap> Size(Range(last));
209
gap> S := Semigroup([
> PartialPerm([3, 1]), PartialPerm([1, 3, 4])]);;
gap> IsomorphismSemigroup(IsBlockBijectionSemigroup, S);
MappingByFunction( <partial perm semigroup of rank 3 with 2
generators>, <block bijection semigroup of degree 5 with 2
generators>, function( x ) ... end, function( x ) ... end )

6.6.2 IsomorphismMonoid

. IsomorphismMonoid(filt, S) (operation)

Returns: An isomorphism of monoids.
IsomorphismMonoid can be used to find an isomorphism from a given semigroup which is math-

ematically a monoid (but might not belong to the category of monoids in GAP) to a monoid, provided
such an isomorphism exists.

The first argument filt must be of the form IsXMonoid, for example,
IsTransformationMonoid (Reference: IsTransformationMonoid), IsFpMonoid (Reference:
IsFpMonoid), and IsBipartitionMonoid (3.8.1) are some possible values for filt . Note that
filt should not be of the form IsXSemigroup; see IsomorphismSemigroup (6.6.1). The second
argument S should be a semigroup which is mathematically a monoid but which may or may not
belong to the category IsMonoid (Reference: IsMonoid) of monoids in GAP, i.e. S must satisfy
IsMonoidAsSemigroup (15.1.13).

IsomorphismMonoid returns a monoid isomorphism from S to a semigroup T of the type de-
scribed by filt , if such an isomorphism exists. In this context, a monoid isomorphism is a semigroup
isomorphism that maps the MultiplicativeNeutralElement (Reference: MultiplicativeNeu-
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tralElement) of S to the One (Reference: One) of T . If T is the range of the returned isomorphism,
then filt(T) will return true. For example, if filt is IsTransformationMonoid, then the range
of the returned isomorphism will be a transformation monoid.

An error is returned if there is no isomorphism from S to a monoid satisfying filt . For exam-
ple, there is no method for IsomorphismMonoid when filt is, say, IsReesZeroMatrixSemigroup
(Reference: IsReesZeroMatrixSemigroup) and when S is a not 0-simple. Similarly, there is no
method when filt is IsPartialPermMonoid (Reference: IsPartialPermMonoid) and when S is a
non-inverse monoid.

In some cases, if no better method is installed, IsomorphismMonoid returns an isomorphism
found by composing an isomorphism from S to a transformation monoid T, and an isomorphism from
T to a monoid of type filt .

Example
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));
<transformation semigroup of degree 10 with 2 generators>
gap> IsomorphismMonoid(IsTransformationMonoid, S);
MappingByFunction( <transformation semigroup of degree 10 with 2
generators>, <transformation monoid of degree 8 with 2 generators>
, function( x ) ... end, function( x ) ... end )

gap> IsomorphismMonoid(IsBooleanMatMonoid, S);
MappingByFunction( <transformation semigroup of degree 10 with 2
generators>, <monoid of 8x8 boolean matrices with 2 generators>
, function( x ) ... end, function( x ) ... end )

gap> IsomorphismMonoid(IsFpMonoid, S);
MappingByFunction( <transformation semigroup of degree 10 with 2
generators>, <fp monoid on the generators

[ m1, m2 ]>, function( x ) ... end, function( x ) ... end )

6.6.3 AsSemigroup

. AsSemigroup(filt, S) (operation)

Returns: A semigroup.
AsSemigroup(filt, S) is just shorthand for Range(IsomorphismSemigroup(filt, S)),

when S is a semigroup; see IsomorphismSemigroup (6.6.1) for more details.
Note that if the argument S belongs to the category of monoids IsMonoid (Reference: Is-

Monoid), then AsSemigroup will often, but not always, return a monoid. A monoid is not returned if
there is not a good monoid isomorphism from S to a monoid of the required type, but there is a good
semigroup isomorphism.

If it is not possible to convert the semigroup S to a semigroup of type filt , then an error is given.
Example

gap> S := Semigroup([
> Bipartition([
> [1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([
> [1, -4], [2, 3, 4, 5], [6], [-1, -6], [-2, -3], [-5]])]);
<bipartition semigroup of degree 6 with 2 generators>
gap> AsSemigroup(IsTransformationSemigroup, S);
<transformation semigroup of size 11, degree 12 with 2 generators>
gap> S := Semigroup([
> Bipartition([
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> [1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([
> [1, -4], [2, 3, 4, 5], [6], [-1, -6], [-2, -3], [-5]])]);
<bipartition semigroup of degree 6 with 2 generators>
gap> AsSemigroup(IsTransformationSemigroup, S);
<transformation semigroup of size 11, degree 12 with 2 generators>
gap> T := Semigroup(Transformation([2, 2, 3]),
> Transformation([3, 1, 3]));
<transformation semigroup of degree 3 with 2 generators>
gap> S := AsSemigroup(IsMatrixOverFiniteFieldSemigroup, GF(5), T);
<semigroup of 3x3 matrices over GF(5) with 2 generators>
gap> Size(S);
5

6.6.4 AsMonoid

. AsMonoid([filt, ]S) (operation)

Returns: A monoid or fail.
AsMonoid(filt, S) is just shorthand for Range(IsomorphismMonoid(filt, S)), when S

is a semigroup or monoid; see IsomorphismMonoid (6.6.2) for more details.
If the first argument filt is omitted and the semigroup S is mathematically a monoid which does

not belong to the category of monoids in GAP, then AsMonoid returns a monoid (in the category of
monoids) isomorphic to S and of the same type as S . If S is already in the category of monoids and
the first argument filt is omitted, then S is returned.

If the first argument filt is omitted and the semigroup S is not a monoid, i.e. it does not satisfy
IsMonoidAsSemigroup (15.1.13), then fail is returned.

Example
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
gap> AsMonoid(S);
<transformation monoid of degree 8 with 2 generators>
gap> AsSemigroup(IsBooleanMatSemigroup, S);
<semigroup of 10x10 boolean matrices with 2 generators>
gap> AsMonoid(IsBooleanMatMonoid, S);
<monoid of 8x8 boolean matrices with 2 generators>
gap> S := Monoid(Bipartition([[1, -1, -3], [2, 3], [-2]]),
> Bipartition([[1, -1], [2, 3, -3], [-2]]));
<bipartition monoid of degree 3 with 2 generators>
gap> AsMonoid(IsTransformationMonoid, S);
<transformation monoid of size 3, degree 3 with 2 generators>
gap> AsMonoid(S);
<bipartition monoid of size 3, degree 3 with 2 generators>

6.6.5 IsomorphismPermGroup

. IsomorphismPermGroup(S) (attribute)

Returns: An isomorphism.
If the semigroup S is mathematically a group, so that it satisfies IsGroupAsSemigroup (15.1.7),

then IsomorphismPermGroup returns an isomorphism to a permutation group.
If S is not a group then an error is given.
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See also IsomorphismPermGroup (Reference: IsomorphismPermGroup).
Example

gap> S := Semigroup(Transformation([2, 2, 3, 4, 6, 8, 5, 5]),
> Transformation([3, 3, 8, 2, 5, 6, 4, 4]));;
gap> IsGroupAsSemigroup(S);
true
gap> Range(IsomorphismPermGroup(S));
Group([ (5,6,8), (2,3,8,4) ])
gap> StructureDescription(Range(IsomorphismPermGroup(S)));
"S6"
gap> S := Range(IsomorphismPartialPermSemigroup(SymmetricGroup(4)));
<partial perm group of size 24, rank 4 with 2 generators>
gap> IsomorphismPermGroup(S);
MappingByFunction( <partial perm group of size 24, rank 4 with

2 generators>, Group([ (1,2,3,4), (1,
2) ]), <Attribute "AsPermutation">, function( x ) ... end )
gap> G := GroupOfUnits(PartitionMonoid(4));
<block bijection group of degree 4 with 2 generators>
gap> StructureDescription(G);
"S4"
gap> iso := IsomorphismPermGroup(G);;
gap> RespectsMultiplication(iso);
true
gap> inv := InverseGeneralMapping(iso);;
gap> ForAll(G, x -> (x ^ iso) ^ inv = x);
true
gap> ForAll(G, x -> ForAll(G, y -> (x * y) ^ iso = x ^ iso * y ^ iso));
true

6.6.6 RZMSNormalization

. RZMSNormalization(R) (attribute)

Returns: An isomorphism.
If R is a Rees 0-matrix semigroup M0[I,T,Λ;P] then RZMSNormalization returns an isomor-

phism from R to a normalized Rees 0-matrix semigroup S = M0[I,T,Λ;Q]. The structure matrix Q
is obtained by normalizing the matrix P (see Matrix (Reference: Matrix)) and has the following
properties:

• The matrix Q is in block diagonal form, and the blocks are ordered by decreasing size along the
leading diagonal (the size of a block is defined to be the number of rows it contains multiplied
by the number of columns it contains).

If the index sets I and Λ are partitioned into k parts according to the
RZMSConnectedComponents (14.14.2) of S, giving a disjoint union I = I1 ∪ . . . ∪ Ik and
Λ = Λ1∪ . . .∪Λk, then the rth block corresponds to the sub-matrix Qr of Q defined by Ir and
Λr.

• The first non-zero entry in a row occurs no sooner than the first non-zero entry in any previous
row.

• The first non-zero entry in a column occurs no sooner than the first non-zero entry in any
previous column.
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• The previous two items imply that if the matrix P has any rows/columns consisting entirely of
zeroes, then these will become the final rows/columns of Q.

Furthermore, if T is a group (i.e. a semigroup for which IsGroupAsSemigroup (15.1.7) returns
true), then the non-zero entries of the structure matrix Q are chosen such that the following hold:

• The first non-zero entry of every row and every column is equal to the identity of T .

• For each r, let Qr be the sub-matrix of Q defined by Ir and Λr (as above), and let Tr be the
subsemigroup of T generated by the non-zero entries of Qr. Then the idempotent generated
subsemigroup of S is equal to:

–
⋃k

r=1 M0[Ir,Tr,Λr,Qr], where the zeroes of these Rees 0-matrix semigroups are all identi-
fied with the zero of S.

The normalization given by RZMSNormalization is based on Theorem 2 of [Gra68] and is sometimes
called Graham normal form. Note that isomorphic Rees 0-matrix semigroups can have normalizations
which are not equal.

Example
gap> R := ReesZeroMatrixSemigroup(Group(()),
> [[0, (), 0],
> [(), 0, 0],
> [0, 0, ()]]);
<Rees 0-matrix semigroup 3x3 over Group(())>
gap> iso := RZMSNormalization(R);
MappingByFunction( <Rees 0-matrix semigroup 3x3 over Group(())>,
<Rees 0-matrix semigroup 3x3 over Group(())>
, function( x ) ... end, function( x ) ... end )

gap> S := Range(iso);
<Rees 0-matrix semigroup 3x3 over Group(())>
gap> Matrix(S);
[ [ (), 0, 0 ], [ 0, (), 0 ], [ 0, 0, () ] ]
gap> R := ReesZeroMatrixSemigroup(SymmetricGroup(4),
> [[0, 0, 0, (1, 3, 2)],
> [(2, 3), 0, 0, 0],
> [0, 0, (1, 3), (1, 2)],
> [0, (4, 1, 2, 3), 0, 0]]);
<Rees 0-matrix semigroup 4x4 over Sym( [ 1 .. 4 ] )>
gap> S := Range(RZMSNormalization(R));
<Rees 0-matrix semigroup 4x4 over Sym( [ 1 .. 4 ] )>
gap> Matrix(S);
[ [ (), (), 0, 0 ], [ 0, (), 0, 0 ], [ 0, 0, (), 0 ], [ 0, 0, 0, () ]
]

6.6.7 RMSNormalization

. RMSNormalization(R) (attribute)

Returns: An isomorphism.
If R is a Rees matrix semigroup over a group G (i.e. a semigroup for which IsGroupAsSemigroup

(15.1.7) returns true), then RMSNormalization returns an isomorphism from R to a normalized Rees
matrix semigroup S over G.
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The semigroup S is normalized in the sense that the first entry of each row and column of the
Matrix (Reference: Matrix) of S is the identity element of G.

Example
gap> R := ReesMatrixSemigroup(SymmetricGroup(4),
> [[(1, 2), (2, 4, 3), (2, 1, 4)],
> [(1, 3, 2), (1, 2)(3, 4), ()],
> [(2, 3), (1, 3, 2, 4), (2, 3)]]);
<Rees matrix semigroup 3x3 over Sym( [ 1 .. 4 ] )>
gap> iso := RMSNormalization(R);
MappingByFunction( <Rees matrix semigroup 3x3 over Sym( [ 1 .. 4 ] )>
, <Rees matrix semigroup 3x3 over Sym( [ 1 .. 4 ] )>
, function( x ) ... end, function( x ) ... end )

gap> S := Range(iso);
<Rees matrix semigroup 3x3 over Sym( [ 1 .. 4 ] )>
gap> Matrix(S);
[ [ (), (), () ], [ (), (1,2), (1,4,2,3) ], [ (), (1,4,2,3), (2,4) ] ]

6.7 Random semigroups

6.7.1 RandomSemigroup

. RandomSemigroup(arg...) (function)

. RandomMonoid(arg...) (function)

. RandomInverseSemigroup(arg...) (function)

. RandomInverseMonoid(arg...) (function)

Returns: A semigroup.
The operations described in this section can be used to generate semigroups, in some sense, at

random. There is no guarantee given about the distribution of these semigroups, and this is only
intended as a means of generating semigroups for testing and other similar purposes.

Roughly speaking, the arguments of RandomSemigroup are a filter specifying the type of the
semigroup to be returned, together with some further parameters that describe some attributes of the
semigroup to be returned. For instance, we may want to specify the number of generators, and, say,
the degree, or dimension, of the elements, where appropriate. The arguments of RandomMonoid,
RandomInverseSemigroup, and RandomInverseMonoid are analogous.

If no arguments are specified, then they are all chosen at random, for a truly random experience.
The first argument, if present, should be a filter filter . For RandomSemigroup and

RandomInverseSemigroup the filter filter must be of the form IsXSemigroup. For exam-
ple, IsTransformationSemigroup (Reference: IsTransformationSemigroup), IsFpSemigroup
(Reference: IsFpSemigroup), and IsPBRSemigroup (4.6.1) are some possible values for filter .
For RandomMonoid and RandomInverseMonoid the argument filter must be of the form
IsXMonoid; such as IsBipartitionMonoid (3.8.1) or IsBooleanMatMonoid (5.7.2).

Suppose that the first argument filter is IsFpSemigroup (Reference: IsFpSemigroup). Then
the only other arguments that can be specified is (and this argument is also optional):

number of generators
The second argument, if present, should be a positive integer m indicating the number of gener-
ators that the semigroup should have. If the second argument m is not specified, then a number
is selected at random.
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If filter is a filter such as IsTransformationSemigroup (Reference: IsTransformationSemi-
group) or IsIntegerMatrixSemigroup (5.7.1), then a further argument can be specified:

degree / dimension
The third argument, if present, should be a positive integer n , which specifies the de-
gree or dimension of the generators. For example, if the first argument filter is
IsTransformationSemigroup, then the value of this argument is the degree of the transfor-
mations in the returned semigroup; or if filter is IsMatrixOverFiniteFieldSemigroup,
then this argument is the dimension of the matrices in the returned semigroup.

If filter is IsTropicalMaxPlusMatrixSemigroup (5.7.1), for example, then a fourth argument
can be given (or not!):

threshold
The fourth argument, if present, should be a positive integer t , which specifies the threshold of
the semiring over which the matrices in the returned semigroup are defined.

You get the idea, the error messages are self-explanatory, and RandomSemigroup works for most of
the type of semigroups defined in GAP.

RandomMonoid is similar to RandomSemigroup except it returns a monoid. Likewise,
RandomInverseSemigroup and RandomInverseMonoid return inverse semigroups and monoids, re-
spectively.

Example
gap> RandomSemigroup();
<semigroup of 10x10 max-plus matrices with 12 generators>
gap> RandomMonoid(IsTransformationMonoid);
<transformation monoid of degree 9 with 7 generators>
gap> RandomMonoid(IsPartialPermMonoid, 2);
<partial perm monoid of rank 17 with 2 generators>
gap> RandomMonoid(IsPartialPermMonoid, 2, 3);
<partial perm monoid of rank 3 with 2 generators>
gap> RandomInverseSemigroup(IsTropicalMinPlusMatrixSemigroup);
<semigroup of 6x6 tropical min-plus matrices with 14 generators>
gap> RandomInverseSemigroup(IsTropicalMinPlusMatrixSemigroup, 1);
<semigroup of 6x6 tropical min-plus matrices with 14 generators>
gap> RandomSemigroup(IsTropicalMinPlusMatrixSemigroup, 2);
<semigroup of 11x11 tropical min-plus matrices with 2 generators>
gap> RandomSemigroup(IsTropicalMinPlusMatrixSemigroup, 2, 1);
<semigroup of 1x1 tropical min-plus matrices with 2 generators>
gap> RandomSemigroup(IsTropicalMinPlusMatrixSemigroup, 2, 1, 3);
gap> last.1;
Matrix(IsTropicalMinPlusMatrix, [[infinity]], 3)
gap> RandomSemigroup(IsNTPMatrixSemigroup, 2, 1, 3, 4);
<semigroup of 1x1 ntp matrices with 2 generators>
gap> last.1;
Matrix(IsNTPMatrix, [[2]], 3, 4)
gap> RandomSemigroup(IsReesMatrixSemigroup, 2, 2);
<Rees matrix semigroup 2x2 over

<permutation group of size 659 with 1 generators>>
gap> RandomSemigroup(IsReesZeroMatrixSemigroup, 2, 2, Group((1, 2), (3, 4)));
<Rees 0-matrix semigroup 2x2 over Group([ (1,2), (3,4) ])>
gap> RandomInverseMonoid(IsMatrixOverFiniteFieldMonoid, 2, 2);
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<monoid of 3x3 matrices over GF(421^4) with 3 generators>
gap> RandomInverseMonoid(IsMatrixOverFiniteFieldMonoid, 2, 2, GF(7));
<monoid of 3x3 matrices over GF(7) with 2 generators>
gap> RandomSemigroup(IsBipartitionSemigroup, 5, 5);
<bipartition semigroup of degree 5 with 5 generators>
gap> RandomMonoid(IsBipartitionMonoid, 5, 5);
<bipartition monoid of degree 5 with 5 generators>
gap> RandomSemigroup(IsBooleanMatSemigroup);
<semigroup of 3x3 boolean matrices with 18 generators>
gap> RandomMonoid(IsBooleanMatMonoid);
<monoid of 11x11 boolean matrices with 19 generators>

6.8 Endomorphism monoid of a digraph

6.8.1 EndomorphismMonoid (for a digraph)

. EndomorphismMonoid(digraph) (attribute)

. EndomorphismMonoid(digraph, colors) (operation)

Returns: A monoid.
An endomorphism of digraph is a homomorphism DigraphHomomorphism (Digraphs: Di-

graphHomomorphism) from digraph back to itself.
EndomorphismMonoid, called with a single argument, returns the monoid of all endomorphisms

of digraph .
If the colors argument is specified, then it will return the monoid of endomorphisms which

respect the given colouring. The colouring colors can be in one of two forms:

• A list of positive integers of size the number of vertices of digraph , where colors[i] is the
colour of vertex i.

• A list of lists, such that colors[i] is a list of all vertices with colour i.

See also GeneratorsOfEndomorphismMonoid (Digraphs: GeneratorsOfEndomorphism-
Monoid). Note that the performance of EndomorphismMonoid may differ from that of
GeneratorsOfEndomorphismMonoid (Digraphs: GeneratorsOfEndomorphismMonoid)
since the former incrementally adds newly discovered endomorphisms to the monoid using
ClosureMonoid (6.4.1).

Example
gap> gr := Digraph(List([1 .. 3], x -> [1 .. 3]));;
gap> EndomorphismMonoid(gr);
<transformation monoid of degree 3 with 3 generators>
gap> gr := CompleteDigraph(3);;
gap> EndomorphismMonoid(gr);
<transformation group of size 6, degree 3 with 2 generators>
gap> EndomorphismMonoid(gr, [1, 2, 2]);
<transformation group of degree 3 with 1 generator>
gap> EndomorphismMonoid(gr, [[1], [2, 3]]);
<transformation group of degree 3 with 1 generator>



Chapter 7

Ideals

In this chapter we describe the various ways that an ideal of a semigroup can be created and manipu-
lated in Semigroups.

We write ideal to mean two-sided ideal everywhere in this chapter.
The methods in the Semigroups package apply to any ideal of a semigroup that is created using

the function SemigroupIdeal (7.1.1) or SemigroupIdealByGenerators. Anything that can be
calculated for a semigroup defined by a generating set can also be found for an ideal. This works
particularly well for regular ideals, since such an ideal can be represented using a similar data structure
to that used to represent a semigroup defined by a generating set but without the necessity to find a
generating set for the ideal. Many methods for non-regular ideals rely on first finding a generating
set for the ideal, which can be costly (but not nearly as costly as an exhaustive enumeration of the
elements of the ideal). We plan to improve the functionality of Semigroups for non-regular ideals in
the future.

7.1 Creating ideals

7.1.1 SemigroupIdeal

. SemigroupIdeal(S, obj1, obj2, .., .) (function)

Returns: An ideal of a semigroup.
If obj1 , obj2 , .. . are (any combination) of elements of the semigroup S or collections of

elements of S (including subsemigroups and ideals of S ), then SemigroupIdeal returns the 2-sided
ideal of the semigroup S generated by the union of obj1 , obj2 , .. ..

The Parent (Reference: Parent) of the ideal returned by this function is S .
Example

gap> S := SymmetricInverseMonoid(10);
<symmetric inverse monoid of degree 10>
gap> I := SemigroupIdeal(S, PartialPerm([1, 2]));
<inverse partial perm semigroup ideal of rank 10 with 1 generator>
gap> Size(I);
4151
gap> I := SemigroupIdeal(S, I, Idempotents(S));
<inverse partial perm semigroup ideal of rank 10 with 1025 generators>

100
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7.1.2 Ideals (for a semigroup)

. Ideals(S) (attribute)

Returns: An list of ideals.
If S is a finite non-empty semigroup, then this attribute returns a list of the non-empty two-sided

ideals of S .
The ideals are returned in no particular order, and each ideal uses the minimum possible number

of generators (see GeneratorsOfSemigroupIdeal (7.2.1)).
Example

gap> S := Semigroup([Transformation([4, 3, 4, 1]),
> Transformation([4, 3, 2, 2])]);
<transformation semigroup of degree 4 with 2 generators>
gap> Ideals(S);
[ <non-regular transformation semigroup ideal of degree 4 with

1 generator>,
<non-regular transformation semigroup ideal of degree 4 with

1 generator>,
<non-regular transformation semigroup ideal of degree 4 with

2 generators>,
<regular transformation semigroup ideal of degree 4 with 1 generator>,
<non-regular transformation semigroup ideal of degree 4 with

1 generator>,
<regular transformation semigroup ideal of degree 4 with 1 generator>
]

7.2 Attributes of ideals

7.2.1 GeneratorsOfSemigroupIdeal

. GeneratorsOfSemigroupIdeal(I) (attribute)

Returns: The generators of an ideal of a semigroup.
This function returns the generators of the two-sided ideal I , which were used to defined I when

it was created.
If I is an ideal of a semigroup, then I is defined to be the least 2-sided ideal of a semigroup S

containing a set J of elements of S. The set J is said to generate I .
The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup

or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general,
equal to that ideal. Use GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) to obtain
a semigroup generating set for an ideal, but beware that this can be very costly.

Example
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 4, -1], [-2, -4], [-3]]),
> Bipartition([[1, 2, 3, -3], [4], [-1], [-2, -4]]),
> Bipartition([[1, 3, -2], [2, 4], [-1, -3, -4]]),
> Bipartition([[1], [2, 3, 4], [-1, -3, -4], [-2]]),
> Bipartition([[1], [2, 4, -2], [3, -4], [-1], [-3]]));;
gap> I := SemigroupIdeal(S, S.1 * S.2 * S.5);;
gap> GeneratorsOfSemigroupIdeal(I);
[ <bipartition: [ 1, 2, 3, 4, -4 ], [ -1 ], [ -2 ], [ -3 ]> ]
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gap> I = Semigroup(GeneratorsOfSemigroupIdeal(I));
false

7.2.2 MinimalIdealGeneratingSet

. MinimalIdealGeneratingSet(I) (attribute)

Returns: A minimal set ideal generators of an ideal.
This function returns a minimal set of elements of the parent of the semigroup ideal I required to

generate I as an ideal.
The notion of the generators of an ideal is distinct from the notion of the generators of a semigroup

or monoid. In particular, the semigroup generated by the generators of an ideal is not, in general,
equal to that ideal. Use GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) to obtain
a semigroup generating set for an ideal, but beware that this can be very costly.

Example
gap> S := Monoid([
> Bipartition([[1, 2, 3, -2], [4], [-1, -4], [-3]]),
> Bipartition([[1, 4, -2, -4], [2, -1, -3], [3]])]);;
gap> I := SemigroupIdeal(S, S);;
gap> MinimalIdealGeneratingSet(I);
[ <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ], [ 4, -4 ]> ]

7.2.3 SupersemigroupOfIdeal

. SupersemigroupOfIdeal(I) (attribute)

Returns: An ideal of a semigroup.
The Parent (Reference: Parent) of an ideal is the semigroup in which the ideal was created, i.e.

the first argument of SemigroupIdeal (7.1.1) or SemigroupIdealByGenerators. This function
returns the semigroup containing the generators of the semigroup (i.e. GeneratorsOfSemigroup
(Reference: GeneratorsOfSemigroup)) which are used to compute the ideal.

For a regular semigroup ideal, SupersemigroupOfIdeal will always be the top most semigroup
used to create any of the predecessors of the current ideal. For example, if S is a semigroup, I is a
regular ideal of S, and J is an ideal of I, then Parent(J) is I and SupersemigroupOfIdeal(J) is S.
This is to avoid computing a generating set for I, in this example, which is expensive and unnecessary
since I is regular (in which case the Green’s relations of I are just restrictions of the Green’s relations
on S).

If S is a semigroup, I is a non-regular ideal of S, J is an ideal of I, then
SupersemigroupOfIdeal(J) is I, since we currently have to use GeneratorsOfSemigroup(I)
to compute anything about I other than its size and membership.

Example
gap> S := FullTransformationSemigroup(8);
<full transformation monoid of degree 8>
gap> x := Transformation([2, 6, 7, 2, 6, 1, 1, 5]);;
gap> D := DClass(S, x);
<Green’s D-class: Transformation( [ 6, 3, 4, 6, 3, 5, 5, 1 ] )>
gap> R := PrincipalFactor(D);
<Rees 0-matrix semigroup 1050x56 over Group([ (2,8,7,4,3), (3,4) ])>
gap> S := Semigroup(List([1 .. 10], x -> Random(R)));
<subsemigroup of 1050x56 Rees 0-matrix semigroup with 10 generators>
gap> I := SemigroupIdeal(S, MultiplicativeZero(S));
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<regular Rees 0-matrix semigroup ideal with 1 generator>
gap> SupersemigroupOfIdeal(I);
<subsemigroup of 1050x56 Rees 0-matrix semigroup with 10 generators>
gap> J := SemigroupIdeal(I, Representative(MinimalDClass(S)));
<regular Rees 0-matrix semigroup ideal with 1 generator>
gap> Parent(J) = I;
true
gap> SupersemigroupOfIdeal(J) = I;
false



Chapter 8

Standard examples

In this chapter we describe some standard examples of semigroups which are available in the Semi-
groups package.

8.1 Transformation semigroups

In this section, we describe the operations in Semigroups that can be used to create transformation
semigroups belonging to several standard classes of example. See (Reference: Transformations) for
more information about transformations.

8.1.1 CatalanMonoid

. CatalanMonoid(n) (operation)

Returns: A transformation monoid.
If n is a positive integer, then this operation returns the Catalan monoid of degree n . The Catalan

monoid is the semigroup of the order-preserving and order-decreasing transformations of [1 .. n]
with the usual ordering.

The Catalan monoid is generated by the n - 1 transformations fi:(
1 2 3 · · · i i+1 i+2 · · · n
1 2 3 · · · i i i+2 · · · n

)
,

where i = 1, . . . ,n−1 and has size equal to the nth Catalan number.
Example

gap> S := CatalanMonoid(6);
<transformation monoid of degree 6 with 5 generators>
gap> Size(S);
132

8.1.2 EndomorphismsPartition

. EndomorphismsPartition(list) (operation)

Returns: A transformation monoid.
If list is a list of positive integers, then EndomorphismsPartition returns a monoid of endo-

morphisms preserving a partition of [1 .. Sum(list)] with a part of length list[i] for every i.

104
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For example, if list = [1, 2, 3], then EndomorphismsPartition returns the monoid of endo-
morphisms of the partition [[1], [2, 3], [4, 5, 6]].

If f is a transformation of [1 .. n], then it is an ENDOMORPHISM of a partition P on [1 ..
n] if (i, j) in P implies that (i ^ f, j ^ f) is in P.

EndomorphismsPartition returns a monoid with a minimal size generating set, as described in
[ABMS15].

Example
gap> S := EndomorphismsPartition([3, 3, 3]);
<transformation semigroup of degree 9 with 4 generators>
gap> Size(S);
531441

8.1.3 PartialTransformationMonoid

. PartialTransformationMonoid(n) (operation)

Returns: A transformation monoid.
If n is a positive integer, then this function returns a semigroup of transformations on n + 1

points which is isomorphic to the semigroup consisting of all partial transformation on n points. This
monoid has (n + 1) ^ n elements.

Example
gap> S := PartialTransformationMonoid(5);
<regular transformation monoid of degree 6 with 4 generators>
gap> Size(S);
7776

8.1.4 SingularTransformationSemigroup

. SingularTransformationSemigroup(n) (operation)

. SingularTransformationMonoid(n) (operation)

Returns: The semigroup of non-invertible transformations.
If n is a integer greater than 1, then this function returns the semigroup of non-invertible trans-

formations, which is generated by the n(n - 1) idempotents of degree n and rank n - 1 and has
nn−n! elements.

Example
gap> S := SingularTransformationSemigroup(4);
<regular transformation semigroup ideal of degree 4 with 1 generator>
gap> Size(S);
232

8.1.5 Semigroups of order-preserving transformations

. OrderEndomorphisms(n) (operation)

. SingularOrderEndomorphisms(n) (operation)

. OrderAntiEndomorphisms(n) (operation)

. PartialOrderEndomorphisms(n) (operation)

. PartialOrderAntiEndomorphisms(n) (operation)

Returns: A semigroup of transformations related to a linear order.
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OrderEndomorphisms(n)
OrderEndomorphisms(n) returns the monoid of transformations that preserve the usual order
on {1,2, . . . ,n}, where n is a positive integer. OrderEndomorphisms(n) is generated by the
n + 1 transformations:(

1 2 3 · · · n−1 n
1 1 2 · · · n−2 n−1

)
,

(
1 2 · · · i−1 i i+1 i+2 · · · n
1 2 · · · i−1 i+1 i+1 i+2 · · · n

)
where i = 0, . . . ,n−1, and has

(2n−1
n−1

)
elements.

SingularOrderEndomorphisms(n)
SingularOrderEndomorphisms(n) returns the ideal of OrderEndomorphisms(n) con-
sisting of the non-invertible elements, when n is at least 2. The only invert-
ible element in OrderEndomorphisms(n) is the identity transformation. Therefore
SingularOrderEndomorphisms(n) has

(2n−1
n−1

)
−1 elements.

OrderAntiEndomorphisms(n)
OrderAntiEndomorphisms(n) returns the monoid of transformations that preserve or reverse
the usual order on {1,2, . . . ,n}, where n is a positive integer. OrderAntiEndomorphisms(n)
is generated by the generators of OrderEndomorphisms(n) along with the bijective transfor-
mation that reverses the order on {1,2, . . . ,n}. The monoid OrderAntiEndomorphisms(n)
has
(2n−1

n−1

)
−n elements.

PartialOrderEndomorphisms(n)
PartialOrderEndomorphisms(n) returns a monoid of transformations on n + 1 points that
is isomorphic to the monoid consisting of all partial transformations that preserve the usual
order on {1,2, . . . ,n}.

PartialOrderAntiEndomorphisms(n)
PartialAntiOrderEndomorphisms(n) returns a monoid of transformations on n + 1 points
that is isomorphic to the monoid consisting of all partial transformations that preserve or reverse
the usual order on {1,2, . . . ,n}.

Example
gap> S := OrderEndomorphisms(5);
<regular transformation monoid of degree 5 with 5 generators>
gap> IsIdempotentGenerated(S);
true
gap> Size(S) = Binomial(2 * 5 - 1, 5 - 1);
true
gap> Difference(S, SingularOrderEndomorphisms(5));
[ IdentityTransformation ]
gap> SingularOrderEndomorphisms(10);
<regular transformation semigroup ideal of degree 10 with 1 generator>
gap> T := OrderAntiEndomorphisms(4);
<regular transformation monoid of degree 4 with 5 generators>
gap> Transformation([4, 2, 2, 1]) in T;
true
gap> U := PartialOrderEndomorphisms(6);
<regular transformation monoid of degree 7 with 12 generators>
gap> V := PartialOrderAntiEndomorphisms(6);
<regular transformation monoid of degree 7 with 13 generators>
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gap> IsSubsemigroup(V, U);
true

8.2 Semigroups of partial permutations

In this section, we describe the operations in Semigroups that can be used to create semigroups
of partial permutations belonging to several standard classes of example. See (Reference: Partial
permutations) for more information about partial permutations.

8.2.1 MunnSemigroup

. MunnSemigroup(S) (attribute)

Returns: The Munn semigroup of a semilattice.
If S is a semilattice, then MunnSemigroup returns the inverse semigroup of partial permutations

of isomorphisms of principal ideals of S ; called the Munn semigroup of S .
This function was written jointly by J. D. Mitchell, Yann Péresse (St Andrews), Yanhui Wang

(York).
Example

gap> S := InverseSemigroup([
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 10], [4, 6, 7, 3, 8, 2, 9, 5]),
> PartialPerm([1, 2, 7, 9], [5, 6, 4, 3])]);
<inverse partial perm semigroup of rank 10 with 2 generators>
gap> T := IdempotentGeneratedSubsemigroup(S);;
gap> M := MunnSemigroup(T);
<inverse partial perm semigroup of rank 60 with 7 generators>
gap> NrIdempotents(M);
60
gap> NrIdempotents(S);
60

8.2.2 RookMonoid

. RookMonoid(n) (operation)

Returns: An inverse monoid of partial permutations.
RookMonoid is a synonym for SymmetricInverseMonoid (Reference: SymmetricInverse-

Monoid).
Example

gap> S := RookMonoid(4);
<symmetric inverse monoid of degree 4>
gap> S = SymmetricInverseMonoid(4);
true

8.2.3 Inverse monoids of order-preserving partial permutations

. POI(n) (operation)

. PODI(n) (operation)

. POPI(n) (operation)
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. PORI(n) (operation)

Returns: An inverse monoid of partial permutations related to a linear order.

POI(n)
POI(n) returns the inverse monoid of partial permutations that preserve the usual order on
{1,2, . . . ,n}, where n is a positive integer. POI(n) is generated by the n partial permutations:(

1 2 3 · · · n
− 1 2 · · · n−1

)
,

(
1 2 · · · i−1 i i+1 i+2 · · · n
1 2 · · · i−1 i+1 − i+2 · · · n

)
where i = 1, . . . ,n−1, and has

(2n
n

)
elements.

PODI(n)
PODI(n) returns the inverse monoid of partial permutations that preserve or reverse the usual
order on {1,2, . . . ,n}, where n is a positive integer. PODI(n) is generated by the generators of
POI(n), along with the permutation that reverses the usual order on {1,2, . . . ,n}. PODI(n) has(2n

n

)
−n2−1 elements.

POPI(n)
POPI(n) returns the inverse monoid of partial permutations that preserve the orientation of
{1,2, . . . ,n}, where n is a positive integer. POPI(n) is generated by the partial permutations:(

1 2 · · · n−1 n
2 3 · · · n 1

)
,

(
1 2 · · · n−2 n−1 n
1 2 · · · n−2 n −

)
,

and has 1+ n
2

(2n
n

)
elements.

PORI(n)
PORI(n) returns the inverse monoid of partial permutations that preserve or reverse the orien-
tation of {1,2, . . . ,n}, where n is a positive integer. PORI(n) is generated by the generators of
POPI(n), along with the permutation that reverses the usual order on {1,2, . . . ,n}. PORI(n)
has n

2

(2n
n

)
−n(n+1) elements.

Example
gap> S := PORI(10);
<inverse partial perm monoid of rank 10 with 3 generators>
gap> S := POPI(10);
<inverse partial perm monoid of rank 10 with 2 generators>
gap> Size(S) = 1 + 5 * Binomial(20, 10);
true
gap> S := PODI(10);
<inverse partial perm monoid of rank 10 with 11 generators>
gap> S := POI(10);
<inverse partial perm monoid of rank 10 with 10 generators>
gap> Size(S) = Binomial(20, 10);
true
gap> IsSubsemigroup(PORI(10), PODI(10))
> and IsSubsemigroup(PORI(10), POPI(10))
> and IsSubsemigroup(PODI(10), POI(10))
> and IsSubsemigroup(POPI(10), POI(10));
true
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8.3 Semigroups of bipartitions

In this section, we describe the operations in Semigroups that can be used to create bipartition semi-
groups belonging to several standard classes of example. See Chapter 3 for more information about
bipartitions.

8.3.1 PartitionMonoid

. PartitionMonoid(n) (operation)

. RookPartitionMonoid(n) (operation)

. SingularPartitionMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then this operation returns the partition monoid of degree n . The

partition monoid of degree n is the monoid consisting of all the bipartitions of degree n .
SingularPartitionMonoid returns the ideal of the partition monoid consisting of the non-

invertible elements (i.e. those not in the group of units), when n is positive.
If n is positive, then RookPartitionMonoid returns submonoid of the partition monoid of de-

gree n + 1 consisting of those bipartitions with n + 1 and -n - 1 in the same block; see [HR05],
[Gro06], and [Eas19].

Example
gap> S := PartitionMonoid(4);
<regular bipartition *-monoid of size 4140, degree 4 with 4
generators>

gap> Size(S);
4140
gap> T := SingularPartitionMonoid(4);
<regular bipartition *-semigroup ideal of degree 4 with 1 generator>
gap> Size(S) - Size(T) = Factorial(4);
true
gap> S := RookPartitionMonoid(4);
<regular bipartition *-monoid of degree 5 with 5 generators>
gap> Size(S);
21147

8.3.2 BrauerMonoid

. BrauerMonoid(n) (operation)

. PartialBrauerMonoid(n) (operation)

. SingularBrauerMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then this operation returns the Brauer monoid of degree n . The

Brauer monoid is the submonoid of the partition monoid consisiting of those bipartitions where the
size of every block is 2.

PartialBrauerMonoid returns the partial Brauer monoid, which is the submonoid of the parti-
tion monoid consisting of those bipartitions where the size of every block is at most 2. The partial
Brauer monoid contains the Brauer monoid as a submonoid.

SingularBrauerMonoid returns the ideal of the Brauer monoid consisting of the non-invertible
elements (i.e. those not in the group of units), when n is at least 2.
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Example
gap> S := BrauerMonoid(4);
<regular bipartition *-monoid of degree 4 with 3 generators>
gap> IsSubsemigroup(S, JonesMonoid(4));
true
gap> Size(S);
105
gap> SingularBrauerMonoid(8);
<regular bipartition *-semigroup ideal of degree 8 with 1 generator>
gap> S := PartialBrauerMonoid(3);
<regular bipartition *-monoid of degree 3 with 8 generators>
gap> IsSubsemigroup(S, BrauerMonoid(3));
true
gap> Size(S);
76

8.3.3 JonesMonoid

. JonesMonoid(n) (operation)

. TemperleyLiebMonoid(n) (operation)

. SingularJonesMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then this operation returns the Jones monoid of degree n . The Jones

monoid is the subsemigroup of the Brauer monoid consisting of those bipartitions that are planar; see
PlanarPartitionMonoid (8.3.9). The Jones monoid is sometimes referred to as the TEMPERLEY-
LIEB MONOID.

SingularJonesMonoid returns the ideal of the Jones monoid consisting of the non-invertible
elements (i.e. those not in the group of units), when n is at least 2.

Example
gap> S := JonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 3 generators>
gap> S = TemperleyLiebMonoid(4);
true
gap> SingularJonesMonoid(8);
<regular bipartition *-semigroup ideal of degree 8 with 1 generator>

8.3.4 PartialJonesMonoid

. PartialJonesMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then PartialJonesMonoid returns the partial Jones monoid of

degree n . The partial Jones monoid is a subsemigroup of the partial Brauer monoid. An element of
the partial Brauer monoid is contained in the partial Jones monoid if the partition that it defines is
finer than the partition defined by some element of the Jones monoid. In other words, an element of
the partial Jones monoid can be formed from some element x of the Jones monoid by replacing some
blocks [a, b] of x by singleton blocks [a], [b].

Note that, in general, the partial Jones monoid of degree n is strictly contained in the Motzkin
monoid of the same degree.

See PartialBrauerMonoid (8.3.2), JonesMonoid (8.3.3), and MotzkinMonoid (8.3.6).
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Example
gap> S := PartialJonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 7 generators>
gap> T := JonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 3 generators>
gap> U := MotzkinMonoid(4);
<regular bipartition *-monoid of degree 4 with 8 generators>
gap> IsSubsemigroup(U, S);
true
gap> IsSubsemigroup(S, T);
true
gap> Size(U);
323
gap> Size(S);
143
gap> Size(T);
14

8.3.5 AnnularJonesMonoid

. AnnularJonesMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then AnnularJonesMonoid returns the annular Jones monoid of

degree n . The annular Jones monoid is the subsemigroup of the partition monoid consisting of all
annular bipartitions whose blocks have size 2 (annular bipartitions are defined in Chapter 3). See
BrauerMonoid (8.3.2).

Example
gap> S := AnnularJonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 2 generators>

8.3.6 MotzkinMonoid

. MotzkinMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a non-negative integer, then this operation returns the Motzkin monoid of degree n . The

Motzkin monoid is the subsemigroup of the partial Brauer monoid consisting of those bipartitions that
are planar (planar bipartitions are defined in Chapter 3).

Note that the Motzkin monoid of degree n contains the partial Jones monoid of degree n , but in
general, these monoids are not equal; see PartialJonesMonoid (8.3.4).

Example
gap> S := MotzkinMonoid(4);
<regular bipartition *-monoid of degree 4 with 8 generators>
gap> T := PartialJonesMonoid(4);
<regular bipartition *-monoid of degree 4 with 7 generators>
gap> IsSubsemigroup(S, T);
true
gap> Size(S);
323
gap> Size(T);
143
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8.3.7 DualSymmetricInverseSemigroup

. DualSymmetricInverseSemigroup(n) (operation)

. DualSymmetricInverseMonoid(n) (operation)

. SingularDualSymmetricInverseMonoid(n) (operation)

. PartialDualSymmetricInverseMonoid(n) (operation)

Returns: An inverse bipartition monoid.
If n is a positive integer, then the operations DualSymmetricInverseSemigroup and

DualSymmetricInverseMonoid return the dual symmetric inverse monoid of degree n , which is
the subsemigroup of the partition monoid consisting of the block bijections of degree n .

SingularDualSymmetricInverseMonoid returns the ideal of the dual symmetric inverse
monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is
at least 2.

PartialDualSymmetricInverseMonoid returns the submonoid of the dual symmetric inverse
monoid of degree n + 1 consisting of those block bijections with n + 1 and -n - 1 in the same
block; see [KM11] and [KMU15].

See IsBlockBijection (3.5.16).
Example

gap> Number(PartitionMonoid(3), IsBlockBijection);
25
gap> S := DualSymmetricInverseSemigroup(3);
<inverse block bijection monoid of degree 3 with 3 generators>
gap> Size(S);
25
gap> S := PartialDualSymmetricInverseMonoid(5);
<inverse block bijection monoid of degree 6 with 4 generators>
gap> Size(S);
29072

8.3.8 UniformBlockBijectionMonoid

. UniformBlockBijectionMonoid(n) (operation)

. FactorisableDualSymmetricInverseMonoid(n) (operation)

. SingularUniformBlockBijectionMonoid(n) (operation)

. PartialUniformBlockBijectionMonoid(n) (operation)

. SingularFactorisableDualSymmetricInverseMonoid(n) (operation)

. PlanarUniformBlockBijectionMonoid(n) (operation)

. SingularPlanarUniformBlockBijectionMonoid(n) (operation)

Returns: An inverse bipartition monoid.
If n is a positive integer, then this operation returns the uniform block bijection monoid of degree

n . The uniform block bijection monoid is the submonoid of the partition monoid consisting of the
block bijections of degree n where the number of positive integers in a block equals the number
of negative integers in that block. The uniform block bijection monoid is also referred to as the
factorisable dual symmetric inverse monoid.

SingularUniformBlockBijectionMonoid returns the ideal of the uniform block bijection
monoid consisting of the non-invertible elements (i.e. those not in the group of units), when n is
at least 2.
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PlanarUniformBlockBijectionMonoid returns the submonoid of the uniform block bijec-
tion monoid consisting of the planar elements (i.e. those in the planar partition monoid, see
PlanarPartitionMonoid (8.3.9)).

SingularPlanarUniformBlockBijectionMonoid returns the ideal of the planar uniform block
bijection monoid consisting of the non-invertible elements (i.e. those not in the group of units), when
n is at least 2.

PartialUniformBlockBijectionMonoid returns the submonoid of the uniform block bijection
monoid of degree n + 1 consisting of those uniform block bijection with n + 1 and -n - 1 in the
same block.

See IsUniformBlockBijection (3.5.17).
Example

gap> S := UniformBlockBijectionMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> Size(PlanarUniformBlockBijectionMonoid(8));
128
gap> S := DualSymmetricInverseMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> IsFactorisableInverseMonoid(S);
false
gap> S := UniformBlockBijectionMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> IsFactorisableInverseMonoid(S);
true
gap> S := AsSemigroup(IsBipartitionSemigroup,
> SymmetricInverseMonoid(5));
<inverse bipartition monoid of degree 5 with 3 generators>
gap> IsFactorisableInverseMonoid(S);
true
gap> S := PartialUniformBlockBijectionMonoid(5);
<inverse block bijection monoid of degree 6 with 4 generators>
gap> NrIdempotents(S);
203
gap> IsFactorisableInverseMonoid(S);
true

8.3.9 PlanarPartitionMonoid

. PlanarPartitionMonoid(n) (operation)

. SingularPlanarPartitionMonoid(n) (operation)

Returns: A bipartition monoid.
If n is a positive integer, then this operation returns the planar partition monoid of degree n which

is the monoid consisting of all the planar bipartitions of degree n (planar bipartitions are defined in
Chapter 3).

SingularPlanarPartitionMonoid returns the ideal of the planar partition monoid consisting
of the non-invertible elements (i.e. those not in the group of units).

Example
gap> S := PlanarPartitionMonoid(3);
<regular bipartition *-monoid of degree 3 with 5 generators>
gap> Size(S);
132
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gap> T := SingularPlanarPartitionMonoid(3);
<regular bipartition *-semigroup ideal of degree 3 with 1 generator>
gap> Size(T);
131
gap> Difference(S, T);
[ <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]> ]

8.3.10 ModularPartitionMonoid

. ModularPartitionMonoid(m, n) (operation)

. SingularModularPartitionMonoid(m, n) (operation)

. PlanarModularPartitionMonoid(m, n) (operation)

. SingularPlanarModularPartitionMonoid(m, n) (operation)

Returns: A bipartition monoid.
If m and n are positive integers, then this operation returns the modular-m partition monoid of

degree n . The modular-m partition monoid is the submonoid of the partition monoid such that the
numbers of positive and negative integers contained in each block are congruent mod m .

SingularModularPartitionMonoid returns the ideal of the modular partition monoid consist-
ing of the non-invertible elements (i.e. those not in the group of units), when either m = n = 1 or
m, n > 1 .

PlanarModularPartitionMonoid returns the submonoid of the modular-m partition monoid
consisting of the planar elements (i.e. those in the planar partition monoid, see
PlanarPartitionMonoid (8.3.9)).

SingularPlanarModularPartitionMonoid returns the ideal of the planar modular partition
monoid consisting of the non-invertible elements (i.e. those not in the group of units), when either
m = n = 1 or m, n > 1 .

Example
gap> S := ModularPartitionMonoid(3, 6);
<regular bipartition *-monoid of degree 6 with 4 generators>
gap> Size(S);
36243
gap> S := SingularModularPartitionMonoid(1, 1);
<commutative inverse bipartition semigroup ideal of degree 1 with

1 generator>
gap> Size(SingularModularPartitionMonoid(2, 4));
355
gap> S := PlanarModularPartitionMonoid(4, 9);
<regular bipartition *-monoid of degree 9 with 14 generators>
gap> Size(S);
1795
gap> S := SingularPlanarModularPartitionMonoid(3, 5);
<regular bipartition *-semigroup ideal of degree 5 with 1 generator>
gap> Size(SingularPlanarModularPartitionMonoid(1, 2));
13

8.3.11 ApsisMonoid

. ApsisMonoid(m, n) (operation)

. SingularApsisMonoid(m, n) (operation)
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. CrossedApsisMonoid(m, n) (operation)

. SingularCrossedApsisMonoid(m, n) (operation)

Returns: A bipartition monoid.
If m and n are positive integers, then this operation returns the m -apsis monoid of degree n .

The m -apsis monoid is the monoid of bipartitions generated when the diapses in generators of the
Jones monoid are replaced with m -apses. Note that an m -apsis is a block that contains precisely m
consecutive integers.

SingularApsisMonoid returns the ideal of the apsis monoid consisting of the non-invertible
elements (i.e. those not in the group of units), when m ≤ n .

CrossedApsisGeneratedMonoid returns the semigroup generated by the symmetric group of
degree n and the m -apsis monoid of degree n .

SingularCrossedApsisMonoid returns the ideal of the crossed apsis monoid consisting of the
non-invertible elements (i.e. those not in the group of units), when m <= n .

Example
gap> S := ApsisMonoid(3, 7);
<regular bipartition *-monoid of degree 7 with 5 generators>
gap> Size(S);
320
gap> T := SingularApsisMonoid(3, 7);
<regular bipartition *-semigroup ideal of degree 7 with 1 generator>
gap> Difference(S, T) = [One(S)];
true
gap> Size(CrossedApsisMonoid(2, 5));
945
gap> SingularCrossedApsisMonoid(4, 6);
<regular bipartition *-semigroup ideal of degree 6 with 1 generator>

8.4 Standard PBR semigroups

In this section, we describe the operations in Semigroups that can be used to create standard examples
of semigroups of partitioned binary relations (PBRs). See Chapter 4 for more information about PBRs.

8.4.1 FullPBRMonoid

. FullPBRMonoid(n) (operation)

Returns: A PBR monoid.
If n is a positive integer not greater than 2, then this operation returns the monoid consisting of all

of the partitioned binary relations (PBRs) of degree n ; called the full PBR monoid. There are 2 ^ ((2
* n) ^ 2) PBRs of degree n . The full PBR monoid of degree n is currently too large to compute
when n ≥ 3.

The full PBR monoid is not regular in general.
Example

gap> S := FullPBRMonoid(1);
<pbr monoid of degree 1 with 4 generators>
gap> S := FullPBRMonoid(2);
<pbr monoid of degree 2 with 10 generators>
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8.5 Semigroups of matrices over a finite field

In this section, we describe the operations in Semigroups that can be used to create semigroups of
matrices over a finite field that belonging to several standard classes of example. See the section
‘Matrices over finite fields’ for more information about matrices over a finite field.

8.5.1 FullMatrixMonoid

. FullMatrixMonoid(d, q) (operation)

. GeneralLinearMonoid(d, q) (operation)

. GLM(d, q) (operation)

Returns: A matrix monoid.
These operations return the full matrix monoid of d by d matrices over the field with q elements.

The full matrix monoid, also known as the general linear monoid, with these parameters, is the monoid
consisting of all d by d matrices with entries from the field GF(q). This monoid has q ^ (d ^ 2)
elements.

Example
gap> S := FullMatrixMonoid(2, 4);
<general linear monoid 2x2 over GF(2^2)>
gap> Size(S);
256
gap> S = GeneralLinearMonoid(2, 4);
true
gap> GLM(2, 2);
<general linear monoid 2x2 over GF(2)>

8.5.2 SpecialLinearMonoid

. SpecialLinearMonoid(d, q) (operation)

. SLM(d, q) (operation)

Returns: A matrix monoid.
These operations return the special linear monoid of d by d matrices over the field with q ele-

ments. The special linear monoid is the monoid consisting of all d by d matrices with entries from
the field GF(q) that have determinant 0 or 1. In other words, the special linear monoid is formed from
the general linear monoid of the same parameters by replacing its group of units (the general linear
group) by the special linear group.

Example
gap> S := SpecialLinearMonoid(2, 4);
<regular monoid of 2x2 matrices over GF(2^2) with 3 generators>
gap> S = SLM(2, 4);
true
gap> Size(S);
136

8.5.3 IsFullMatrixMonoid

. IsFullMatrixMonoid(S) (property)

. IsGeneralLinearMonoid(S) (property)
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IsFullMatrixMonoid and IsGeneralLinearMonoid return true if the semigroup S was cre-
ated using either of the commands FullMatrixMonoid (8.5.1) or GeneralLinearMonoid (8.5.1) and
false otherwise.

Example
gap> S := RandomSemigroup(IsTransformationSemigroup, 4, 4);;
gap> IsFullMatrixMonoid(S);
false
gap> S := GeneralLinearMonoid(3, 3);
<general linear monoid 3x3 over GF(3)>
gap> IsFullMatrixMonoid(S);
true

8.6 Semigroups of boolean matrices

In this section, we describe the operations in Semigroups that can be used to create semigroups of
boolean matrices belonging to several standard classes of example. See the section ‘Boolean matrices’
for more information about boolean matrices.

8.6.1 FullBooleanMatMonoid

. FullBooleanMatMonoid(d) (operation)

Returns: The monoid of all boolean matrices of dimension d .
If d is a positive integer less than or equal to 5, then this operation returns the full boolean matrix

monoid of dimension d . The full boolean matrix monoid of dimension d is the monoid consisting of
all d by d boolean matrices, and has 2 ^ (n ^ 2) matrices.

FullBooleanMatMonoid returns a monoid with a generating set that is minimal in size. These
generating sets are pre-computed.

Example
gap> S := FullBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 5 generators>
gap> Size(S);
512

8.6.2 RegularBooleanMatMonoid

. RegularBooleanMatMonoid(d) (operation)

Returns: A monoid of boolean matrices.
If d is a positive integer, then RegularBooleanMatMonoid returns the monoid generated

by the regular d by d boolean matrices. Note that this monoid is not regular in general.
RegularBooleanMatMonoid(d) is generated by the four boolean matrices A, B, C, D, whose
true entries are:

• A[i][i + 1] and A[n][1], for i ∈ {1, . . . ,n−1};

• B[1][2], B[2][1], and B[i][i] for i ∈ {3, . . . ,n};

• C[1][2] and C[i][i], for i ∈ {2, . . . ,n−1}; and

• D[1][2], D[i][i], for i ∈ {2, . . . ,n}, and D[n][1].

This monoid has nearly 2 ^ (n ^ 2) elements.
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8.6.3 ReflexiveBooleanMatMonoid

. ReflexiveBooleanMatMonoid(d) (operation)

Returns: A monoid of boolean matrices.
If d is a positive integer less than or equal to 5, then this operation returns the monoid consisting

of all reflexive d by d boolean matrices. A boolean matrix mat is reflexive if each entry of its leading
diagonal is true, i.e. if mat[i][i] is true for all i ∈ {1, . . . ,d}.

The generating sets for the monoids returned by ReflexiveBooleanMatMonoid are pre-
computed, and read from a file. Small generating sets are not known for d ≥ 6.

Example
gap> S := ReflexiveBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 8 generators>
gap> Size(S);
64

8.6.4 HallMonoid

. HallMonoid(d) (operation)

Returns: A monoid of boolean matrices.
If d is a positive integer less than or equal to 5, then this operation returns the monoid consisting

Hall matrices of degree d . A Hall matrix is a boolean matrix in which every column and every row
contains at least one true entry. Equivalently, a Hall matrix is a boolean matrix than contains a
permutation.

A Hall matrix of dimension d corresponds to a solution to Hall’s Marriage Problem, when there
are two collection of d people. Thus the number of solutions to Hall’s Marriage Problem in this
instance is the number of elements of HallMonoid(d).

The operation HallMonoid returns a monoid with a generating set that is minimal in size. These
generating sets are pre-computed, and a minimal generating set is not known for larger dimensions.

Example
gap> S := HallMonoid(3);
<monoid of 3x3 boolean matrices with 4 generators>
gap> Size(S);
247

8.6.5 GossipMonoid

. GossipMonoid(d) (operation)

Returns: A monoid of boolean matrices.
If d is a positive integer, then this operation returns the d by d gossip monoid. The gossip monoid

is defined to be the monoid generated by the collection of all d by d boolean matrices that define an
equivalence relation; see IsEquivalenceBooleanMat (5.3.16).

For d ≥ 2, GossipMonoid(d) returns a monoid with
(d

2

)
generators. The generating set is the

collection of boolean matrices that define an equivalence relation that has one equivalence class of
size 2, and no other non-trivial equivalence classes. Note that this generating set is strictly contained
within the collection of all equivalence relation boolean matrices.

The number of elements of GossipMonoid(d) is known for some small values of d — see
[BDF15] for more information about the gossip monoid, and its size for d ≤ 9.
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Example
gap> S := GossipMonoid(3);
<monoid of 3x3 boolean matrices with 3 generators>
gap> Size(S);
11

8.6.6 TriangularBooleanMatMonoid

. TriangularBooleanMatMonoid(d) (operation)

. UnitriangularBooleanMatMonoid(d) (operation)

Returns: A monoid of boolean matrices.
If d is a positive integer, then TriangularBooleanMatMonoid returns the monoid consisting of

the upper-triangular d by d boolean matrices. A boolean matrix is upper-triangular if the entry in
row i, column j is false whenever i > j.

UnitriangularBooleanMatMonoid returns the subsemigroup of the
TriangularBooleanMatMonoid that consists of reflexive upper-triangular boolean matrices;
see ReflexiveBooleanMatMonoid (8.6.3).

Example
gap> S := TriangularBooleanMatMonoid(3);
<monoid of 3x3 boolean matrices with 6 generators>
gap> Size(S);
64
gap> T := UnitriangularBooleanMatMonoid(4);
<monoid of 4x4 boolean matrices with 6 generators>
gap> Size(T);
64

8.7 Semigroups of matrices over a semiring

In this section, we describe the operations in Semigroups that can be used to create semigroups of
matices over a semiring that belong to several standard classes of example. See Chapter 5 for more
information about matrices over a semiring.

8.7.1 FullTropicalMaxPlusMonoid

. FullTropicalMaxPlusMonoid(d, t) (operation)

Returns: A monoid of tropical max plus matrices.
If d = 2 and t is a positive integer, then FullTropicalMaxPlusMonoid returns the monoid

consisting of all d by d matrices with entries from the tropical max-plus semiring with threshold t .
A small generating set for larger values of d is not currently known.

This monoid contains (t + 2) ^ (d ^ 2) elements.
Example

gap> S := FullTropicalMaxPlusMonoid(2, 5);
<monoid of 2x2 tropical max-plus matrices with 24 generators>
gap> Size(S);
2401
gap> (5 + 2) ^ (2 ^ 2);
2401
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8.7.2 FullTropicalMinPlusMonoid

. FullTropicalMinPlusMonoid(d, t) (operation)

Returns: A monoid of tropical min plus matrices.
If d is equal to 2 or 3, and t is a positive integer, then FullTropicalMinPlusMonoid returns

the monoid consisting of all d by d matrices with entries from the tropical min-plus semiring with
threshold t . A small generating set for larger values of d is not currently known.

This monoid contains (t + 2) ^ (d ^ 2) elements.
Example

gap> S := FullTropicalMinPlusMonoid(2, 3);
<monoid of 2x2 tropical min-plus matrices with 7 generators>
gap> Size(S);
625
gap> (3 + 2) ^ (2 ^ 2);
625



Chapter 9

Standard constructions

In this chapter we describe some standard semigroup constructions which are available in the Semi-
groups package.

9.1 Standard constructions

In this section, we describe the functions in Semigroups that can be used to create standard semigroup
constructions in various representations. For all of the constructions, the default representation is as
a semigroup of transformations. In general, these functions do not return a representation of minimal
degree.

9.1.1 TrivialSemigroup

. TrivialSemigroup([filt, ][deg]) (function)

Returns: A trivial semigroup.
A TRIVIAL semigroup is a semigroup with precisely one element. This function returns a trivial

semigroup in the representation given by the filter filter , and (if possible) with the degree of the
representation given by the non-negative integer deg .

The optional argument filt may be one of the following:

• IsTransformationSemigroup (the default, if filt is not specified),

• IsPartialPermSemigroup,

• IsBipartitionSemigroup,

• IsBlockBijectionSemigroup,

• IsPBRSemigroup,

• IsBooleanMatSemigroup.

If the optional argument deg is not specified, then the smallest possible degree will be used.
Example

gap> S := TrivialSemigroup();
<trivial transformation group of degree 0 with 1 generator>
gap> Size(S);
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1
gap> S := TrivialSemigroup(3);
<trivial transformation group of degree 3 with 1 generator>
gap> S := TrivialSemigroup(IsBipartitionSemigroup, 2);
<trivial block bijection group of degree 2 with 1 generator>
gap> Elements(S);
[ <block bijection: [ 1, 2, -1, -2 ]> ]

9.1.2 MonogenicSemigroup

. MonogenicSemigroup([filt, ]m, r) (function)

Returns: A monogenic semigroup with index m and period r .
If m and r are positive integers, then this function returns a monogenic semigroup S with index m

and period r in the representation given by the filter filt .
The optional argument filt may be one of the following:

• IsTransformationSemigroup (the default, if filt is not specified),

• IsPartialPermSemigroup,

• IsBipartitionSemigroup,

• IsBlockBijectionSemigroup,

• IsPBRSemigroup,

• IsBooleanMatSemigroup.

The semigroup S is generated by a single element, f . S consists of the elements
f , f 2, . . . , f m, . . . , f m+r−1. The minimal ideal of S consists of the elements f m, . . . , f m+r−1 and is
isomorphic to the cyclic group of order r.

See IsMonogenicSemigroup (15.1.11) for more information about monogenic semigroups.
Example

gap> S := MonogenicSemigroup(5, 3);
<commutative non-regular transformation semigroup of size 7, degree 8
with 1 generator>

gap> IsMonogenicSemigroup(S);
true
gap> I := MinimalIdeal(S);;
gap> IsGroupAsSemigroup(I);
true
gap> StructureDescription(I);
"C3"
gap> S := MonogenicSemigroup(IsBlockBijectionSemigroup, 9, 1);
<commutative non-regular block bijection semigroup of size 9,
degree 10 with 1 generator>

9.1.3 RectangularBand

. RectangularBand([filt, ]m, n) (function)

Returns: An m by n rectangular band.
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If m and n are positive integers, then this function returns a semigroup isomorphic to an m by n
rectangular band, in the representation given by the filter filt .

The optional argument filt may be one of the following:

• IsTransformationSemigroup (the default, if filt is not specified),

• IsBipartitionSemigroup,

• IsPBRSemigroup,

• IsBooleanMatSemigroup,

• IsReesMatrixSemigroup.

See IsRectangularBand (15.1.15) for more information about rectangular bands.
Example

gap> T := RectangularBand(5, 6);
<regular transformation semigroup of size 30, degree 10 with 6
generators>

gap> IsRectangularBand(T);
true
gap> S := RectangularBand(IsReesMatrixSemigroup, 4, 8);
<Rees matrix semigroup 4x8 over Group(())>
gap> IsRectangularBand(S);
true
gap> IsCompletelySimpleSemigroup(S) and IsHTrivial(S);
true

9.1.4 ZeroSemigroup

. ZeroSemigroup([filt, ]n) (function)

Returns: A zero semigroup of order n .
If n is a positive integer, then this function returns a zero semigroup of order n in the representation

given by the filter filt .
The optional argument filt may be one of the following:

• IsTransformationSemigroup (the default, if filt is not specified),

• IsPartialPermSemigroup,

• IsBipartitionSemigroup,

• IsBlockBijectionSemigroup,

• IsPBRSemigroup,

• IsBooleanMatSemigroup,

• IsReesZeroMatrixSemigroup (provided that n > 1).

See IsZeroSemigroup (15.1.27) for more information about zero semigroups.
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Example
gap> S := ZeroSemigroup(5);
<commutative non-regular transformation semigroup of size 5, degree 5
with 4 generators>

gap> IsZeroSemigroup(S);
true
gap> S := ZeroSemigroup(IsPartialPermSemigroup, 15);
<commutative non-regular partial perm semigroup of size 15, rank 14
with 14 generators>

gap> Size(S);
15
gap> z := MultiplicativeZero(S);
<empty partial perm>
gap> IsZeroSemigroup(S);
true
gap> ForAll(S, x -> ForAll(S, y -> x * y = z));
true

9.1.5 LeftZeroSemigroup

. LeftZeroSemigroup([filt, ]n) (function)

. RightZeroSemigroup([filt, ]n) (function)

Returns: A left zero (or right zero) semigroup of order n .
If n is a positive integer, then this function returns a left zero (or right zero, as appropriate)

semigroup of order n in the representation given by the filter filt . If filt is not specified then the
default representation is IsTransformationSemigroup.

The function LeftZeroSemigroup([filt,] n) simply calls RectangularBand([filt,] n,
1) and the function RightZeroSemigroup([filt,] n) simply calls RectangularBand([filt,]
1, n).

For more information about RectangularBand, including its permitted values of filt , see
RectangularBand (9.1.3). See IsLeftZeroSemigroup (15.1.10) and IsRightZeroSemigroup
(15.1.18) for more information about left zero and right zero semigroups.

Example
gap> S := LeftZeroSemigroup(20);
<transformation semigroup of degree 6 with 20 generators>
gap> IsLeftZeroSemigroup(S);
true
gap> ForAll(Tuples(S, 2), p -> p[1] * p[2] = p[1]);
true
gap> S := RightZeroSemigroup(IsBipartitionSemigroup, 5);
<regular bipartition semigroup of size 5, degree 3 with 5 generators>
gap> IsRightZeroSemigroup(S);
true

9.1.6 BrandtSemigroup

. BrandtSemigroup([[filt, ]G, ]n) (function)

Returns: An n by n Brandt semigroup over the group G .
If n is a positive integer, then this function returns an n by n Brandt semigroup over the group G

in the representation given by the filter filt .
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The optional argument filt can be any of the following:

• IsPartialPermSemigroup (the default, if filt is not specified),

• IsReesZeroMatrixSemigroup,

• IsTransformationSemigroup,

• IsBipartitionSemigroup,

• IsPBRSemigroup,

• IsBooleanMatSemigroup,

• IsNTPMatrixSemigroup,

• IsMaxPlusMatrixSemigroup,

• IsMinPlusMatrixSemigroup,

• IsTropicalMaxPlusMatrixSemigroup,

• IsTropicalMinPlusMatrixSemigroup,

• IsProjectiveMaxPlusMatrixSemigroup,

• IsIntegerMatrixSemigroup.

The optional argument G defaults to a trivial permutation group. If present G must be a permutation
group, unless filt is IsReesZeroMatrixSemigroup when G may be any type of finite group.

See IsBrandtSemigroup (16.2.2) for more information about Brandt semigroups.
Example

gap> S := BrandtSemigroup(5);
<0-simple inverse partial perm semigroup of rank 5 with 4 generators>
gap> IsBrandtSemigroup(S);
true
gap> S := BrandtSemigroup(IsTransformationSemigroup, 15);
<0-simple transformation semigroup of degree 16 with 28 generators>
gap> Size(S);
226
gap> MultiplicativeZero(S);
Transformation( [ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,

16, 16, 16 ] )
gap> S := BrandtSemigroup(Group((1, 2)), 3);
<0-simple inverse partial perm semigroup of rank 6 with 3 generators>
gap> S := BrandtSemigroup(IsTransformationSemigroup, Group((1, 2)), 3);
<0-simple transformation semigroup of degree 7 with 5 generators>
gap> S := BrandtSemigroup(IsReesZeroMatrixSemigroup,
> DihedralGroup(4),
> 2);
<Rees 0-matrix semigroup 2x2 over <pc group of size 4 with
2 generators>>



Chapter 10

Free objects

This chapter describes the functions in Semigroups for dealing with free inverse semigroups and free
bands. This part of the manual and the functions described herein were written by Julius Jonušas.

10.1 Free inverse semigroups

An inverse semigroup F is said to be free on a non-empty set X if there is a map f from F to X such
that for every inverse semigroup S and a map g from X to S there exists a unique homomorphism g′

from F to S such that f g′ = g. Moreover, by this universal property, every inverse semigroup can be
expressed as a quotient of a free inverse semigroup.

The internal representation of an element of a free inverse semigroup uses a Munn tree. A Munn
tree is a directed tree with distinguished start and terminal vertices and where the edges are labeled
by generators so that two edges labeled by the same generator are only incident to the same vertex if
one of the edges is coming in and the other is leaving the vertex. For more information regarding free
inverse semigroups and the Munn representations see Section 5.10 of [How95].

See also (Reference: Inverse semigroups and monoids), (Reference: Partial permutations)
and (Reference: Free Groups, Monoids and Semigroups).

An element of a free inverse semigroup in Semigroups is displayed, by default, as a shortest
word corresponding to the element. However, there might be more than one word of the minimum
length. For example, if x and y are generators of a free inverse semigroups, then

xyy−1xx−1x−1 = xxx−1yy−1x−1.

See MinimalWord (10.3.2). Therefore we provide a another method for printing elements of a free
inverse semigroup: a unique canonical form. Suppose an element of a free inverse semigroup is given
as a Munn tree. Let L be the set of words corresponding to the shortest paths from the start vertex to
the leaves of the tree. Also let w be the word corresponding to the shortest path from the start vertex
to the terminal vertex. The word vv−1 is an idempotent for every v in L. The canonical form is given
by multiplying these idempotents, in shortlex order, and then postmultiplying by w. For example,
consider the word xyy−1xx−1x−1 again. The words corresponding to the paths to the leaves are in this
case xx and xy. And w is an empty word since start and terminal vertices are the same. Therefore, the
canonical form is

xxx−1x−1xyy−1x−1.

See CanonicalForm (10.3.1).
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10.1.1 FreeInverseSemigroup (for a given rank)

. FreeInverseSemigroup(rank[, name]) (function)

. FreeInverseSemigroup(name1, name2, ...) (function)

. FreeInverseSemigroup(names) (function)

Returns: A free inverse semigroup.
Returns a free inverse semigroup on rank generators, where rank is a positive integer. If rank is

not specified, the number of names is used. If S is a free inverse semigroup, then the generators can
be accessed by S.1, S.2 and so on.

Example
gap> S := FreeInverseSemigroup(7);
<free inverse semigroup on the generators
[ x1, x2, x3, x4, x5, x6, x7 ]>
gap> S := FreeInverseSemigroup(7, "s");
<free inverse semigroup on the generators
[ s1, s2, s3, s4, s5, s6, s7 ]>
gap> S := FreeInverseSemigroup("a", "b", "c");
<free inverse semigroup on the generators [ a, b, c ]>
gap> S := FreeInverseSemigroup(["a", "b", "c"]);
<free inverse semigroup on the generators [ a, b, c ]>
gap> S.1;
a
gap> S.2;
b

10.1.2 IsFreeInverseSemigroupCategory

. IsFreeInverseSemigroupCategory(obj) (Category)

Every free inverse semigroup in GAP created by FreeInverseSemigroup (10.1.1) be-
longs to the category IsFreeInverseSemigroup. Basic operations for a free inverse semi-
group are: GeneratorsOfInverseSemigroup (Reference: GeneratorsOfInverseSemigroup) and
GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup). Elements of a free inverse semi-
group belong to the category IsFreeInverseSemigroupElement (10.1.4).

10.1.3 IsFreeInverseSemigroup

. IsFreeInverseSemigroup(S) (property)

Returns: true or false
Attempts to determine whether the given semigroup S is a free inverse semigroup.

10.1.4 IsFreeInverseSemigroupElement

. IsFreeInverseSemigroupElement (Category)

Every element of a free inverse semigroup belongs to the category
IsFreeInverseSemigroupElement.
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10.1.5 IsFreeInverseSemigroupElementCollection

. IsFreeInverseSemigroupElementCollection (Category)

Every collection of elements of a free inverse semigroup belongs to the category
IsFreeInverseSemigroupElementCollection. For example, every free inverse semigroup be-
longs to IsFreeInverseSemigroupElementCollection.

10.2 Displaying free inverse semigroup elements

There is a way to change how GAP displays free inverse semigroup elements using the user preference
FreeInverseSemigroupElementDisplay. See UserPreference (Reference: UserPreference)
for more information about user preferences.

There are two possible values for FreeInverseSemigroupElementDisplay:

minimal
With this option selected, GAP will display a shortest word corresponding to the free inverse
semigroup element. However, this shortest word is not unique. This is a default setting.

canonical
With this option selected, GAP will display a free inverse semigroup element in the canonical
form.

Example
gap> SetUserPreference("semigroups",
> "FreeInverseSemigroupElementDisplay",
> "minimal");
gap> S := FreeInverseSemigroup(2);
<free inverse semigroup on the generators [ x1, x2 ]>
gap> S.1 * S.2;
x1*x2
gap> SetUserPreference("semigroups",
> "FreeInverseSemigroupElementDisplay",
> "canonical");
gap> S.1 * S.2;
x1x2x2^-1x1^-1x1x2

10.3 Operators and operations for free inverse semigroup elements

w ^ -1
returns the semigroup inverse of the free inverse semigroup element w .

u * v
returns the product of two free inverse semigroup elements u and v .

u = v
checks if two free inverse semigroup elements are equal, by comparing their canonical forms.
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10.3.1 CanonicalForm (for a free inverse semigroup element)

. CanonicalForm(w) (attribute)

Returns: A string.
Every element of a free inverse semigroup has a unique canonical form. If w is such an element,

then CanonicalForm returns the canonical form of w as a string.
Example

gap> S := FreeInverseSemigroup(3);
<free inverse semigroup on the generators [ x1, x2, x3 ]>
gap> x := S.1; y := S.2;
x1
x2
gap> CanonicalForm(x ^ 3 * y ^ 3);
"x1x1x1x2x2x2x2^-1x2^-1x2^-1x1^-1x1^-1x1^-1x1x1x1x2x2x2"

10.3.2 MinimalWord (for free inverse semigroup element)

. MinimalWord(w) (attribute)

Returns: A string.
For an element w of a free inverse semigroup S, MinimalWord returns a word of minimal length

equal to w in S as a string.
Note that there maybe more than one word of minimal length which is equal to w in S.

Example
gap> S := FreeInverseSemigroup(3);
<free inverse semigroup on the generators [ x1, x2, x3 ]>
gap> x := S.1;
x1
gap> y := S.2;
x2
gap> MinimalWord(x ^ 3 * y ^ 3);
"x1*x1*x1*x2*x2*x2"

10.4 Free bands

A semigroup B is a free band on a non-empty set X if B is a band with a map f from B to X such that
for every band S and every map g from X to B there exists a unique homomorphism g′ from B to S
such that f g′ = g. The free band on a set X is unique up to isomorphism. Moreover, by the universal
property, every band can be expressed as a quotient of a free band.

For an alternative description of a free band. Suppose that X is a non-empty set and X+ a free
semigroup on X . Also suppose that b is the smallest congurance on X+ containing the set

{(w2,w) : w ∈ X+}.

Then the free band on X is isomorphic to the quotient of X+ by b. See Section 4.5 of [How95] for
more information on free bands.
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10.4.1 FreeBand (for a given rank)

. FreeBand(rank[, name]) (function)

. FreeBand(name1, name2, .., .) (function)

. FreeBand(names) (function)

Returns: A free band.
Returns a free band on rank generators, for a positive integer rank . If rank is not specified, the

number of names is used. The resulting semigroup is always finite.
Example

gap> FreeBand(6);
<free band on the generators [ x1, x2, x3, x4, x5, x6 ]>
gap> FreeBand(6, "b");
<free band on the generators [ b1, b2, b3, b4, b5, b6 ]>
gap> FreeBand("a", "b", "c");
<free band on the generators [ a, b, c ]>
gap> FreeBand("a", "b", "c");
<free band on the generators [ a, b, c ]>
gap> S := FreeBand(["a", "b", "c"]);
<free band on the generators [ a, b, c ]>
gap> Size(S);
159
gap> gens := Generators(S);
[ a, b, c ]
gap> S.1 * S.2;
ab

10.4.2 IsFreeBandCategory

. IsFreeBandCategory (Category)

IsFreeBandCategory is the category of semigroups created using FreeBand (10.4.1).
Example

gap> IsFreeBandCategory(FreeBand(3));
true
gap> IsFreeBand(SymmetricGroup(6));
false

10.4.3 IsFreeBand (for a given semigroup)

. IsFreeBand(S) (property)

Returns: true or false.
IsFreeBand returns true if the given semigroup S is a free band.

Example
gap> IsFreeBand(FreeBand(3));
true
gap> IsFreeBand(SymmetricGroup(6));
false
gap> IsFreeBand(FullTransformationMonoid(7));
false
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10.4.4 IsFreeBandElement

. IsFreeBandElement (Category)

IsFreeBandElement is a Category containing the elements of a free band.
Example

gap> IsFreeBandElement(Generators(FreeBand(4))[1]);
true
gap> IsFreeBandElement(Transformation([1, 3, 4, 1]));
false
gap> IsFreeBandElement((1, 2, 3, 4));
false

10.4.5 IsFreeBandElementCollection

. IsFreeBandElementCollection (Category)

Every collection of elements of a free band belongs to the category
IsFreeBandElementCollection. For example, every free band belongs to
IsFreeBandElementCollection.

10.4.6 IsFreeBandSubsemigroup

. IsFreeBandSubsemigroup (filter)

IsFreeBandSubsemigroup is a synonym for IsSemigroup and
IsFreeBandElementCollection.

Example
gap> S := FreeBand(2);
<free band on the generators [ x1, x2 ]>
gap> x := S.1;
x1
gap> y := S.2;
x2
gap> new := Semigroup([x * y, x]);
<semigroup with 2 generators>
gap> IsFreeBand(new);
false
gap> IsFreeBandSubsemigroup(new);
true

10.4.7 ContentOfFreeBandElement

. ContentOfFreeBandElement(x) (attribute)

. ContentOfFreeBandElementCollection(coll) (attribute)

Returns: A list of integers
The content of a free band element x is the set of generators appearing in the word representing

the element x of the free band.
The function ContentOfFreeBandElement returns the content of free band element x repre-

sented as a list of integers, where 1 represents the first generator, 2 the second generator, and so on.
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The function ContentOfFreeBandElementCollection returns the the least list C for the col-
lection of free band elements coll such that the content of every element in coll is contained in
C.

Example
gap> S := FreeBand(2);
<free band on the generators [ x1, x2 ]>
gap> x := S.1;
x1
gap> y := S.2;
x2
gap> ContentOfFreeBandElement(x);
[ 1 ]
gap> ContentOfFreeBandElement(x * y);
[ 1, 2 ]
gap> ContentOfFreeBandElement(x * y * x);
[ 1, 2 ]
gap> ContentOfFreeBandElementCollection([x, y]);
[ 1, 2 ]

10.5 Operators and operations for free band elements

u * v
returns the product of two free band elements u and v .

u = v
checks if two free band elements are equal.

u < v
compares the sizes of the internal representations of two free band elements.

10.5.1 GreensDClassOfElement (for a free band and element)

. GreensDClassOfElement(S, x) (operation)

Returns: A Green’s D-class
Let S be a free band. Two elements of S are D-related if and only if they have the same content

i.e. the set of generators appearing in any factorization of the elements. Therefore, a D-class of a free
band element x is the set of elements of S which have the same content as x .

Example
gap> S := FreeBand(3, "b");
<free band on the generators [ b1, b2, b3 ]>
gap> x := S.1 * S.2;
b1b2
gap> D := GreensDClassOfElement(S, x);
<Green’s D-class: b1b2>
gap> IsGreensDClass(D);
true



Chapter 11

Graph inverse semigroups

In this chapter we describe a class of semigroups arising from directed graphs.
The functionality in Semigroups for graph inverse semigroups was written jointly by Zak Mesyan

(UCCS) and J. D. Mitchell (St Andrews).

11.1 Creating graph inverse semigroups

11.1.1 GraphInverseSemigroup

. GraphInverseSemigroup(E) (operation)

Returns: A graph inverse semigroup.
If E is a digraph (i.e. it satisfies IsDigraph (Digraphs: IsDigraph)), then

GraphInverseSemigroup returns the graph inverse semigroup G(E) where, roughly speaking, el-
ements correspond to paths in the graph E .

Let us describe E as a digraph E = (E0,E1,r,s), where E0 is the set of vertices, E1 is the set
of edges, and r and s are functions E1 → E0 giving the range and source of an edge, respectively.
The graph inverse semigroup G(E) of E is the semigroup-with-zero generated by the sets E 0 and E 1,
together with a set of variables {e−1 | e ∈ E 1}, satisfying the following relations for all v,w ∈ E 0 and
e, f ∈ E 1:

(V) vw = δv,w · v,

(E1) s(e) · e = e · r(e) = e,

(E2) r(e) · e−1 = e−1 · s(e) = e−1,

(CK1)
e−1 · f = δe, f · r(e).

(Here δ is the Kronecker delta.) We define v−1 = v for each v ∈ E0, and for any path y = e1 . . .en

(e1 . . .en ∈ E1) we let y−1 = e−1
n . . .e−1

1 . With this notation, every nonzero element of G(E) can be
written uniquely as xy−1 for some paths x,y in E, by the CK1 relation.

For a more complete description, see [MM16].
Example

gap> gr := Digraph([[2, 5, 8, 10], [2, 3, 4, 5, 6, 8, 9, 10], [1],
> [3, 5, 7, 8, 10], [2, 5, 7], [3, 6, 7, 9, 10],
> [1, 4], [1, 5, 9], [1, 2, 7, 8], [3, 5]]);
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<digraph with 10 vertices, 37 edges>
gap> S := GraphInverseSemigroup(gr);
<infinite graph inverse semigroup with 10 vertices, 37 edges>
gap> GeneratorsOfInverseSemigroup(S);
[ e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_10, e_11, e_12,

e_13, e_14, e_15, e_16, e_17, e_18, e_19, e_20, e_21, e_22, e_23,
e_24, e_25, e_26, e_27, e_28, e_29, e_30, e_31, e_32, e_33, e_34,
e_35, e_36, e_37, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_10

]
gap> AssignGeneratorVariables(S);
gap> e_1 * e_1 ^ -1;
e_1e_1^-1
gap> e_1 ^ -1 * e_1 ^ -1;
0
gap> e_1 ^ -1 * e_1;
v_2

11.1.2 Range (for a graph inverse semigroup element)

. Range(x) (attribute)

. Source(x) (attribute)

Returns: A graph inverse semigroup element.
If x is an element of a graph inverse semigroup (i.e. it satisfies

IsGraphInverseSemigroupElement (11.1.4)), then Range and Source give, respectively, the
start and end vertices of x when viewed as a path in the digraph over which the semigroup is defined.

For a fuller description, see GraphInverseSemigroup (11.1.1).
Example

gap> gr := Digraph([[], [1], [3]]);;
gap> S := GraphInverseSemigroup(gr);;
gap> e := S.1;
e_1
gap> Source(e);
v_2
gap> Range(e);
v_1

11.1.3 IsVertex (for a graph inverse semigroup element)

. IsVertex(x) (operation)

Returns: true or false.
If x is an element of a graph inverse semigroup (i.e. it satisfies

IsGraphInverseSemigroupElement (11.1.4)), then this attribute returns true if x corresponds to
a vertex in the digraph over which the semigroup is defined, and false otherwise.

For a fuller description, see GraphInverseSemigroup (11.1.1).
Example

gap> gr := Digraph([[], [1], [3]]);;
gap> S := GraphInverseSemigroup(gr);;
gap> e := S.1;
e_1
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gap> IsVertex(e);
false
gap> v := S.3;
v_1
gap> IsVertex(v);
true
gap> z := v * e;
0
gap> IsVertex(z);
false

11.1.4 IsGraphInverseSemigroup

. IsGraphInverseSemigroup(x) (filter)

. IsGraphInverseSemigroupElement(x) (filter)

Returns: true or false.
The category IsGraphInverseSemigroup contains any semigroup defined over

a digraph using the GraphInverseSemigroup (11.1.1) operation. The category
IsGraphInverseSemigroupElement contains any element contained in such a semigroup.

Example
gap> gr := Digraph([[], [1], [3]]);;
gap> S := GraphInverseSemigroup(gr);
<infinite graph inverse semigroup with 3 vertices, 2 edges>
gap> IsGraphInverseSemigroup(S);
true
gap> x := GeneratorsOfSemigroup(S)[1];
e_1
gap> IsGraphInverseSemigroupElement(x);
true

11.1.5 GraphOfGraphInverseSemigroup

. GraphOfGraphInverseSemigroup(S) (attribute)

Returns: A digraph.
If S is a graph inverse semigroup (i.e. it satisfies IsGraphInverseSemigroup (11.1.4)), then this

attribute returns the original digraph over which S was defined (most likely the argument given to
GraphInverseSemigroup (11.1.1) to create S ).

Example
gap> gr := Digraph([[], [1], [3]]);
<digraph with 3 vertices, 2 edges>
gap> S := GraphInverseSemigroup(gr);;
gap> GraphOfGraphInverseSemigroup(S);
<digraph with 3 vertices, 2 edges>

11.1.6 IsGraphInverseSemigroupElementCollection

. IsGraphInverseSemigroupElementCollection (Category)
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Every collection of elements of a graph inverse semigroup belongs to the category
IsGraphInverseSemigroupElementCollection. For example, every graph inverse semigroup be-
longs to IsGraphInverseSemigroupElementCollection.

11.1.7 IsGraphInverseSubsemigroup

. IsGraphInverseSubsemigroup (filter)

IsGraphInverseSubsemigroup is a synonym for IsSemigroup and IsInverseSemigroup and
IsGraphInverseSemigroupElementCollection.

See IsGraphInverseSemigroupElementCollection (11.1.6) and IsInverseSemigroup
(Reference: IsInverseSemigroup).

Example
gap> gr := Digraph([[], [1], [2]]);
<digraph with 3 vertices, 2 edges>
gap> S := GraphInverseSemigroup(gr);
<finite graph inverse semigroup with 3 vertices, 2 edges>
gap> Elements(S);
[ e_2^-1, e_1^-1, e_1^-1e_2^-1, 0, e_1, e_1e_1^-1, e_1e_1^-1e_2^-1,

e_2, e_2e_2^-1, e_2e_1, e_2e_1e_1^-1, e_2e_1e_1^-1e_2^-1, v_1, v_2,
v_3 ]

gap> T := InverseSemigroup(Elements(S){[3, 5]});;
gap> IsGraphInverseSubsemigroup(T);
true



Chapter 12

McAlister triple semigroups and
E-unitary inverse semigroups

In this section, we describe the functions in GAP for creating and computing with McAlister triple
semigroups and their subsemigroups. This implementation is based on the section in Chapter 5 of
[How95] but differs from the treatment in Howie by using right actions instead of left. Some defini-
tions found in the documentation are changed for this reason.

The importance of the McAlister triple semigroups lies in the fact that they are exactly the E-
unitary inverse semigroups, which are an important class in the study of inverse semigroups.

First we define E-unitary inverse semigroups. It is standard to denote the subsemigroup of a
semigroup consisting of its idempotents by E. A semigroup S is said to be E-unitary if for all e in E
and for all s in S:

• es ∈ E implies s ∈ E,

• se ∈ E implies s ∈ E.

For inverse semigroups these two conditions are equivalent. We are only interested in E-unitary
inverse semigroups. Before defining McAlister triple semigroups we define a McAlister triple. A
McAlister triple is a triple (G,X,Y) which consists of:

• a partial order X,

• a subset Y of X,

• a group G which acts on X, on the right, by order automorphisms. That means for all A,B ∈ X
and for all g ∈ G: A ≤ B if and only if Ag ≤ Bg.

Furthermore, (G,X,Y) must satisfy the following four properties to be a McAlister triple:

M1 Y is a subset of X which is a join-semilattice together with the restriction of the order relation of
X to Y.

M2 Y is an order ideal of X. That is to say, for all A ∈ X and for all B ∈ Y: if A ≤ B, then A ∈ Y.

M3 Every element of X is the image of some element in Y moved by an element of G. That is to say,
for every A ∈ X, there exists some B ∈ Y and there exists g ∈ G such that A = Bg.

M4 Finally, for all g ∈ G, the intersection {yg : y ∈ Y} ∩ Y is non-empty.
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We may define an E-unitary inverse semigroup using a McAlister triple. Given (G,X,Y) let M(G,X,Y)
be the set of all pairs (A,g) in Y x G such that A acted on by the inverse of g is in Y together with
multiplication defined by

(A,g)*(B,h) = (Join(A,Bg^-1),hg)
where Join is the natural join operation of the semilattice and Bg^-1 is B acted on by the inverse

of g. With this operation, M(G,X,Y) is a semigroup which we call a McAlister triple semigroup over
(G,X,Y). In fact every McAlister triple semigroup is an E-unitary inverse semigroup and every E-
unitary inverse semigroup is isomorphic to some McAlister triple semigroup. Note that there need not
be a unqiue McAlister triple semigroup for a particular McAlister triple because in general there is
more than one way for a group to act on a partial order.

12.1 Creating McAlister triple semigroups

12.1.1 IsMcAlisterTripleSemigroup

. IsMcAlisterTripleSemigroup(S) (filter)

Returns: true or false.
This function returns true if S is a McAlister triple semigroup. A McAlister triple semigroup is

a special representation of an E-unitary inverse semigroup IsEUnitaryInverseSemigroup (16.2.3)
created by McAlisterTripleSemigroup (12.1.2).

12.1.2 McAlisterTripleSemigroup

. McAlisterTripleSemigroup(G, X, Y[, act]) (operation)

Returns: A McAlister triple semigroup.
The following documentation covers the technical information needed to create McAlister triple

semigroups in GAP, the underlying theory can be read in the introduction to Chapter 12.
In this implementation the partial order X of a McAlister triple is represented by a Digraph

(Digraphs: Digraph) object X . The digraph represents a partial order in the sense that vertices
are the elements of the partial order and the order relation is defined by A ≤ B if and only if there is
an edge from B to A. The semilattice Y of the McAlister triple should be an induced subdigraph Y of X
and the DigraphVertexLabels (Digraphs: DigraphVertexLabels) must correspond to the vertices
of X on which Y is induced. That means that the following:

Y = InducedSubdigraph(X, DigraphVertexLabels(Y))
must return true. Herein if we say that a vertex A of X is ’in’ Y then we mean there is a vertex of

Y whose label is A. Alerternatively the user may choose to give the argument Y as the vertices of X on
which Y is the induced subdigraph.

A McAlister triple semigroup is created from a quadruple (G, X, Y, act) where:

• G is a finite group.

• X is a digraph satisfying IsPartialOrderDigraph (Digraphs: IsPartialOrderDigraph).

• Y is a digraph satisfying IsJoinSemilatticeDigraph (Digraphs: IsJoinSemilatticeDi-
graph) which is an induced subdigraph of X satisfying the aforementioned labeling criteria.
Furthermore the OutNeighbours (Digraphs: OutNeighbours) of each vertex of X which is in
Y must contain only vertices which are in Y .
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• act is a function which takes as its first argument a vertex of the digraph X , its second argument
should be an element of G , and it must return a vertex of X . act must be a right action,
meaning that act(A,gh)=act(act(A,g),h) holds for all A in X and g,h ∈ G . Furthermore
the permutation represenation of this action must be a subgroup of the automorphism group of
X . That means we require the following to return true:

IsSubgroup(AutomorphismGroup(X), Image(ActionHomomorphism(G,
DigraphVertices(X), act));

Furthermore every vertex of X must be in the orbit of some vertex of X which is in Y . Finally,
act must fix the vertex of X which is the minimal vertex of Y , i.e. the unique vertex of Y whose
only out-neighbour is itself.

For user convienience, there are multiple versions of McAlisterTripleSemigroup. When the argu-
ment act is ommitted it is assumed to be OnPoints (Reference: OnPoints). Additionally, the semi-
lattice argument Y may be replaced by a homogeneous list sub_ver of vertices of X . When sub_ver
is provided, McAlisterTripleSemigroup is called with Y equalling InducedSubdigraph(X,
sub_ver) with the appropriate labels.

Example
gap> x := Digraph([[1], [1, 2], [1, 2, 3], [1, 4], [1, 4, 5]]);
<digraph with 5 vertices, 11 edges>
gap> y := InducedSubdigraph(x, [1, 4, 5]);
<digraph with 3 vertices, 6 edges>
gap> DigraphVertexLabels(y);
[ 1, 4, 5 ]
gap> A := AutomorphismGroup(x);
Group([ (2,4)(3,5) ])
gap> S := McAlisterTripleSemigroup(A, x, y, OnPoints);
<McAlister triple semigroup over Group([ (2,4)(3,5) ])>
gap> T := McAlisterTripleSemigroup(A, x, y);
<McAlister triple semigroup over Group([ (2,4)(3,5) ])>
gap> S = T;
false
gap> IsIsomorphicSemigroup(S, T);
true

12.1.3 McAlisterTripleSemigroupGroup

. McAlisterTripleSemigroupGroup(S) (attribute)

Returns: A group.
Returns the group used to create the McAlister triple semigroup S via

McAlisterTripleSemigroup (12.1.2).

12.1.4 McAlisterTripleSemigroupPartialOrder

. McAlisterTripleSemigroupPartialOrder(S) (attribute)

Returns: A partial order digraph.
Returns the IsPartialOrderDigraph (Digraphs: IsPartialOrderDigraph) used to create the

McAlister triple semigroup S via McAlisterTripleSemigroup (12.1.2).
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12.1.5 McAlisterTripleSemigroupSemilattice

. McAlisterTripleSemigroupSemilattice(S) (attribute)

Returns: A join-semilattice digraph.
Returns the IsJoinSemilatticeDigraph (Digraphs: IsJoinSemilatticeDigraph) used to cre-

ate the McAlister triple semigroup S via McAlisterTripleSemigroup (12.1.2).

12.1.6 McAlisterTripleSemigroupAction

. McAlisterTripleSemigroupAction(S) (attribute)

Returns: A function.
Returns the action used to create the McAlister triple semigroup S via

McAlisterTripleSemigroup (12.1.2).

12.1.7 IsMcAlisterTripleSemigroupElement

. IsMcAlisterTripleSemigroupElement(x) (filter)

. IsMTSE(x) (filter)

Returns: true or false.
Returns true if x is an element of a McAlister triple semigroup; in particular, this returns true

if x has been created by McAlisterTripleSemigroupElement (12.1.8). The functions IsMTSE
and IsMcAlisterTripleSemigroupElement are synonyms. The mathematical description of these
objects can be found in the introduction to Chapter 12.

12.1.8 McAlisterTripleSemigroupElement

. McAlisterTripleSemigroupElement(S, A, g) (operation)

. MTSE(S, A, g) (operation)

Returns: A McAlister triple semigroup element.
Returns the McAlister triple semigroup element of the McAlister triple semigroup S which cor-

responds to a label A of a vertex from the McAlisterTripleSemigroupSemilattice (12.1.5)
of S and a group element g of the McAlisterTripleSemigroupGroup (12.1.3) of S . The pair
(A,g) only represents an element of S if the following holds: A acted on by the inverse of g (via
McAlisterTripleSemigroupAction (12.1.6)) is a vertex of the join-semilattice of S .

The functions MTSE and McAlisterTripleSemigroupElement are synonyms.
Example

gap> x := Digraph([[1], [1, 2], [1, 2, 3], [1, 4], [1, 4, 5]]);
<digraph with 5 vertices, 11 edges>
gap> y := InducedSubdigraph(x, [1, 2, 3]);
<digraph with 3 vertices, 6 edges>
gap> A := AutomorphismGroup(x);
Group([ (2,4)(3,5) ])
gap> S := McAlisterTripleSemigroup(A, x, y, OnPoints);
<McAlister triple semigroup over Group([ (2,4)(3,5) ])>
gap> T := McAlisterTripleSemigroup(A, x, y);
<McAlister triple semigroup over Group([ (2,4)(3,5) ])>
gap> S = T;
false
gap> IsIsomorphicSemigroup(S, T);
true
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gap> a := MTSE(S, 1, (2, 4)(3, 5));
(1, (2,4)(3,5))
gap> b := MTSE(S, 2, ());
(2, ())
gap> a * a;
(1, ())
gap> IsMTSE(a * a);
true
gap> a = MTSE(T, 1, (2, 4)(3, 5));
false
gap> a * b;
(1, (2,4)(3,5))



Chapter 13

Green’s relations

In this chapter we describe the functions in Semigroups for computing Green’s classes and related
properties of semigroups.

13.1 Creating Green’s classes and representatives

In this section, we describe the methods in the Semigroups package for creating Green’s classes.

13.1.1 XClassOfYClass

. DClassOfHClass(class) (method)

. DClassOfLClass(class) (method)

. DClassOfRClass(class) (method)

. LClassOfHClass(class) (method)

. RClassOfHClass(class) (method)

Returns: A Green’s class.
XClassOfYClass returns the X-class containing the Y-class class where X and Y should be re-

placed by an appropriate choice of D, H, L, and R.
Note that if it is not known to GAP whether or not the representative of class is an element of

the semigroup containing class , then no attempt is made to check this.
The same result can be produced using:

Example
First(GreensXClasses(S), x -> Representative(x) in class);

but this might be substantially slower. Note that XClassOfYClass is also likely to be faster than
Example

GreensXClassOfElement(S, Representative(class));

DClass can also be used as a synonym for DClassOfHClass, DClassOfLClass, and
DClassOfRClass; LClass as a synonym for LClassOfHClass; and RClass as a synonym for
RClassOfHClass. See also GreensDClassOfElement (Reference: GreensDClassOfElement) and
GreensDClassOfElementNC (13.1.3).

Example
gap> S := Semigroup(Transformation([1, 3, 2]),
> Transformation([2, 1, 3]),
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> Transformation([3, 2, 1]),
> Transformation([1, 3, 1]));;
gap> R := GreensRClassOfElement(S, Transformation([3, 2, 1]));
<Green’s R-class: Transformation( [ 3, 2, 1 ] )>
gap> DClassOfRClass(R);
<Green’s D-class: Transformation( [ 3, 2, 1 ] )>
gap> IsGreensDClass(DClassOfRClass(R));
true
gap> S := InverseSemigroup(
> PartialPerm([2, 6, 7, 0, 0, 9, 0, 1, 0, 5]),
> PartialPerm([3, 8, 1, 9, 0, 4, 10, 5, 0, 6]));
<inverse partial perm semigroup of rank 10 with 2 generators>
gap> x := S.1;
[3,7][8,1,2,6,9][10,5]
gap> H := HClass(S, x);
<Green’s H-class: [3,7][8,1,2,6,9][10,5]>
gap> R := RClassOfHClass(H);
<Green’s R-class: [3,7][8,1,2,6,9][10,5]>
gap> L := LClass(H);;
gap> L = LClass(S, PartialPerm([1, 2, 0, 0, 5, 6, 7, 0, 9]));
true
gap> DClass(R) = DClass(L);
true
gap> DClass(H) = DClass(L);
true

13.1.2 GreensXClassOfElement

. GreensDClassOfElement(X, f) (operation)

. DClass(X, f) (operation)

. GreensHClassOfElement(X, f) (operation)

. GreensHClassOfElement(R, i, j) (operation)

. HClass(X, f) (operation)

. HClass(R, i, j) (operation)

. GreensLClassOfElement(X, f) (operation)

. LClass(X, f) (operation)

. GreensRClassOfElement(X, f) (operation)

. RClass(X, f) (operation)

Returns: A Green’s class.
These functions produce essentially the same output as the GAP library functions with the same

names; see GreensDClassOfElement (Reference: GreensDClassOfElement). The main difference
is that these functions can be applied to a wider class of objects:

GreensDClassOfElement and DClass
X must be a semigroup.

GreensHClassOfElement and HClass
X can be a semigroup, R-class, L -class, or D-class. If R is a IxJ Rees matrix semigroup
or a Rees 0-matrix semigroup, and i and j are integers of the corresponding index sets, then
GreensHClassOfElement returns the H -class in row i and column j .
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GreensLClassOfElement and LClass
X can be a semigroup or D-class.

GreensRClassOfElement and RClass
X can be a semigroup or D-class.

Note that GreensXClassOfElement and XClass are synonyms and have identical output. The shorter
command is provided for the sake of convenience.

13.1.3 GreensXClassOfElementNC

. GreensDClassOfElementNC(X, f) (operation)

. DClassNC(X, f) (operation)

. GreensHClassOfElementNC(X, f) (operation)

. HClassNC(X, f) (operation)

. GreensLClassOfElementNC(X, f) (operation)

. LClassNC(X, f) (operation)

. GreensRClassOfElementNC(X, f) (operation)

. RClassNC(X, f) (operation)

Returns: A Green’s class.
These functions are essentially the same as GreensDClassOfElement (13.1.2) except that no

effort is made to verify if f is an element of X . More precisely, GreensXClassOfElementNC and
XClassNC first check if f has already been shown to be an element of X . If it is not known to GAP if
f is an element of X , then no further attempt to verify this is made.

Note that GreensXClassOfElementNC and XClassNC are synonyms and have identical output.
The shorter command is provided for the sake of convenience.

It can be quicker to compute the class of an element using GreensRClassOfElementNC, say, than
using GreensRClassOfElement if it is known a priori that f is an element of X . On the other hand,
if f is not an element of X , then the results of this computation are unpredictable.

For example, if
Example

x := Transformation([15, 18, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20]);

in the semigroup X of order-preserving mappings on 20 points, then
Example

GreensRClassOfElementNC(X, x);

returns an answer relatively quickly, whereas
Example

GreensRClassOfElement(X, x)

can take a signficant amount of time to return a value.
See also GreensRClassOfElement (Reference: GreensRClassOfElement) and

RClassOfHClass (13.1.1).
Example

gap> S := RandomSemigroup(IsTransformationSemigroup, 2, 1000);;
gap> x := [1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1];;
gap> x := EvaluateWord(Generators(S), x);;
gap> R := GreensRClassOfElementNC(S, x);;
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gap> Size(R);
1
gap> L := GreensLClassOfElementNC(S, x);;
gap> Size(L);
1
gap> x := PartialPerm([2, 3, 4, 5, 0, 0, 6, 8, 10, 11]);;
gap> L := LClass(POI(11), x);
<Green’s L-class: [1,2,3,4,5,6,8,11][7,10]>
gap> Size(L);
165

13.1.4 GreensXClasses

. GreensDClasses(obj) (method)

. DClasses(obj) (method)

. GreensHClasses(obj) (method)

. HClasses(obj) (method)

. GreensJClasses(obj) (method)

. JClasses(obj) (method)

. GreensLClasses(obj) (method)

. LClasses(obj) (method)

. GreensRClasses(obj) (method)

. RClasses(obj) (method)

Returns: A list of Green’s classes.
These functions produce essentially the same output as the GAP library functions with the same

names; see GreensDClasses (Reference: GreensDClasses). The main difference is that these func-
tions can be applied to a wider class of objects:

GreensDClasses and DClasses
X should be a semigroup.

GreensHClasses and HClasses
X can be a semigroup, R-class, L -class, or D-class.

GreensLClasses and LClasses
X can be a semigroup or D-class.

GreensRClasses and RClasses
X can be a semigroup or D-class.

Note that GreensXClasses and XClasses are synonyms and have identical output. The shorter
command is provided for the sake of convenience.

See also DClassReps (13.1.5), IteratorOfDClassReps (13.2.1), IteratorOfDClasses
(13.2.2), and NrDClasses (13.1.9).

Example
gap> S := Semigroup(Transformation([3, 4, 4, 4]),
> Transformation([4, 3, 1, 2]));;
gap> GreensDClasses(S);
[ <Green’s D-class: Transformation( [ 3, 4, 4, 4 ] )>,

<Green’s D-class: Transformation( [ 4, 3, 1, 2 ] )>,
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<Green’s D-class: Transformation( [ 4, 4, 4, 4 ] )> ]
gap> GreensRClasses(S);
[ <Green’s R-class: Transformation( [ 3, 4, 4, 4 ] )>,

<Green’s R-class: Transformation( [ 4, 3, 1, 2 ] )>,
<Green’s R-class: Transformation( [ 4, 4, 4, 4 ] )>,
<Green’s R-class: Transformation( [ 4, 4, 3, 4 ] )>,
<Green’s R-class: Transformation( [ 4, 3, 4, 4 ] )>,
<Green’s R-class: Transformation( [ 4, 4, 4, 3 ] )> ]

gap> D := GreensDClasses(S)[1];
<Green’s D-class: Transformation( [ 3, 4, 4, 4 ] )>
gap> GreensLClasses(D);
[ <Green’s L-class: Transformation( [ 3, 4, 4, 4 ] )>,

<Green’s L-class: Transformation( [ 1, 2, 2, 2 ] )> ]
gap> GreensRClasses(D);
[ <Green’s R-class: Transformation( [ 3, 4, 4, 4 ] )>,

<Green’s R-class: Transformation( [ 4, 4, 3, 4 ] )>,
<Green’s R-class: Transformation( [ 4, 3, 4, 4 ] )>,
<Green’s R-class: Transformation( [ 4, 4, 4, 3 ] )> ]

gap> R := GreensRClasses(D)[1];
<Green’s R-class: Transformation( [ 3, 4, 4, 4 ] )>
gap> GreensHClasses(R);
[ <Green’s H-class: Transformation( [ 3, 4, 4, 4 ] )>,

<Green’s H-class: Transformation( [ 1, 2, 2, 2 ] )> ]
gap> S := InverseSemigroup([
> PartialPerm([2, 4, 1]), PartialPerm([3, 0, 4, 1])]);;
gap> GreensDClasses(S);
[ <Green’s D-class: <identity partial perm on [ 1, 2, 4 ]>>,

<Green’s D-class: <identity partial perm on [ 1, 3, 4 ]>>,
<Green’s D-class: <identity partial perm on [ 1, 3 ]>>,
<Green’s D-class: <identity partial perm on [ 4 ]>>,
<Green’s D-class: <empty partial perm>> ]

gap> GreensLClasses(S);
[ <Green’s L-class: <identity partial perm on [ 1, 2, 4 ]>>,

<Green’s L-class: [4,2,1,3]>,
<Green’s L-class: <identity partial perm on [ 1, 3, 4 ]>>,
<Green’s L-class: <identity partial perm on [ 1, 3 ]>>,
<Green’s L-class: [3,1,2]>, <Green’s L-class: [1,4][3,2]>,
<Green’s L-class: [1,3,4]>, <Green’s L-class: [3,1,4]>,
<Green’s L-class: [1,2](3)>,
<Green’s L-class: <identity partial perm on [ 4 ]>>,
<Green’s L-class: [4,1]>, <Green’s L-class: [4,3]>,
<Green’s L-class: [4,2]>, <Green’s L-class: <empty partial perm>> ]

gap> D := GreensDClasses(S)[3];
<Green’s D-class: <identity partial perm on [ 1, 3 ]>>
gap> GreensLClasses(D);
[ <Green’s L-class: <identity partial perm on [ 1, 3 ]>>,

<Green’s L-class: [3,1,2]>, <Green’s L-class: [1,4][3,2]>,
<Green’s L-class: [1,3,4]>, <Green’s L-class: [3,1,4]>,
<Green’s L-class: [1,2](3)> ]

gap> GreensRClasses(D);
[ <Green’s R-class: <identity partial perm on [ 1, 3 ]>>,

<Green’s R-class: [2,1,3]>, <Green’s R-class: [2,3][4,1]>,
<Green’s R-class: [4,3,1]>, <Green’s R-class: [4,1,3]>,
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<Green’s R-class: [2,1](3)> ]

13.1.5 XClassReps

. DClassReps(obj) (attribute)

. HClassReps(obj) (attribute)

. LClassReps(obj) (attribute)

. RClassReps(obj) (attribute)

Returns: A list of representatives.
XClassReps returns a list of the representatives of the Green’s classes of obj , which can be a

semigroup, D-, L -, or R-class where appropriate.
The same output can be obtained by calling, for example:

Example
List(GreensXClasses(obj), Representative);

Note that if the Green’s classes themselves are not required, then XClassReps will return an answer
more quickly than the above, since the Green’s class objects are not created.

See also GreensDClasses (13.1.4), IteratorOfDClassReps (13.2.1), IteratorOfDClasses
(13.2.2), and NrDClasses (13.1.9).

Example
gap> S := Semigroup(Transformation([3, 4, 4, 4]),
> Transformation([4, 3, 1, 2]));;
gap> DClassReps(S);
[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 4, 3, 1, 2 ] ),

Transformation( [ 4, 4, 4, 4 ] ) ]
gap> LClassReps(S);
[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 1, 2, 2, 2 ] ),

Transformation( [ 4, 3, 1, 2 ] ), Transformation( [ 4, 4, 4, 4 ] ),
Transformation( [ 2, 2, 2, 2 ] ), Transformation( [ 3, 3, 3, 3 ] ),
Transformation( [ 1, 1, 1, 1 ] ) ]

gap> D := GreensDClasses(S)[1];
<Green’s D-class: Transformation( [ 3, 4, 4, 4 ] )>
gap> LClassReps(D);
[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 1, 2, 2, 2 ] ) ]
gap> RClassReps(D);
[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 4, 4, 3, 4 ] ),

Transformation( [ 4, 3, 4, 4 ] ), Transformation( [ 4, 4, 4, 3 ] ) ]
gap> R := GreensRClasses(D)[1];;
gap> HClassReps(R);
[ Transformation( [ 3, 4, 4, 4 ] ), Transformation( [ 1, 2, 2, 2 ] ) ]
gap> S := SymmetricInverseSemigroup(6);;
gap> e := InverseSemigroup(Idempotents(S));;
gap> M := MunnSemigroup(e);;
gap> L := LClassNC(M, PartialPerm([51, 63], [51, 47]));;
gap> HClassReps(L);
[ <identity partial perm on [ 47, 51 ]>, [27,47](51), [50,47](51),

[64,47](51), [63,47](51), [59,47](51) ]
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13.1.6 MinimalDClass

. MinimalDClass(S) (attribute)

Returns: The minimal D-class of a semigroup.
The minimal ideal of a semigroup is the least ideal with respect to containment. MinimalDClass

returns the D-class corresponding to the minimal ideal of the semigroup S . Equivalently,
MinimalDClass returns the minimal D-class with respect to the partial order of D-classes.

It is significantly easier to find the minimal D-class of a semigroup, than to find its D-classes.
See also PartialOrderOfDClasses (13.1.10), IsGreensLessThanOrEqual (Reference:

IsGreensLessThanOrEqual), MinimalIdeal (14.7.1) and RepresentativeOfMinimalIdeal
(14.7.2).

Example
gap> D := MinimalDClass(JonesMonoid(8));
<Green’s D-class: <bipartition: [ 1, 2 ], [ 3, 4 ], [ 5, 6 ],

[ 7, 8 ], [ -1, -2 ], [ -3, -4 ], [ -5, -6 ], [ -7, -8 ]>>
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 5, 7, 8, 9], [2, 6, 9, 1, 5, 3, 8]),
> PartialPerm([1, 3, 4, 5, 7, 8, 9], [9, 4, 10, 5, 6, 7, 1]));;
gap> MinimalDClass(S);
<Green’s D-class: <empty partial perm>>

13.1.7 MaximalDClasses

. MaximalDClasses(S) (attribute)

Returns: The maximal D-classes of a semigroup.
MaximalDClasses returns the maximal D-classes with respect to the partial order of D-classes.
See also PartialOrderOfDClasses (13.1.10), IsGreensLessThanOrEqual (Reference: Is-

GreensLessThanOrEqual), and MinimalDClass (13.1.6).
Example

gap> MaximalDClasses(BrauerMonoid(8));
[ <Green’s D-class: <block bijection: [ 1, -1 ], [ 2, -2 ],

[ 3, -3 ], [ 4, -4 ], [ 5, -5 ], [ 6, -6 ], [ 7, -7 ],
[ 8, -8 ]>> ]

gap> MaximalDClasses(FullTransformationMonoid(5));
[ <Green’s D-class: IdentityTransformation> ]
gap> S := Semigroup(
> PartialPerm([1, 2, 3, 4, 5, 6, 7], [3, 8, 1, 4, 5, 6, 7]),
> PartialPerm([1, 2, 3, 6, 8], [2, 6, 7, 1, 5]),
> PartialPerm([1, 2, 3, 4, 6, 8], [4, 3, 2, 7, 6, 5]),
> PartialPerm([1, 2, 4, 5, 6, 7, 8], [7, 1, 4, 2, 5, 6, 3]));;
gap> MaximalDClasses(S);
[ <Green’s D-class: [2,8](1,3)(4)(5)(6)(7)>,

<Green’s D-class: [8,3](1,7,6,5,2)(4)> ]

13.1.8 NrRegularDClasses

. NrRegularDClasses(S) (attribute)

. RegularDClasses(S) (attribute)

Returns: A positive integer, or a list.
NrRegularDClasses returns the number of regular D-classes of the semigroup S .



Semigroups 149

RegularDClasses returns a list of the regular D-classes of the semigroup S .
See also IsRegularGreensClass (13.3.2) and IsRegularDClass (Reference: IsRegularD-

Class).
Example

gap> S := Semigroup(Transformation([1, 3, 4, 1, 3, 5]),
> Transformation([5, 1, 6, 1, 6, 3]));;
gap> NrRegularDClasses(S);
3
gap> NrDClasses(S);
7
gap> AsSet(RegularDClasses(S));
[ <Green’s D-class: Transformation( [ 1, 3, 4, 1, 3, 3 ] )>,

<Green’s D-class: Transformation( [ 1, 1, 1, 1, 1 ] )>,
<Green’s D-class: Transformation( [ 1, 1, 1, 1, 1, 1 ] )> ]

13.1.9 NrXClasses

. NrDClasses(obj) (attribute)

. NrHClasses(obj) (attribute)

. NrLClasses(obj) (attribute)

. NrRClasses(obj) (attribute)

Returns: A positive integer.
NrXClasses returns the number of Green’s classes in obj where obj can be a semigroup, D-,

L -, or R-class where appropriate. If the actual Green’s classes are not required, then it is more
efficient to use

Example
NrHClasses(obj)

than
Example

Length(HClasses(obj))

since the Green’s classes themselves are not created when NrXClasses is called.
See also GreensRClasses (13.1.4), GreensRClasses (Reference: GreensRClasses),

IteratorOfRClasses (13.2.2), and IteratorOfRClassReps (13.2.1).
Example

gap> S := Semigroup(
> Transformation([1, 2, 5, 4, 3, 8, 7, 6]),
> Transformation([1, 6, 3, 4, 7, 2, 5, 8]),
> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),
> Transformation([3, 2, 3, 6, 1, 6, 1, 2]),
> Transformation([5, 2, 3, 6, 3, 4, 7, 4]));;
gap> x := Transformation([2, 5, 4, 7, 4, 3, 6, 3]);;
gap> R := RClass(S, x);
<Green’s R-class: Transformation( [ 2, 5, 4, 7, 4, 3, 6, 3 ] )>
gap> NrHClasses(R);
12
gap> D := DClass(R);
<Green’s D-class: Transformation( [ 2, 5, 4, 7, 4, 3, 6, 3 ] )>
gap> NrHClasses(D);
72
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gap> L := LClass(S, x);
<Green’s L-class: Transformation( [ 2, 5, 4, 7, 4, 3, 6, 3 ] )>
gap> NrHClasses(L);
6
gap> NrHClasses(S);
1555
gap> S := Semigroup(Transformation([4, 6, 5, 2, 1, 3]),
> Transformation([6, 3, 2, 5, 4, 1]),
> Transformation([1, 2, 4, 3, 5, 6]),
> Transformation([3, 5, 6, 1, 2, 3]),
> Transformation([5, 3, 6, 6, 6, 2]),
> Transformation([2, 3, 2, 6, 4, 6]),
> Transformation([2, 1, 2, 2, 2, 4]),
> Transformation([4, 4, 1, 2, 1, 2]));;
gap> NrRClasses(S);
150
gap> Size(S);
6342
gap> x := Transformation([1, 3, 3, 1, 3, 5]);;
gap> D := DClass(S, x);
<Green’s D-class: Transformation( [ 2, 4, 2, 2, 2, 1 ] )>
gap> NrRClasses(D);
87
gap> S := SymmetricInverseSemigroup(10);;
gap> NrDClasses(S); NrRClasses(S); NrHClasses(S); NrLClasses(S);
11
1024
184756
1024
gap> S := POPI(10);;
gap> NrDClasses(S);
11
gap> NrRClasses(S);
1024

13.1.10 PartialOrderOfDClasses

. PartialOrderOfDClasses(S) (attribute)

Returns: The partial order of the D-classes of S .
Returns a list list where list[i] contains every j such that GreensDClasses(S)[j] is im-

mediately less than GreensDClasses(S)[i] in the partial order of D- classes of S . There might be
other indices in list, and it may or may not include i. The reflexive transitive closure of the relation
defined by list is the partial order of D-classes of S .

The partial order on the D-classes is defined by x≤ y if and only if S1xS1 is a subset of S1yS1.
See also GreensDClasses (13.1.4), GreensDClasses (Reference: GreensDClasses),

IsGreensLessThanOrEqual (Reference: IsGreensLessThanOrEqual), and \< (13.3.1).
Example

gap> S := Semigroup(Transformation([2, 4, 1, 2]),
> Transformation([3, 3, 4, 1]));;
gap> PartialOrderOfDClasses(S);
[ [ 3 ], [ 2, 3 ], [ 3, 4 ], [ 4 ] ]
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gap> IsGreensLessThanOrEqual(GreensDClasses(S)[1],
> GreensDClasses(S)[2]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[2],
> GreensDClasses(S)[1]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[3],
> GreensDClasses(S)[1]);
true
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3], [1, 3, 4]),
> PartialPerm([1, 3, 5], [5, 1, 3]));;
gap> Size(S);
58
gap> PartialOrderOfDClasses(S);
[ [ 1, 3 ], [ 2, 3 ], [ 3, 4 ], [ 4, 5 ], [ 5 ] ]
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[1],
> GreensDClasses(S)[2]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[5],
> GreensDClasses(S)[2]);
true
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[3],
> GreensDClasses(S)[4]);
false
gap> IsGreensLessThanOrEqual(GreensDClasses(S)[4],
> GreensDClasses(S)[3]);
true

13.1.11 LengthOfLongestDClassChain

. LengthOfLongestDClassChain(S) (attribute)

Returns: A non-negative integer.
If S is a semigroup, then LengthOfLongestDClassChain returns the length of the longest chain

in the partial order defined by PartialOrderOfDClasses(S). See PartialOrderOfDClasses
(13.1.10).

The partial order on the D-classes is defined by x≤ y if and only if S1xS1 is a subset of S1yS1. A
chain of D-classes is a collection of n D-classes D1,D2, . . .Dn such that D1 < D2 < · · · < Dn. The
length of such a chain is n - 1.

Example
gap> S := TrivialSemigroup();;
gap> LengthOfLongestDClassChain(S);
0
gap> T := ZeroSemigroup(5);;
gap> LengthOfLongestDClassChain(T);
1
gap> U := MonogenicSemigroup(14, 7);;
gap> LengthOfLongestDClassChain(U);
13
gap> V := FullTransformationMonoid(6);
<full transformation monoid of degree 6>
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gap> LengthOfLongestDClassChain(V);
5

13.1.12 IsGreensDGreaterThanFunc

. IsGreensDGreaterThanFunc(S) (attribute)

Returns: A function.
IsGreensDGreaterThanFunc(S) returns a function func such that for any two elements x and

y of S , func(x, y) return true if the D-class of x in S is greater than or equal to the D-class of y
in S under the usual ordering of Green’s D-classes of a semigroup.

Example
gap> S := Semigroup(Transformation([1, 3, 4, 1, 3]),
> Transformation([2, 4, 1, 5, 5]),
> Transformation([2, 5, 3, 5, 3]),
> Transformation([5, 5, 1, 1, 3]));;
gap> reps := ShallowCopy(AsSet(DClassReps(S)));
[ Transformation( [ 1, 1, 1, 1, 1 ] ),

Transformation( [ 1, 3, 1, 3, 3 ] ),
Transformation( [ 1, 3, 4, 1, 3 ] ),
Transformation( [ 2, 4, 1, 5, 5 ] ) ]

gap> Sort(reps, IsGreensDGreaterThanFunc(S));
gap> reps;
[ Transformation( [ 2, 4, 1, 5, 5 ] ),

Transformation( [ 1, 3, 4, 1, 3 ] ),
Transformation( [ 1, 3, 1, 3, 3 ] ),
Transformation( [ 1, 1, 1, 1, 1 ] ) ]

gap> IsGreensLessThanOrEqual(DClass(S, reps[2]),
> DClass(S, reps[1]));
true
gap> S := DualSymmetricInverseMonoid(4);;
gap> IsGreensDGreaterThanFunc(S)(S.1, S.3);
true
gap> IsGreensDGreaterThanFunc(S)(S.3, S.1);
false
gap> IsGreensLessThanOrEqual(DClass(S, S.3),
> DClass(S, S.1));
true
gap> IsGreensLessThanOrEqual(DClass(S, S.1),
> DClass(S, S.3));
false

13.2 Iterators and enumerators of classes and representatives

In this section, we describe the methods in the Semigroups package for incrementally determining
Green’s classes or their representatives.

13.2.1 IteratorOfXClassReps

. IteratorOfDClassReps(S) (operation)

. IteratorOfHClassReps(S) (operation)
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. IteratorOfLClassReps(S) (operation)

. IteratorOfRClassReps(S) (operation)

Returns: An iterator.
Returns an iterator of the representatives of the Green’s classes contained in the semigroup S . See

(Reference: Iterators) for more information on iterators.
See also GreensRClasses (Reference: GreensRClasses), GreensRClasses (13.1.4), and

IteratorOfRClasses (13.2.2).
Example

gap> S := Semigroup(Transformation([3, 2, 1, 5, 4]),
> Transformation([5, 4, 3, 2, 1]),
> Transformation([5, 4, 3, 2, 1]),
> Transformation([5, 5, 4, 5, 1]),
> Transformation([4, 5, 4, 3, 3]));;
gap> iter := IteratorOfRClassReps(S);
<iterator of R-class reps>
gap> NextIterator(iter);
Transformation( [ 3, 2, 1, 5, 4 ] )
gap> NextIterator(iter);
Transformation( [ 5, 5, 4, 5, 1 ] )
gap> iter;
<iterator of R-class reps>
gap> file := PackageInfo("semigroups")[1]!.InstallationPath;;
gap> file := Concatenation(file, "/data/doc/greens.pickle");;
gap> S := InverseSemigroup(ReadGenerators(file, 1));
<inverse partial perm semigroup of rank 983 with 2 generators>
gap> NrMovedPoints(S);
983
gap> iter := IteratorOfLClassReps(S);
<iterator of L-class reps>
gap> NextIterator(iter);
<partial perm on 634 pts with degree 1000, codegree 1000>

13.2.2 IteratorOfXClasses

. IteratorOfDClasses(S) (operation)

. IteratorOfHClasses(S) (operation)

. IteratorOfLClasses(S) (operation)

. IteratorOfRClasses(S) (operation)

Returns: An iterator.
Returns an iterator of the Green’s classes in the semigroup S . See (Reference: Iterators) for

more information on iterators.
This function is useful if you are, for example, looking for an R-class of a semigroup with a

particular property but do not necessarily want to compute all of the R-classes.
See also GreensRClasses (13.1.4), GreensRClasses (Reference: GreensRClasses),

NrRClasses (13.1.9), and IteratorOfRClassReps (13.2.1).
The transformation semigroup in the example below has 25147892 elements but it only takes a

fraction of a second to find a non-trivial R-class. The inverse semigroup of partial permutations in
the example below has size 158122047816 but it only takes a fraction of a second to find an R-class
with more than 1000 elements.
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Example
gap> gens := [Transformation([2, 4, 1, 5, 4, 4, 7, 3, 8, 1]),
> Transformation([3, 2, 8, 8, 4, 4, 8, 6, 5, 7]),
> Transformation([4, 10, 6, 6, 1, 2, 4, 10, 9, 7]),
> Transformation([6, 2, 2, 4, 9, 9, 5, 10, 1, 8]),
> Transformation([6, 4, 1, 6, 6, 8, 9, 6, 2, 2]),
> Transformation([6, 8, 1, 10, 6, 4, 9, 1, 9, 4]),
> Transformation([8, 6, 2, 3, 3, 4, 8, 6, 2, 9]),
> Transformation([9, 1, 2, 8, 1, 5, 9, 9, 9, 5]),
> Transformation([9, 3, 1, 5, 10, 3, 4, 6, 10, 2]),
> Transformation([10, 7, 3, 7, 1, 9, 8, 8, 4, 10])];;
gap> S := Semigroup(gens);;
gap> iter := IteratorOfRClasses(S);
<iterator of R-classes>
gap> for R in iter do
> if Size(R) > 1 then
> break;
> fi;
> od;
gap> R;
<Green’s R-class: Transformation( [ 6, 4, 1, 6, 6, 8, 9, 6, 2, 2 ] )>
gap> Size(R);
21600
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 10, 11, 19, 20],
> [19, 4, 11, 15, 3, 20, 1, 14, 8, 13, 17]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 14, 15, 16, 17],
> [15, 14, 20, 19, 4, 5, 1, 13, 11, 10, 3]),
> PartialPerm([1, 2, 4, 6, 7, 8, 9, 10, 14, 15, 18],
> [7, 2, 17, 10, 1, 19, 9, 3, 11, 16, 18]),
> PartialPerm([1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16],
> [8, 3, 18, 1, 4, 13, 12, 7, 19, 20, 2, 11]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 16, 17, 20],
> [7, 17, 13, 4, 6, 9, 18, 10, 11, 19, 5, 2, 8]),
> PartialPerm([1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18],
> [10, 20, 11, 7, 13, 8, 4, 9, 2, 18, 17, 6, 15]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 17, 18],
> [10, 20, 18, 1, 14, 16, 9, 5, 15, 4, 8, 12, 19, 11]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 15, 16, 19, 20],
> [13, 6, 1, 2, 11, 7, 16, 18, 9, 10, 4, 14, 15, 5, 17]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 20],
> [5, 3, 12, 9, 20, 15, 8, 16, 13, 1, 17, 11, 14, 10, 2]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 17, 18, 19, 20],
> [8, 3, 9, 20, 2, 12, 14, 15, 4, 18, 13, 1, 17, 19, 5]));;
gap> iter := IteratorOfRClasses(S);
<iterator of R-classes>
gap> repeat
> R := NextIterator(iter);
> until Size(R) > 1000;
gap> R;
<Green’s R-class: [8,3][11,5][13,1][15,2][17,6][19,7]>
gap> Size(R);
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10020240

13.3 Properties of Green’s classes

In this section, we describe the properties and operators of Green’s classes that are available in the
Semigroups package

13.3.1 Less than for Green’s classes

. \<(left-expr, right-expr) (method)

Returns: true or false.
The Green’s class left-expr is less than or equal to right-expr if they belong to the same

semigroup and the representative of left-expr is less than the representative of right-expr under
<; see also Representative (Reference: Representative).

Please note that this is not the usual order on the Green’s classes of a semigroup as defined in
(Reference: Green’s Relations). See also IsGreensLessThanOrEqual (Reference: IsGreens-
LessThanOrEqual).

Example
gap> S := FullTransformationSemigroup(4);;
gap> A := GreensRClassOfElement(S, Transformation([2, 1, 3, 1]));
<Green’s R-class: Transformation( [ 2, 1, 3, 1 ] )>
gap> B := GreensRClassOfElement(S, Transformation([1, 2, 3, 4]));
<Green’s R-class: IdentityTransformation>
gap> A < B;
false
gap> B < A;
true
gap> IsGreensLessThanOrEqual(A, B);
true
gap> IsGreensLessThanOrEqual(B, A);
false
gap> S := SymmetricInverseSemigroup(4);;
gap> A := GreensJClassOfElement(S, PartialPerm([1, 3, 4]));;
gap> B := GreensJClassOfElement(S, PartialPerm([3, 1]));;
gap> A < B;
true
gap> B < A;
false
gap> IsGreensLessThanOrEqual(A, B);
false
gap> IsGreensLessThanOrEqual(B, A);
true

13.3.2 IsRegularGreensClass

. IsRegularGreensClass(class) (property)

Returns: true or false.
This function returns true if class is a regular Green’s class and false if it

is not. See also IsRegularDClass (Reference: IsRegularDClass), IsGroupHClass
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(Reference: IsGroupHClass), GroupHClassOfGreensDClass (Reference: GroupHClassOf-
GreensDClass), GroupHClass (13.4.1), NrIdempotents (14.9.2), Idempotents (14.9.1), and
IsRegularSemigroupElement (Reference: IsRegularSemigroupElement).

The function IsRegularDClass produces the same output as the GAP library functions with the
same name; see IsRegularDClass (Reference: IsRegularDClass).

Example
gap> S := Monoid(Transformation([10, 8, 7, 4, 1, 4, 10, 10, 7, 2]),
> Transformation([5, 2, 5, 5, 9, 10, 8, 3, 8, 10]));;
gap> f := Transformation([1, 1, 10, 8, 8, 8, 1, 1, 10, 8]);;
gap> R := RClass(S, f);;
gap> IsRegularGreensClass(R);
true
gap> S := Monoid(Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]),
> Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 2]));;
gap> f := Transformation([3, 8, 7, 4, 1, 4, 3, 3, 7, 2]);;
gap> R := RClass(S, f);;
gap> IsRegularGreensClass(R);
false
gap> NrIdempotents(R);
0
gap> S := Semigroup(Transformation([2, 1, 3, 1]),
> Transformation([3, 1, 2, 1]),
> Transformation([4, 2, 3, 3]));;
gap> f := Transformation([4, 2, 3, 3]);;
gap> L := GreensLClassOfElement(S, f);;
gap> IsRegularGreensClass(L);
false
gap> R := GreensRClassOfElement(S, f);;
gap> IsRegularGreensClass(R);
false
gap> g := Transformation([4, 4, 4, 4]);;
gap> IsRegularSemigroupElement(S, g);
true
gap> IsRegularGreensClass(LClass(S, g));
true
gap> IsRegularGreensClass(RClass(S, g));
true
gap> IsRegularDClass(DClass(S, g));
true
gap> DClass(S, g) = RClass(S, g);
false

13.3.3 IsGreensClassNC

. IsGreensClassNC(class) (property)

Returns: true or false.
A Green’s class class of a semigroup S satisfies IsGreensClassNC if it was not known to GAP

that the representative of class was an element of S at the point that class was created.
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13.4 Attributes of Green’s classes

In this section, we describe the attributes of Green’s classes that are available in the Semigroups
package

13.4.1 GroupHClass

. GroupHClass(class) (attribute)

Returns: A group H -class of the D-class class if it is regular and fail if it is not.
GroupHClass is a synonym for GroupHClassOfGreensDClass (Reference: GroupHClassOf-

GreensDClass).
See also IsGroupHClass (Reference: IsGroupHClass), IsRegularDClass (Reference: Is-

RegularDClass), IsRegularGreensClass (13.3.2), and IsRegularSemigroup (15.1.17).
Example

gap> S := Semigroup(Transformation([2, 6, 7, 2, 6, 1, 1, 5]),
> Transformation([3, 8, 1, 4, 5, 6, 7, 1]));;
gap> IsRegularSemigroup(S);
false
gap> iter := IteratorOfDClasses(S);;
gap> repeat D := NextIterator(iter); until IsRegularDClass(D);
gap> D;
<Green’s D-class: Transformation( [ 6, 1, 1, 6, 1, 2, 2, 6 ] )>
gap> NrIdempotents(D);
12
gap> NrRClasses(D);
8
gap> NrLClasses(D);
4
gap> GroupHClass(D);
<Green’s H-class: Transformation( [ 1, 2, 2, 1, 2, 6, 6, 1 ] )>
gap> GroupHClassOfGreensDClass(D);
<Green’s H-class: Transformation( [ 1, 2, 2, 1, 2, 6, 6, 1 ] )>
gap> StructureDescription(GroupHClass(D));
"S3"
gap> repeat D := NextIterator(iter); until not IsRegularDClass(D);
gap> D;
<Green’s D-class: Transformation( [ 7, 5, 2, 2, 6, 1, 1, 2 ] )>
gap> IsRegularDClass(D);
false
gap> GroupHClass(D);
fail
gap> S := InverseSemigroup(
> PartialPerm([2, 1, 6, 0, 3]), PartialPerm([3, 5, 2, 0, 0, 6]));;
gap> x := PartialPerm([1 .. 3], [6, 3, 1]);;
gap> First(DClasses(S), x -> not IsTrivial(GroupHClass(x)));
<Green’s D-class: <identity partial perm on [ 1, 2 ]>>
gap> StructureDescription(GroupHClass(last));
"C2"
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13.4.2 SchutzenbergerGroup

. SchutzenbergerGroup(class) (attribute)

Returns: A group.
SchutzenbergerGroup returns the generalized Schutzenberger group (defined below) of the R-,

D-, L -, or H -class class .
If f is an element of a semigroup of transformations or partial permutations and im(f) denotes

the image of f, then the generalized Schutzenberger group of im(f) is the permutation group

{g|im( f ) : im( f ∗g) = im( f )}.

The generalized Schutzenberger group of the kernel ker(f) of a transformation f or the domain
dom(f) of a partial permutation f is defined analogously.

The generalized Schutzenberger group of a Green’s class is then defined as follows.

R-class
The generalized Schutzenberger group of the image or range of the representative of the R-
class.

L -class
The generalized Schutzenberger group of the kernel or domain of the representative of the L -
class.

H -class
The intersection of the generalized Schutzenberger groups of the R- and L -class containing
the H -class.

D-class
The intersection of the generalized Schutzenberger groups of the R- and L -class containing
the representative of the D-class.

The output of this attribute is difficult to describe for other types of semigroup. However, a general
description is given in [MP19].

Example
gap> S := Semigroup(Transformation([4, 4, 3, 5, 3]),
> Transformation([5, 1, 1, 4, 1]),
> Transformation([5, 5, 4, 4, 5]));;
gap> f := Transformation([5, 5, 4, 4, 5]);;
gap> SchutzenbergerGroup(RClass(S, f));
Group([ (4,5) ])
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 7],
> [9, 2, 4, 8]),
> PartialPerm([1, 2, 6, 7, 8, 9, 10],
> [6, 8, 4, 5, 9, 1, 3]),
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 9],
> [7, 4, 1, 6, 9, 5, 2, 3]));;
gap> List(DClasses(S), SchutzenbergerGroup);
[ Group(()), Group(()), Group(()), Group(()), Group([ (4,9) ]),

Group(()), Group(()), Group([ (5,8,6), (5,8) ]), Group(()),
Group(()), Group(()), Group(()), Group(()), Group(()),
Group([ (1,7,5,6,9,3) ]), Group([ (1,6)(3,5) ]), Group(()),
Group(()), Group(()), Group(()), Group(()), Group(()), Group(()) ]
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13.4.3 StructureDescriptionSchutzenbergerGroups

. StructureDescriptionSchutzenbergerGroups(S) (attribute)

Returns: Distinct structure descriptions of the Schutzenberger groups of a semigroup.
StructureDescriptionSchutzenbergerGroups returns the distinct values of

StructureDescription (Reference: StructureDescription) when it is applied to the Schutzen-
berger groups of the R-classes of the semigroup S .

Example
gap> S := Semigroup([
> PartialPerm([1, 2, 3], [2, 5, 4]),
> PartialPerm([1, 2, 3], [4, 1, 2]),
> PartialPerm([1, 2, 3], [5, 2, 3]),
> PartialPerm([1, 2, 4, 5], [2, 1, 4, 3]),
> PartialPerm([1, 2, 5], [2, 3, 5]),
> PartialPerm([1, 2, 3, 5], [2, 3, 5, 4]),
> PartialPerm([1, 2, 3, 5], [4, 2, 5, 1]),
> PartialPerm([1, 2, 3, 5], [5, 2, 4, 3]),
> PartialPerm([1, 2, 5], [5, 4, 3])]);;
gap> StructureDescriptionSchutzenbergerGroups(S);
[ "1", "C2", "S3" ]
gap> S := Monoid(
> Bipartition([[1, 2, 5, -1, -2], [3, 4, -3, -5], [-4]]),
> Bipartition([[1, 2, -2], [3, -1], [4], [5], [-3, -4], [-5]]),
> Bipartition([[1], [2, 3, -5], [4, -3], [5, -2], [-1, -4]]));
<bipartition monoid of degree 5 with 3 generators>
gap> StructureDescriptionSchutzenbergerGroups(S);
[ "1", "C2" ]

13.4.4 StructureDescriptionMaximalSubgroups

. StructureDescriptionMaximalSubgroups(S) (attribute)

Returns: Distinct structure descriptions of the maximal subgroups of a semigroup.
StructureDescriptionMaximalSubgroups returns the distinct values of

StructureDescription (Reference: StructureDescription) when it is applied to the maxi-
mal subgroups of the semigroup S .

Example
gap> S := DualSymmetricInverseSemigroup(6);
<inverse block bijection monoid of degree 6 with 3 generators>
gap> StructureDescriptionMaximalSubgroups(S);
[ "1", "C2", "S3", "S4", "S5", "S6" ]
gap> S := Semigroup(
> PartialPerm([1, 3, 4, 5, 8],
> [8, 3, 9, 4, 5]),
> PartialPerm([1, 2, 3, 4, 8],
> [10, 4, 1, 9, 6]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 10],
> [4, 1, 6, 7, 5, 3, 2, 10]),
> PartialPerm([1, 2, 3, 4, 6, 8, 10],
> [4, 9, 10, 3, 1, 5, 2]));;
gap> StructureDescriptionMaximalSubgroups(S);
[ "1", "C2", "C3", "C4" ]
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13.4.5 MultiplicativeNeutralElement (for an H-class)

. MultiplicativeNeutralElement(H) (method)

Returns: A semigroup element or fail.
If the H -class H of a semigroup S is a subgroup of S, then MultiplicativeNeutralElement

returns the identity of H . If H is not a subgroup of S, then fail is returned.
Example

gap> S := Semigroup([PartialPerm([1, 5, 2]),
> PartialPerm([2, 0, 4]), PartialPerm([4, 1, 5]),
> PartialPerm([1, 0, 3, 0, 4]), PartialPerm([1, 2, 0, 3, 5]),
> PartialPerm([1, 3, 2, 0, 5]), PartialPerm([5, 0, 0, 4, 3])]);;
gap> H := HClass(S, PartialPerm([1, 2]));;
gap> MultiplicativeNeutralElement(H);
<identity partial perm on [ 1, 2 ]>
gap> H := HClass(S, PartialPerm([1, 4]));;
gap> MultiplicativeNeutralElement(H);
fail

13.4.6 StructureDescription (for an H-class)

. StructureDescription(class) (attribute)

Returns: A string or fail.
StructureDescription returns the value of StructureDescription (Reference: Structure-

Description) when it is applied to a group isomorphic to the group H -class class . If class is not
a group H -class, then fail is returned.

Example
gap> S := Semigroup(
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 9],
> [1, 9, 4, 3, 5, 2, 10, 7]),
> PartialPerm([1, 2, 4, 7, 8, 9],
> [6, 2, 4, 9, 1, 3]));;
gap> H := HClass(S, PartialPerm([1, 2, 3, 4, 7, 9],
> [1, 7, 3, 4, 9, 2]));;
gap> StructureDescription(H);
"C6"

13.4.7 InjectionPrincipalFactor

. InjectionPrincipalFactor(D) (attribute)

. InjectionNormalizedPrincipalFactor(D) (attribute)

. IsomorphismReesMatrixSemigroup(D) (attribute)

Returns: A injective mapping.
If the D-class D is a subsemigroup of a semigroup S, then the principal factor of D is just D itself.

If D is not a subsemigroup of S, then the principal factor of D is the semigroup with elements D and a
new element 0 with multiplication of x,y ∈ D defined by:

xy =
{

x∗ y (in S) if x∗ y ∈ D
0 if xy 6∈ D.

InjectionPrincipalFactor returns an injective function from the D-class D to a Rees (0-)matrix
semigroup, which contains the principal factor of D as a subsemigroup.
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If D is a subsemigroup of its parent semigroup, then the function returned by
InjectionPrincipalFactor or IsomorphismReesMatrixSemigroup is an isomorphism from D
to a Rees matrix semigroup; see ReesMatrixSemigroup (Reference: ReesMatrixSemigroup).

If D is not a semigroup, then the function returned by InjectionPrincipalFactor is an
injective function from D to a Rees 0-matrix semigroup isomorphic to the principal factor of
D ; see ReesZeroMatrixSemigroup (Reference: ReesZeroMatrixSemigroup). In this case,
IsomorphismReesMatrixSemigroup and IsomorphismReesZeroMatrixSemigroup returns an er-
ror.

InjectionNormalizedPrincipalFactor returns the composition of
InjectionPrincipalFactor with RZMSNormalization (6.6.6) or RMSNormalization (6.6.7) as
appropriate.

See also PrincipalFactor (13.4.8).
Example

gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 6, 8, 10],
> [2, 6, 7, 9, 1, 5]),
> PartialPerm([1, 2, 3, 4, 6, 7, 8, 10],
> [3, 8, 1, 9, 4, 10, 5, 6]));;
gap> x := PartialPerm([1, 2, 5, 6, 7, 9],
> [1, 2, 5, 6, 7, 9]);;
gap> D := GreensDClassOfElement(S, x);
<Green’s D-class: <identity partial perm on [ 1, 2, 5, 6, 7, 9 ]>>
gap> R := Range(InjectionPrincipalFactor(D));
<Rees 0-matrix semigroup 3x3 over Group(())>
gap> MatrixOfReesZeroMatrixSemigroup(R);
[ [ (), 0, 0 ], [ 0, (), 0 ], [ 0, 0, () ] ]
gap> Size(R);
10
gap> Size(D);
9
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -3, -5], [4], [5, -2], [-1, -4]]),
> Bipartition([[1, 3, 5], [2, 4, -3], [-1, -2, -4, -5]]),
> Bipartition([[1, 5, -2, -4], [2, 3, 4, -1, -5], [-3]]),
> Bipartition([[1, 5, -1, -2, -3], [2, 4, -4], [3, -5]]));;
gap> D := GreensDClassOfElement(S,
> Bipartition([[1, 5, -2, -4], [2, 3, 4, -1, -5], [-3]]));
<Green’s D-class: <bipartition: [ 1, 5, -2, -4 ], [ 2, 3, 4, -1, -5 ]

, [ -3 ]>>
gap> InjectionNormalizedPrincipalFactor(D);
MappingByFunction( <Green’s D-class: <bipartition: [ 1, 5, -2, -4 ],

[ 2, 3, 4, -1, -5 ], [ -3 ]>>, <Rees matrix semigroup 1x1 over
Group([ (1,2) ])>, function( x ) ... end, function( x ) ... end )

13.4.8 PrincipalFactor

. PrincipalFactor(D) (attribute)

. NormalizedPrincipalFactor(D) (attribute)

Returns: A Rees (0-)matrix semigroup.
If D is a D-class of semigroup, then PrincipalFactor(D) is just shorthand for
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Range(InjectionPrincipalFactor(D)), and NormalizedPrincipalFactor(D) is shorthand
for Range(InjectionNormalizedPrincipalFactor(D)).

See InjectionPrincipalFactor (13.4.7) and InjectionNormalizedPrincipalFactor
(13.4.7) for more details.

Example
gap> S := Semigroup([PartialPerm([1, 2, 3], [1, 3, 4]),
> PartialPerm([1, 2, 3], [2, 5, 3]),
> PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
> PartialPerm([1, 3, 5], [5, 1, 3])]);;
gap> PrincipalFactor(MinimalDClass(S));
<Rees matrix semigroup 1x1 over Group(())>
gap> MultiplicativeZero(S);
<empty partial perm>
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 4, 5, -1, -3], [-2, -5], [-4]]),
> Bipartition([[1, -5], [2, 3, 4, 5, -1, -3], [-2, -4]]),
> Bipartition([[1, 5, -4], [2, 4, -1, -5], [3, -2, -3]]));;
gap> D := MinimalDClass(S);
<Green’s D-class: <bipartition: [ 1, 2, 3, 4, 5, -1, -3 ],

[ -2, -5 ], [ -4 ]>>
gap> NormalizedPrincipalFactor(D);
<Rees matrix semigroup 1x5 over Group(())>



Chapter 14

Attributes and operations for semigroups

In this chapter we decribe the methods that are available in Semigroups for determining the attributes
of a semigroup, and the operations which can be applied to a semigroup.

14.1 Accessing the elements of a semigroup

14.1.1 AsListCanonical

. AsListCanonical(S) (attribute)

. EnumeratorCanonical(S) (attribute)

. IteratorCanonical(S) (operation)

Returns: A list, enumerator, or iterator.
When the argument S is a semigroup in the representation IsEnumerableSemigroupRep (6.1.4),

AsListCanonical returns a list of the elements of S in the order they are enumerated by the Froidure-
Pin Algorithm. This is the same as the order used to index the elements of S in RightCayleyDigraph
(14.2.1) and LeftCayleyDigraph (14.2.1).

EnumeratorCanonical and IteratorCanonical return an enumerator and an iterator where
the elements are ordered in the same way as AsListCanonical. Using EnumeratorCanonical
or IteratorCanonical will often use less memory than AsListCanonical, but may have
slightly worse performance if the elements of the semigroup are looped over repeatedly.
EnumeratorCanonical returns the same list as AsListCanonical if AsListCanonical has ever
been called for S .

If S is an acting semigroup, then the value returned by AsList may not equal the value returned by
AsListCanonical. AsListCanonical exists so that there is a method for obtaining the elements of
S in the particular order used by RightCayleyDigraph (14.2.1) and LeftCayleyDigraph (14.2.1).

See also PositionCanonical (14.1.2).
Example

gap> S := Semigroup(Transformation([1, 3, 2]));;
gap> AsListCanonical(S);
[ Transformation( [ 1, 3, 2 ] ), IdentityTransformation ]
gap> IteratorCanonical(S);
<iterator>
gap> EnumeratorCanonical(S);
[ Transformation( [ 1, 3, 2 ] ), IdentityTransformation ]
gap> S := Monoid([Matrix(IsBooleanMat, [[1, 0, 0],
> [0, 1, 0],

163
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> [0, 1, 0]])]);
<commutative monoid of 3x3 boolean matrices with 1 generator>
gap> it := IteratorCanonical(S);
<iterator>
gap> NextIterator(it);
Matrix(IsBooleanMat, [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
gap> en := EnumeratorCanonical(S);
<enumerator of <commutative monoid of 3x3 boolean matrices with 1
generator>>

gap> en[1];
Matrix(IsBooleanMat, [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
gap> Position(en, en[1]);
1
gap> Length(en);
2

14.1.2 PositionCanonical

. PositionCanonical(S, x) (operation)

Returns: true or false.
When the argument S is a semigroup in the representation IsEnumerableSemigroupRep (6.1.4)

and x is an element of S , PositionCanonical returns the position of x in AsListCanonical(S)
or equivalently the position of x in EnumeratorCanonical(S).

See also AsListCanonical (14.1.1) and EnumeratorCanonical (14.1.1).
Example

gap> S := FullTropicalMaxPlusMonoid(2, 3);
<monoid of 2x2 tropical max-plus matrices with 13 generators>
gap> x := Matrix(IsTropicalMaxPlusMatrix, [[1, 3], [2, 1]], 3);
Matrix(IsTropicalMaxPlusMatrix, [[1, 3], [2, 1]], 3)
gap> PositionCanonical(S, x);
234
gap> EnumeratorCanonical(S)[234] = x;
true

14.1.3 Enumerate

. Enumerate(S[, limit]) (operation)

Returns: A semigroup (the argument).
If S is a semigroup with representation IsEnumerableSemigroupRep (6.1.4) and limit is a pos-

itive integer, then this operation can be used to enumerate at least limit elements of S , or Size(S)
elements if this is less than limit , using the Froidure-Pin Algorithm.

If the optional second argument limit is not given, then the semigroup is enumerated until all of
its elements have been found.

For reasons of performance, S is enumerated in batches according to the option batch_size,
which can be specified when S is created; see Section 6.3.

Example
gap> S := FullTransformationMonoid(7);
<full transformation monoid of degree 7>
gap> Enumerate(S, 1000);
<full transformation monoid of degree 7>
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gap> Display(S);
<partially enumerated semigroup with 8197 elements,
224 rules, max word length 11>

14.1.4 IsFullyEnumerated

. IsFullyEnumerated(S) (operation)

Returns: true or false.
If S is a semigroup with representation IsEnumerableSemigroupRep (6.1.4), then this operation

returns true if the Froidure-Pin Algorithm has been run to completion (i.e. all of the elements of S
have been found) and false if S has not been fully enumerated.

Example
gap> S := FullBooleanMatMonoid(4);
<monoid of 4x4 boolean matrices with 7 generators>
gap> Enumerate(S, 1000);
<monoid of 4x4 boolean matrices with 7 generators>
gap> IsFullyEnumerated(S);
false
gap> Size(S);
65536
gap> IsFullyEnumerated(S);
true

14.2 Cayley graphs

14.2.1 RightCayleyDigraph

. RightCayleyDigraph(S) (attribute)

. LeftCayleyDigraph(S) (attribute)

Returns: A list of lists of positive integers.
When the argument S is a semigroup in the representation IsEnumerableSemigroupRep

(6.1.4), RightCayleyDigraph returns the right Cayley graphs of S , as a Digraph (Digraphs:
Digraph) digraph where vertex OutNeighbours(digraph)[i][j] is PositionCanonical(S,
AsListCanonical(S)[i] * GeneratorsOfSemigroup(S)[j]). The digraph returned by
LeftCayleyDigraph is defined analogously.

The digraph returned by this attribute belongs to the category IsCayleyDigraph (Digraphs:
IsCayleyDigraph), the semigroup S and the generators used to create the digraph can be recovered
from the digraph using SemigroupOfCayleyDigraph (Digraphs: SemigroupOfCayleyDigraph)
and GeneratorsOfCayleyDigraph (Digraphs: GeneratorsOfCayleyDigraph).

Example
gap> S := FullTransformationMonoid(2);
<full transformation monoid of degree 2>
gap> RightCayleyDigraph(S);
<multidigraph with 4 vertices, 12 edges>
gap> LeftCayleyDigraph(S);
<multidigraph with 4 vertices, 12 edges>
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14.3 Random elements of a semigroup

14.3.1 Random (for a semigroup)

. Random(S) (method)

Returns: A random element.
This function returns a random element of the semigroup S . If the elements of S have been

calculated, then one of these is chosen randomly. Otherwise, if the data structure for S is known, then
a random element of a randomly chosen R-class is returned. If the data structure for S has not been
calculated, then a short product (at most 2 * Length(GeneratorsOfSemigroup(S))) of generators
is returned.

14.4 Properties of elements in a semigroup

14.4.1 IndexPeriodOfSemigroupElement

. IndexPeriodOfSemigroupElement(x) (operation)

Returns: A list of two positive integers.
If x is a semigroup element, then IndexPeriodOfSemigroupElement(x) returns the pair [m,

r], where m and r are the least positive integers such that x^(m + r) = x ^ m. The number m is
known as the index of x , and the numberr is known as the period of x .

Example
gap> x := Transformation([2, 6, 3, 5, 6, 1]);;
gap> IndexPeriodOfSemigroupElement(x);
[ 2, 3 ]
gap> m := IndexPeriodOfSemigroupElement(x)[1];;
gap> r := IndexPeriodOfSemigroupElement(x)[2];;
gap> x ^ (m + r) = x ^ m;
true
gap> x := PartialPerm([0, 2, 3, 0, 5]);
<identity partial perm on [ 2, 3, 5 ]>
gap> IsIdempotent(x);
true
gap> IndexPeriodOfSemigroupElement(x);
[ 1, 1 ]

14.4.2 SmallestIdempotentPower

. SmallestIdempotentPower(x) (attribute)

Returns: A positive integer.
If x is a semigroup element, then SmallestIdempotentPower(x) returns the least positive inte-

ger n such that x^n is an idempotent. The smallest idempotent power of x is the least multiple of the
period of x that is greater than or equal to the index of x ; see IndexPeriodOfSemigroupElement
(14.4.1).

Example
gap> x := Transformation([4, 1, 4, 5, 1]);
Transformation( [ 4, 1, 4, 5, 1 ] )
gap> SmallestIdempotentPower(x);
3
gap> ForAll([1 .. 2], i -> not IsIdempotent(x ^ i));
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true
gap> IsIdempotent(x ^ 3);
true
gap> x := Bipartition([[1, 2, -3, -4], [3, -5], [4, -1], [5, -2]]);
<block bijection: [ 1, 2, -3, -4 ], [ 3, -5 ], [ 4, -1 ], [ 5, -2 ]>
gap> SmallestIdempotentPower(x);
4
gap> ForAll([1 .. 3], i -> not IsIdempotent(x ^ i));
true
gap> x := PartialPerm([]);
<empty partial perm>
gap> SmallestIdempotentPower(x);
1
gap> IsIdempotent(x);
true

14.5 Expressing semigroup elements as words in generators

It is possible to express an element of a semigroup as a word in the generators of that semigroup. This
section describes how to accomplish this in Semigroups.

14.5.1 EvaluateWord

. EvaluateWord(gens, w) (operation)

Returns: A semigroup element.
The argument gens should be a collection of generators of a semigroup and the argument w should

be a list of positive integers less than or equal to the length of gens . This operation evaluates the word
w in the generators gens . More precisely, EvaluateWord(gens, w) returns the equivalent of:

Example
Product(List(w, i -> gens[i]));

see also Factorization (14.5.2).

for elements of a semigroup
When gens is a list of elements of a semigroup and w is a list of positive integers less than or
equal to the length of gens , this operation returns the product gens[w[1]] * gens[w[2]] *
.. . * gens[w[n]] when the length of w is n.

for elements of an inverse semigroup
When gens is a list of elements with a semigroup inverse and w is a list of non-zero in-
tegers whose absolute value does not exceed the length of gens , this operation returns
the product gens[AbsInt(w[1])] ^ SignInt(w[1]) * .. . * gens[AbsInt(w[n])]
^ SignInt(w[n]) where n is the length of w .

Note that EvaluateWord(gens, []) returns One(gens) if gens belongs to the category
IsMultiplicativeElementWithOne (Reference: IsMultiplicativeElementWithOne).

Example
gap> gens := [
> Transformation([2, 4, 4, 6, 8, 8, 6, 6]),
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> Transformation([2, 7, 4, 1, 4, 6, 5, 2]),
> Transformation([3, 6, 2, 4, 2, 2, 2, 8]),
> Transformation([4, 3, 6, 4, 2, 1, 2, 6]),
> Transformation([4, 5, 1, 3, 8, 5, 8, 2])];;
gap> S := Semigroup(gens);;
gap> x := Transformation([1, 4, 6, 1, 7, 2, 7, 6]);;
gap> word := Factorization(S, x);
[ 4, 2 ]
gap> EvaluateWord(gens, word);
Transformation( [ 1, 4, 6, 1, 7, 2, 7, 6 ] )
gap> S := SymmetricInverseMonoid(10);;
gap> x := PartialPerm([2, 6, 7, 0, 0, 9, 0, 1, 0, 5]);
[3,7][8,1,2,6,9][10,5]
gap> word := Factorization(S, x);
[ -2, -2, -2, -2, -3, -2, -2, -2, -2, -2, 5, 2, 5, 5, 2, 5, 2, 2, 2,

2, -3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2 ]
gap> EvaluateWord(GeneratorsOfSemigroup(S), word);
[3,7][8,1,2,6,9][10,5]

14.5.2 Factorization

. Factorization(S, x) (operation)

Returns: A word in the generators.

for semigroups
When S is a semigroup and x belongs to S , Factorization return a word in the generators of
S that is equal to x . In this case, a word is a list of positive integers where an entry i corresponds
to GeneratorsOfSemigroups(S)[i]. More specifically,

Example
EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, x)) = x;

for inverse semigroups
When S is an inverse semigroup and x belongs to S , Factorization return a word in
the generators of S that is equal to x . In this case, a word is a list of non-zero integers
where an entry i corresponds to GeneratorsOfSemigroup(S)[i] and -i corresponds to
GeneratorsOfSemigroup(S)[i] ^ -1. As in the previous case,

Example
EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, x)) = x;

Note that Factorization does not always return a word of minimum length; see
MinimalFactorization (14.5.3).

See also EvaluateWord (14.5.1) and GeneratorsOfSemigroup (Reference: GeneratorsOf-
Semigroup).

Example
gap> gens := [Transformation([2, 2, 9, 7, 4, 9, 5, 5, 4, 8]),
> Transformation([4, 10, 5, 6, 4, 1, 2, 7, 1, 2])];;
gap> S := Semigroup(gens);;
gap> x := Transformation([1, 10, 2, 10, 1, 2, 7, 10, 2, 7]);;
gap> word := Factorization(S, x);
[ 2, 2, 1, 2 ]
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gap> EvaluateWord(gens, word);
Transformation( [ 1, 10, 2, 10, 1, 2, 7, 10, 2, 7 ] )
gap> S := SymmetricInverseMonoid(8);
<symmetric inverse monoid of degree 8>
gap> x := PartialPerm([1, 2, 3, 4, 5, 8], [7, 1, 4, 3, 2, 6]);
[5,2,1,7][8,6](3,4)
gap> word := Factorization(S, x);
[ -2, -2, -2, -2, -2, -2, 2, 4, 4, 2, 3, 2, -3, -2, -2, 3, 2, -3, -2,

-2, 4, -3, -4, 2, 2, 3, -2, -3, 4, -3, -4, 2, 2, 3, -2, -3, 2, 2,
3, -2, -3, 2, 2, 3, -2, -3, 4, -3, -4, 3, 2, -3, -2, -2, 3, 2, -3,
-2, -2, 4, 3, -4, 3, 2, -3, -2, -2, 3, 2, -3, -2, -2, 3, 2, 2, 3,
2, 2, 2, 2 ]

gap> EvaluateWord(GeneratorsOfSemigroup(S), word);
[5,2,1,7][8,6](3,4)
gap> S := DualSymmetricInverseMonoid(6);;
gap> x := S.1 * S.2 * S.3 * S.2 * S.1;
<block bijection: [ 1, 6, -4 ], [ 2, -2, -3 ], [ 3, -5 ], [ 4, -6 ],
[ 5, -1 ]>

gap> word := Factorization(S, x);
[ -2, -2, -2, -2, -2, 4, 2 ]
gap> EvaluateWord(GeneratorsOfSemigroup(S), word);
<block bijection: [ 1, 6, -4 ], [ 2, -2, -3 ], [ 3, -5 ], [ 4, -6 ],
[ 5, -1 ]>

14.5.3 MinimalFactorization

. MinimalFactorization(S, x) (operation)

Returns: A minimal word in the generators.
This operation returns a minimal length word in the generators of the semigroup S that equals

the element x . In this case, a word is a list of positive integers where an entry i corresponds to
GeneratorsOfSemigroups(S)[i]. More specifically,

Example
EvaluateWord(GeneratorsOfSemigroup(S), MinimalFactorization(S, x)) = x;

MinimalFactorization involves exhaustively enumerating S until the element x is found, and
so MinimalFactorization may be less efficient than Factorization (14.5.2) for some semi-
groups.

Unlike Factorization (14.5.2) this operation does not distinguish between semigroups and
inverse semigroups. See also EvaluateWord (14.5.1) and GeneratorsOfSemigroup (Reference:
GeneratorsOfSemigroup).

Example
gap> S := Semigroup(Transformation([2, 2, 9, 7, 4, 9, 5, 5, 4, 8]),
> Transformation([4, 10, 5, 6, 4, 1, 2, 7, 1, 2]));
<transformation semigroup of degree 10 with 2 generators>
gap> x := Transformation([8, 8, 2, 2, 9, 2, 8, 8, 9, 9]);
Transformation( [ 8, 8, 2, 2, 9, 2, 8, 8, 9, 9 ] )
gap> Factorization(S, x);
[ 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1 ]
gap> MinimalFactorization(S, x);
[ 1, 2, 1, 1, 1, 1, 2, 2, 1 ]
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14.5.4 NonTrivialFactorization

. NonTrivialFactorization(S, x) (operation)

Returns: A non-trivial word in the generators, or fail.
When S is a semigroup and x belongs to S , this operation returns a non-trivial word in the gen-

erators of the semigroup S that equals x , if one exists. The definition of a word in the generators
is the same as given in Factorization (14.5.2) for semigroups and inverse semigroups. A word is
non-trivial if it has length two or more.

If no non-trivial word for x exists, then x is an indecomposable element of S and this operation
returns fail; see IndecomposableElements (14.6.6).

When x does not belong to GeneratorsOfSemigroup(S), any factorization of x is non-trivial.
In this case, NonTrivialFactorization returns the same word as Factorization (14.5.2).

See also EvaluateWord (14.5.1) and GeneratorsOfSemigroup (Reference: GeneratorsOf-
Semigroup).

Example
gap> x := Transformation([5, 4, 2, 1, 3]);;
gap> y := Transformation([4, 4, 2, 4, 1]);;
gap> S := Semigroup([x, y]);
<transformation semigroup of degree 5 with 2 generators>
gap> NonTrivialFactorization(S, x * y);
[ 1, 2 ]
gap> Factorization(S, x);
[ 1 ]
gap> NonTrivialFactorization(S, x);
[ 1, 1, 1, 1, 1, 1 ]
gap> Factorization(S, y);
[ 2 ]
gap> NonTrivialFactorization(S, y);
[ 2, 1, 1, 2, 1, 1, 2, 1, 1, 2 ]
gap> z := PartialPerm([2]);;
gap> S := Semigroup(z);
<commutative partial perm semigroup of rank 1 with 1 generator>
gap> NonTrivialFactorization(S, z);
fail

14.6 Generating sets

14.6.1 Generators

. Generators(S) (attribute)

Returns: A list of generators.
Generators returns a generating set that can be used to define the semigroup S . The generators

of a monoid or inverse semigroup S , say, can be defined in several ways, for example, including or
excluding the identity element, including or not the inverses of the generators. Generators uses
the definition that returns the least number of generators. If no generating set for S is known, then
GeneratorsOfSemigroup is used by default.

for a group
Generators(S) is a synonym for GeneratorsOfGroup (Reference: GeneratorsOfGroup).
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for an ideal of semigroup
Generators(S) is a synonym for GeneratorsOfSemigroupIdeal (7.2.1).

for a semigroup
Generators(S) is a synonym for GeneratorsOfSemigroup (Reference: GeneratorsOf-
Semigroup).

for a monoid
Generators(S) is a synonym for GeneratorsOfMonoid (Reference: GeneratorsOf-
Monoid).

for an inverse semigroup
Generators(S) is a synonym for GeneratorsOfInverseSemigroup (Reference: Genera-
torsOfInverseSemigroup).

for an inverse monoid
Generators(S) is a synonym for GeneratorsOfInverseMonoid (Reference: Generator-
sOfInverseMonoid).

Example
gap> M := Monoid([
> Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9])]);;
gap> GeneratorsOfSemigroup(M);
[ IdentityTransformation,

Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 9 ] ),
Transformation( [ 6, 3, 2, 7, 5, 1, 8, 8, 9, 9 ] ) ]

gap> GeneratorsOfMonoid(M);
[ Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 9 ] ),

Transformation( [ 6, 3, 2, 7, 5, 1, 8, 8, 9, 9 ] ) ]
gap> Generators(M);
[ Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 9 ] ),

Transformation( [ 6, 3, 2, 7, 5, 1, 8, 8, 9, 9 ] ) ]
gap> S := Semigroup(Generators(M));;
gap> Generators(S);
[ Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 9 ] ),

Transformation( [ 6, 3, 2, 7, 5, 1, 8, 8, 9, 9 ] ) ]
gap> GeneratorsOfSemigroup(S);
[ Transformation( [ 1, 4, 6, 2, 5, 3, 7, 8, 9, 9 ] ),

Transformation( [ 6, 3, 2, 7, 5, 1, 8, 8, 9, 9 ] ) ]

14.6.2 SmallGeneratingSet

. SmallGeneratingSet(coll) (attribute)

. SmallSemigroupGeneratingSet(coll) (attribute)

. SmallMonoidGeneratingSet(coll) (attribute)

. SmallInverseSemigroupGeneratingSet(coll) (attribute)

. SmallInverseMonoidGeneratingSet(coll) (attribute)

Returns: A small generating set for a semigroup.
The attributes SmallXGeneratingSet return a relatively small generating subset of the collection

of elements coll , which can also be a semigroup. The returned value of SmallXGeneratingSet,
where applicable, has the property that
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Example
X(SmallXGeneratingSet(coll)) = X(coll);

where X is any of Semigroup (Reference: Semigroup), Monoid (Reference: Monoid),
InverseSemigroup (Reference: InverseSemigroup), or InverseMonoid (Reference: Inverse-
Monoid).

If the number of generators for S is already relatively small, then these functions will often return
the original generating set. These functions may return different results in different GAP sessions.

SmallGeneratingSet returns the smallest of the returned values of SmallXGeneratingSet
which is applicable to coll ; see Generators (14.6.1).

As neither irredundancy, nor minimal length are proven, these functions usually return an answer
much more quickly than IrredundantGeneratingSubset (14.6.3). These functions can be used
whenever a small generating set is desired which does not necessarily needs to be minimal.

Example
gap> S := Semigroup([
> Transformation([1, 2, 3, 2, 4]),
> Transformation([1, 5, 4, 3, 2]),
> Transformation([2, 1, 4, 2, 2]),
> Transformation([2, 4, 4, 2, 1]),
> Transformation([3, 1, 4, 3, 2]),
> Transformation([3, 2, 3, 4, 1]),
> Transformation([4, 4, 3, 3, 5]),
> Transformation([5, 1, 5, 5, 3]),
> Transformation([5, 4, 3, 5, 2]),
> Transformation([5, 5, 4, 5, 5])]);;
gap> SmallGeneratingSet(S);
[ Transformation( [ 1, 5, 4, 3, 2 ] ), Transformation( [ 3, 2, 3, 4, 1 ] ),

Transformation( [ 5, 4, 3, 5, 2 ] ), Transformation( [ 1, 2, 3, 2, 4 ] ),
Transformation( [ 4, 4, 3, 3, 5 ] ) ]

gap> S := RandomInverseMonoid(IsPartialPermMonoid, 10000, 10);;
gap> SmallGeneratingSet(S);
[ [ 1 .. 10 ] -> [ 3, 2, 4, 5, 6, 1, 7, 10, 9, 8 ],

[ 1 .. 10 ] -> [ 5, 10, 8, 9, 3, 2, 4, 7, 6, 1 ],
[ 1, 3, 4, 5, 6, 7, 8, 9, 10 ] -> [ 1, 6, 4, 8, 2, 10, 7, 3, 9 ] ]

gap> M := MathieuGroup(24);;
gap> mat := List([1 .. 1000], x -> Random(M));;
gap> Append(mat, [1 .. 1000] * 0);
gap> mat := List([1 .. 138], x -> List([1 .. 57], x -> Random(mat)));;
gap> R := ReesZeroMatrixSemigroup(M, mat);;
gap> U := Semigroup(List([1 .. 200], x -> Random(R)));
<subsemigroup of 57x138 Rees 0-matrix semigroup with 100 generators>
gap> Length(SmallGeneratingSet(U));
84
gap> S := RandomSemigroup(IsBipartitionSemigroup, 100, 4);
<bipartition semigroup of degree 4 with 96 generators>
gap> Length(SmallGeneratingSet(S));
13
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14.6.3 IrredundantGeneratingSubset

. IrredundantGeneratingSubset(coll) (operation)

Returns: A list of irredundant generators.
If coll is a collection of elements of a semigroup, then this function returns a subset U of coll

such that no element of U is generated by the other elements of U.
Example

gap> S := Semigroup([
> Transformation([5, 1, 4, 6, 2, 3]),
> Transformation([1, 2, 3, 4, 5, 6]),
> Transformation([4, 6, 3, 4, 2, 5]),
> Transformation([5, 4, 6, 3, 1, 3]),
> Transformation([2, 2, 6, 5, 4, 3]),
> Transformation([3, 5, 5, 1, 2, 4]),
> Transformation([6, 5, 1, 3, 3, 4]),
> Transformation([1, 3, 4, 3, 2, 1])]);;
gap> IrredundantGeneratingSubset(S);
[ Transformation( [ 1, 3, 4, 3, 2, 1 ] ),

Transformation( [ 2, 2, 6, 5, 4, 3 ] ),
Transformation( [ 3, 5, 5, 1, 2, 4 ] ),
Transformation( [ 5, 1, 4, 6, 2, 3 ] ),
Transformation( [ 5, 4, 6, 3, 1, 3 ] ),
Transformation( [ 6, 5, 1, 3, 3, 4 ] ) ]

gap> S := RandomInverseMonoid(IsPartialPermMonoid, 1000, 10);
<inverse partial perm monoid of degree 10 with 1000 generators>
gap> SmallGeneratingSet(S);
[ [ 1 .. 10 ] -> [ 6, 5, 1, 9, 8, 3, 10, 4, 7, 2 ],

[ 1 .. 10 ] -> [ 1, 4, 6, 2, 8, 5, 7, 10, 3, 9 ],
[ 1, 2, 3, 4, 6, 7, 8, 9 ] -> [ 7, 5, 10, 1, 8, 4, 9, 6 ]
[ 1 .. 9 ] -> [ 4, 3, 5, 7, 10, 9, 1, 6, 8 ] ]

gap> IrredundantGeneratingSubset(last);
[ [ 1 .. 9 ] -> [ 4, 3, 5, 7, 10, 9, 1, 6, 8 ],

[ 1 .. 10 ] -> [ 1, 4, 6, 2, 8, 5, 7, 10, 3, 9 ],
[ 1 .. 10 ] -> [ 6, 5, 1, 9, 8, 3, 10, 4, 7, 2 ] ]

gap> S := RandomSemigroup(IsBipartitionSemigroup, 1000, 4);
<bipartition semigroup of degree 4 with 749 generators>
gap> SmallGeneratingSet(S);
[ <bipartition: [ 1, -3 ], [ 2, -2 ], [ 3, -1 ], [ 4, -4 ]>,

<bipartition: [ 1, 3, -2 ], [ 2, -1, -3 ], [ 4, -4 ]>,
<bipartition: [ 1, -4 ], [ 2, 4, -1, -3 ], [ 3, -2 ]>,
<bipartition: [ 1, -1, -3 ], [ 2, -4 ], [ 3, 4, -2 ]>,
<bipartition: [ 1, -2, -4 ], [ 2 ], [ 3, -3 ], [ 4, -1 ]>,
<bipartition: [ 1, -2 ], [ 2, -1, -3 ], [ 3, 4, -4 ]>,
<bipartition: [ 1, 3, -1 ], [ 2, -3 ], [ 4, -2, -4 ]>,
<bipartition: [ 1, -1 ], [ 2, 4, -4 ], [ 3, -2, -3 ]>,
<bipartition: [ 1, 3, -1 ], [ 2, -2 ], [ 4, -3, -4 ]>,
<bipartition: [ 1, 2, -2 ], [ 3, -1, -4 ], [ 4, -3 ]>,
<bipartition: [ 1, -2, -3 ], [ 2, -4 ], [ 3 ], [ 4, -1 ]>,
<bipartition: [ 1, -1 ], [ 2, 4, -3 ], [ 3, -2 ], [ -4 ]>,
<bipartition: [ 1, -3 ], [ 2, -1 ], [ 3, 4, -4 ], [ -2 ]>,
<bipartition: [ 1, 2, -4 ], [ 3, -1 ], [ 4, -2 ], [ -3 ]>,
<bipartition: [ 1, -3 ], [ 2, -4 ], [ 3, -1, -2 ], [ 4 ]> ]

gap> IrredundantGeneratingSubset(last);
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[ <bipartition: [ 1, 2, -4 ], [ 3, -1 ], [ 4, -2 ], [ -3 ]>,
<bipartition: [ 1, 3, -1 ], [ 2, -2 ], [ 4, -3, -4 ]>,
<bipartition: [ 1, 3, -2 ], [ 2, -1, -3 ], [ 4, -4 ]>,
<bipartition: [ 1, -1 ], [ 2, 4, -3 ], [ 3, -2 ], [ -4 ]>,
<bipartition: [ 1, -3 ], [ 2, -1 ], [ 3, 4, -4 ], [ -2 ]>,
<bipartition: [ 1, -3 ], [ 2, -2 ], [ 3, -1 ], [ 4, -4 ]>,
<bipartition: [ 1, -3 ], [ 2, -4 ], [ 3, -1, -2 ], [ 4 ]>,
<bipartition: [ 1, -2, -3 ], [ 2, -4 ], [ 3 ], [ 4, -1 ]>,
<bipartition: [ 1, -2, -4 ], [ 2 ], [ 3, -3 ], [ 4, -1 ]> ]

14.6.4 MinimalSemigroupGeneratingSet

. MinimalSemigroupGeneratingSet(S) (attribute)

. MinimalMonoidGeneratingSet(S) (attribute)

Returns: A minimal generating set for a semigroup.
The attribute MinimalXGeneratingSet returns a minimal generating set for the semigroup S ,

with respect to length. The returned value of MinimalXGeneratingSet, where applicable, is a
minimal-length list of elements of S with the property that

Example
X(MinimalXGeneratingSet(S)) = S;

where X is either Semigroup (Reference: Semigroup), or Monoid (Reference: Monoid).
For many types of semigroup, it is not currently possible to find a MinimalXGeneratingSet with

the Semigroups package.
See also SmallGeneratingSet (14.6.2) and IrredundantGeneratingSubset (14.6.3).

Example
gap> S := MonogenicSemigroup(3, 6);;
gap> MinimalSemigroupGeneratingSet(S);
[ Transformation( [ 2, 3, 4, 5, 6, 1, 6, 7, 8 ] ) ]
gap> S := FullTransformationMonoid(4);;
gap> MinimalSemigroupGeneratingSet(S);
[ Transformation( [ 1, 4, 2, 3 ] ), Transformation( [ 4, 3, 1, 2 ] ),

Transformation( [ 1, 2, 3, 1 ] ) ]
gap> S := Monoid([
> PartialPerm([2, 3, 4, 5, 1, 0, 6, 7]),
> PartialPerm([3, 4, 5, 1, 2, 0, 0, 6])]);
<partial perm monoid of rank 8 with 2 generators>
gap> IsMonogenicMonoid(S);
true
gap> MinimalMonoidGeneratingSet(S);
[ [8,7,6](1,2,3,4,5) ]

14.6.5 GeneratorsSmallest (for a semigroup)

. GeneratorsSmallest(S) (attribute)

Returns: A set of elements.
For a semigroup S , GeneratorsSmallest returns the lexicographically least set of elements X

such that X generates S as a semigroup, and such that X is lexicographically ordered and has the
property that each X[i] is not generated by X[1], X[2], ..., X[i-1].
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It can be difficult to find the set of generators X, and it might contain a substantial proportion of
the elements of S .

Two semigroups have the same set of elements if and only if their smallest generating sets are
equal. However, due to the complexity of determining the GeneratorsSmallest, this is not the
method used by the Semigroups package when comparing semigroups.

Example
gap> S := Monoid([
> Transformation([1, 3, 4, 1]),
> Transformation([2, 4, 1, 2]),
> Transformation([3, 1, 1, 3]),
> Transformation([3, 3, 4, 1])]);
<transformation monoid of degree 4 with 4 generators>
gap> GeneratorsSmallest(S);
[ Transformation( [ 1, 1, 1, 1 ] ), Transformation( [ 1, 1, 1, 2 ] ),

Transformation( [ 1, 1, 1, 3 ] ), Transformation( [ 1, 1, 1 ] ),
Transformation( [ 1, 1, 2, 1 ] ), Transformation( [ 1, 1, 2, 2 ] ),
Transformation( [ 1, 1, 3, 1 ] ), Transformation( [ 1, 1, 3, 3 ] ),
Transformation( [ 1, 1 ] ), Transformation( [ 1, 1, 4, 1 ] ),
Transformation( [ 1, 2, 1, 1 ] ), Transformation( [ 1, 2, 2, 1 ] ),
IdentityTransformation, Transformation( [ 1, 3, 1, 1 ] ),
Transformation( [ 1, 3, 4, 1 ] ), Transformation( [ 2, 1, 1, 2 ] ),
Transformation( [ 2, 2, 2 ] ), Transformation( [ 2, 4, 1, 2 ] ),
Transformation( [ 3, 3, 3 ] ), Transformation( [ 3, 3, 4, 1 ] ) ]

gap> T := Semigroup(Bipartition([[1, 2, 3], [4, -1], [-2], [-3], [-4]]),
> Bipartition([[1, -3, -4], [2, 3, 4, -2], [-1]]),
> Bipartition([[1, 2, 3, 4, -2], [-1, -4], [-3]]),
> Bipartition([[1, 2, 3, 4], [-1], [-2], [-3, -4]]),
> Bipartition([[1, 2, -1, -2], [3, 4, -3], [-4]]));
<bipartition semigroup of degree 4 with 5 generators>
gap> GeneratorsSmallest(T);
[ <bipartition: [ 1, 2, 3, 4, -1, -2, -3 ], [ -4 ]>,

<bipartition: [ 1, 2, 3, 4, -1, -2 ], [ -3 ], [ -4 ]>,
<bipartition: [ 1, 2, 3, 4, -1 ], [ -2 ], [ -3 ], [ -4 ]>,
<bipartition: [ 1, 2, 3, 4, -2, -3, -4 ], [ -1 ]>,
<bipartition: [ 1, 2, 3, 4, -2 ], [ -1, -4 ], [ -3 ]>,
<bipartition: [ 1, 2, 3, 4, -2 ], [ -1 ], [ -3, -4 ]>,
<bipartition: [ 1, 2, 3, 4, -3 ], [ -1, -2 ], [ -4 ]>,
<bipartition: [ 1, 2, 3, 4 ], [ -1, -2, -3 ], [ -4 ]>,
<bipartition: [ 1, 2, 3, 4, -3, -4 ], [ -1 ], [ -2 ]>,
<bipartition: [ 1, 2, 3 ], [ 4, -1, -2, -3 ], [ -4 ]>,
<bipartition: [ 1, 2, -1, -2 ], [ 3, 4, -3 ], [ -4 ]>,
<bipartition: [ 1, -3 ], [ 2, 3, 4, -1, -2 ], [ -4 ]>,
<bipartition: [ 1, -3, -4 ], [ 2, 3, 4, -2 ], [ -1 ]> ]

14.6.6 IndecomposableElements

. IndecomposableElements(S) (attribute)

Returns: A list of elements.
If S is a semigroup, then this attribute returns the set of elements of S that are not decomposable.

A element of S is decomposable if it can be written as the product of two elements in S . An element
of S is indecomposable if it is not decomposable.
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See also IsSurjectiveSemigroup (15.1.6).
Note that any generating set for S contains each indecomposable element of S . Thus

IndecomposableElements(S) is a subset of GeneratorsOfSemigroup(S).
Example

gap> S := Semigroup([
> Transformation([1, 1, 2, 3]),
> Transformation([1, 1, 1, 2])]);
<transformation semigroup of degree 4 with 2 generators>
gap> x := IndecomposableElements(S);
[ Transformation( [ 1, 1, 2, 3 ] ) ]
gap> IsSubset(GeneratorsOfSemigroup(S), x);
true
gap> T := FullTransformationMonoid(10);
<full transformation monoid of degree 10>
gap> IndecomposableElements(T);
[ ]
gap> B := ZeroSemigroup(IsBipartitionSemigroup, 3);
<commutative non-regular bipartition semigroup of size 3, degree 4
with 2 generators>

gap> IndecomposableElements(B);
[ <bipartition: [ 1, 2, 3, -1 ], [ 4, -2 ], [ -3 ], [ -4 ]>,

<bipartition: [ 1, 2, 4, -1 ], [ 3, -2 ], [ -3 ], [ -4 ]> ]

14.7 Minimal ideals and multiplicative zeros

In this section we describe the attributes of a semigroup that can be found using the Semigroups
package.

14.7.1 MinimalIdeal

. MinimalIdeal(S) (attribute)

Returns: The minimal ideal of a semigroup.
The minimal ideal of a semigroup is the least ideal with respect to containment.
It is significantly easier to find the minimal D-class of a semigroup, than to find its D-classes.
See also RepresentativeOfMinimalIdeal (14.7.2), PartialOrderOfDClasses (13.1.10),

IsGreensLessThanOrEqual (Reference: IsGreensLessThanOrEqual), and MinimalDClass
(13.1.6).

Example
gap> S := Semigroup(
> Transformation([3, 4, 1, 3, 6, 3, 4, 6, 10, 1]),
> Transformation([8, 2, 3, 8, 4, 1, 3, 4, 9, 7]));;
gap> MinimalIdeal(S);
<simple transformation semigroup ideal of degree 10 with 1 generator>
gap> Elements(MinimalIdeal(S));
[ Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ),

Transformation( [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ] ),
Transformation( [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ] ),
Transformation( [ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ] ),
Transformation( [ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 ] ) ]

gap> x := Transformation([8, 8, 8, 8, 8, 8, 8, 8, 8, 8]);;
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gap> D := DClass(S, x);;
gap> ForAll(GreensDClasses(S), x -> IsGreensLessThanOrEqual(D, x));
true
gap> MinimalIdeal(POI(10));
<partial perm group of rank 10>
gap> MinimalIdeal(BrauerMonoid(6));
<simple bipartition *-semigroup ideal of degree 6 with 1 generator>

14.7.2 RepresentativeOfMinimalIdeal

. RepresentativeOfMinimalIdeal(S) (attribute)

. RepresentativeOfMinimalDClass(S) (attribute)

Returns: An element of the minimal ideal of a semigroup.
The minimal ideal of a semigroup is the least ideal with respect to containment.
This method returns a representative element of the minimal ideal of S without having to create the

minimal ideal itself. In general, beyond being a member of the minimal ideal, the returned element
is not guaranteed to have any special properties. However, the element will coincide with the zero
element of S if one exists.

This method works particularly well if S is a semigroup of transformations or partial permutations.
See also MinimalIdeal (14.7.1) and MinimalDClass (13.1.6).

Example
gap> S := SymmetricInverseSemigroup(10);;
gap> RepresentativeOfMinimalIdeal(S);
<empty partial perm>
gap> B := Semigroup([
> Bipartition([[1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([[1, -1], [2], [3], [4, -3], [5, 6, -5, -6],
> [-2, -4]])]);;
gap> RepresentativeOfMinimalIdeal(B);
<bipartition: [ 1, 2 ], [ 3, 6 ], [ 4, 5 ], [ -1, -5, -6 ],
[ -2, -4 ], [ -3 ]>

gap> S := Semigroup(Transformation([5, 1, 6, 2, 2, 4]),
> Transformation([3, 5, 5, 1, 6, 2]));;
gap> RepresentativeOfMinimalDClass(S);
Transformation( [ 1, 2, 2, 5, 5, 1 ] )
gap> MinimalDClass(S);
<Green’s D-class: Transformation( [ 1, 2, 2, 5, 5, 1 ] )>

14.7.3 MultiplicativeZero

. MultiplicativeZero(S) (attribute)

Returns: The zero element of a semigroup.
MultiplicativeZero returns the zero element of the semigroup S if it exists and fail if it does

not. See also MultiplicativeZero (Reference: MultiplicativeZero).
Example

gap> S := Semigroup(Transformation([1, 4, 2, 6, 6, 5, 2]),
> Transformation([1, 6, 3, 6, 2, 1, 6]));;
gap> MultiplicativeZero(S);
Transformation( [ 1, 1, 1, 1, 1, 1, 1 ] )
gap> S := Semigroup(Transformation([2, 8, 3, 7, 1, 5, 2, 6]),
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> Transformation([3, 5, 7, 2, 5, 6, 3, 8]),
> Transformation([6, 7, 4, 1, 4, 1, 6, 2]),
> Transformation([8, 8, 5, 1, 7, 5, 2, 8]));;
gap> MultiplicativeZero(S);
fail
gap> S := InverseSemigroup(
> PartialPerm([1, 3, 4], [5, 3, 1]),
> PartialPerm([1, 2, 3, 4], [4, 3, 1, 2]),
> PartialPerm([1, 3, 4, 5], [2, 4, 5, 3]));;
gap> MultiplicativeZero(S);
<empty partial perm>
gap> S := PartitionMonoid(6);
<regular bipartition *-monoid of size 4213597, degree 6 with 4
generators>

gap> MultiplicativeZero(S);
fail
gap> S := DualSymmetricInverseMonoid(6);
<inverse block bijection monoid of degree 6 with 3 generators>
gap> MultiplicativeZero(S);
<block bijection: [ 1, 2, 3, 4, 5, 6, -1, -2, -3, -4, -5, -6 ]>

14.7.4 UnderlyingSemigroupOfSemigroupWithAdjoinedZero

. UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S) (attribute)

Returns: A semigroup, or fail.
If S is a semigroup for which the property IsSemigroupWithAdjoinedZero (15.1.20) is true,

(i.e. S has a MultiplicativeZero (14.7.3) and the set S \ {0} is a subsemigroup of S ), then this
method returns the semigroup S \{0}.

Otherwise, if S is a semigroup for which the property IsSemigroupWithAdjoinedZero
(15.1.20) is false, then this method returns fail.

Example
gap> S := Semigroup([
> Transformation([2, 3, 4, 5, 1, 6]),
> Transformation([2, 1, 3, 4, 5, 6]),
> Transformation([6, 6, 6, 6, 6, 6])]);
<transformation semigroup of degree 6 with 3 generators>
gap> MultiplicativeZero(S);
Transformation( [ 6, 6, 6, 6, 6, 6 ] )
gap> G := UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
<transformation semigroup of degree 5 with 2 generators>
gap> IsGroupAsSemigroup(G);
true
gap> IsZeroGroup(S);
true
gap> S := SymmetricInverseMonoid(6);;
gap> MultiplicativeZero(S);
<empty partial perm>
gap> G := UnderlyingSemigroupOfSemigroupWithAdjoinedZero(S);
fail
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14.8 Group of units and identity elements

14.8.1 GroupOfUnits

. GroupOfUnits(S) (attribute)

Returns: The group of units of a semigroup or fail.
GroupOfUnits returns the group of units of the semigroup S as a subsemigroup of S if it exists

and returns fail if it does not. Use IsomorphismPermGroup (6.6.5) if you require a permutation
representation of the group of units.

If a semigroup S has an identity e, then the group of units of S is the set of those s in S such that
there exists t in S where s*t=t*s=e. Equivalently, the group of units is the H -class of the identity
of S .

See also GreensHClassOfElement (Reference: GreensHClassOfElement),
IsMonoidAsSemigroup (15.1.13), and MultiplicativeNeutralElement (Reference: Mul-
tiplicativeNeutralElement).

Example
gap> S := Semigroup(
> Transformation([1, 2, 5, 4, 3, 8, 7, 6]),
> Transformation([1, 6, 3, 4, 7, 2, 5, 8]),
> Transformation([2, 1, 6, 7, 8, 3, 4, 5]),
> Transformation([3, 2, 3, 6, 1, 6, 1, 2]),
> Transformation([5, 2, 3, 6, 3, 4, 7, 4]));;
gap> Size(S);
5304
gap> StructureDescription(GroupOfUnits(S));
"C2 x S4"
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
> [2, 4, 5, 3, 6, 7, 10, 9, 8, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 10],
> [8, 2, 3, 1, 4, 5, 10, 6, 9]));;
gap> StructureDescription(GroupOfUnits(S));
"C8"
gap> S := InverseSemigroup(
> PartialPerm([1, 3, 4], [4, 3, 5]),
> PartialPerm([1, 2, 3, 5], [3, 1, 5, 2]));;
gap> GroupOfUnits(S);
fail
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-2]]),
> Bipartition([[1, -1], [2, 3, -2, -3]]),
> Bipartition([[1, -2], [2, -3], [3, -1]]),
> Bipartition([[1], [2, 3, -2], [-1, -3]]));;
gap> StructureDescription(GroupOfUnits(S));
"C3"
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14.9 Idempotents

14.9.1 Idempotents

. Idempotents(obj[, n]) (attribute)

Returns: A list of idempotents.
The argument obj should be a semigroup, D-class, H -class, L -class, or R-class.
If the optional second argument n is present and obj is a semigroup, then a list of the idempotents

in obj of rank n is returned. If you are only interested in the idempotents of a given rank, then the
second version of the function will probably be faster. However, if the optional second argument is
present, then nothing is stored in obj and so every time the function is called the computation must
be repeated.

This functions produce essentially the same output as the GAP library function with the same
name; see Idempotents (Reference: Idempotents). The main difference is that this function can be
applied to a wider class of objects as described above.

See also IsRegularDClass (Reference: IsRegularDClass), IsRegularGreensClass (13.3.2)
IsGroupHClass (Reference: IsGroupHClass), NrIdempotents (14.9.2), and GroupHClass
(13.4.1).

Example
gap> S := Semigroup(Transformation([2, 3, 4, 1]),
> Transformation([3, 3, 1, 1]));;
gap> Idempotents(S, 1);
[ ]
gap> AsSet(Idempotents(S, 2));
[ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 1, 3, 3, 1 ] ),

Transformation( [ 2, 2, 4, 4 ] ), Transformation( [ 4, 2, 2, 4 ] ) ]
gap> AsSet(Idempotents(S));
[ Transformation( [ 1, 1, 3, 3 ] ), IdentityTransformation,

Transformation( [ 1, 3, 3, 1 ] ), Transformation( [ 2, 2, 4, 4 ] ),
Transformation( [ 4, 2, 2, 4 ] ) ]

gap> x := Transformation([2, 2, 4, 4]);;
gap> R := GreensRClassOfElement(S, x);;
gap> Idempotents(R);
[ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 2, 2, 4, 4 ] ) ]
gap> x := Transformation([4, 2, 2, 4]);;
gap> L := GreensLClassOfElement(S, x);;
gap> AsSet(Idempotents(L));
[ Transformation( [ 2, 2, 4, 4 ] ), Transformation( [ 4, 2, 2, 4 ] ) ]
gap> D := DClassOfLClass(L);;
gap> AsSet(Idempotents(D));
[ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 1, 3, 3, 1 ] ),

Transformation( [ 2, 2, 4, 4 ] ), Transformation( [ 4, 2, 2, 4 ] ) ]
gap> L := GreensLClassOfElement(S, Transformation([3, 1, 1, 3]));;
gap> AsSet(Idempotents(L));
[ Transformation( [ 1, 1, 3, 3 ] ), Transformation( [ 1, 3, 3, 1 ] ) ]
gap> H := GroupHClass(D);
<Green’s H-class: Transformation( [ 1, 1, 3, 3 ] )>
gap> Idempotents(H);
[ Transformation( [ 1, 1, 3, 3 ] ) ]
gap> S := InverseSemigroup(
> PartialPerm([10, 6, 3, 4, 9, 0, 1]),
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> PartialPerm([6, 10, 7, 4, 8, 2, 9, 1]));;
gap> Idempotents(S, 1);
[ <identity partial perm on [ 4 ]> ]
gap> Idempotents(S, 0);
[ ]

14.9.2 NrIdempotents

. NrIdempotents(obj) (attribute)

Returns: A positive integer.
This function returns the number of idempotents in obj where obj can be a semigroup, D-,

L -, H -, or R-class. If the actual idempotents are not required, then it is more efficient to use
NrIdempotents(obj) than Length(Idempotents(obj)) since the idempotents themselves are not
created when NrIdempotents is called.

See also Idempotents (Reference: Idempotents) and Idempotents (14.9.1),
IsRegularDClass (Reference: IsRegularDClass), IsRegularGreensClass (13.3.2)
IsGroupHClass (Reference: IsGroupHClass), and GroupHClass (13.4.1).

Example
gap> S := Semigroup(Transformation([2, 3, 4, 1]),
> Transformation([3, 3, 1, 1]));;
gap> NrIdempotents(S);
5
gap> f := Transformation([2, 2, 4, 4]);;
gap> R := GreensRClassOfElement(S, f);;
gap> NrIdempotents(R);
2
gap> f := Transformation([4, 2, 2, 4]);;
gap> L := GreensLClassOfElement(S, f);;
gap> NrIdempotents(L);
2
gap> D := DClassOfLClass(L);;
gap> NrIdempotents(D);
4
gap> L := GreensLClassOfElement(S, Transformation([3, 1, 1, 3]));;
gap> NrIdempotents(L);
2
gap> H := GroupHClass(D);;
gap> NrIdempotents(H);
1
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 5, 7, 9, 10],
> [6, 7, 2, 9, 1, 5, 3]),
> PartialPerm([1, 2, 3, 5, 6, 7, 9, 10],
> [8, 1, 9, 4, 10, 5, 6, 7]));;
gap> NrIdempotents(S);
236
gap> f := PartialPerm([2, 3, 7, 9, 10],
> [7, 2, 1, 5, 3]);;
gap> D := DClassNC(S, f);;
gap> NrIdempotents(D);
13
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14.9.3 IdempotentGeneratedSubsemigroup

. IdempotentGeneratedSubsemigroup(S) (attribute)

Returns: A semigroup.
IdempotentGeneratedSubsemigroup returns the subsemigroup of the semigroup S generated

by the idempotents of S .
See also Idempotents (14.9.1) and SmallGeneratingSet (14.6.2).

Example
gap> S := Semigroup(Transformation([1, 1]),
> Transformation([2, 1]),
> Transformation([1, 2, 2]),
> Transformation([1, 2, 3, 4, 5, 1]),
> Transformation([1, 2, 3, 4, 5, 5]),
> Transformation([1, 2, 3, 4, 6, 5]),
> Transformation([1, 2, 3, 5, 4]),
> Transformation([1, 2, 3, 7, 4, 5, 7]),
> Transformation([1, 2, 4, 8, 8, 3, 8, 7]),
> Transformation([1, 2, 8, 4, 5, 6, 7, 8]),
> Transformation([7, 7, 7, 4, 5, 6, 1]));;
gap> IdempotentGeneratedSubsemigroup(S) =
> Monoid(Transformation([1, 1]),
> Transformation([1, 2, 1]),
> Transformation([1, 2, 2]),
> Transformation([1, 2, 3, 1]),
> Transformation([1, 2, 3, 2]),
> Transformation([1, 2, 3, 4, 1]),
> Transformation([1, 2, 3, 4, 2]),
> Transformation([1, 2, 3, 4, 4]),
> Transformation([1, 2, 3, 4, 5, 1]),
> Transformation([1, 2, 3, 4, 5, 2]),
> Transformation([1, 2, 3, 4, 5, 5]),
> Transformation([1, 2, 3, 4, 5, 7, 7]),
> Transformation([1, 2, 3, 4, 7, 6, 7]),
> Transformation([1, 2, 3, 6, 5, 6]),
> Transformation([1, 2, 3, 7, 5, 6, 7]),
> Transformation([1, 2, 8, 4, 5, 6, 7, 8]),
> Transformation([2, 2]));
true
gap> S := SymmetricInverseSemigroup(5);
<symmetric inverse monoid of degree 5>
gap> IdempotentGeneratedSubsemigroup(S);
<inverse partial perm monoid of rank 5 with 5 generators>
gap> S := DualSymmetricInverseSemigroup(5);
<inverse block bijection monoid of degree 5 with 3 generators>
gap> IdempotentGeneratedSubsemigroup(S);
<inverse block bijection monoid of degree 5 with 10 generators>
gap> IsSemilattice(last);
true
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14.10 Maximal subsemigroups

The Semigroups package provides methods to calculate the maximal subsemigroups of a finite semi-
group, subject to various conditions. A maximal subsemigroup of a semigroup is a proper subsemi-
group that is contained in no other proper subsemigroup of the semigroup.

When computing the maximal subsemigroups of a regular Rees (0-)matrix semigroup over a
group, additional functionality is available. As described in [GGR68], a maximal subsemigroup of
a finite regular Rees (0-)matrix semigroup over a group is one of 6 possible types. Using the Semi-
groups package, it is possible to search for only those maximal subsemigroups of certain types.

A maximal subsemigroup of such a Rees (0-)matrix semigroup R over a group G is either:

1. {0};

2. formed by removing 0;

3. formed by removing a column (a non-zero L -class);

4. formed by removing a row (a non-zero R-class);

5. formed by removing a set of both rows and columns;

6. isomorphic to a Rees (0-)matrix semigroup of the same dimensions over a maximal subgroup
of G (in particular, the maximal subsemigroup intersects every H -class of R).

Note that if R is a Rees matrix semigroup then it has no maximal subsemigroups of types 1, 2, or 5.
Only types 3, 4, and 6 are relevant to a Rees matrix semigroup.

14.10.1 MaximalSubsemigroups (for a finite semigroup)

. MaximalSubsemigroups(S) (attribute)

. MaximalSubsemigroups(S, opts) (operation)

Returns: The maximal subsemigroups of S .
If S is a finite semigroup, then the attribute MaximalSubsemigroups returns a list of the non-

empty maximal subsemigroups of S . The methods used by MaximalSubsemigroups are based on
[GGR68], and are described in [DMW18].

It is computationally expensive to search for the maximal subsemigroups of a semigroup, and
so computations involving MaximalSubsemigroups may be very lengthy. A substantial amount
of information on the progress of MaximalSubsemigroups is provided through the info class
InfoSemigroups (2.6.1), with increasingly detailed information given at levels 1, 2, and 3.

The behaviour of MaximalSubsemigroups can be altered via the second argument opts , which
should be a record. The optional components of opts are:

gens (a boolean)
If opts.gens is false or unspecified, then the maximal subsemigroups themselves are re-
turned and not just generating sets for these subsemigroups.

It can be more computationally expensive to return the generating sets for the maximal sub-
semigroups, than to return the maximal subsemigroups themselves.

contain (a list)
If opts.contain is duplicate-free list of elements of S , then MaximalSubsemigroups will
search for the maximal subsemigroups of S which contain those elements.
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D (a D-class)
For a maximal subsemigroup M of a finite semigroup S , there exists a unique D-class which con-
tains the complement of M in S . In other words, the elements of S which M lacks are contained
in a unique D-class.

If opts.D is a D-class of S , then MaximalSubsemigroups will search exclusively for those
maximal subsemigroups of S whose complement is contained in opts.D.

types (a list)
This option is relevant only if S is a regular Rees (0-)matrix semigroup over a group.

As described at the start of this subsection, 14.10, a maximal subsemigroup of a regular Rees
(0-)matrix semigroup over a group is one of 6 possible types.

If S is a regular Rees (0-)matrix semigroup over a group and opts.types is a subset of [1
.. 6], then MaximalSubsemigroups will search for those maximal subsemigroups of S of
the types enumerated by opts.types.

The default value for this option is [1 .. 6] (i.e. no restriction).
Example

gap> S := FullTransformationSemigroup(3);
<full transformation monoid of degree 3>
gap> MaximalSubsemigroups(S);
[ <transformation semigroup of degree 3 with 7 generators>,

<transformation semigroup of degree 3 with 7 generators>,
<transformation semigroup of degree 3 with 7 generators>,
<transformation semigroup of degree 3 with 7 generators>,
<transformation monoid of degree 3 with 5 generators> ]

gap> MaximalSubsemigroups(S,
> rec(gens := true, D := DClass(S, Transformation([2, 2, 3]))));
[ [ Transformation( [ 1, 1, 1 ] ), Transformation( [ 3, 3, 3 ] ),

Transformation( [ 2, 2, 2 ] ), IdentityTransformation,
Transformation( [ 2, 3, 1 ] ), Transformation( [ 2, 1 ] ) ] ]

gap> MaximalSubsemigroups(S,
> rec(contain := [Transformation([2, 3, 1])]));
[ <transformation semigroup of degree 3 with 7 generators>,

<transformation monoid of degree 3 with 5 generators> ]
gap> R := PrincipalFactor(
> DClass(FullTransformationMonoid(4), Transformation([2, 2])));
<Rees 0-matrix semigroup 6x4 over Group([ (2,3,4), (2,4) ])>
gap> MaximalSubsemigroups(R, rec(types := [5],
> contain := [RMSElement(R, 1, (), 1),
> RMSElement(R, 1, (2, 3), 2)]));
[ <subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators>,

<subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators>,
<subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators>,
<subsemigroup of 6x4 Rees 0-matrix semigroup with 10 generators> ]

14.10.2 NrMaximalSubsemigroups

. NrMaximalSubsemigroups(S) (attribute)

Returns: The number of maximal subsemigroups of S .
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If S is a finite semigroup, then NrMaximalSubsemigroups returns the number of non-empty
maximal subsemigroups of S . The methods used by MaximalSubsemigroups are based on [GGR68],
and are described in [DMW18].

It can be significantly faster to find the number of maximal subsemigroups of a semigroup than to
find the maximal subsemigroups themselves.

Unless the maximal subsemigroups of S are already known, the command
NrMaximalSubsemigroups(S) simply calls the command MaximalSubsemigroups(S,
rec(number := true)).

For more information about searching for maximal subsemigroups of a finite semigroup in
the Semigroups package, and for information about the options available to alter the search, see
MaximalSubsemigroups (14.10.1). By supplying the additional option opts.number := true, the
number of maximal subsemigroups will be returned rather than the subsemigroups themselves.

Example
gap> S := FullTransformationSemigroup(3);
<full transformation monoid of degree 3>
gap> NrMaximalSubsemigroups(S);
5
gap> S := RectangularBand(3, 4);;
gap> NrMaximalSubsemigroups(S);
7
gap> R := PrincipalFactor(
> DClass(FullTransformationMonoid(4), Transformation([2, 2])));
<Rees 0-matrix semigroup 6x4 over Group([ (2,3,4), (2,4) ])>
gap> MaximalSubsemigroups(R, rec(number := true, types := [3, 4]));
10

14.10.3 IsMaximalSubsemigroup

. IsMaximalSubsemigroup(S, T) (operation)

Returns: true or false.
If S and T are semigroups, then IsMaximalSubsemigroup returns true if and only if T is a

maximal subsemigroup of S .
A maximal subsemigroup of S is a proper subsemigroup of S which is contained in no other proper

subsemigroup of S .
Example

gap> S := ZeroSemigroup(2);;
gap> IsMaximalSubsemigroup(S, Semigroup(MultiplicativeZero(S)));
true
gap> S := FullTransformationSemigroup(4);
<full transformation monoid of degree 4>
gap> T := Semigroup(Transformation([3, 4, 1, 2]),
> Transformation([1, 4, 2, 3]),
> Transformation([2, 1, 1, 3]));
<transformation semigroup of degree 4 with 3 generators>
gap> IsMaximalSubsemigroup(S, T);
true
gap> R := Semigroup(Transformation([3, 4, 1, 2]),
> Transformation([1, 4, 2, 2]),
> Transformation([2, 1, 1, 3]));
<transformation semigroup of degree 4 with 3 generators>
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gap> IsMaximalSubsemigroup(S, R);
false

14.11 The normalizer of a semigroup

14.11.1 Normalizer (for a perm group, semigroup, record)

. Normalizer(G, S[, opts]) (operation)

. Normalizer(S[, opts]) (operation)

Returns: A permutation group.
In its first form, this function returns the normalizer of the transformation, partial perm, or biparti-

tion semigroup S in the permutation group G . In its second form, the normalizer of S in the symmetric
group on [1 .. n] where n is the degree of S is returned.

The NORMALIZER of a transformation semigroup S in a permutation group G in the subgroup H
of G consisting of those elements in g in G conjugating S to S , i.e. S ^ g = S .

Analogous definitions can be given for a partial perm and bipartition semigroups.
The method used by this operation is based on Section 3 in [ABMN10].
The optional final argument opts allows you to specify various options, which determine how the

normalizer is calculated. The values of these options can dramatically change the time it takes for this
operation to complete. In different situations, different options give the best performance.

The argument opts should be a record, and the available options are:

random
If this option has the value true, then the non-deterministic algorithms in genss are used in
Normalizer. So, there is some chance that Normalizer will return an incorrect result in this
case, but these methods can also be much faster than the deterministic algorithms which are
used if this option is false.

The default value for this option is false.

lambdastab
If this option has the value true, then Normalizer initially finds the setwise stabilizer of
the images or right blocks of the semigroup S . Sometimes this improves the performance of
Normalizer and sometimes it does not. If this option in false, then this setwise stabilizer is
not found.

The default value for this option is true.

rhostab
If this option has the value true, then Normalizer initially finds the setwise stabilizer of the
kernels, domains, or left blocks of the semigroup S . Sometimes this improves the performance
of Normalizer and sometimes it does not. If this option is false, the this setwise stabilizer is
not found.

If S is an inverse semigroup, then this option is ignored.

The default value for this option is true.
Example

gap> S := BrauerMonoid(8);
<regular bipartition *-monoid of degree 8 with 3 generators>

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/genss.html 
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gap> StructureDescription(Normalizer(S));
"S8"
gap> S := InverseSemigroup(PartialPerm([2, 5, 6, 3, 8]),
> PartialPerm([3, 6, 0, 2, 0, 0, 5, 7]));;
gap> Normalizer(S, rec(random := true, lambdastab := false));
#I Have 33389 points.
#I Have 40136 points in new orbit.
Group(())

14.12 Attributes of transformations and transformation semigroups

14.12.1 ComponentRepsOfTransformationSemigroup

. ComponentRepsOfTransformationSemigroup(S) (attribute)

Returns: The representatives of components of a transformation semigroup.
This function returns the representatives of the components of the action of the transformation

semigroup S on the set of positive integers not greater than the degree of S .
The representatives are the least set of points such that every point can be reached from some

representative under the action of S .
Example

gap> S := Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),
> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;
gap> ComponentRepsOfTransformationSemigroup(S);
[ 2, 3, 8 ]

14.12.2 ComponentsOfTransformationSemigroup

. ComponentsOfTransformationSemigroup(S) (attribute)

Returns: The components of a transformation semigroup.
This function returns the components of the action of the transformation semigroup S on the set

of positive integers not greater than the degree of S ; the components of S partition this set.
Example

gap> S := Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),
> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;
gap> ComponentsOfTransformationSemigroup(S);
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ] ]

14.12.3 CyclesOfTransformationSemigroup

. CyclesOfTransformationSemigroup(S) (attribute)

Returns: The cycles of a transformation semigroup.
This function returns the cycles, or strongly connected components, of the action of the transfor-

mation semigroup S on the set of positive integers not greater than the degree of S .
Example

gap> S := Semigroup(
> Transformation([11, 11, 9, 6, 4, 1, 4, 1, 6, 7, 12, 5]),
> Transformation([12, 10, 7, 10, 4, 1, 12, 9, 11, 9, 1, 12]));;
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gap> CyclesOfTransformationSemigroup(S);
[ [ 12 ], [ 1, 11 ], [ 1, 11, 12, 5, 4, 6 ],

[ 1, 11, 12, 5, 4, 10, 9, 6 ], [ 1, 12, 5, 4, 6 ],
[ 1, 12, 5, 4, 10, 9, 6 ], [ 1, 12, 5, 4, 10, 9, 11 ],
[ 11, 12, 5, 4, 10, 9 ], [ 12, 5, 4, 10, 7 ], [ 4, 10, 7 ] ]

14.12.4 DigraphOfActionOnPairs (for a transformation semigroup)

. DigraphOfActionOnPairs(S) (attribute)

. DigraphOfActionOnPairs(S, n) (attribute)

Returns: A digraph, or fail.
If S is a transformation semigroup and n is a non-negative integer such that S acts on the points

[1 .. n], then DigraphOfActionOnPairs(S, n) returns a digraph representing the OnSets
(Reference: OnSets) action of S on the pairs of points in [1 .. n].

If the optional argument n is not specified, then by default the degree of S will be chosen for n ;
see DegreeOfTransformationSemigroup (Reference: DegreeOfTransformationSemigroup). If
the semigroup S does not act on [1 .. n], then DigraphOfActionOnPairs(S, n) returns fail.

The digraph returned by DigraphOfActionOnPairs has n +
(n

2

)
vertices: the vertices [1 ..

n] correspond to the points in [1 .. n], and the remaining vertices correspond to the pairs
of points in [1 .. n]. This correspondence is stored in the vertex labels of the digraph; see
DigraphVertexLabels (Digraphs: DigraphVertexLabels).

The edges of the digraph are defined as follows. For each pair {i, j} in [1 .. n], and for
each generator f in GeneratorsOfSemigroup(S), there is an edge from the vertex corresponding
to {i, j} to the vertex corresponding to {i ^ f, j ^ f}. Since f is a transformation, the set {i
^ f, j ^ f} may correspond to a pair (in the case that i ^ f <> j ^ f), or to a point (in the
case that i ^ f = j ^ f). The label of an edge is the position of the first transformation within
GeneratorsOfSemigroup(S) that maps the pair corresponding to the source vertex to the pair/point
corresponding to the range vertex. See GeneratorsOfSemigroup (Reference: GeneratorsOfSemi-
group) and DigraphEdgeLabels (Digraphs: DigraphEdgeLabels) for further information.

Note that the digraph returned by DigraphOfActionOnPairs has no multiple edges; see
IsMultiDigraph (Digraphs: IsMultiDigraph).

Example
gap> x := Transformation([2, 4, 3, 4, 7, 1, 6]);;
gap> y := Transformation([3, 3, 2, 3, 5, 1, 5]);;
gap> S := Semigroup(x, y);
<transformation semigroup of degree 7 with 2 generators>
gap> gr := DigraphOfActionOnPairs(S);
<digraph with 28 vertices, 41 edges>
gap> OnSets([2, 5], x);
[ 4, 7 ]
gap> DigraphVertexLabel(gr, 16);
[ 2, 5 ]
gap> DigraphVertexLabel(gr, 25);
[ 4, 7 ]
gap> DigraphEdgeLabel(gr, 16, 25);
1
gap> gr := DigraphOfActionOnPairs(S, 4);
<digraph with 10 vertices, 11 edges>
gap> DigraphVertexLabels(gr);
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[ 1, 2, 3, 4, [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 2, 3 ], [ 2, 4 ],
[ 3, 4 ] ]

gap> DigraphOfActionOnPairs(S, 5);
fail

14.12.5 DigraphOfActionOnPoints (for a transformation semigroup)

. DigraphOfActionOnPoints(S) (attribute)

. DigraphOfActionOnPoints(S, n) (attribute)

Returns: A digraph, or fail.
If S is a transformation semigroup and n is a non-negative integer such that S acts on the points

[1 .. n], then DigraphOfActionOnPoints(S, n) returns a digraph representing the OnPoints
(Reference: OnPoints) action of S on the set [1 .. n].

If the optional argument n is not specified, then by default the degree of S will be chosen for n ;
see DegreeOfTransformationSemigroup (Reference: DegreeOfTransformationSemigroup). If
the semigroup S does not act on [1 .. n], then DigraphOfActionOnPairs(S, n) returns fail.

The digraph returned by DigraphOfActionOnPairs has n vertices, where the vertex i
corresponds to the point i. For each point i in [1 .. n], and for each generator f in
GeneratorsOfSemigroup(S), there is an edge from the vertex i to the vertex i ^ f. See
GeneratorsOfSemigroup (Reference: GeneratorsOfSemigroup) for further information.

Note that the digraph returned by DigraphOfActionOnPoints has no multiple edges; see
IsMultiDigraph (Digraphs: IsMultiDigraph).

Example
gap> x := Transformation([2, 4, 2, 4, 7, 1, 6]);;
gap> y := Transformation([3, 3, 2, 3, 5, 1, 5]);;
gap> S := Semigroup(x, y);
<transformation semigroup of degree 7 with 2 generators>
gap> gr := DigraphOfActionOnPoints(S);
<digraph with 7 vertices, 12 edges>
gap> OnPoints(2, x);
4
gap> gr2 := DigraphOfActionOnPoints(S, 4);
<digraph with 4 vertices, 7 edges>
gap> gr2 = InducedSubdigraph(gr, [1 .. 4]);
true
gap> DigraphOfActionOnPoints(S, 5);
fail

14.12.6 FixedPointsOfTransformationSemigroup (for a transformation semigroup)

. FixedPointsOfTransformationSemigroup(S) (attribute)

Returns: A set of positive integers.
If S is a transformation semigroup, then FixedPointsOfTransformationSemigroup(S) re-

turns the set of points i in [1 .. DegreeOfTransformationSemigroup(S)] such that i ^ f =
i for all f in S .

Example
gap> f := Transformation([1, 4, 2, 4, 3, 7, 7]);
Transformation( [ 1, 4, 2, 4, 3, 7, 7 ] )
gap> S := Semigroup(f);



Semigroups 190

<commutative transformation semigroup of degree 7 with 1 generator>
gap> FixedPointsOfTransformationSemigroup(S);
[ 1, 4, 7 ]

14.12.7 IsTransitive (for a transformation semigroup and a set)

. IsTransitive(S[, X]) (property)

. IsTransitive(S[, n]) (property)

Returns: true or false.
A transformation semigroup S is transitive or strongly connected on the set X if for every i, j in

X there is an element s in S such that i ^ s = j.
If the optional second argument is a positive integer n , then IsTransitive returns true if S is

transitive on [1 .. n], and false if it is not.
If the optional second argument is not provided, then the degree of S is used by default; see

DegreeOfTransformationSemigroup (Reference: DegreeOfTransformationSemigroup).
Example

gap> S := Semigroup([
> Bipartition([
> [1, 2], [3, 6, -2], [4, 5, -3, -4], [-1, -6], [-5]]),
> Bipartition([
> [1, -4], [2, 3, 4, 5], [6], [-1, -6], [-2, -3], [-5]])]);
<bipartition semigroup of degree 6 with 2 generators>
gap> AsSemigroup(IsTransformationSemigroup, S);
<transformation semigroup of size 11, degree 12 with 2 generators>
gap> IsTransitive(last);
false
gap> IsTransitive(AsSemigroup(Group((1, 2, 3))));
true

14.12.8 SmallestElementSemigroup

. SmallestElementSemigroup(S) (attribute)

. LargestElementSemigroup(S) (attribute)

Returns: A transformation.
These attributes return the smallest and largest element of the transformation semigroup S , re-

spectively. Smallest means the first element in the sorted set of elements of S and largest means the
last element in the set of elements.

It is not necessary to find the elements of the semigroup to determine the smallest or largest
element, and this function has considerable better performance than the equivalent Elements(S)[1]
and Elements(S)[Size(S)].

Example
gap> S := Monoid(
> Transformation([1, 4, 11, 11, 7, 2, 6, 2, 5, 5, 10]),
> Transformation([2, 4, 4, 2, 10, 5, 11, 11, 11, 6, 7]));
<transformation monoid of degree 11 with 2 generators>
gap> SmallestElementSemigroup(S);
IdentityTransformation
gap> LargestElementSemigroup(S);
Transformation( [ 11, 11, 10, 10, 7, 6, 5, 6, 2, 2, 4 ] )
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14.12.9 CanonicalTransformation

. CanonicalTransformation(trans[, n]) (function)

Returns: A transformation.
If trans is a transformation, and n is a non-negative integer such that the restriction of trans

to [1 .. n] defines a transformation of [1 .. n], then CanonicalTransformation returns a
canonical representative of the transformation trans restricted to [1 .. n].

More specifically, let C(n) be a class of transformations of degree n such that AsDigraph returns
isomorphic digraphs for every pair of element elements in C(n). Recall that for a transformation
trans and integer n the function AsDigraph returns a digraph with n vertices and an edge with
source x and range x^trans for every x in [1 .. n]. See AsDigraph (Digraphs: AsDigraph).
Then CanonicalTransformation returns a canonical representative of the class C(n) that contains
trans .

Example
gap> x := Transformation([5, 1, 4, 1, 1]);
Transformation( [ 5, 1, 4, 1, 1 ] )
gap> y := Transformation([3, 3, 2, 3, 1]);
Transformation( [ 3, 3, 2, 3, 1 ] )
gap> CanonicalTransformation(x);
Transformation( [ 5, 5, 1, 5, 4 ] )
gap> CanonicalTransformation(y);
Transformation( [ 5, 5, 1, 5, 4 ] )

14.12.10 IsConnectedTransformationSemigroup (for a transformation semigroup)

. IsConnectedTransformationSemigroup(S) (property)

Returns: true or false.
A transformation semigroup S is connected if the digraph returned by the func-

tion DigraphOfActionOnPoints is connected. See IsConnectedDigraph (Digraphs:
IsConnectedDigraph) and DigraphOfActionOnPoints (14.12.5). The function
IsConnectedTransformationSemigroup returns true if the semigroup S is connected and
false otherwise.

Example
gap> S := Semigroup([
> Transformation([2, 4, 3, 4]),
> Transformation([3, 3, 2, 3, 3])]);
<transformation semigroup of degree 5 with 2 generators>
gap> IsConnectedTransformationSemigroup(S);
true

14.13 Attributes of partial perm semigroups

14.13.1 ComponentRepsOfPartialPermSemigroup

. ComponentRepsOfPartialPermSemigroup(S) (attribute)

Returns: The representatives of components of a partial perm semigroup.
This function returns the representatives of the components of the action of the partial perm semi-

group S on the set of positive integers where it is defined.
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The representatives are the least set of points such that every point can be reached from some
representative under the action of S .

Example
gap> S := Semigroup([
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],
> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 19])]);;
gap> ComponentRepsOfPartialPermSemigroup(S);
[ 1, 4, 6, 10, 15, 17 ]

14.13.2 ComponentsOfPartialPermSemigroup

. ComponentsOfPartialPermSemigroup(S) (attribute)

Returns: The components of a partial perm semigroup.
This function returns the components of the action of the partial perm semigroup S on the set of

positive integers where it is defined; the components of S partition this set.
Example

gap> S := Semigroup([
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],
> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),
> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 19])]);;
gap> ComponentsOfPartialPermSemigroup(S);
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20 ],

[ 15 ], [ 17 ] ]

14.13.3 CyclesOfPartialPerm

. CyclesOfPartialPerm(x) (attribute)

Returns: The cycles of a partial perm.
This function returns the cycles, or strongly connected components, of the action of the partial

perm x on the set of positive integers where it is defined.
Example

gap> x := PartialPerm([3, 1, 4, 2, 5, 0, 0, 6, 0, 7]);
[8,6][10,7](1,3,4,2)(5)
gap> CyclesOfPartialPerm(x);
[ [ 3, 4, 2, 1 ], [ 5 ] ]

14.13.4 CyclesOfPartialPermSemigroup

. CyclesOfPartialPermSemigroup(S) (attribute)

Returns: The cycles of a partial perm semigroup.
This function returns the cycles, or strongly connected components, of the action of the partial

perm semigroup S on the set of positive integers where it is defined.
Example

gap> S := Semigroup([
> PartialPerm([1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19],
> [9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1]),
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> PartialPerm([1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 20],
> [13, 1, 8, 5, 4, 14, 11, 12, 9, 20, 2, 18, 7, 3, 19])]);;
gap> CyclesOfPartialPermSemigroup(S);
[ [ 1, 9, 12, 14, 2, 20, 19, 3, 8, 11 ] ]

The content in this chapter is based partly on work by Zachary Mesyan. A full description of the
objects described can be found in [MM16].

14.14 Attributes of Rees (0-)matrix semigroups

14.14.1 RZMSDigraph

. RZMSDigraph(R) (attribute)

Returns: A digraph.
If R is an n by m Rees 0-matrix semigroup M0[I,T,Λ;P] (so that I = {1,2, . . . ,n} and Λ =

{1,2, . . . ,m}) then RZMSDigraph returns a symmetric bipartite digraph with n+m vertices. An index
i ∈ I corresponds to the vertex i and an index j ∈ Λ corresponds to the vertex j+n.

Two vertices v and w in RZMSDigraph(R) are adjacent if and only if v ∈ I, w−n ∈ Λ, and P[w -
n][v] 6= 0.

This digraph is commonly called the Graham-Houghton graph of R .
Example

gap> R := PrincipalFactor(
> DClass(FullTransformationMonoid(5),
> Transformation([2, 4, 1, 5, 5])));
<Rees 0-matrix semigroup 10x5 over Group([ (1,2,3,4), (1,2) ])>
gap> gr := RZMSDigraph(R);
<digraph with 15 vertices, 40 edges>
gap> e := DigraphEdges(gr)[1];
[ 1, 11 ]
gap> Matrix(R)[e[2] - 10][e[1]] <> 0;
true

14.14.2 RZMSConnectedComponents

. RZMSConnectedComponents(R) (attribute)

Returns: The connected components of a Rees 0-matrix semigroup.
If R is an n by m Rees 0-matrix semigroup M0[I,T,Λ;P] (so that I = {1,2, . . . ,n} and Λ =

{1,2, . . . ,m}) then RZMSConnectedComponents returns the connected components of R .
Connectedness is an equivalence relation on the indices of R : the equivalence classes of the rela-

tion are called the connected components of R , and two indices in I ∪Λ are connected if and only if
their corresponding vertices in RZMSDigraph(R) are connected (see RZMSDigraph (14.14.1)). If R
has n connected components, then RZMSConnectedComponents will return a list of pairs:

[ [ I1,Λ1 ], . . ., [ Ik,Λk ] ]
where I = I1t ·· ·t Ik, Λ = Λ1t ·· ·tΛk, and for each l the set Il ∪Λl is a connected component

of R . Note that at most one of Il and Λl is possibly empty. The ordering of the connected components
in the result in unspecified.

Example
gap> R := ReesZeroMatrixSemigroup(SymmetricGroup(5),
> [[(), 0, (1, 3), (4, 5), 0],

https://academics.uccs.edu/zmesyan
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> [0, (), 0, 0, (1, 3, 4, 5)],
> [0, 0, (1, 5)(2, 3), 0, 0],
> [0, (2, 3)(1, 4), 0, 0, 0]]);
<Rees 0-matrix semigroup 5x4 over Sym( [ 1 .. 5 ] )>
gap> RZMSConnectedComponents(R);
[ [ [ 1, 3, 4 ], [ 1, 3 ] ], [ [ 2, 5 ], [ 2, 4 ] ] ]

14.15 Changing the representation of a semigroup

14.15.1 IsomorphismReesMatrixSemigroup (for a semigroup)

. IsomorphismReesMatrixSemigroup(S) (attribute)

. IsomorphismReesZeroMatrixSemigroup(S) (attribute)

. IsomorphismReesMatrixSemigroupOverPermGroup(S) (attribute)

. IsomorphismReesZeroMatrixSemigroupOverPermGroup(S) (attribute)

Returns: An isomorphism.
If the semigroup S is finite and simple, then IsomorphismReesMatrixSemigroup returns an

isomorphism to a Rees matrix semigroup over some group (usually a permutation group), and
IsomorphismReesMatrixSemigroupOverPermGroup returns an isomorphism to a Rees matrix
semigroup over a permutation group.

If S is finite and 0-simple, then IsomorphismReesZeroMatrixSemigroup returns an iso-
morphism to a Rees 0-matrix semigroup over some group (usually a permutation group), and
IsomorphismReesZeroMatrixSemigroupOverPermGroup returns an isomorphism to a Rees 0-
matrix semigroup over a permutation group.

See also InjectionPrincipalFactor (13.4.7).
Example

gap> S := Semigroup(PartialPerm([1]));
<trivial partial perm group of rank 1 with 1 generator>
gap> iso := IsomorphismReesMatrixSemigroup(S);;
gap> Source(iso) = S;
true
gap> Range(iso);
<Rees matrix semigroup 1x1 over Group(())>
gap> S := Semigroup(PartialPerm([1]), PartialPerm([]));
<partial perm monoid of rank 1 with 2 generators>
gap> Range(IsomorphismReesZeroMatrixSemigroup(S));
<Rees 0-matrix semigroup 1x1 over Group(())>

14.16 The Nambooripad Partial Order of a regular semigroup

14.16.1 NambooripadLeqRegularSemigroup

. NambooripadLeqRegularSemigroup(S) (attribute)

Returns: A function.
NambooripadLeqRegularSemigroup returns a function that, when given two elements x, y of

the regular semigroup S , returns true if x is less than or equal to y in the Nambooripad partial order
on S . See also NambooripadPartialOrder (14.16.2).
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Example
gap> S := BrauerMonoid(3);
<regular bipartition *-monoid of degree 3 with 3 generators>
gap> IsRegularSemigroup(S);
true
gap> Size(S);
15
gap> NambooripadPartialOrder(S);
[ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],

[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ]

gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[3], Elements(S)[9]);
false
gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[2], Elements(S)[15]);
true

14.16.2 NambooripadPartialOrder

. NambooripadPartialOrder(S) (attribute)

Returns: The Nambooripad partial order on a regular semigroup.
The Nambooripad partial order ≤ on a regular semigroup S is defined by s≤t if the principal

right ideal of S generated by s is contained in the principal right ideal of S generated by t and there
is an idempotent e in the R-class of s such that s=et. The Nambooripad partial order coincides with
the natural partial order when considering inverse semigroups NaturalPartialOrder (Reference:
NaturalPartialOrder).

NambooripadPartialOrder returns the Nambooripad partial order on the regular semigroup
S as a list of sets of positive integers where entry i in NaturalPartialOrder(S) is the set
of positions in Elements(S) of elements which are less than Elements(S)[i]. See also
NambooripadLeqRegularSemigroup (14.16.1).

Example
gap> S := BrauerMonoid(3);
<regular bipartition *-monoid of degree 3 with 3 generators>
gap> IsRegularSemigroup(S);
true
gap> Size(S);
15
gap> NambooripadPartialOrder(S);
[ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],

[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ]

gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[3], Elements(S)[9]);
false
gap> NambooripadLeqRegularSemigroup(S)(Elements(S)[2], Elements(S)[15]);
true



Chapter 15

Properties of semigroups

In this chapter we decribe the methods that are available in Semigroups for determining various
properties of a semigroup.

15.1 Properties of semigroups

In this section we describe the properties of a semigroup that can be determined using the Semigroups
package.

15.1.1 IsBand

. IsBand(S) (property)

Returns: true or false.
IsBand returns true if every element of the semigroup S is an idempotent and false if it is not.

An inverse semigroup is band if and only if it is a semilattice; see IsSemilattice (15.1.21).
Example

gap> S := Semigroup(
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 1]),
> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2]),
> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 3]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 4]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 7]));;
gap> IsBand(S);
true
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 8, 9], [5, 8, 7, 6, 9, 1]),
> PartialPerm([1, 3, 4, 7, 8, 9, 10], [2, 3, 8, 7, 10, 6, 1]));;
gap> IsBand(S);
false
gap> IsBand(IdempotentGeneratedSubsemigroup(S));
true
gap> S := PartitionMonoid(4);
<regular bipartition *-monoid of size 4140, degree 4 with 4
generators>

gap> M := MinimalIdeal(S);
<simple bipartition *-semigroup ideal of degree 4 with 1 generator>

196
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gap> IsBand(M);
true

15.1.2 IsBlockGroup

. IsBlockGroup(S) (property)

Returns: true or false.
IsBlockGroup returns true if the semigroup S is a block group and false if it is not.
A semigroup S is a block group if every L -class and every R-class of S contains at most one

idempotent. Every semigroup of partial permutations is a block group.
Example

gap> S := Semigroup(Transformation([5, 6, 7, 3, 1, 4, 2, 8]),
> Transformation([3, 6, 8, 5, 7, 4, 2, 8]));;
gap> IsBlockGroup(S);
true
gap> S := Semigroup(
> Transformation([2, 1, 10, 4, 5, 9, 7, 4, 8, 4]),
> Transformation([10, 7, 5, 6, 1, 3, 9, 7, 10, 2]));;
gap> IsBlockGroup(S);
false
gap> S := Semigroup(PartialPerm([1, 2], [5, 4]),
> PartialPerm([1, 2, 3], [1, 2, 5]),
> PartialPerm([1, 2, 3], [2, 1, 5]),
> PartialPerm([1, 3, 4], [3, 1, 2]),
> PartialPerm([1, 3, 4, 5], [5, 4, 3, 2]));;
gap> T := AsSemigroup(IsBlockBijectionSemigroup, S);
<block bijection semigroup of degree 6 with 5 generators>
gap> IsBlockGroup(T);
true
gap> IsBlockGroup(AsSemigroup(IsBipartitionSemigroup, S));
true
gap> S := Semigroup(
> Bipartition([[1, -2], [2, -3], [3, -4], [4, -1]]),
> Bipartition([[1, -2], [2, -1], [3, -3], [4, -4]]),
> Bipartition([[1, 2, -3], [3, -1, -2], [4, -4]]),
> Bipartition([[1, -1], [2, -2], [3, -3], [4, -4]]));;
gap> IsBlockGroup(S);
true

15.1.3 IsCommutativeSemigroup

. IsCommutativeSemigroup(S) (property)

Returns: true or false.
IsCommutativeSemigroup returns true if the semigroup S is commutative and false if it is not.

The function IsCommutative (Reference: IsCommutative) can also be used to test if a semigroup
is commutative.

A semigroup S is commutative if x * y = y * x for all x, y in S .
Example

gap> S := Semigroup(Transformation([2, 4, 5, 3, 7, 8, 6, 9, 1]),
> Transformation([3, 5, 6, 7, 8, 1, 9, 2, 4]));;
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gap> IsCommutativeSemigroup(S);
true
gap> IsCommutative(S);
true
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4, 5, 6], [2, 5, 1, 3, 9, 6]),
> PartialPerm([1, 2, 3, 4, 6, 8], [8, 5, 7, 6, 2, 1]));;
gap> IsCommutativeSemigroup(S);
false
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 6, 7, -1, -4, -6],
> [4, 5, 8, -2, -3, -5, -7, -8]]),
> Bipartition([[1, 2, -3, -4], [3, -5], [4, -6], [5, -7],
> [6, -8], [7, -1], [8, -2]]));;
gap> IsCommutativeSemigroup(S);
true

15.1.4 IsCompletelyRegularSemigroup

. IsCompletelyRegularSemigroup(S) (property)

Returns: true or false.
IsCompletelyRegularSemigroup returns true if every element of the semigroup S is contained

in a subgroup of S .
An inverse semigroup is completely regular if and only if it is a Clifford semigroup; see

IsCliffordSemigroup (16.2.1).
Example

gap> S := Semigroup(Transformation([1, 2, 4, 3, 6, 5, 4]),
> Transformation([1, 2, 5, 6, 3, 4, 5]),
> Transformation([2, 1, 2, 2, 2, 2, 2]));;
gap> IsCompletelyRegularSemigroup(S);
true
gap> IsInverseSemigroup(S);
true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsCompletelyRegularSemigroup(T);
true
gap> IsCliffordSemigroup(T);
true
gap> S := Semigroup(
> Bipartition([[1, 3, -4], [2, 4, -1, -2], [-3]]),
> Bipartition([[1, -1], [2, 3, 4, -3], [-2, -4]]));;
gap> IsCompletelyRegularSemigroup(S);
false

15.1.5 IsCongruenceFreeSemigroup

. IsCongruenceFreeSemigroup(S) (property)

Returns: true or false.
IsCongruenceFreeSemigroup returns true if the semigroup S is a congruence-free semigroup

and false if it is not.
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A semigroup S is congruence-free if it has no non-trivial proper congruences.
A semigroup with zero is congruence-free if and only if it is isomorphic to a regular Rees 0-

matrix semigroup R whose underlying semigroup is the trivial group, no two rows of the matrix of R
are identical, and no two columns are identical; see Theorem 3.7.1 in [How95].

A semigroup without zero is congruence-free if and only if it is a simple group or has order 2; see
Theorem 3.7.2 in [How95].

Example
gap> S := Semigroup(Transformation([4, 2, 3, 3, 4]));;
gap> IsCongruenceFreeSemigroup(S);
true
gap> S := Semigroup(Transformation([2, 2, 4, 4]),
> Transformation([5, 3, 4, 4, 6, 6]));;
gap> IsCongruenceFreeSemigroup(S);
false

15.1.6 IsSurjectiveSemigroup

. IsSurjectiveSemigroup(S) (property)

Returns: true or false.
A semigroup is surjective if each of its elements can be written as a product of two elements in the

semigroup. IsSurjectiveSemigroup(S) returns true if the semigroup S is surjective, and false
if it is not.

See also IndecomposableElements (14.6.6).
Note that every monoid, and every regular semigroup, is surjective.

Example
gap> S := FullTransformationMonoid(100);
<full transformation monoid of degree 100>
gap> IsSurjectiveSemigroup(S);
true
gap> F := FreeSemigroup(3);;
gap> P := F / [[F.1, F.2 * F.1], [F.3 ^ 3, F.3]];
<fp semigroup on the generators [ s1, s2, s3 ]>
gap> IsSurjectiveSemigroup(P);
false
gap> I := SingularTransformationMonoid(5);
<regular transformation semigroup ideal of degree 5 with 1 generator>
gap> IsSurjectiveSemigroup(I);
true
gap> M := MonogenicSemigroup(IsBipartitionSemigroup, 3, 2);
<commutative non-regular block bijection semigroup of size 4,
degree 6 with 1 generator>

gap> IsSurjectiveSemigroup(M);
false

15.1.7 IsGroupAsSemigroup

. IsGroupAsSemigroup(S) (property)

Returns: true or false.
IsGroupAsSemigroup returns true if and only if the semigroup S is mathematically a group.



Semigroups 200

Example
gap> S := Semigroup(Transformation([2, 4, 5, 3, 7, 8, 6, 9, 1]),
> Transformation([3, 5, 6, 7, 8, 1, 9, 2, 4]));;
gap> IsGroupAsSemigroup(S);
true
gap> G := SymmetricGroup(5);;
gap> IsGroupAsSemigroup(G);
true
gap> S := AsSemigroup(IsPartialPermSemigroup, G);
<partial perm group of size 120, rank 5 with 2 generators>
gap> IsGroupAsSemigroup(S);
true
gap> G := SymmetricGroup([1, 2, 10]);;
gap> T := AsSemigroup(IsBlockBijectionSemigroup, G);
<inverse block bijection semigroup of size 6, degree 11 with 2
generators>

gap> IsGroupAsSemigroup(T);
true

15.1.8 IsIdempotentGenerated

. IsIdempotentGenerated(S) (property)

. IsSemiband(S) (property)

Returns: true or false.
IsIdempotentGenerated and IsSemiband return true if the semigroup S is gener-

ated by its idempotents and false if it is not. See also Idempotents (14.9.1) and
IdempotentGeneratedSubsemigroup (14.9.3).

An inverse semigroup is idempotent-generated if and only if it is a semilattice; see
IsSemilattice (15.1.21).

The terms semiband and idempotent-generated are synonymous in this context.
Example

gap> S := SingularTransformationSemigroup(4);
<regular transformation semigroup ideal of degree 4 with 1 generator>
gap> IsIdempotentGenerated(S);
true
gap> S := SingularBrauerMonoid(5);
<regular bipartition *-semigroup ideal of degree 5 with 1 generator>
gap> IsIdempotentGenerated(S);
true

15.1.9 IsLeftSimple

. IsLeftSimple(S) (property)

. IsRightSimple(S) (property)

Returns: true or false.
IsLeftSimple and IsRightSimple returns true if the semigroup S has only one L -class or

one R-class, respectively, and returns false if it has more than one.
An inverse semigroup is left simple if and only if it is right simple if and only if it is a group; see

IsGroupAsSemigroup (15.1.7).
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Example
gap> S := Semigroup(Transformation([6, 7, 9, 6, 8, 9, 8, 7, 6]),
> Transformation([6, 8, 9, 6, 8, 8, 7, 9, 6]),
> Transformation([6, 8, 9, 7, 8, 8, 7, 9, 6]),
> Transformation([6, 9, 8, 6, 7, 9, 7, 8, 6]),
> Transformation([6, 9, 9, 6, 8, 8, 7, 9, 6]),
> Transformation([6, 9, 9, 7, 8, 8, 6, 9, 7]),
> Transformation([7, 8, 8, 7, 9, 9, 7, 8, 6]),
> Transformation([7, 9, 9, 7, 6, 9, 6, 8, 7]),
> Transformation([8, 7, 6, 9, 8, 6, 8, 7, 9]),
> Transformation([9, 6, 6, 7, 8, 8, 7, 6, 9]),
> Transformation([9, 6, 6, 7, 9, 6, 9, 8, 7]),
> Transformation([9, 6, 7, 9, 6, 6, 9, 7, 8]),
> Transformation([9, 6, 8, 7, 9, 6, 9, 8, 7]),
> Transformation([9, 7, 6, 8, 7, 7, 9, 6, 8]),
> Transformation([9, 7, 7, 8, 9, 6, 9, 7, 8]),
> Transformation([9, 8, 8, 9, 6, 7, 6, 8, 9]));;
gap> IsRightSimple(S);
false
gap> IsLeftSimple(S);
true
gap> IsGroupAsSemigroup(S);
false
gap> NrRClasses(S);
16
gap> S := BrauerMonoid(6);;
gap> S := Semigroup(RClass(S, Random(MinimalDClass(S))));;
gap> IsLeftSimple(S);
false
gap> IsRightSimple(S);
true

15.1.10 IsLeftZeroSemigroup

. IsLeftZeroSemigroup(S) (property)

Returns: true or false.
IsLeftZeroSemigroup returns true if the semigroup S is a left zero semigroup and false if it

is not.
A semigroup is a left zero semigroup if x*y=x for all x,y. An inverse semigroup is a left zero

semigroup if and only if it is trivial.
Example

gap> S := Semigroup(Transformation([2, 1, 4, 3, 5]),
> Transformation([3, 2, 3, 1, 1]));;
gap> IsRightZeroSemigroup(S);
false
gap> S := Semigroup(Transformation([1, 2, 3, 3, 1]),
> Transformation([1, 2, 3, 3, 3]));;
gap> IsLeftZeroSemigroup(S);
true
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15.1.11 IsMonogenicSemigroup

. IsMonogenicSemigroup(S) (property)

Returns: true or false.
IsMonogenicSemigroup returns true if the semigroup S is monogenic and it returns false if it

is not.
A semigroup is monogenic if it is generated by a single element. See also IsMonogenicMonoid

(15.1.12), IsMonogenicInverseSemigroup (16.2.9), and IsMonogenicInverseMonoid (16.2.10).
Example

gap> S := Semigroup(
> Transformation(
> [2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 10]),
> Transformation(
> [2, 2, 2, 8, 11, 15, 11, 10, 2, 10, 11, 2, 10, 4, 7]),
> Transformation(
> [2, 2, 2, 11, 10, 8, 10, 11, 2, 11, 10, 2, 11, 11, 10]),
> Transformation(
> [2, 2, 12, 7, 8, 14, 8, 11, 2, 11, 10, 2, 11, 15, 4]));;
gap> IsMonogenicSemigroup(S);
true
gap> S := Semigroup(
> Bipartition([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -2, -5, -7, -9],
> [-1, -10], [-3, -4, -6, -8]]),
> Bipartition([[1, 4, 7, 8, -2], [2, 3, 5, 10, -5],
> [6, 9, -7, -9], [-1, -10], [-3, -4, -6, -8]]));;
gap> IsMonogenicSemigroup(S);
true
gap> S := FullTransformationSemigroup(5);;
gap> IsMonogenicSemigroup(S);
false

15.1.12 IsMonogenicMonoid

. IsMonogenicMonoid(S) (property)

Returns: true or false.
IsMonogenicMonoid returns true if the monoid S is a monogenic monoid and it returns false

if it is not.
A monoid is monogenic if it is generated as a monoid by a single element. See also

IsMonogenicSemigroup (15.1.11) and IsMonogenicInverseMonoid (16.2.10).
Example

gap> x := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;
gap> S := Monoid(x, x ^ 2, x ^ 3);;
gap> IsMonogenicSemigroup(S);
false
gap> IsMonogenicMonoid(S);
true
gap> S := FullTransformationMonoid(5);;
gap> IsMonogenicMonoid(S);
false
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15.1.13 IsMonoidAsSemigroup

. IsMonoidAsSemigroup(S) (property)

Returns: true or false.
IsMonoidAsSemigroup returns true if and only if the semigroup S is mathematically a monoid,

i.e. if and only if it contains a MultiplicativeNeutralElement (Reference: MultiplicativeNeu-
tralElement).

It is possible that a semigroup which satisfies IsMonoidAsSemigroup is not in the GAP cate-
gory IsMonoid (Reference: IsMonoid). This is possible if the MultiplicativeNeutralElement
(Reference: MultiplicativeNeutralElement) of S is not equal to the One (Reference: One) of any el-
ement in S . Therefore a semigroup satisfying IsMonoidAsSemigroup may not possess the attributes
of a monoid (such as, GeneratorsOfMonoid (Reference: GeneratorsOfMonoid)).

See also One (Reference: One), IsInverseMonoid (Reference: IsInverseMonoid) and
IsomorphismTransformationMonoid (Reference: IsomorphismTransformationMonoid).

Example
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
gap> IsMonoidAsSemigroup(S);
true
gap> IsMonoid(S);
false
gap> MultiplicativeNeutralElement(S);
Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 9 ] )
gap> T := AsSemigroup(IsBipartitionSemigroup, S);;
gap> IsMonoidAsSemigroup(T);
true
gap> IsMonoid(T);
false
gap> One(T);
fail
gap> S := Monoid(Transformation([8, 2, 8, 9, 10, 6, 2, 8, 7, 8]),
> Transformation([9, 2, 6, 3, 6, 4, 5, 5, 3, 2]));;
gap> IsMonoidAsSemigroup(S);
true

15.1.14 IsOrthodoxSemigroup

. IsOrthodoxSemigroup(S) (property)

Returns: true or false.
IsOrthodoxSemigroup returns true if the semigroup S is orthodox and false if it is not.
A semigroup is orthodox if it is regular and its idempotent elements form a subsemigroup. Every

inverse semigroup is also an orthodox semigroup.
See also IsRegularSemigroup (15.1.17) and IsRegularSemigroup (Reference: IsRegu-

larSemigroup).
Example

gap> S := Semigroup(Transformation([1, 1, 1, 4, 5, 4]),
> Transformation([1, 2, 3, 1, 1, 2]),
> Transformation([1, 2, 3, 1, 1, 3]),
> Transformation([5, 5, 5, 5, 5, 5]));;
gap> IsOrthodoxSemigroup(S);
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true
gap> S := DualSymmetricInverseMonoid(5);;
gap> S := Semigroup(GeneratorsOfSemigroup(S));;
gap> IsOrthodoxSemigroup(S);
true

15.1.15 IsRectangularBand

. IsRectangularBand(S) (property)

Returns: true or false.
IsRectangularBand returns true if the semigroup S is a rectangular band and false if it is not.
A semigroup S is a rectangular band if for all x,y,z in S we have that x2 = x and xyz = xz.
Equivalently, S is a rectangular band if S is isomorphic to a semigroup of the form I×Λ with

multiplication (i,λ )( j,µ) = (i,µ). In this case, S is called an |I|× |Λ| rectangular band.
An inverse semigroup is a rectangular band if and only if it is a group.

Example
gap> S := Semigroup(
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 1]),
> Transformation([2, 2, 2, 5, 5, 5, 8, 8, 8, 2]),
> Transformation([3, 3, 3, 6, 6, 6, 9, 9, 9, 3]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 4]),
> Transformation([1, 1, 1, 4, 4, 4, 7, 7, 7, 7]));;
gap> IsRectangularBand(S);
true
gap> IsRectangularBand(MinimalIdeal(PartitionMonoid(4)));
true

15.1.16 IsRectangularGroup

. IsRectangularGroup(S) (property)

Returns: true or false.
A semigroup is rectangular group if it is the direct product of a group and a rectangular band. Or

equivalently, if it is orthodox and simple.
Example

gap> G := AsSemigroup(IsTransformationSemigroup, MathieuGroup(11));
<transformation group of size 7920, degree 11 with 2 generators>
gap> R := RectangularBand(3, 2);
<regular transformation semigroup of size 6, degree 6 with 3
generators>

gap> S := DirectProduct(G, R);;
gap> IsRectangularGroup(R);
true
gap> IsRectangularGroup(G);
true
gap> IsRectangularGroup(S);
true
gap> IsRectangularGroup(JonesMonoid(3));
false
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15.1.17 IsRegularSemigroup

. IsRegularSemigroup(S) (property)

Returns: true or false.
IsRegularSemigroup returns true if the semigroup S is regular and false if it is not.
A semigroup S is regular if for all x in S there exists y in S such that x * y * x = x. Every

inverse semigroup is regular, and a semigroup of partial permutations is regular if and only if it is an
inverse semigroup.

See also IsRegularDClass (Reference: IsRegularDClass), IsRegularGreensClass (13.3.2),
and IsRegularSemigroupElement (Reference: IsRegularSemigroupElement).

Example
gap> IsRegularSemigroup(FullTransformationSemigroup(5));
true
gap> IsRegularSemigroup(JonesMonoid(5));
true

15.1.18 IsRightZeroSemigroup

. IsRightZeroSemigroup(S) (property)

Returns: true or false.
IsRightZeroSemigroup returns true if the S is a right zero semigroup and false if it is not.
A semigroup S is a right zero semigroup if x * y = y for all x, y in S. An inverse semigroup is

a right zero semigroup if and only if it is trivial.
Example

gap> S := Semigroup(Transformation([2, 1, 4, 3, 5]),
> Transformation([3, 2, 3, 1, 1]));;
gap> IsRightZeroSemigroup(S);
false
gap> S := Semigroup(Transformation([1, 2, 3, 3, 1]),
> Transformation([1, 2, 4, 4, 1]));;
gap> IsRightZeroSemigroup(S);
true

15.1.19 IsXTrivial

. IsRTrivial(S) (property)

. IsLTrivial(S) (property)

. IsHTrivial(S) (property)

. IsDTrivial(S) (property)

. IsAperiodicSemigroup(S) (property)

. IsCombinatorialSemigroup(S) (property)

Returns: true or false.
IsXTrivial returns true if Green’s R-relation, L -relation, H -relation, D-relation, respec-

tively, on the semigroup S is trivial and false if it is not. These properties can also be applied to a
Green’s class instead of a semigroup where applicable.

For inverse semigroups, the properties of being R-trivial, L -trivial, D-trivial, and a semilattice
are equivalent; see IsSemilattice (15.1.21).

A semigroup is aperiodic if its contains no non-trivial subgroups (equivalently, all of its group
H -classes are trivial). A finite semigroup is aperiodic if and only if it is H -trivial.
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Combinatorial is a synonym for aperiodic in this context.
Example

gap> S := Semigroup(
> Transformation([1, 5, 1, 3, 7, 10, 6, 2, 7, 10]),
> Transformation([4, 4, 5, 6, 7, 7, 7, 4, 3, 10]));;
gap> IsHTrivial(S);
true
gap> Size(S);
108
gap> IsRTrivial(S);
false
gap> IsLTrivial(S);
false

15.1.20 IsSemigroupWithAdjoinedZero

. IsSemigroupWithAdjoinedZero(S) (property)

Returns: true or false.
IsSemigroupWithAdjoinedZero returns true if the semigroup S can be expressed as the dis-

joint union of subsemigroups S \{0} and {0} (where 0 is the MultiplicativeZero (14.7.3) of S ).
If this is not the case, then either S lacks a multiplicative zero, or the set S \{0} is not a subsemi-

group of S , and so IsSemigroupWithAdjoinedZero returns false.
Example

gap> S := Semigroup(Transformation([2, 3, 4, 5, 1, 6]),
> Transformation([2, 1, 3, 4, 5, 6]),
> Transformation([6, 6, 6, 6, 6, 6]));
<transformation semigroup of degree 6 with 3 generators>
gap> IsZeroGroup(S);
true
gap> IsSemigroupWithAdjoinedZero(S);
true
gap> S := FullTransformationMonoid(4);;
gap> IsSemigroupWithAdjoinedZero(S);
false

15.1.21 IsSemilattice

. IsSemilattice(S) (property)

Returns: true or false.
IsSemilattice returns true if the semigroup S is a semilattice and false if it is not.
A semigroup is a semilattice if it is commutative and every element is an idempotent. The idem-

potents of an inverse semigroup form a semilattice.
Example

gap> S := Semigroup(Transformation([2, 5, 1, 7, 3, 7, 7]),
> Transformation([3, 6, 5, 7, 2, 1, 7]));;
gap> Size(S);
631
gap> IsInverseSemigroup(S);
true
gap> A := Semigroup(Idempotents(S));
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<transformation semigroup of degree 7 with 32 generators>
gap> IsSemilattice(A);
true
gap> S := FactorisableDualSymmetricInverseMonoid(5);;
gap> S := IdempotentGeneratedSubsemigroup(S);;
gap> IsSemilattice(S);
true

15.1.22 IsSimpleSemigroup

. IsSimpleSemigroup(S) (property)

. IsCompletelySimpleSemigroup(S) (property)

Returns: true or false.
IsSimpleSemigroup returns true if the semigroup S is simple and false if it is not.
A semigroup is simple if it has no proper 2-sided ideals. A semigroup is completely simple if it

is simple and possesses minimal left and right ideals. A finite semigroup is simple if and only if it is
completely simple. An inverse semigroup is simple if and only if it is a group.

Example
gap> S := Semigroup(
> Transformation([2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 2]),
> Transformation([1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 3]),
> Transformation([1, 7, 3, 9, 5, 11, 7, 1, 9, 3, 11, 5, 5]),
> Transformation([7, 7, 9, 9, 11, 11, 1, 1, 3, 3, 5, 5, 7]));;
gap> IsSimpleSemigroup(S);
true
gap> IsCompletelySimpleSemigroup(S);
true
gap> IsSimpleSemigroup(MinimalIdeal(BrauerMonoid(6)));
true
gap> R := Range(IsomorphismReesMatrixSemigroup(
> MinimalIdeal(BrauerMonoid(6))));
<Rees matrix semigroup 15x15 over Group(())>

15.1.23 IsSynchronizingSemigroup (for a transformation semigroup)

. IsSynchronizingSemigroup(S) (property)

. IsSynchronizingSemigroup(S, n) (property)

Returns: true or false.
For a positive integer n , IsSynchronizingSemigroup returns true if the semigroup of transfor-

mations S contains a transformation with constant value on [1 .. n]. Note that this function will
return true whenever n = 1. See also ConstantTransformation (Reference: ConstantTransfor-
mation).

If the optional second argument is not specified, then n will be taken to be the value of
DegreeOfTransformationSemigroup (Reference: DegreeOfTransformationSemigroup) for S .

Note that the semigroup consisting of the identity transformation is the unique transformation
semigroup with degree 0. In this special case, the function IsSynchronizingSemigroup will return
false.

Example
gap> S := Semigroup(
> Transformation([1, 1, 8, 7, 6, 6, 4, 1, 8, 9]),
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> Transformation([5, 8, 7, 6, 10, 8, 7, 6, 9, 7]));;
gap> IsSynchronizingSemigroup(S, 10);
true
gap> S := Semigroup(
> Transformation([3, 8, 1, 1, 9, 9, 8, 7, 9, 6]),
> Transformation([7, 6, 8, 7, 5, 6, 8, 7, 8, 9]));;
gap> IsSynchronizingSemigroup(S, 10);
false
gap> Representative(MinimalIdeal(S));
Transformation( [ 7, 8, 8, 7, 8, 8, 8, 7, 8, 8 ] )

15.1.24 IsUnitRegularMonoid

. IsUnitRegularMonoid(S) (property)

Returns: true if the semigroup S is unit regular and false if it is not.
A monoid is unit regular if and only if for every >x in S there exists an element y in the group of

units of S such that x*y*x=x.
Example

gap> IsUnitRegularMonoid(FullTransformationMonoid(3));
true

15.1.25 IsZeroGroup

. IsZeroGroup(S) (property)

Returns: true or false.
IsZeroGroup returns true if the semigroup S is a zero group and false if it is not.
A semigroup S is a zero group if there exists an element z in S such that S without z is a group

and x*z=z*x=z for all x in S. Every zero group is an inverse semigroup.
Example

gap> S := Semigroup(Transformation([2, 2, 3, 4, 6, 8, 5, 5, 9]),
> Transformation([3, 3, 8, 2, 5, 6, 4, 4, 9]),
> ConstantTransformation(9, 9));;
gap> IsZeroGroup(S);
true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsZeroGroup(T);
true
gap> IsZeroGroup(JonesMonoid(2));
true

15.1.26 IsZeroRectangularBand

. IsZeroRectangularBand(S) (property)

Returns: true or false.
IsZeroRectangularBand returns true if the semigroup S is a zero rectangular band and false

if it is not.
A semigroup is a 0-rectangular band if it is 0-simple and H -trivial; see also

IsZeroSimpleSemigroup (15.1.28) and IsHTrivial (15.1.19). An inverse semigroup is a 0-
rectangular band if and only if it is a 0-group; see IsZeroGroup (15.1.25).
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Example
gap> S := Semigroup(
> Transformation([1, 3, 7, 9, 1, 12, 13, 1, 15, 9, 1, 18, 1, 1, 13,
> 1, 1, 21, 1, 1, 1, 1, 1, 25, 26, 1]),
> Transformation([1, 5, 1, 5, 11, 1, 1, 14, 1, 16, 17, 1, 1, 19, 1,
> 11, 1, 1, 1, 23, 1, 16, 19, 1, 1, 1]),
> Transformation([1, 4, 8, 1, 10, 1, 8, 1, 1, 1, 10, 1, 8, 10, 1, 1,
> 20, 1, 22, 1, 8, 1, 1, 1, 1, 1]),
> Transformation([1, 6, 6, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 6, 1, 1,
> 6, 1, 1, 24, 1, 1, 1, 1, 6]));;
gap> D := DClass(S,
> Transformation([1, 8, 1, 1, 8, 1, 1, 1, 1, 1, 8, 1, 1, 8, 1, 1, 1,
> 1, 1, 1, 1, 1, 1, 1, 1, 1]));;
gap> IsZeroRectangularBand(Semigroup(D));
true
gap> IsZeroRectangularBand(Semigroup(GreensDClasses(S)[1]));
false

15.1.27 IsZeroSemigroup

. IsZeroSemigroup(S) (property)

Returns: true or false.
IsZeroSemigroup returns true if the semigroup S is a zero semigroup and false if it is not.
A semigroup S is a zero semigroup if there exists an element z in S such that x*y=z for all x,y in

S. An inverse semigroup is a zero semigroup if and only if it is trivial.
Example

gap> S := Semigroup(
> Transformation([4, 7, 6, 3, 1, 5, 3, 6, 5, 9]),
> Transformation([5, 3, 5, 1, 9, 3, 8, 7, 4, 3]));;
gap> IsZeroSemigroup(S);
false
gap> S := Semigroup(
> Transformation([7, 8, 8, 8, 5, 8, 8, 8]),
> Transformation([8, 8, 8, 8, 5, 7, 8, 8]),
> Transformation([8, 7, 8, 8, 5, 8, 8, 8]),
> Transformation([8, 8, 8, 7, 5, 8, 8, 8]),
> Transformation([8, 8, 7, 8, 5, 8, 8, 8]));;
gap> IsZeroSemigroup(S);
true
gap> MultiplicativeZero(S);
Transformation( [ 8, 8, 8, 8, 5, 8, 8, 8 ] )

15.1.28 IsZeroSimpleSemigroup

. IsZeroSimpleSemigroup(S) (property)

Returns: true or false.
IsZeroSimpleSemigroup returns true if the semigroup S is 0-simple and false if it is not.
A semigroup is a 0-simple if it has no two-sided ideals other than itself and the set containing the

zero element; see also MultiplicativeZero (14.7.3). An inverse semigroup is 0-simple if and only
if it is a Brandt semigroup; see IsBrandtSemigroup (16.2.2).
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Example
gap> S := Semigroup(
> Transformation([1, 17, 17, 17, 17, 17, 17, 17, 17, 17, 5, 17,
> 17, 17, 17, 17, 17]),
> Transformation([1, 17, 17, 17, 11, 17, 17, 17, 17, 17, 17, 17,
> 17, 17, 17, 17, 17]),
> Transformation([1, 17, 17, 17, 17, 17, 17, 17, 17, 17, 4, 17,
> 17, 17, 17, 17, 17]),
> Transformation([1, 17, 17, 5, 17, 17, 17, 17, 17, 17, 17, 17,
> 17, 17, 17, 17, 17]));;
gap> IsZeroSimpleSemigroup(S);
true
gap> S := Semigroup(
> Transformation([2, 3, 4, 5, 1, 8, 7, 6, 2, 7]),
> Transformation([2, 3, 4, 5, 6, 8, 7, 1, 2, 2]));;
gap> IsZeroSimpleSemigroup(S);
false



Chapter 16

Properties and attributes specific to
inverse semigroups

In this chapter we describe the attributes which are specific to inverse semigroups that can be deter-
mined using Semigroups.

The functions

• IsJoinIrreducible (16.2.7)

• IsMajorantlyClosed (16.2.8)

• JoinIrreducibleDClasses (16.1.2)

• MajorantClosure (16.1.3)

• Minorants (16.1.4)

• RightCosetsOfInverseSemigroup (16.1.6)

• SmallerDegreePartialPermRepresentation (16.1.8)

• VagnerPrestonRepresentation (16.1.9)

were written by Wilf A. Wilson and Robert Hancock.
The function CharacterTableOfInverseSemigroup (16.1.10) was written by Jhevon Smith and

Ben Steinberg.

16.1 Attributes specific to inverse semigroups

16.1.1 NaturalLeqInverseSemigroup

. NaturalLeqInverseSemigroup(S) (attribute)

Returns: An function.
NaturalLeqInverseSemigroup returns a function that, when given two elements x, y of the

inverse semigroup S , returns true if x is less than or equal to y in the natural partial order on S .

211
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Example
gap> S := Monoid(Transformation([1, 3, 4, 4]),
> Transformation([1, 4, 2, 4]));
<transformation monoid of degree 4 with 2 generators>
gap> IsInverseSemigroup(S);
true
gap> Size(S);
6
gap> NaturalPartialOrder(S);
[ [ 2, 5, 6 ], [ 6 ], [ 6 ], [ 6 ], [ 6 ], [ ] ]

16.1.2 JoinIrreducibleDClasses

. JoinIrreducibleDClasses(S) (attribute)

Returns: A list of D-classes.
JoinIrreducibleDClasses returns a list of the join irreducible D-classes of the inverse semi-

group of partial permutations, block bijections or partial permutation bipartitions S .
A join irreducible D-class is a D-class containing only join irreducible elements. See

IsJoinIrreducible (16.2.7). If a D-class contains one join irreducible element, then all of the
elements in the D-class are join irreducible.

Example
gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> JoinIrreducibleDClasses(S);
[ <Green’s D-class: <identity partial perm on [ 2 ]>> ]
gap> T := InverseSemigroup([
> PartialPerm([1, 2, 4, 3]),
> PartialPerm([1]),
> PartialPerm([0, 2])]);
<inverse partial perm semigroup of rank 4 with 3 generators>
gap> JoinIrreducibleDClasses(T);
[ <Green’s D-class: <identity partial perm on [ 1, 2, 3, 4 ]>>,

<Green’s D-class: <identity partial perm on [ 1 ]>>,
<Green’s D-class: <identity partial perm on [ 2 ]>> ]

gap> D := DualSymmetricInverseSemigroup(3);
<inverse block bijection monoid of degree 3 with 3 generators>
gap> JoinIrreducibleDClasses(D);
[ <Green’s D-class: <block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ]>> ]

16.1.3 MajorantClosure

. MajorantClosure(S, T) (operation)

Returns: A majorantly closed list of elements.
MajorantClosure returns a majorantly closed subset of an inverse semigroup of partial permu-

tations, block bijections or partial permutation bipartitions, S , as a list. See IsMajorantlyClosed
(16.2.8).

The result contains all elements of S which are greater than or equal to any element of T (with re-
spect to the natural partial order NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm)).
In particular, the result is a superset of T .

Note that T can be a subset of S or a subsemigroup of S .
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Example
gap> S := SymmetricInverseSemigroup(4);
<symmetric inverse monoid of degree 4>
gap> T := [PartialPerm([1, 0, 3, 0])];
[ <identity partial perm on [ 1, 3 ]> ]
gap> U := MajorantClosure(S, T);
[ <identity partial perm on [ 1, 3 ]>,

<identity partial perm on [ 1, 2, 3 ]>, [2,4](1)(3), [4,2](1)(3),
<identity partial perm on [ 1, 3, 4 ]>,
<identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2,4)(3) ]

gap> B := InverseSemigroup([
> Bipartition([[1, -2], [2, -1], [3, -3], [4, 5, -4, -5]]),
> Bipartition([[1, -3], [2, -4], [3, -2], [4, -1], [5, -5]])]);;
gap> T := [Bipartition([[1, -2], [2, 3, 5, -1, -3, -5], [4, -4]]),
> Bipartition([[1, -4], [2, 3, 5, -1, -3, -5], [4, -2]])];;
gap> IsMajorantlyClosed(B, T);
false
gap> MajorantClosure(B, T);
[ <block bijection: [ 1, -2 ], [ 2, 3, 5, -1, -3, -5 ], [ 4, -4 ]>,

<block bijection: [ 1, -4 ], [ 2, 3, 5, -1, -3, -5 ], [ 4, -2 ]>,
<block bijection: [ 1, -2 ], [ 2, 5, -1, -5 ], [ 3, -3 ], [ 4, -4 ]>

, <block bijection: [ 1, -2 ], [ 2, -1 ], [ 3, 5, -3, -5 ],
[ 4, -4 ]>,

<block bijection: [ 1, -4 ], [ 2, 5, -3, -5 ], [ 3, -1 ], [ 4, -2 ]>
, <block bijection: [ 1, -4 ], [ 2, -3 ], [ 3, 5, -1, -5 ],
[ 4, -2 ]>, <block bijection: [ 1, -4 ], [ 2, -3 ], [ 3, -1 ],
[ 4, -2 ], [ 5, -5 ]> ]

gap> IsMajorantlyClosed(B, last);
true

16.1.4 Minorants

. Minorants(S, f) (operation)

Returns: A list of elements.
Minorants takes an element f from an inverse semigroup of partial permutations, block bijections

or partial permutation bipartitions S , and returns a list of the minorants of f in S .
A minorant of f is an element of S which is strictly less than f in the natural partial order of S .

See NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm).
Example

gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> x := Elements(S)[13];
[1,3](2)
gap> Minorants(S, x);
[ <empty partial perm>, [1,3], <identity partial perm on [ 2 ]> ]
gap> x := PartialPerm([3, 2, 4, 0]);
[1,3,4](2)
gap> S := InverseSemigroup(x);
<inverse partial perm semigroup of rank 4 with 1 generator>
gap> Minorants(S, x);
[ <identity partial perm on [ 2 ]>, [1,3](2), [3,4](2) ]
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16.1.5 PrimitiveIdempotents

. PrimitiveIdempotents(S) (attribute)

Returns: A list of elements.
An idempotent in an inverse semigroup S is primitive if it is non-zero and minimal with respect

to the NaturalPartialOrder (Reference: NaturalPartialOrder) on S . PrimitiveIdempotents
returns the list of primitive idempotents in the inverse semigroup S .

Example
gap> S := InverseMonoid(
> PartialPerm([1], [4]),
> PartialPerm([1, 2, 3], [2, 1, 3]),
> PartialPerm([1, 2, 3], [3, 1, 2]));;
gap> MultiplicativeZero(S);
<empty partial perm>
gap> Set(PrimitiveIdempotents(S));
[ <identity partial perm on [ 1 ]>, <identity partial perm on [ 2 ]>,

<identity partial perm on [ 3 ]>, <identity partial perm on [ 4 ]> ]
gap> S := DualSymmetricInverseMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> Set(PrimitiveIdempotents(S));
[ <block bijection: [ 1, 2, 3, -1, -2, -3 ], [ 4, -4 ]>,

<block bijection: [ 1, 2, 4, -1, -2, -4 ], [ 3, -3 ]>,
<block bijection: [ 1, 2, -1, -2 ], [ 3, 4, -3, -4 ]>,
<block bijection: [ 1, 3, 4, -1, -3, -4 ], [ 2, -2 ]>,
<block bijection: [ 1, 3, -1, -3 ], [ 2, 4, -2, -4 ]>,
<block bijection: [ 1, 4, -1, -4 ], [ 2, 3, -2, -3 ]>,
<block bijection: [ 1, -1 ], [ 2, 3, 4, -2, -3, -4 ]> ]

16.1.6 RightCosetsOfInverseSemigroup

. RightCosetsOfInverseSemigroup(S, T) (operation)

Returns: A list of lists of elements.
RightCosetsOfInverseSemigroup takes a majorantly closed inverse subsemigroup T of an in-

verse semigroup of partial permutations, block bijections or partial permutation bipartitions S . See
IsMajorantlyClosed (16.2.8). The result is a list of the right cosets of T in S .

For s ∈ S, the right coset T s is defined if and only if ss−1 ∈ T , in which case it is defined to be the
majorant closure of the set T s. See MajorantClosure (16.1.3). Distinct cosets are disjoint but do not
necessarily partition S .

Example
gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> T := InverseSemigroup(MajorantClosure(S, [PartialPerm([1])]));
<inverse partial perm monoid of rank 3 with 6 generators>
gap> IsMajorantlyClosed(S, T);
true
gap> RC := RightCosetsOfInverseSemigroup(S, T);
[ [ <identity partial perm on [ 1 ]>,

<identity partial perm on [ 1, 2 ]>, [2,3](1), [3,2](1),
<identity partial perm on [ 1, 3 ]>,
<identity partial perm on [ 1, 2, 3 ]>, (1)(2,3) ],
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[ [1,3], [2,1,3], [1,3](2), (1,3), [1,3,2], (1,3,2), (1,3)(2) ],
[ [1,2], (1,2), [1,2,3], [3,1,2], [1,2](3), (1,2)(3), (1,2,3) ] ]

16.1.7 SameMinorantsSubgroup

. SameMinorantsSubgroup(H) (attribute)

Returns: A list of elements of the group H -class H .
Given a group H -class H in an inverse semigroup of partial permutations, block bijections or

partial permutation bipartitions S, SameMinorantsSubgroup returns a list of the elements of H which
have the same strict minorants as the identity element of H . A strict minorant of x in H is an element
of S which is less than x (with respect to the natural partial order), but is not equal to x.

The returned list of elements of H describe a subgroup of H .
Example

gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> H := GroupHClass(DClass(S, PartialPerm([1, 2, 3])));
<Green’s H-class: <identity partial perm on [ 1, 2, 3 ]>>
gap> Elements(H);
[ <identity partial perm on [ 1, 2, 3 ]>, (1)(2,3), (1,2)(3),

(1,2,3), (1,3,2), (1,3)(2) ]
gap> SameMinorantsSubgroup(H);
[ <identity partial perm on [ 1, 2, 3 ]> ]
gap> T := InverseSemigroup(
> PartialPerm([1, 2, 3, 4], [1, 2, 4, 3]),
> PartialPerm([1], [1]), PartialPerm([2], [2]));
<inverse partial perm semigroup of rank 4 with 3 generators>
gap> Elements(T);
[ <empty partial perm>, <identity partial perm on [ 1 ]>,

<identity partial perm on [ 2 ]>,
<identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2)(3,4) ]

gap> x := GroupHClass(DClass(T, PartialPerm([1, 2, 3, 4])));
<Green’s H-class: <identity partial perm on [ 1, 2, 3, 4 ]>>
gap> Elements(x);
[ <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2)(3,4) ]
gap> AsSet(SameMinorantsSubgroup(x));
[ <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2)(3,4) ]

16.1.8 SmallerDegreePartialPermRepresentation

. SmallerDegreePartialPermRepresentation(S) (attribute)

Returns: An isomorphism.
SmallerDegreePartialPermRepresentation attempts to find an isomorphism from the in-

verse semigroup S to an inverse semigroup of partial permutations with small degree. If S is already
a partial permutation semigroup, and the function cannot reduce the degree, the identity mapping is
returned.

There is no guarantee that the smallest possible degree representation is returned. For more infor-
mation see [Sch92].

Example
gap> S := InverseSemigroup(PartialPerm([2, 1, 4, 3, 6, 5, 8, 7]));
<partial perm group of rank 8 with 1 generator>
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gap> Elements(S);
[ <identity partial perm on [ 1, 2, 3, 4, 5, 6, 7, 8 ]>,

(1,2)(3,4)(5,6)(7,8) ]
gap> iso := SmallerDegreePartialPermRepresentation(S);;
gap> Source(iso) = S;
true
gap> R := Range(iso);
<partial perm group of rank 2 with 1 generator>
gap> Elements(R);
[ <identity partial perm on [ 1, 2 ]>, (1,2) ]
gap> S := DualSymmetricInverseMonoid(5);;
gap> T := Range(IsomorphismPartialPermSemigroup(S));
<inverse partial perm monoid of size 6721, rank 6721 with 3
generators>

gap> SmallerDegreePartialPermRepresentation(T);
MappingByFunction( <inverse partial perm monoid of size 6721,
rank 6721 with 3 generators>, <inverse partial perm semigroup of
rank 30 with 3 generators>
, function( x ) ... end, function( x ) ... end )

16.1.9 VagnerPrestonRepresentation

. VagnerPrestonRepresentation(S) (attribute)

Returns: An isomorphism to an inverse semigroup of partial permutations.
VagnerPrestonRepresentation returns an isomorphism from an inverse semigroup S where

the elements of S have a unique semigroup inverse accessible via Inverse (Reference: Inverse), to
the inverse semigroup of partial permutations T of degree equal to the size of S , which is obtained
using the Vagner-Preston Representation Theorem.

More precisely, if f : S → T is the isomorphism returned by
VagnerPrestonRepresentation(S) and x is in S , then f (x) is the partial permutation with
domain Sx−1 and range Sx−1x defined by f (x) : sx−1 7→ sx−1x.

In many cases, it is possible to find a smaller degree representation than that provided by
VagnerPrestonRepresentation using IsomorphismPartialPermSemigroup (Reference: Iso-
morphismPartialPermSemigroup) or SmallerDegreePartialPermRepresentation (16.1.8).

Example
gap> S := SymmetricInverseSemigroup(2);
<symmetric inverse monoid of degree 2>
gap> Size(S);
7
gap> iso := VagnerPrestonRepresentation(S);
MappingByFunction( <symmetric inverse monoid of degree 2>,
<inverse partial perm monoid of rank 7 with 2 generators>
, function( x ) ... end, function( x ) ... end )

gap> RespectsMultiplication(iso);
true
gap> inv := InverseGeneralMapping(iso);;
gap> ForAll(S, x -> (x ^ iso) ^ inv = x);
true
gap> V := InverseSemigroup(
> Bipartition([[1, -4], [2, -1], [3, -5], [4], [5], [-2], [-3]]),
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> Bipartition([[1, -5], [2, -1], [3, -3], [4], [5], [-2], [-4]]),
> Bipartition([[1, -2], [2, -4], [3, -5], [4, -1], [5, -3]]));
<inverse bipartition semigroup of degree 5 with 3 generators>
gap> IsInverseSemigroup(V);
true
gap> VagnerPrestonRepresentation(V);
MappingByFunction( <inverse bipartition semigroup of size 394,
degree 5 with 3 generators>, <inverse partial perm semigroup of
rank 394 with 5 generators>
, function( x ) ... end, function( x ) ... end )

16.1.10 CharacterTableOfInverseSemigroup

. CharacterTableOfInverseSemigroup(S) (attribute)

Returns: The character table of the inverse semigroup S and a list of conjugacy class represen-
tatives of S .

Returns a list with two entries: the first entry being the character table of the inverse semigroup S
as a matrix, while the second entry is a list of conjugacy class representatives of S .

The order of the columns in the character table matrix follows the order of the conjugacy class
representatives list. The conjugacy representatives are grouped by D-class and then sorted by rank.
Also, as is typical of character tables, the rows of the matrix correspond to the irreducible characters
and the columns correspond to the conjugacy classes.

This function was contributed by Jhevon Smith and Ben Steinberg.
Example

gap> S := InverseMonoid([
> PartialPerm([1, 2], [3, 1]),
> PartialPerm([1, 2, 3], [1, 3, 4]),
> PartialPerm([1, 2, 3], [2, 4, 1]),
> PartialPerm([1, 3, 4], [3, 4, 1])]);;
gap> CharacterTableOfInverseSemigroup(S);
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0 ], [ 3, 1, 1, 1, 0, 0, 0, 0 ],

[ 3, 1, E(3), E(3)^2, 0, 0, 0, 0 ],
[ 3, 1, E(3)^2, E(3), 0, 0, 0, 0 ], [ 6, 3, 0, 0, 1, -1, 0, 0 ],
[ 6, 3, 0, 0, 1, 1, 0, 0 ], [ 4, 3, 0, 0, 2, 0, 1, 0 ],
[ 1, 1, 1, 1, 1, 1, 1, 1 ] ],

[ <identity partial perm on [ 1, 2, 3, 4 ]>,
<identity partial perm on [ 1, 3, 4 ]>, (1,3,4), (1,4,3),
<identity partial perm on [ 1, 3 ]>, (1,3),
<identity partial perm on [ 3 ]>, <empty partial perm> ] ]

gap> S := SymmetricInverseMonoid(4);;
gap> CharacterTableOfInverseSemigroup(S);
[ [ [ 1, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0 ],

[ 3, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 2, 0, -1, 2, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 3, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0 ],
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 4, -2, 1, 0, 0, 1, -1, 1, 0, 0, 0, 0 ],
[ 8, 0, -1, 0, 0, 2, 0, -1, 0, 0, 0, 0 ],
[ 4, 2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0 ],
[ 6, 0, 0, -2, 0, 3, -1, 0, 1, -1, 0, 0 ],
[ 6, 2, 0, 2, 0, 3, 1, 0, 1, 1, 0, 0 ],
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[ 4, 2, 1, 0, 0, 3, 1, 0, 2, 0, 1, 0 ],
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ],

[ <identity partial perm on [ 1, 2, 3, 4 ]>, (1)(2)(3,4),
(1)(2,3,4), (1,2)(3,4), (1,2,3,4),
<identity partial perm on [ 1, 2, 3 ]>, (1)(2,3), (1,2,3),
<identity partial perm on [ 2, 3 ]>, (2,3),
<identity partial perm on [ 1 ]>, <empty partial perm> ] ]

16.1.11 EUnitaryInverseCover

. EUnitaryInverseCover(S) (attribute)

Returns: A homomorphism between semigroups.
If the argument S is an inverse semigroup then this function returns a finite E-unitary inverse cover

of S . A finite E-unitary cover of S is a surjective idempotent separating homomorphism from a finite
semigroup satisfying IsEUnitaryInverseSemigroup (16.2.3) to S . A semigroup homomorphism is
said to be idempotent separating if no two idempotents are mapped to the same element of the image.

Example
gap> S := InverseSemigroup([PartialPermNC([1, 2], [2, 1]),
> PartialPermNC([1], [1])]);
<inverse partial perm semigroup of rank 2 with 2 generators>
gap> cov := EUnitaryInverseCover(S);
MappingByFunction( <inverse partial perm semigroup of rank 4 with 2
generators>, <inverse partial perm semigroup of rank 2 with 2
generators>, function( x ) ... end )

gap> IsEUnitaryInverseSemigroup(Source(cov));
true
gap> S = Range(cov);
true

16.2 Properties of inverse semigroups

16.2.1 IsCliffordSemigroup

. IsCliffordSemigroup(S) (property)

Returns: true or false.
IsCliffordSemigroup returns true if the semigroup S is regular and its idempotents are central,

and false if it is not.
Example

gap> S := Semigroup(Transformation([1, 2, 4, 5, 6, 3, 7, 8]),
> Transformation([3, 3, 4, 5, 6, 2, 7, 8]),
> Transformation([1, 2, 5, 3, 6, 8, 4, 4]));;
gap> IsCliffordSemigroup(S);
true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsCliffordSemigroup(S);
true
gap> S := DualSymmetricInverseMonoid(5);;
gap> T := IdempotentGeneratedSubsemigroup(S);;
gap> IsCliffordSemigroup(T);
true
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16.2.2 IsBrandtSemigroup

. IsBrandtSemigroup(S) (property)

Returns: true or false.
IsBrandtSemigroup return true if the semigroup S is a finite 0-simple inverse semigroup,

and false if it is not. See also IsZeroSimpleSemigroup (15.1.28) and IsInverseSemigroup
(Reference: IsInverseSemigroup).

Example
gap> S := Semigroup(
> Transformation([2, 8, 8, 8, 8, 8, 8, 8]),
> Transformation([5, 8, 8, 8, 8, 8, 8, 8]),
> Transformation([8, 3, 8, 8, 8, 8, 8, 8]),
> Transformation([8, 6, 8, 8, 8, 8, 8, 8]),
> Transformation([8, 8, 1, 8, 8, 8, 8, 8]),
> Transformation([8, 8, 8, 1, 8, 8, 8, 8]),
> Transformation([8, 8, 8, 8, 4, 8, 8, 8]),
> Transformation([8, 8, 8, 8, 8, 7, 8, 8]),
> Transformation([8, 8, 8, 8, 8, 8, 2, 8]));;
gap> IsBrandtSemigroup(S);
true
gap> T := Range(IsomorphismPartialPermSemigroup(S));;
gap> IsBrandtSemigroup(T);
true
gap> S := DualSymmetricInverseMonoid(4);;
gap> D := DClass(S,
> Bipartition([[1, 2, 3, -1, -2, -3], [4, -4]]));;
gap> R := InjectionPrincipalFactor(D);;
gap> S := Semigroup(PreImages(R, GeneratorsOfSemigroup(Range(R))));;
gap> IsBrandtSemigroup(S);
true

16.2.3 IsEUnitaryInverseSemigroup

. IsEUnitaryInverseSemigroup(S) (property)

Returns: true or false.
As described in Section 5.9 of [How95], an inverse semigroup S with semilattice of idempotents

E is E-unitary if for
s ∈ S and e ∈ E: es ∈ E⇒ s ∈ E.

Equivalently, S is E-unitary if E is closed in the natural partial order (see Proposition 5.9.1 in
[How95]):

for s ∈ S and e ∈ E: e≤ s⇒ s ∈ E.

This condition is equivalent to E being majorantly closed in S . See
IdempotentGeneratedSubsemigroup (14.9.3) and IsMajorantlyClosed (16.2.8). Hence
an inverse semigroup of partial permutations, block bijections or partial permutation bipartitions is
E-unitary if and only if the idempotent semilattice is majorantly closed.

Example
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 3, 4], [2, 3, 1, 6]),
> PartialPerm([1, 2, 3, 5], [3, 2, 1, 6]));;
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gap> IsEUnitaryInverseSemigroup(S);
true
gap> e := IdempotentGeneratedSubsemigroup(S);;
gap> ForAll(Difference(S, e), x -> not ForAny(e, y -> y * x in e));
true
gap> T := InverseSemigroup([
> PartialPerm([1, 3, 4, 6, 8], [2, 5, 10, 7, 9]),
> PartialPerm([1, 2, 3, 5, 6, 7, 8], [5, 8, 9, 2, 10, 1, 3]),
> PartialPerm([1, 2, 3, 5, 6, 7, 9], [9, 8, 4, 1, 6, 7, 2])]);;
gap> IsEUnitaryInverseSemigroup(T);
false
gap> U := InverseSemigroup([
> PartialPerm([1, 2, 3, 4, 5], [2, 3, 4, 5, 1]),
> PartialPerm([1, 2, 3, 4, 5], [2, 1, 3, 4, 5])]);;
gap> IsEUnitaryInverseSemigroup(U);
true
gap> IsGroupAsSemigroup(U);
true
gap> StructureDescription(U);
"S5"

16.2.4 IsFInverseSemigroup

. IsFInverseSemigroup(S) (property)

Returns: true or false.
This functions determines whether a given semigroup is an F-inverse semigroup. An F-

inverse semigroup is a semigroup which satisfies IsEUnitaryInverseSemigroup (16.2.3)
as well as being isomorphic to some McAlisterTripleSemigroup (12.1.2) where the
McAlisterTripleSemigroupPartialOrder (12.1.4) satisfies IsJoinSemilatticeDigraph
(Digraphs: IsJoinSemilatticeDigraph). McAlister triple semigroups are a represenation of
E-unitary inverse semigroups and more can be read about them in Chapter 12.

Example
gap> S := InverseMonoid([PartialPermNC([1, 2], [1, 2]),
> PartialPermNC([1, 2, 3], [1, 2, 3]),
> PartialPermNC([1, 2, 4], [1, 2, 4]),
> PartialPermNC([1, 2], [2, 1]), PartialPermNC([1, 2, 3], [2, 1, 3]),
> PartialPermNC([1, 2, 4], [2, 1, 4])]);;
gap> IsEUnitaryInverseSemigroup(S);
true
gap> IsFInverseSemigroup(S);
false
gap> IsFInverseSemigroup(IdempotentGeneratedSubsemigroup(S));
true

16.2.5 IsFInverseMonoid

. IsFInverseMonoid(S) (property)

Returns: true or false.
This function determines whether a given semigroup is an F-inverse monoid. A semigroup is an

F-inverse monoid when it satisfies IsMonoid (Reference: IsMonoid) and IsFInverseSemigroup



Semigroups 221

(16.2.4).

16.2.6 IsFactorisableInverseMonoid

. IsFactorisableInverseMonoid(S) (property)

Returns: true or false.
An inverse monoid is factorisable if every element is the product of an element of the group

of units and an idempotent; see also GroupOfUnits (14.8.1) and Idempotents (14.9.1). Hence an
inverse semigroup of partial permutations is factorisable if and only if each of its generators is the
restriction of some element in the group of units.

Example
gap> S := InverseSemigroup(
> PartialPerm([1, 2, 4], [3, 1, 4]),
> PartialPerm([1, 2, 3, 5], [4, 1, 5, 2]));;
gap> IsFactorisableInverseMonoid(S);
false
gap> IsFactorisableInverseMonoid(SymmetricInverseSemigroup(5));
true
gap> IsFactorisableInverseMonoid(DualSymmetricInverseMonoid(5));
false
gap> S := FactorisableDualSymmetricInverseMonoid(5);;
gap> IsFactorisableInverseMonoid(S);
true

16.2.7 IsJoinIrreducible

. IsJoinIrreducible(S, x) (operation)

Returns: true or false.
IsJoinIrreducible determines whether an element x of an inverse semigroup S of partial per-

mutations, block bijections or partial permutation bipartitions is join irreducible.
An element x is join irreducible when it is not the least upper bound (with respect to the natural

partial order NaturalLeqPartialPerm (Reference: NaturalLeqPartialPerm)) of any subset of S
not containing x .

Example
gap> S := SymmetricInverseSemigroup(3);
<symmetric inverse monoid of degree 3>
gap> x := PartialPerm([1, 2, 3]);
<identity partial perm on [ 1, 2, 3 ]>
gap> IsJoinIrreducible(S, x);
false
gap> T := InverseSemigroup([
> PartialPerm([1, 2, 4, 3]),
> PartialPerm([1]),
> PartialPerm([0, 2])]);
<inverse partial perm semigroup of rank 4 with 3 generators>
gap> y := PartialPerm([1, 2, 3, 4]);
<identity partial perm on [ 1, 2, 3, 4 ]>
gap> IsJoinIrreducible(T, y);
true
gap> B := InverseSemigroup([
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> Bipartition([
> [1, -5], [2, -2], [3, 5, 6, 7, -1, -4, -6, -7], [4, -3]]),
> Bipartition([
> [1, -1], [2, -3], [3, -4], [4, 5, 7, -2, -6, -7], [6, -5]]),
> Bipartition([
> [1, -2], [2, -4], [3, -6], [4, -1], [5, 7, -3, -7], [6, -5]]),
> Bipartition([
> [1, -5], [2, -1], [3, -6], [4, 5, 7, -2, -4, -7], [6, -3]])]);
<inverse block bijection semigroup of degree 7 with 4 generators>
gap> x := Bipartition([
> [1, 2, 3, 5, 6, 7, -2, -3, -4, -5, -6, -7], [4, -1]]);
<block bijection: [ 1, 2, 3, 5, 6, 7, -2, -3, -4, -5, -6, -7 ],
[ 4, -1 ]>

gap> IsJoinIrreducible(B, x);
true
gap> IsJoinIrreducible(B, B.1);
false

16.2.8 IsMajorantlyClosed

. IsMajorantlyClosed(S, T) (operation)

Returns: true or false.
IsMajorantlyClosed determines whether the subset T of the inverse semigroup of partial per-

mutations, block bijections or partial permutation bipartitions S is majorantly closed in S . See also
MajorantClosure (16.1.3).

We say that T is majorantly closed in S if it contains all elements of S which are greater than or
equal to any element of T , with respect to the natural partial order. See NaturalLeqPartialPerm
(Reference: NaturalLeqPartialPerm).

Note that T can be a subset of S or a subsemigroup of S .
Example

gap> S := SymmetricInverseSemigroup(2);
<symmetric inverse monoid of degree 2>
gap> T := [Elements(S)[2]];
[ <identity partial perm on [ 1 ]> ]
gap> IsMajorantlyClosed(S, T);
false
gap> U := [Elements(S)[2], Elements(S)[6]];
[ <identity partial perm on [ 1 ]>, <identity partial perm on [ 1, 2 ]

> ]
gap> IsMajorantlyClosed(S, U);
true
gap> D := DualSymmetricInverseSemigroup(3);
<inverse block bijection monoid of degree 3 with 3 generators>
gap> x := Bipartition([[1, -2], [2, -3], [3, -1]]);;
gap> IsMajorantlyClosed(D, [x]);
true
gap> y := Bipartition([[1, 2, -1, -2], [3, -3]]);;
gap> IsMajorantlyClosed(D, [x, y]);
false
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16.2.9 IsMonogenicInverseSemigroup

. IsMonogenicInverseSemigroup(S) (property)

Returns: true or false.
IsMonogenicInverseSemigroup returns true if the semigroup S is a monogenic inverse semi-

group and it returns false if it is not.
A inverse semigroup is monogenic if it is generated as an inverse semigroup by a single element.

See also IsMonogenicSemigroup (15.1.11) and IsMonogenicInverseMonoid (16.2.10).
Example

gap> x := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;
gap> S := InverseSemigroup(x, x ^ 2, x ^ 3);;
gap> IsMonogenicSemigroup(S);
false
gap> IsMonogenicInverseSemigroup(S);
true
gap> x := RandomBlockBijection(100);;
gap> S := InverseSemigroup(x, x ^ 2, x ^ 20);;
gap> IsMonogenicInverseSemigroup(S);
true
gap> S := SymmetricInverseSemigroup(5);;
gap> IsMonogenicInverseSemigroup(S);
false

16.2.10 IsMonogenicInverseMonoid

. IsMonogenicInverseMonoid(S) (property)

Returns: true or false.
IsMonogenicInverseMonoid returns true if the monoid S is a monogenic inverse monoid and

it returns false if it is not.
A inverse monoid is monogenic if it is generated as an inverse monoid by a single element. See

also IsMonogenicInverseSemigroup (16.2.9) and IsMonogenicMonoid (15.1.12).
Example

gap> x := PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]);;
gap> S := InverseMonoid(x, x ^ 2, x ^ 3);;
gap> IsMonogenicMonoid(S);
false
gap> IsMonogenicInverseSemigroup(S);
false
gap> IsMonogenicInverseMonoid(S);
true
gap> x := RandomBlockBijection(100);;
gap> S := InverseMonoid(x, x ^ 2, x ^ 20);;
gap> IsMonogenicInverseMonoid(S);
true
gap> S := SymmetricInverseMonoid(5);;
gap> IsMonogenicInverseMonoid(S);
false
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Congruences

Congruences in Semigroups can be described in several different ways:

• Generating pairs – the minimal congruence which contains these pairs

• Rees congruences – the congruence specified by a given ideal

• Universal congruences – the unique congruence with only one class

• Linked triples – only for simple or 0-simple semigroups (see below)

• Kernel and trace – only for inverse semigroups

The operation SemigroupCongruence (17.2.1) can be used to create any of these, interpreting the
arguments in a smart way. The usual way of specifying a congruence will be by giving a set of gener-
ating pairs, but a user with an ideal could instead create a Rees congruence or universal congruence.

If a congruence is specified by generating pairs on a simple, 0-simple, or inverse semigroup, then
the congruence may be converted automatically to one of the last two items in the above list, to reduce
the complexity of any calculations to be performed. The user need not manually specify, or even be
aware of, the congruence’s linked triple or kernel and trace.

We can also create left congruences and right congruences, using the
LeftSemigroupCongruence (17.2.2) and RightSemigroupCongruence (17.2.3) functions.

Please note that congruence objects made in GAP before loading the Semigroups package may
not behave correctly after Semigroups is loaded. If Semigroups is loaded at the beginning of the
session, or before any congruence work is done, then the objects should behave correctly.

17.1 Semigroup congruence objects

17.1.1 IsSemigroupCongruence

. IsSemigroupCongruence(obj) (property)

A semigroup congruence cong is an equivalence relation on a semigroup S which respects left
and right multiplication.

That is, if (a,b) is a pair in cong, and x is an element of S, then (ax,bx) and (xa,xb) are both in
cong.

224
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The simplest way of creating a congruence in Semigroups is by a set of generating pairs. See
SemigroupCongruence (17.2.1).

Example
gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> cong := SemigroupCongruence(S, [pair1, pair2]);
<semigroup congruence over <simple transformation semigroup of
degree 5 with 4 generators> with linked triple (2,4,1)>

gap> IsSemigroupCongruence(cong);
true

17.1.2 IsLeftSemigroupCongruence

. IsLeftSemigroupCongruence(obj) (property)

A left semigroup congruence cong is an equivalence relation on a semigroup S which respects left
multiplication.

That is, if (a,b) is a pair in cong, and x is an element of S, then (xa,xb) is also in cong.
The simplest way of creating a left congruence in Semigroups is by a set of generating pairs.

See LeftSemigroupCongruence (17.2.2).
Example

gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> cong := LeftSemigroupCongruence(S, [pair1, pair2]);
<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

gap> IsLeftSemigroupCongruence(cong);
true

17.1.3 IsRightSemigroupCongruence

. IsRightSemigroupCongruence(obj) (property)

A right semigroup congruence cong is an equivalence relation on a semigroup S which respects
right multiplication.

That is, if (a,b) is a pair in cong, and x is an element of S, then (ax,bx) is also in cong.
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The simplest way of creating a right congruence in Semigroups is by a set of generating pairs.
See RightSemigroupCongruence (17.2.3).

Example
gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> RightSemigroupCongruence(S, [pair1, pair2]);
<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

gap> IsRightSemigroupCongruence(cong);
true

17.2 Creating congruences

17.2.1 SemigroupCongruence

. SemigroupCongruence(S, pairs) (function)

Returns: A semigroup congruence.
This function returns a semigroup congruence over the semigroup S .
If pairs is a list of lists of size 2 with elements from S , then this function will return the semi-

group congruence defined by these generating pairs. The individual pairs may instead be given as
separate arguments.

Example
gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> SemigroupCongruence(S, [pair1, pair2]);
<semigroup congruence over <simple transformation semigroup of
degree 5 with 4 generators> with linked triple (2,4,1)>

gap> SemigroupCongruence(S, pair1, pair2);
<semigroup congruence over <simple transformation semigroup of
degree 5 with 4 generators> with linked triple (2,4,1)>

17.2.2 LeftSemigroupCongruence

. LeftSemigroupCongruence(S, pairs) (function)

Returns: A left semigroup congruence.
This function returns a left semigroup congruence over the semigroup S .
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If pairs is a list of lists of size 2 with elements from S , then this function will return the least left
semigroup congruence on S which contains these generating pairs. The individual pairs may instead
be given as separate arguments.

Example
gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> LeftSemigroupCongruence(S, [pair1, pair2]);
<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

gap> LeftSemigroupCongruence(S, pair1, pair2);
<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

17.2.3 RightSemigroupCongruence

. RightSemigroupCongruence(S, pairs) (function)

Returns: A right semigroup congruence.
This function returns a right semigroup congruence over the semigroup S .
If pairs is a list of lists of size 2 with elements from S , then this function will return the least

right semigroup congruence on S which contains these generating pairs. The individual pairs may
instead be given as separate arguments.

Example
gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> RightSemigroupCongruence(S, [pair1, pair2]);
<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

gap> RightSemigroupCongruence(S, pair1, pair2);
<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

17.2.4 GeneratingPairsOfSemigroupCongruence

. GeneratingPairsOfSemigroupCongruence(cong) (attribute)

. GeneratingPairsOfLeftSemigroupCongruence(cong) (attribute)
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. GeneratingPairsOfRightSemigroupCongruence(cong) (attribute)

Returns: A list of lists.
If cong is a semigroup congruence, then GeneratingPairsOfSemigroupCongruence returns

a list of pairs of elements from Range(cong) that generates the congruence; i.e. cong is the least
congruence on the semigroup which contains all the pairs in the list.

If cong is a left or right semigroup congruence, then
GeneratingPairsOfLeft/RightSemigroupCongruence will instead give a list of pairs which
generate it as a left or right congruence. Note that, although a congruence is also a left and right
congruence, its generating pairs as a left or right congruence may differ from its generating pairs as a
two-sided congruence.

A congruence can be defined using a set of generating pairs: see SemigroupCongruence (17.2.1),
LeftSemigroupCongruence (17.2.2), and RightSemigroupCongruence (17.2.3).

Example
gap> S := Semigroup([Transformation([3, 3, 2, 3]),
> Transformation([3, 4, 4, 1])]);;
gap> pairs :=
> [[Transformation([1, 1, 1, 1]), Transformation([2, 2, 2, 3])],
> [Transformation([2, 2, 3, 2]), Transformation([3, 3, 2, 3])]];;
gap> cong := SemigroupCongruence(S, pairs);;
gap> GeneratingPairsOfSemigroupCongruence(cong);
[ [ Transformation( [ 1, 1, 1, 1 ] ),

Transformation( [ 2, 2, 2, 3 ] ) ],
[ Transformation( [ 2, 2, 3, 2 ] ),

Transformation( [ 3, 3, 2, 3 ] ) ] ]

17.3 Congruence classes

17.3.1 IsCongruenceClass

. IsCongruenceClass(obj) (category)

This category contains any object which is an equivalence class of a semigroup congruence (see
IsSemigroupCongruence (17.1.1)). An object will only be in this category if the relation is known
to be a semigroup congruence when the congruence class is created.

Example
gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> cong := SemigroupCongruence(S, [Transformation([1, 2, 1]),
> Transformation([2, 1, 2])]);;
gap> class := EquivalenceClassOfElement(cong,
> Transformation([3, 1, 1]));
<congruence class of Transformation( [ 3, 1, 1 ] )>
gap> IsCongruenceClass(class);
true

17.3.2 IsLeftCongruenceClass

. IsLeftCongruenceClass(obj) (category)
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This category contains any object which is an equivalence class of a left semigroup congruence
(see IsLeftSemigroupCongruence (17.1.2)). An object will only be in this category if the relation
is known to be a left semigroup congruence when the class is created.

Example
gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> pairs := [Transformation([1, 2, 1]),
> Transformation([2, 1, 2])];;
gap> cong := LeftSemigroupCongruence(S, pairs);;
gap> class := EquivalenceClassOfElement(cong,
> Transformation([3, 1, 1]));
<left congruence class of Transformation( [ 3, 1, 1 ] )>
gap> IsLeftCongruenceClass(class);
true

17.3.3 IsRightCongruenceClass

. IsRightCongruenceClass(obj) (category)

This category contains any object which is an equivalence class of a right semigroup congruence
(see IsRightSemigroupCongruence (17.1.3)). An object will only be in this category if the relation
is known to be a right semigroup congruence when the class is created.

Example
gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> pairs := [Transformation([1, 2, 1]),
> Transformation([2, 1, 2])];;
gap> cong := RightSemigroupCongruence(S, pairs);;
gap> class := EquivalenceClassOfElement(cong,
> Transformation([3, 1, 1]));
<right congruence class of Transformation( [ 3, 1, 1 ] )>
gap> IsRightCongruenceClass(class);
true

17.3.4 CongruenceClassOfElement

. CongruenceClassOfElement(cong, elm) (operation)

. LeftCongruenceClassOfElement(cong, elm) (operation)

. RightCongruenceClassOfElement(cong, elm) (operation)

Returns: An equivalence class.
These operations act as a synonym of EquivalenceClassOfElement in the case that the argu-

ment cong is a congruence, left congruence, or right congruence (respectively) of a semigroup.
See IsLeftSemigroupCongruence (17.1.2), IsRightSemigroupCongruence (17.1.3), and

IsSemigroupCongruence (17.1.1).
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong := CongruencesOfSemigroup(S)[3];;
gap> elm := ReesZeroMatrixSemigroupElement(S, 1, (1, 3, 2), 1);;
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gap> CongruenceClassOfElement(cong, elm);
<congruence class of (1,(1,3,2),1)>

17.3.5 CongruenceClasses

. CongruenceClasses(cong) (operation)

. LeftCongruenceClasses(cong) (operation)

. RightCongruenceClasses(cong) (operation)

Returns: A list of equivalence classes.
These operations act as a synonym of EquivalenceClasses in the case that the argument cong

is a congruence, left congruence, or right congruence (respectively) of a semigroup.
See IsLeftSemigroupCongruence (17.1.2), IsRightSemigroupCongruence (17.1.3), and

IsSemigroupCongruence (17.1.1).
Example

gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> pair := [Transformation([1, 2, 1]), Transformation([2, 1, 2])];;
gap> cong := SemigroupCongruence(S, pair);;
gap> classes := CongruenceClasses(cong);;
gap> Set(classes);
[ <congruence class of Transformation( [ 3, 3, 3 ] )>,

<congruence class of Transformation( [ 2, 1, 2 ] )>,
<congruence class of Transformation( [ 1, 2, 2 ] )>,
<congruence class of IdentityTransformation>,
<congruence class of Transformation( [ 3, 1, 3 ] )>,
<congruence class of Transformation( [ 3, 1, 1 ] )> ]

17.3.6 NonTrivialEquivalenceClasses

. NonTrivialEquivalenceClasses(eq) (attribute)

Returns: A list of equivalence classes.
If eq is an equivalence relation, then this attribute returns a list of all equivalence classes of eq

which contain more than one element.
Example

gap> S := Monoid([Transformation([1, 2, 2]),
> Transformation([3, 1, 3])]);;
gap> cong := SemigroupCongruence(S, [Transformation([1, 2, 1]),
> Transformation([2, 1, 2])]);;
gap> classes := NonTrivialEquivalenceClasses(cong);;
gap> Set(classes);
[ <congruence class of Transformation( [ 3, 3, 3 ] )>,

<congruence class of Transformation( [ 2, 1, 2 ] )>,
<congruence class of Transformation( [ 1, 2, 2 ] )>,
<congruence class of Transformation( [ 3, 1, 3 ] )>,
<congruence class of Transformation( [ 3, 1, 1 ] )> ]

17.3.7 NonTrivialCongruenceClasses

. NonTrivialCongruenceClasses(cong) (operation)

. NonTrivialLeftCongruenceClasses(cong) (operation)
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. NonTrivialRightCongruenceClasses(cong) (operation)

Returns: A list of equivalence classes.
These operations act as a synonym of NonTrivialEquivalenceClasses in the case that the

argument cong is a congruence, left congruence, or right congruence (respectively) of a semigroup.
See IsLeftSemigroupCongruence (17.1.2), IsRightSemigroupCongruence (17.1.3), and

IsSemigroupCongruence (17.1.1).
Example

gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> cong := RightSemigroupCongruence(S, [Transformation([1, 2, 1]),
> Transformation([2, 1, 2])]);;
gap> classes := NonTrivialRightCongruenceClasses(cong);;
gap> Set(classes);
[ <right congruence class of Transformation( [ 2, 1, 2 ] )>,

<right congruence class of Transformation( [ 3, 1, 3 ] )> ]

17.3.8 NrEquivalenceClasses

. NrEquivalenceClasses(eq) (attribute)

Returns: A positive integer.
If eq is an equivalence relation, then this attribute describes the number of equivalence classes it

has.
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong := CongruencesOfSemigroup(S)[3];;
gap> NrEquivalenceClasses(cong);
9

17.3.9 NrCongruenceClasses

. NrCongruenceClasses(cong) (operation)

. NrLeftCongruenceClasses(cong) (operation)

. NrRightCongruenceClasses(cong) (operation)

Returns: A list of equivalence classes.
These operations act as a synonym of NrEquivalenceClasses in the case that the argument

cong is a congruence, left congruence, or right congruence (respectively) of a semigroup.
See IsLeftSemigroupCongruence (17.1.2), IsRightSemigroupCongruence (17.1.3), and

IsSemigroupCongruence (17.1.1).
Example

gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> pair := [Transformation([1, 2, 1]), Transformation([2, 1, 2])];;
gap> cong := SemigroupCongruence(S, pair);;
gap> NrCongruenceClasses(cong);
6
gap> cong := RightSemigroupCongruence(S, pair);;
gap> NrRightCongruenceClasses(cong);
10



Semigroups 232

17.3.10 EquivalenceRelationLookup

. EquivalenceRelationLookup(cong) (attribute)

Returns: A list.
This attribute describes the (left, right or two-sided) semigroup congruence cong as a list of

positive integers with length the size of the finite semigroup over which cong is defined.
Each position in the list corresponds to an element of the semigroup (in a consistent canonical

order) and the integer at that position is a unique identifier for that element’s congruence class un-
der cong . Two elements of the semigroup on which the congruence is defined are related in the
congruence if and only if they have the same number at their respective positions in the lookup.

Note that the order in which numbers appear in the list is non-deterministic, and two congruence
objects which describe the same equivalence relation might therefore have different lookups. Note
also that the maximum value of the list may not be the number of classes of cong , and that any
integer might not be included. However, see EquivalenceRelationCanonicalLookup (17.3.11).

See also EquivalenceRelationPartition (Reference: EquivalenceRelationPartition).
Example

gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> cong := SemigroupCongruence(S,
> [Transformation([1, 2, 1]), Transformation([2, 1, 2])]);;
gap> lookup := EquivalenceRelationLookup(cong);;
gap> lookup[3] = lookup[8];
true
gap> lookup[2] = lookup[9];
false

17.3.11 EquivalenceRelationCanonicalLookup

. EquivalenceRelationCanonicalLookup(cong) (attribute)

Returns: A list.
This attribute describes the semigroup congruence cong as a list of positive integers with length

the size of the finite semigroup over which cong is defined.
Each position in the list corresponds to an element of the semigroup (in a consistent canonical

order) and the integer at that position is a unique identifier for that element’s congruence class under
cong . The value of EquivalenceRelationCanonicalLookup has the property that the first appear-
ance of the value i is strictly later than the first appearance of i-1, and that all entries in the list will
be from the range [1 .. NrEquivalenceClasses(cong)]. As such, two congruences on a given
semigroup are equal if and only if their canonical lookups are equal.

Two elements of the semigroup on which the congruence is defined are related in the congruence
if and only if they have the same number at their respective positions in the lookup.

See also EquivalenceRelationLookup (17.3.10) and EquivalenceRelationPartition
(Reference: EquivalenceRelationPartition).

Example
gap> S := Monoid([
> Transformation([1, 2, 2]), Transformation([3, 1, 3])]);;
gap> cong := SemigroupCongruence(S,
> [Transformation([1, 2, 1]), Transformation([2, 1, 2])]);;
gap> EquivalenceRelationCanonicalLookup(cong);
[ 1, 2, 3, 4, 5, 6, 2, 3, 6, 4, 5, 6 ]
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17.3.12 EquivalenceRelationCanonicalPartition

. EquivalenceRelationCanonicalPartition(cong) (attribute)

Returns: A list of lists.
This attribute returns a list of lists of elements of the underlying set of the semigroup congruence

cong . These lists are precisely the nontrivial equivalence classes of cong . The order in which the
classes appear is deterministic, and the order of the elements inside each class is also deterministic.
Hence, two congruence objects have the same EquivalenceRelationCanonicalPartition if and
only if they describe the same relation.

See also EquivalenceRelationPartition (Reference: EquivalenceRelationPartition), a
similar attribute which does not have canonical ordering, but which is likely to be faster.

Example
gap> S := Semigroup(Transformation([1, 4, 3, 3]),
> Transformation([2, 4, 3, 3]));;
gap> cong := SemigroupCongruence(S, [Transformation([1, 4, 3, 3]),
> Transformation([1, 3, 3, 3])]);;
gap> EquivalenceRelationCanonicalPartition(cong);
[ [ Transformation( [ 1, 3, 3, 3 ] ),

Transformation( [ 1, 4, 3, 3 ] ) ],
[ Transformation( [ 3, 3, 3, 3 ] ),

Transformation( [ 4, 3, 3, 3 ] ) ] ]

17.3.13 OnLeftCongruenceClasses

. OnLeftCongruenceClasses(class, elm) (operation)

Returns: A left congruence class.
If class is an equivalence class of the left semigroup congruence cong on the semigroup S,

and elm is an element of S, then this operation returns the equivalence class of cong containing the
element elm * x, where x is any element of class . The result is well-defined by the definition of a
left congruence.

See IsLeftSemigroupCongruence (17.1.2) and IsLeftCongruenceClass (17.3.2).
Example

gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> cong := LeftSemigroupCongruence(S, [pair1, pair2]);
<left semigroup congruence over <transformation semigroup of degree 5
with 4 generators> with 2 generating pairs>

gap> x := Transformation([3, 4, 3, 4, 3]);;
gap> class := LeftCongruenceClassOfElement(cong, x);
<left congruence class of Transformation( [ 3, 4, 3, 4, 3 ] )>
gap> elm := Transformation([1, 2, 2, 1, 2]);;
gap> OnLeftCongruenceClasses(class, elm);
<left congruence class of Transformation( [ 3, 4, 4, 3, 4 ] )>
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17.3.14 OnRightCongruenceClasses

. OnRightCongruenceClasses(class, elm) (operation)

Returns: A right congruence class.
If class is an equivalence class of the right semigroup congruence cong on the semigroup S,

and elm is an element of S, then this operation returns the equivalence class of cong containing the
element x * elm , where x is any element of class . The result is well-defined by the definition of a
right congruence.

See IsRightSemigroupCongruence (17.1.3) and IsRightCongruenceClass (17.3.3).
Example

gap> S := Semigroup([
> Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4])]);;
gap> pair1 := [Transformation([3, 4, 3, 4, 3]),
> Transformation([1, 2, 1, 2, 1])];;
gap> pair2 := [Transformation([4, 3, 4, 3, 4]),
> Transformation([3, 4, 3, 4, 3])];;
gap> cong := RightSemigroupCongruence(S, [pair1, pair2]);
<right semigroup congruence over <transformation semigroup of
degree 5 with 4 generators> with 2 generating pairs>

gap> x := Transformation([3, 4, 3, 4, 3]);;
gap> class := RightCongruenceClassOfElement(cong, x);
<right congruence class of Transformation( [ 3, 4, 3, 4, 3 ] )>
gap> elm := Transformation([1, 2, 2, 1, 2]);;
gap> OnRightCongruenceClasses(class, elm);
<right congruence class of Transformation( [ 2, 1, 2, 1, 2 ] )>

17.4 Finding the congruences of a semigroup

17.4.1 CongruencesOfSemigroup (for a semigroup)

. CongruencesOfSemigroup(S) (attribute)

. LeftCongruencesOfSemigroup(S) (attribute)

. RightCongruencesOfSemigroup(S) (attribute)

. CongruencesOfSemigroup(S, restriction) (operation)

. LeftCongruencesOfSemigroup(S, restriction) (operation)

. RightCongruencesOfSemigroup(S, restriction) (operation)

Returns: The congruences of a semigroup.
This attribute gives a list of the left, right, or 2-sided congruences of the semigroup S .
If restriction is specified and is a collection of elements from S , then the result will only

include congruences generated by pairs of elements from restriction . Otherwise, all congruences
will be calculated.

See also LatticeOfCongruences (17.4.5).
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> congs := CongruencesOfSemigroup(S);;
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gap> Length(congs);
4
gap> Set(congs, NrCongruenceClasses);
[ 1, 5, 9, 25 ]
gap> pos := Position(congs, UniversalSemigroupCongruence(S));;
gap> congs[pos];
<universal semigroup congruence over
<Rees 0-matrix semigroup 2x2 over Sym( [ 1 .. 3 ] )>>

17.4.2 MinimalCongruencesOfSemigroup (for a semigroup)

. MinimalCongruencesOfSemigroup(S) (attribute)

. MinimalLeftCongruencesOfSemigroup(S) (attribute)

. MinimalRightCongruencesOfSemigroup(S) (attribute)

. MinimalCongruencesOfSemigroup(S, restriction) (operation)

. MinimalLeftCongruencesOfSemigroup(S, restriction) (operation)

. MinimalRightCongruencesOfSemigroup(S, restriction) (operation)

Returns: The congruences of a semigroup.
If S is a semigroup, then the attribute MinimalCongruencesOfSemigroup gives a list of all the

congruences on S which are minimal. A congruence is minimal iff it is non-trivial and contains no
other congruences as subrelations (apart from the trivial congruence).

MinimalLeftCongruencesOfSemigroup and MinimalRightCongruencesOfSemigroup do
the same thing, but for left congruences and right congruences respectively. Note that any congru-
ence is also a left congruence, but that a minimal congruence may not be a minimal left congruence.

If restriction is specified and is a collection of elements from S , then the result will only
include congruences generated by pairs of elements from restriction . Otherwise, all congruences
will be calculated.

See also CongruencesOfSemigroup (17.4.1) and PrincipalCongruencesOfSemigroup
(17.4.3).

Example
gap> S := Semigroup(Transformation([1, 3, 2]),
> Transformation([3, 1, 3]));;
gap> min := MinimalCongruencesOfSemigroup(S);
[ <semigroup congruence over <transformation semigroup of size 13,

degree 3 with 2 generators> with 1 generating pairs> ]
gap> minl := MinimalLeftCongruencesOfSemigroup(S);
[ <left semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators> with 1 generating pairs>,
<left semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators> with 1 generating pairs>,
<left semigroup congruence over <transformation semigroup

of size 13, degree 3 with 2 generators> with 1 generating pairs>
]

17.4.3 PrincipalCongruencesOfSemigroup (for a semigroup)

. PrincipalCongruencesOfSemigroup(S) (attribute)

. PrincipalLeftCongruencesOfSemigroup(S) (attribute)

. PrincipalRightCongruencesOfSemigroup(S) (attribute)
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. PrincipalCongruencesOfSemigroup(S, restriction) (operation)

. PrincipalLeftCongruencesOfSemigroup(S, restriction) (operation)

. PrincipalRightCongruencesOfSemigroup(S, restriction) (operation)

Returns: A list.
If S is a semigroup, then the attribute PrincipalCongruencesOfSemigroup gives a list of all

the congruences on S which are principal. A congruence is principal if and only if it is non-trivial and
can be defined by a single generating pair.

PrincipalLeftCongruencesOfSemigroup and PrincipalRightCongruencesOfSemigroup
do the same thing, but for left congruences and right congruences respectively. Note that any con-
gruence is a left congruence and a right congruence, but that a principal congruence may not be a
principal left congruence or a principal right congruence.

If restriction is specified and is a collection of elements from S , then the result will only
include congruences generated by pairs of elements from restriction . Otherwise, all congruences
will be calculated.

See also CongruencesOfSemigroup (17.4.1) and MinimalCongruencesOfSemigroup (17.4.2).
Example

gap> S := Semigroup(Transformation([1, 3, 2]),
> Transformation([3, 1, 3]));;
gap> congs := PrincipalCongruencesOfSemigroup(S);
[ <semigroup congruence over <transformation semigroup of size 13,

degree 3 with 2 generators> with 1 generating pairs>,
<semigroup congruence over <transformation semigroup of size 13,

degree 3 with 2 generators> with 1 generating pairs>,
<semigroup congruence over <transformation semigroup of size 13,

degree 3 with 2 generators> with 1 generating pairs>,
<semigroup congruence over <transformation semigroup of size 13,

degree 3 with 2 generators> with 1 generating pairs>,
<semigroup congruence over <transformation semigroup of size 13,

degree 3 with 2 generators> with 1 generating pairs> ]

17.4.4 IsCongruencePoset

. IsCongruencePoset(poset) (Category)

Returns: true or false.
This category contains all congruence posets. A congruence poset is a partially ordered set of

congruences over a specific semigroup, where the ordering is defined by containment according to
IsSubrelation (17.5.1): given two congruences cong1 and cong2, we say that cong1 < cong2 if
and only if cong1 is a subrelation (a refinement) of cong2. The congruences in a congruence poset
can be left, right, or two-sided.

A congruence poset is a digraph (see IsDigraph (Digraphs: IsDigraph)) with a vertex for
each congruence, and an edge from vertex i to vertex j if and only if the congruence numbered
i is a subrelation of the congruence numbered j. The list of congruences can be obtained using
CongruencesOfPoset (17.4.7).

Congruence posets can be created using PosetOfCongruences (17.4.9),
JoinSemilatticeOfCongruences (17.4.10), and LatticeOfCongruences (17.4.5).

Example
gap> S := SymmetricInverseMonoid(2);;
gap> poset := LatticeOfCongruences(S);
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<poset of 4 congruences over <symmetric inverse monoid of degree 2>>
gap> IsCongruencePoset(poset);
true
gap> IsDigraph(poset);
true
gap> OutNeighbours(poset);
[ [ 1 .. 4 ], [ 2, 3, 4 ], [ 3 ], [ 3, 4 ] ]
gap> T := FullTransformationMonoid(3);;
gap> congs := PrincipalCongruencesOfSemigroup(T);;
gap> poset := JoinSemilatticeOfCongruences(congs,
> JoinSemigroupCongruences);
<poset of 6 congruences over <full transformation monoid of degree 3>>
gap> IsCongruencePoset(poset);
true
gap> Size(poset);
6

17.4.5 LatticeOfCongruences (for a semigroup)

. LatticeOfCongruences(S) (attribute)

. LatticeOfLeftCongruences(S) (attribute)

. LatticeOfRightCongruences(S) (attribute)

. LatticeOfCongruences(S, restriction) (operation)

. LatticeOfLeftCongruences(S, restriction) (operation)

. LatticeOfRightCongruences(S, restriction) (operation)

Returns: A list of lists.
If S is a semigroup, then LatticeOfCongruences gives a congruence poset object contain-

ing all the congruences of S and information about how they are contained in each other. See
IsCongruencePoset (17.4.4) for more details.

LatticeOfLeftCongruences and LatticeOfRightCongruences do the same thing for left and
right congruences respectively.

If restriction is specified and is a collection of elements from S , then the result will only
include congruences generated by pairs of elements from restriction . Otherwise, all congruences
will be calculated.

See CongruencesOfSemigroup (17.4.1).
Example

gap> S := OrderEndomorphisms(2);;
gap> LatticeOfCongruences(S);
<poset of 3 congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> LatticeOfLeftCongruences(S);
<poset of 3 congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> LatticeOfRightCongruences(S);
<poset of 5 congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> OutNeighbours(LatticeOfRightCongruences(S));
[ [ 1 .. 5 ], [ 2, 5 ], [ 3, 5 ], [ 4, 5 ], [ 5 ] ]
gap> S := FullTransformationMonoid(4);;
gap> restriction := [Transformation([1, 1, 1, 1]),
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> Transformation([1, 1, 1, 2]),
> Transformation([1, 1, 1, 3])];;
gap> latt := LatticeOfCongruences(S, restriction);
<poset of 2 congruences over <full transformation monoid of degree 4>>

17.4.6 PosetOfPrincipalCongruences (for a semigroup)

. PosetOfPrincipalCongruences(S) (attribute)

. PosetOfPrincipalLeftCongruences(S) (attribute)

. PosetOfPrincipalRightCongruences(S) (attribute)

. PosetOfPrincipalCongruences(S, restriction) (operation)

. PosetOfPrincipalLeftCongruences(S, restriction) (operation)

. PosetOfPrincipalRightCongruences(S, restriction) (operation)

Returns: A congruence poset.
If S is a semigroup, then PosetOfPrincipalCongruences returns a congruence poset ob-

ject which contains all the principal congruences of S , ordered by containment according to
IsSubrelation (17.5.1). A congruence is principal if it can be defined by a single generating
pair. PosetOfPrincipalLeftCongruences and PosetOfPrincipalRightCongruences do the
same thing for left and right congruences respectively.

If restriction is specified and is a collection of elements from S , then the result will only
include principal congruences generated by pairs of elements from restriction . Otherwise, all
principal congruences will be calculated.

See also LatticeOfCongruences (17.4.5) and PrincipalCongruencesOfSemigroup (17.4.3).
Example

gap> S := Semigroup([Transformation([1, 3, 1]),
> Transformation([2, 3, 3])]);;
gap> PosetOfPrincipalLeftCongruences(S);
<poset of 12 congruences over <transformation semigroup of size 11,
degree 3 with 2 generators>>

gap> PosetOfPrincipalCongruences(S);
<poset of 3 congruences over <transformation semigroup of size 11,
degree 3 with 2 generators>>

gap> restriction := [Transformation([3, 2, 3]),
> Transformation([3, 1, 3]),
> Transformation([2, 2, 2])];;
gap> poset := PosetOfPrincipalRightCongruences(S, restriction);
<poset of 3 congruences over <transformation semigroup of size 11,
degree 3 with 2 generators>>

17.4.7 CongruencesOfPoset

. CongruencesOfPoset(poset) (attribute)

Returns: A list.
If poset is a congruence poset object, then this attribute returns a list of all the congruence objects

in the poset (these may be left, right, or two-sided). The order of this list corresponds to the order of
the entries in the poset.

See also LatticeOfCongruences (17.4.5) and CongruencesOfSemigroup (17.4.1).
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Example
gap> S := OrderEndomorphisms(2);;
gap> latt := LatticeOfRightCongruences(S);
<poset of 5 congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> CongruencesOfPoset(latt);
[ <right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 0 generating pairs>,
<right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 1 generating pairs>,
<right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 1 generating pairs>,
<right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 1 generating pairs>,
<right semigroup congruence over <regular transformation monoid

of size 3, degree 2 with 2 generators> with 2 generating pairs> ]

17.4.8 UnderlyingSemigroupOfCongruencePoset

. UnderlyingSemigroupOfCongruencePoset(poset) (attribute)

Returns: A semigroup.
If poset is a congruence poset object, then this attribute returns the semigroup on which all its

congruences are defined.
Example

gap> S := OrderEndomorphisms(2);
<regular transformation monoid of degree 2 with 2 generators>
gap> latt := LatticeOfRightCongruences(S);
<poset of 5 congruences over <regular transformation monoid
of size 3, degree 2 with 2 generators>>

gap> UnderlyingSemigroupOfCongruencePoset(latt) = S;
true

17.4.9 PosetOfCongruences

. PosetOfCongruences(coll) (operation)

Returns: A congruence poset.
If coll is a list or collection of semigroup congruences (which may be left, right, or two-sided)

then this operation returns the congruence poset formed by these congruences partially ordered by
containment.

This operation does not create any new congruences or take any joins. However,
see JoinSemilatticeOfCongruences (17.4.10). See also IsCongruencePoset (17.4.4) and
LatticeOfCongruences (17.4.5).

Example
gap> S := OrderEndomorphisms(2);;
gap> pair1 := [Transformation([1, 1]), IdentityTransformation];;
gap> pair2 := [IdentityTransformation, Transformation([2, 2])];;
gap> coll := [RightSemigroupCongruence(S, pair1),
> RightSemigroupCongruence(S, pair2),
> RightSemigroupCongruence(S, [])];;
gap> poset := PosetOfCongruences(coll);
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<poset of 3 congruences over <regular transformation monoid of
degree 2 with 2 generators>>

gap> OutNeighbours(poset);
[ [ 1 ], [ 2 ], [ 1, 2, 3 ] ]

17.4.10 JoinSemilatticeOfCongruences (for a list or collection and a function)

. JoinSemilatticeOfCongruences(coll, join_func) (operation)

. JoinSemilatticeOfCongruences(poset, join_func) (operation)

Returns: A congruence poset.
If coll is a list or collection of semigroup congruences (which may be left, right, or two-

sided) and join_func is a function for taking the join of two of the congruences (such as
JoinSemigroupCongruences (17.5.4)) then this operation returns the congruence poset formed by
these congruences partially ordered by containment, along with all their joins.

Alternatively, a congruence poset poset can be specified; in this case, the congruences contained
in poset will be used in place of coll , and information already known about their containments will
be used.

See also IsCongruencePoset (17.4.4) and PosetOfCongruences (17.4.9).
Example

gap> S := SymmetricInverseMonoid(2);;
gap> pair1 := [PartialPerm([1], [1]), PartialPerm([2], [1])];;
gap> pair2 := [PartialPerm([1], [1]), PartialPerm([1, 2], [1, 2])];;
gap> pair3 := [PartialPerm([1, 2], [1, 2]),
> PartialPerm([1, 2], [2, 1])];;
gap> coll := [RightSemigroupCongruence(S, pair1),
> RightSemigroupCongruence(S, pair2),
> RightSemigroupCongruence(S, pair3)];;
gap> JoinSemilatticeOfCongruences(coll, JoinRightSemigroupCongruences);
<poset of 4 congruences over <symmetric inverse monoid of degree 2>>

17.4.11 MinimalCongruences (for a list or collection)

. MinimalCongruences(coll) (attribute)

. MinimalCongruences(poset) (attribute)

Returns: A list.
If coll is a list or collection of semigroup congruences (which may be left, right, or two-sided)

then this attribute returns a list of all the congruences from coll which do not contain any of the
others as subrelations.

Alternatively, a congruence poset poset can be specified; in this case, the congruences contained
in poset will be used in place of coll , and information already known about their containments will
be used.

This function should not be confused with MinimalCongruencesOfSemigroup (17.4.2). See
also IsCongruencePoset (17.4.4) and PosetOfCongruences (17.4.9).

Example
gap> S := SymmetricInverseMonoid(2);;
gap> pair1 := [PartialPerm([1], [1]), PartialPerm([2], [1])];;
gap> pair2 := [PartialPerm([1], [1]), PartialPerm([1, 2], [1, 2])];;
gap> pair3 := [PartialPerm([1, 2], [1, 2]),
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> PartialPerm([1, 2], [2, 1])];;
gap> coll := [RightSemigroupCongruence(S, pair1),
> RightSemigroupCongruence(S, pair2),
> RightSemigroupCongruence(S, pair3)];;
gap> MinimalCongruences(coll);
[ <right semigroup congruence over <symmetric inverse monoid of degree\
2> with 1 generating pairs>,
<right semigroup congruence over <symmetric inverse monoid of degree\

2> with 1 generating pairs> ]
gap> poset := LatticeOfCongruences(S);
<poset of 4 congruences over <symmetric inverse monoid of degree 2>>
gap> MinimalCongruences(poset);
[ <semigroup congruence over <symmetric inverse monoid of degree 2> wi\
th 0 generating pairs> ]

17.5 Comparing congruences

17.5.1 IsSubrelation

. IsSubrelation(cong1, cong2) (operation)

Returns: True or false.
If cong1 and cong2 are congruences over the same semigroup, then this operation returns whether

cong2 is a refinement of cong1 , i.e. whether every pair in cong2 is contained in cong1 .
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong1 := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
> RMSElement(S, 1, (), 1)]);;
gap> cong2 := SemigroupCongruence(S, []);;
gap> IsSubrelation(cong1, cong2);
true
gap> IsSubrelation(cong2, cong1);
false

17.5.2 IsSuperrelation

. IsSuperrelation(cong1, cong2) (operation)

Returns: True or false.
If cong1 and cong2 are congruences over the same semigroup, then this operation returns whether

cong1 is a refinement of cong2 , i.e. whether every pair in cong1 is contained in cong2 .
See IsSubrelation (17.5.1).

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong1 := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
> RMSElement(S, 1, (), 1)]);;
gap> cong2 := SemigroupCongruence(S, []);;
gap> IsSuperrelation(cong1, cong2);
false
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gap> IsSuperrelation(cong2, cong1);
true

17.5.3 MeetSemigroupCongruences

. MeetSemigroupCongruences(c1, c2) (operation)

Returns: A semigroup congruence.
This operation returns the meet of the two semigroup congruences c1 and c2 – that is, the largest

semigroup congruence contained in both c1 and c2 .
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong1 := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
> RMSElement(S, 1, (), 1)]);;
gap> cong2 := SemigroupCongruence(S, []);;
gap> MeetSemigroupCongruences(cong1, cong2);
<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym( [ 1 .. 3 ] )> with linked triple (1,2,2)>

17.5.4 JoinSemigroupCongruences

. JoinSemigroupCongruences(c1, c2) (operation)

. JoinLeftSemigroupCongruences(c1, c2) (operation)

. JoinRightSemigroupCongruences(c1, c2) (operation)

Returns: A semigroup congruence.
This operation returns the join of the two semigroup congruences c1 and c2 – that is, the smallest

semigroup congruence containing all the relations in both c1 and c2 .
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong1 := SemigroupCongruence(S, [RMSElement(S, 1, (1, 2, 3), 1),
> RMSElement(S, 1, (), 1)]);;
gap> cong2 := SemigroupCongruence(S, []);;
gap> JoinSemigroupCongruences(cong1, cong2);
<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym( [ 1 .. 3 ] )> with linked triple (3,2,2)>

17.6 Congruences on Rees matrix semigroups

This section describes the implementation of congruences of simple and 0-simple semigroups in the
Semigroups package, and the functions associated with them. This code and this part of the manual
were written by Michael Torpey. Most of the theorems used in this chapter are from Section 3.5 of
[How95].

By the Rees Theorem, any 0-simple semigroup S is isomorphic to a Rees 0-matrix semigroup (see
(Reference: Rees Matrix Semigroups)) over a group, with a regular sandwich matrix. That is,

S∼= M 0[G; I,Λ;P],
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where G is a group, Λ and I are non-empty sets, and P is regular in the sense that it has no rows or
columns consisting solely of zeroes.

The congruences of a Rees 0-matrix semigroup are in 1-1 correspondence with the linked triple,
which is a triple of the form [N, S, T] where:

• N is a normal subgroup of the underlying group G,

• S is an equivalence relation on the columns of P,

• T is an equivalence relation on the rows of P,

satisfying the following conditions:

• a pair of S-related columns must contain zeroes in precisely the same rows,

• a pair of T-related rows must contain zeroes in precisely the same columns,

• if i and j are S-related, k and l are T-related and the matrix entries pk,i, pk, j, pl,i, pl, j 6= 0, then
qk,l,i, j ∈ N, where

qk,l,i, j = pk,i p−1
l,i pl, j p−1

k, j .

By Theorem 3.5.9 in [How95], for any finite 0-simple Rees 0-matrix semigroup, there is a bijection
between its non-universal congruences and its linked triples. In this way, we can internally represent
any congruence of such a semigroup by storing its associated linked triple instead of a set of generating
pairs, and thus perform many calculations on it more efficiently.

If a congruence is defined by a linked triple (N, S, T), then a single class of that congruence can
be defined by a triple (Nx, i / S, k / S), where Nx is a right coset of N, i / S is the equivalence
class of i in S, and k / S is the equivalence class of k in T. Thus we can internally represent any class
of such a congruence as a triple simply consisting of a right coset and two positive integers.

An analogous condition exists for finite simple Rees matrix semigroups without zero.

17.6.1 IsRMSCongruenceByLinkedTriple

. IsRMSCongruenceByLinkedTriple(obj) (category)

. IsRZMSCongruenceByLinkedTriple(obj) (category)

Returns: true or false.
These categories describe a type of semigroup congruence over a Rees matrix or 0-matrix semi-

group. Externally, an object of this type may be used in the same way as any other object in the
category IsSemigroupCongruence (Reference: IsSemigroupCongruence) but it is represented in-
ternally by its linked triple, and certain functions may take advantage of this information to reduce
computation times.

An object of this type may be constructed with RMSCongruenceByLinkedTriple or
RZMSCongruenceByLinkedTriple, or this representation may be selected automatically by
SemigroupCongruence (17.2.1).

Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
> [0, (), 0, 0, (3, 5), 0],
> [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
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gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;
gap> IsRZMSCongruenceByLinkedTriple(cong);
true

17.6.2 RMSCongruenceByLinkedTriple

. RMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)

. RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks) (function)

Returns: A Rees matrix or 0-matrix semigroup congruence by linked triple.
This function returns a semigroup congruence over the Rees matrix or 0-matrix semigroup S

corresponding to the linked triple (N , colBlocks , rowBlocks ). The argument N should be a normal
subgroup of the underlying semigroup of S ; colBlocks should be a partition of the columns of the
matrix of S ; and rowBlocks should be a partition of the rows of the matrix of S . For example, if the
matrix has 5 rows, then a possibility for rowBlocks might be [[1, 3], [2, 5], [4]].

If the arguments describe a valid linked triple on S , then an object in the category
IsRZMSCongruenceByLinkedTriple is returned. This object can be used like any other semigroup
congruence in GAP.

If the arguments describe a triple which is not linked in the sense described above, then this
function returns an error.

Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
> [0, (), 0, 0, (3, 5), 0],
> [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);
<semigroup congruence over <Rees 0-matrix semigroup 6x3 over

Group([ (1,4,5), (1,5,3,4) ])> with linked triple (2^2,4,3)>

17.6.3 IsRMSCongruenceClassByLinkedTriple

. IsRMSCongruenceClassByLinkedTriple(obj) (category)

. IsRZMSCongruenceClassByLinkedTriple(obj) (category)

Returns: true or false.
These categories contain the congruence classes of a semigroup congruence of the categories

IsRMSCongruenceByLinkedTriple (17.6.1) and IsRZMSCongruenceByLinkedTriple (17.6.1) re-
spectively.

An object of one of these types may be used in the same way as any other object in the category
IsCongruenceClass (17.3.1), but the class is represented internally by information related to the
congruence’s linked triple, and certain functions may take advantage of this information to reduce
computation times.

Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
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> [0, (), 0, 0, (3, 5), 0],
> [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;
gap> classes := CongruenceClasses(cong);;
gap> IsRZMSCongruenceClassByLinkedTriple(classes[1]);
true

17.6.4 RMSCongruenceClassByLinkedTriple

. RMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation)

. RZMSCongruenceClassByLinkedTriple(cong, nCoset, colClass, rowClass) (operation)

Returns: A Rees matrix or 0-matrix semigroup congruence class by linked triple.
This operation returns one congruence class of the congruence cong , as defined by the other three

parameters.
The argument cong must be a Rees matrix or 0-matrix semigroup congruence by linked triple.

If the linked triple consists of the three parameters N, colBlocks and rowBlocks, then nCoset
must be a right coset of N, colClass must be a positive integer corresponding to a position in the
list colBlocks, and rowClass must be a positive integer corresponding to a position in the list
rowBlocks.

If the arguments are valid, an IsRMSCongruenceClassByLinkedTriple or
IsRZMSCongruenceClassByLinkedTriple object is returned, which can be used like any
other equivalence class in GAP. Otherwise, an error is returned.

Example
gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
> [0, (), 0, 0, (3, 5), 0],
> [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> cong := RZMSCongruenceByLinkedTriple(S, N, colBlocks, rowBlocks);;
gap> class := RZMSCongruenceClassByLinkedTriple(cong,
> RightCoset(N, (1, 5)), 2, 3);
<congruence class of (2,(3,4),3)>

17.6.5 IsLinkedTriple

. IsLinkedTriple(S, N, colBlocks, rowBlocks) (operation)

Returns: true or false.
This operation returns true if and only if the arguments (N , colBlocks , rowBlocks ) describe a

linked triple of the Rees matrix or 0-matrix semigroup S , as described above.
Example

gap> G := Group([(1, 4, 5), (1, 5, 3, 4)]);;
gap> mat := [[0, 0, (1, 4, 5), 0, 0, (1, 4, 3, 5)],
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> [0, (), 0, 0, (3, 5), 0],
> [(), 0, 0, (3, 5), 0, 0]];;
gap> S := ReesZeroMatrixSemigroup(G, mat);;
gap> N := Group([(1, 4)(3, 5), (1, 5)(3, 4)]);;
gap> colBlocks := [[1], [2, 5], [3, 6], [4]];;
gap> rowBlocks := [[1], [2], [3]];;
gap> IsLinkedTriple(S, N, colBlocks, rowBlocks);
true

17.6.6 CanonicalRepresentative

. CanonicalRepresentative(class) (attribute)

Returns: A congruence class.
This attribute gives a canonical representative for the semigroup congruence class class . This

representative can be used to identify a class uniquely.
At present this only works for simple and 0-simple semigroups.

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong := CongruencesOfSemigroup(S)[3];;
gap> class := CongruenceClasses(cong)[3];;
gap> CanonicalRepresentative(class);
(1,(1,2,3),2)

17.6.7 AsSemigroupCongruenceByGeneratingPairs

. AsSemigroupCongruenceByGeneratingPairs(cong) (operation)

Returns: A semigroup congruence.
This operation takes cong , a semigroup congruence, and returns the same congruence relation,

but described by GAP’s default method of defining semigroup congruences: a set of generating pairs
for the congruence.

Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> cong := CongruencesOfSemigroup(S)[3];;
gap> AsSemigroupCongruenceByGeneratingPairs(cong);
<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym( [ 1 .. 3 ] )> with 1 generating pairs>

17.6.8 AsRMSCongruenceByLinkedTriple

. AsRMSCongruenceByLinkedTriple(cong) (operation)

. AsRZMSCongruenceByLinkedTriple(cong) (operation)

Returns: A Rees matrix or 0-matrix semigroup congruence by linked triple.
This operation takes a semigroup congruence cong over a finite simple or 0-simple Rees 0-matrix

semigroup, and returns that congruence relation in a new form: as either a congruence by linked triple,
or a universal congruence.

If the congruence is not defined over an appropriate type of semigroup, then this function returns
an error.
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Example
gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> x := ReesZeroMatrixSemigroupElement(S, 1, (1, 3, 2), 1);;
gap> y := ReesZeroMatrixSemigroupElement(S, 1, (), 1);;
gap> cong := SemigroupCongruenceByGeneratingPairs(S, [[x, y]]);;
gap> AsRZMSCongruenceByLinkedTriple(cong);
<semigroup congruence over <Rees 0-matrix semigroup 2x2 over

Sym( [ 1 .. 3 ] )> with linked triple (3,2,2)>

17.7 Congruences on inverse semigroups

This section describes the implementation of congruences of inverse semigroups in the Semigroups
package, and the functions associated with them. This code and this part of the manual were written
by Michael Torpey. Most of the theorems used in this chapter are from Section 5.3 of [How95].

The congruences of an inverse semigroup are in 1-1 correspondence with its congruence pairs. A
congruence pair is a pair (N, t) such that:

• N is a normal subsemigroup of S – that is, a self-conjugate subsemigroup which contains all the
idempotents of S,

• t is a normal congruence on E, the subsemigroup of all idempotents in S – that is, a congruence
on E such that if (e, f ) is a pair in t, then the pair (a−1ea,a−1 f a) is also in t,

satisfying the following conditions:

• If ae ∈ N and (e,a−1a) ∈ t, then a ∈ N,

• If a ∈ N, then (aa−1,a−1a) ∈ t.

By Theorem 5.3.3 in [How95], for any inverse semigroup, there is a bijection between its congruences
and its congruence pairs. In this way, we can internally represent any congruence of such a semigroup
by storing its associated congruence pair instead of a set of generating pairs, and thus perform many
calculations on it more efficiently.

If we have a congruence C with congruence pair (N, t), it turns out that N is its kernel (that is,
the set of all elements congruent to an idempotent) and that t is its trace (that is, the restriction of C
to the idempotents). Hence, we refer to a congruence stored in this format as a "congruence by kernel
and trace".

See cong_by_ker_trace_threshold in Section 6.3 for details on when this method is used.

17.7.1 IsInverseSemigroupCongruenceByKernelTrace

. IsInverseSemigroupCongruenceByKernelTrace(cong) (Category)

Returns: true or false.
This category contains any inverse semigroup congruence cong which is represented internally

by its kernel and trace. The SemigroupCongruence (17.2.1) function may create an object of this
category if its first argument S is an inverse semigroup and has sufficiently large size. It can be treated
like any other semigroup congruence object.

See [How95] Section 5.3 for more details. See also
InverseSemigroupCongruenceByKernelTrace (17.7.2).
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Example
gap> S := InverseSemigroup([
> PartialPerm([4, 3, 1, 2]),
> PartialPerm([1, 4, 2, 0, 3])],
> rec(cong_by_ker_trace_threshold := 0));;
gap> cong := SemigroupCongruence(S, []);
<semigroup congruence over <inverse partial perm semigroup
of size 351, rank 5 with 2 generators> with congruence pair (24,24)>

gap> IsInverseSemigroupCongruenceByKernelTrace(cong);
true

17.7.2 InverseSemigroupCongruenceByKernelTrace

. InverseSemigroupCongruenceByKernelTrace(S, kernel, traceBlocks) (function)

Returns: An inverse semigroup congruence by kernel and trace.
If S is an inverse semigroup, kernel is a subsemigroup of S , traceBlocks is a list of lists

describing a congruence on the idempotents of S , and (kernel ,trace) describes a valid congruence
pair for S (see [How95] Section 5.3) then this function returns the semigroup congruence defined by
that congruence pair.

See also KernelOfSemigroupCongruence (17.7.4) and TraceOfSemigroupCongruence
(17.7.5).

Example
gap> S := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 3])]);;
gap> kernel := InverseSemigroup([
> PartialPerm([1, 0, 3]), PartialPerm([0, 2, 3]),
> PartialPerm([1, 2]), PartialPerm([3]),
> PartialPerm([2])]);;
gap> trace := [
> [PartialPerm([0, 2, 3])],
> [PartialPerm([1, 2])],
> [PartialPerm([1, 0, 3])],
> [PartialPerm([0, 0, 3]), PartialPerm([0, 2]),
> PartialPerm([1]), PartialPerm([], [])]];;
gap> cong := InverseSemigroupCongruenceByKernelTrace(S, kernel, trace);
<semigroup congruence over <inverse partial perm semigroup of rank 3
with 2 generators> with congruence pair (13,4)>

17.7.3 AsInverseSemigroupCongruenceByKernelTrace

. AsInverseSemigroupCongruenceByKernelTrace(cong) (attribute)

Returns: An inverse semigroup congruence by kernel and trace.
If cong is a semigroup congruence over an inverse semigroup, then this attribute returns an object

which describes the same congruence, but with an internal representation defined by that congruence’s
kernel and trace.

See [How95] section 5.3 for more details.
Example

gap> I := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 3])]);;
gap> cong := SemigroupCongruenceByGeneratingPairs(I,
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> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],
> [PartialPerm([]), PartialPerm([1, 2])]]);
<semigroup congruence over <inverse partial perm semigroup of rank 3
with 2 generators> with 2 generating pairs>

gap> cong2 := AsInverseSemigroupCongruenceByKernelTrace(cong);
<semigroup congruence over <inverse partial perm semigroup of rank 3
with 2 generators> with congruence pair (19,1)>

17.7.4 KernelOfSemigroupCongruence

. KernelOfSemigroupCongruence(cong) (attribute)

Returns: An inverse semigroup.
If cong is a congruence over a semigroup with inverse op, then this attribute returns the kernel of

that congruence; that is, the inverse subsemigroup consisting of all elements which are related to an
idempotent by cong .

Example
gap> I := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 3])]);;
gap> cong := SemigroupCongruence(I,
> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],
> [PartialPerm([]), PartialPerm([1, 2])]]);
<semigroup congruence over <inverse partial perm semigroup
of size 19, rank 3 with 2 generators> with 2 generating pairs>

gap> KernelOfSemigroupCongruence(cong);
<inverse partial perm semigroup of rank 3 with 5 generators>

17.7.5 TraceOfSemigroupCongruence

. TraceOfSemigroupCongruence(cong) (attribute)

Returns: A list of lists.
If cong is an inverse semigroup congruence by kernel and trace, then this attribute returns the

restriction of cong to the idempotents of the semigroup. This is in block form: each idempotent will
appear in precisely one list, and two idempotents will be in the same list if and only if they are related
by cong .

Example
gap> I := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 3])]);;
gap> cong := SemigroupCongruence(I,
> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],
> [PartialPerm([]), PartialPerm([1, 2])]]);
<semigroup congruence over <inverse partial perm semigroup
of size 19, rank 3 with 2 generators> with 2 generating pairs>

gap> TraceOfSemigroupCongruence(cong);
[ [ <empty partial perm>, <identity partial perm on [ 1 ]>,

<identity partial perm on [ 2 ]>,
<identity partial perm on [ 1, 2 ]>,
<identity partial perm on [ 3 ]>,
<identity partial perm on [ 2, 3 ]>,
<identity partial perm on [ 1, 3 ]> ] ]
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17.7.6 IsInverseSemigroupCongruenceClassByKernelTrace

. IsInverseSemigroupCongruenceClassByKernelTrace(obj) (Category)

Returns: true or false.
This category contains any congruence class which belongs to a congruence which is represented

internally by its kernel and trace. See InverseSemigroupCongruenceByKernelTrace (17.7.2).
See [How95] Section 5.3 for more details.

Example
gap> I := InverseSemigroup([
> PartialPerm([2, 3]), PartialPerm([2, 0, 3])],
> rec(cong_by_ker_trace_threshold := 0));;
gap> cong := SemigroupCongruence(I,
> [[PartialPerm([0, 1, 3]), PartialPerm([0, 1])],
> [PartialPerm([]), PartialPerm([1, 2])]]);;
gap> class := CongruenceClassOfElement(cong,
> PartialPerm([1, 2], [2, 3]));;
gap> IsInverseSemigroupCongruenceClassByKernelTrace(class);
true

17.7.7 MinimumGroupCongruence

. MinimumGroupCongruence(S) (attribute)

Returns: An inverse semigroup congruence by kernel and trace.
If S is an inverse semigroup, then this function returns the least congruence on S whose quotient

is a group.
Example

gap> S := InverseSemigroup([
> PartialPerm([5, 2, 0, 0, 1, 4]),
> PartialPerm([1, 4, 6, 3, 5, 0, 2])]);;
gap> cong := MinimumGroupCongruence(S);
<semigroup congruence over <inverse partial perm semigroup of rank 7
with 2 generators> with congruence pair (59,1)>

gap> IsGroupAsSemigroup(S / cong);
true

17.8 Rees congruences

A Rees congruence is defined by a semigroup ideal. It is a congruence on a semigroup S which has
one congruence class equal to a semigroup ideal I of S, and every other congruence class being a
singleton.

17.8.1 SemigroupIdealOfReesCongruence

. SemigroupIdealOfReesCongruence(cong) (attribute)

Returns: A semigroup ideal.
If cong is a rees congruence (see IsReesCongruence (Reference: IsReesCongruence)) then

this attribute returns the two-sided ideal that was used to define it, i.e.~the ideal of elements in the
only non-trivial congruence class of cong .
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Example
gap> S := Semigroup([
> Transformation([2, 3, 4, 3, 1, 1]),
> Transformation([6, 4, 4, 4, 6, 1])]);;
gap> I := SemigroupIdeal(S,
> Transformation([4, 4, 4, 4, 4, 2]),
> Transformation([3, 3, 3, 3, 3, 2]));;
gap> cong := ReesCongruenceOfSemigroupIdeal(I);;
gap> SemigroupIdealOfReesCongruence(cong);
<non-regular transformation semigroup ideal of degree 6 with

2 generators>

17.8.2 IsReesCongruenceClass

. IsReesCongruenceClass(obj) (category)

Returns: true or false.
This category describes a congruence class of a Rees congruence. A congruence class of a Rees

congruence either contains all the elements of an ideal, or is a singleton (see IsReesCongruence
(Reference: IsReesCongruence)).

An object of this type may be used in the same way as any other congruence class object.
Example

gap> S := Semigroup(
> Transformation([2, 3, 4, 3, 1, 1]),
> Transformation([6, 4, 4, 4, 6, 1]));;
gap> I := SemigroupIdeal(S,
> Transformation([4, 4, 4, 4, 4, 2]),
> Transformation([3, 3, 3, 3, 3, 2]));;
gap> cong := ReesCongruenceOfSemigroupIdeal(I);;
gap> classes := CongruenceClasses(cong);;
gap> IsReesCongruenceClass(classes[1]);
true

17.9 Universal congruences

The linked triples of a completely 0-simple Rees 0-matrix semigroup describe only its non-universal
congruences. In any one of these, the zero element of the semigroup is related only to itself. However,
for any semigroup S the universal relation S×S is a congruence; called the universal congruence. The
universal congruence on a semigroup has its own unique representation.

Since many things we want to calculate about congruences are trivial in the case
of the universal congruence, this package contains a category specifically designed for it,
IsUniversalSemigroupCongruence. We also define IsUniversalSemigroupCongruenceClass,
which represents the single congruence class of the universal congruence.

17.9.1 IsUniversalSemigroupCongruence

. IsUniversalSemigroupCongruence(obj) (property)

Returns: true or false.



Semigroups 252

This property describes a type of semigroup congruence, which must refer to the universal semi-
group congruence S×S. Externally, an object of this type may be used in the same way as any other
object in the category IsSemigroupCongruence (Reference: IsSemigroupCongruence).

An object of this type may be constructed with UniversalSemigroupCongruence or this repre-
sentation may be selected automatically as an alternative to an IsRZMSCongruenceByLinkedTriple
object (since the universal congruence cannot be represented by a linked triple).

Example
gap> S := Semigroup([Transformation([3, 2, 3])]);;
gap> U := UniversalSemigroupCongruence(S);;
gap> IsUniversalSemigroupCongruence(U);
true

17.9.2 IsUniversalSemigroupCongruenceClass

. IsUniversalSemigroupCongruenceClass(obj) (category)

Returns: true or false.
This category describes a class of the universal semigroup congruence (see

IsUniversalSemigroupCongruence (17.9.1)). A universal semigroup congruence by defini-
tion has precisely one congruence class, which contains all of the elements of the semigroup in
question.

Example
gap> S := Semigroup([Transformation([3, 2, 3])]);;
gap> U := UniversalSemigroupCongruence(S);;
gap> classes := CongruenceClasses(U);;
gap> IsUniversalSemigroupCongruenceClass(classes[1]);
true

17.9.3 UniversalSemigroupCongruence

. UniversalSemigroupCongruence(S) (operation)

Returns: A universal semigroup congruence.
This operation returns the universal semigroup congruence for the semigroup S . It can be used in

the same way as any other semigroup congruence object.
Example

gap> S := ReesZeroMatrixSemigroup(SymmetricGroup(3),
> [[(), (1, 3, 2)], [(1, 2), 0]]);;
gap> UniversalSemigroupCongruence(S);
<universal semigroup congruence over
<Rees 0-matrix semigroup 2x2 over Sym( [ 1 .. 3 ] )>>



Chapter 18

Semigroup homomorphisms

In this chapter we describe the various ways to define a homomorphism from a semigroup to another
semigroup.

18.1 Isomorphisms of arbitrary semigroups

18.1.1 IsIsomorphicSemigroup

. IsIsomorphicSemigroup(S, T) (operation)

Returns: true or false.
If S and T are semigroups, then this operation attempts to determine whether S and T

are isomorphic semigroups by using the operation IsomorphismSemigroups (18.1.3). If
IsomorphismSemigroups(S, T) returns an isomorphism, then IsIsomorphicSemigroup(S,
T) returns true, while if IsomorphismSemigroups(S, T) returns fail, then
IsIsomorphicSemigroup(S, T) returns false. Note that in some cases, at present, there is
no method for determining whether S is isomorphic to T , even if it is obvious to the user whether or
not S and T are isomorphic. There are plans to improve this in the future.

If the size of S and T is rather small — with approximately 50 or fewer elements — then it is possi-
ble to calculate whether S and T are isomorphic by using SmallestMultiplicationTable (18.1.2),
but this is not currently done by IsIsomorphicSemigroup. In particular, S and T are isomorphic if
and only if SmallestMultiplicationTable(S) = SmallestMultiplicationTable(T).

Example
gap> S := Semigroup(PartialPerm([1, 2, 4], [1, 3, 5]),
> PartialPerm([1, 3, 5], [1, 2, 4]));;
gap> T := AsSemigroup(IsTransformationSemigroup, S);;
gap> IsIsomorphicSemigroup(S, T);
true
gap> IsIsomorphicSemigroup(FullTransformationMonoid(4),
> PartitionMonoid(4));
false

18.1.2 SmallestMultiplicationTable

. SmallestMultiplicationTable(S) (attribute)

Returns: The lex-least multiplication table of a semigroup.

253
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This function returns the lex-least multiplication table of a semigroup isomorphic to the semigroup
S . SmallestMultiplicationTable is an isomorphism invariant of semigroups, and so it can, for
example, be used to check if two semigroups are isomorphic.

Due to the high complexity of computing the smallest multiplication table of a semigroup, this
function only performs well for semigroups with at most approximately 50 elements.

SmallestMultiplicationTable is based on the function IdSmallSemigroup (Smallsemi:
IdSmallSemigroup) by Andreas Distler.

Example
gap> S := Semigroup(
> Bipartition([[1, 2, 3, -1, -3], [-2]]),
> Bipartition([[1, 2, 3, -1], [-2], [-3]]),
> Bipartition([[1, 2, 3], [-1], [-2, -3]]),
> Bipartition([[1, 2, -1], [3, -2], [-3]]));;
gap> Size(S);
8
gap> SmallestMultiplicationTable(S);
[ [ 1, 1, 3, 4, 5, 6, 7, 8 ], [ 1, 1, 3, 4, 5, 6, 7, 8 ],

[ 1, 1, 3, 4, 5, 6, 7, 8 ], [ 1, 3, 3, 4, 5, 6, 7, 8 ],
[ 5, 5, 6, 7, 5, 6, 7, 8 ], [ 5, 5, 6, 7, 5, 6, 7, 8 ],
[ 5, 6, 6, 7, 5, 6, 7, 8 ], [ 5, 6, 6, 7, 5, 6, 7, 8 ] ]

18.1.3 IsomorphismSemigroups

. IsomorphismSemigroups(S, T) (operation)

Returns: An isomorphism, or fail.
This operation attempts to find an isomorphism from the semigroup S to the semigroup T . If it

finds one, then it is returned, and if not, then fail is returned.
For many types of semigroup, IsomorphismSemigroups is not able to determine whether or

not S and T are isomorphic, and so this operation may result in an "Error, no method found".
IsomorphismSemigroups may be able deduce that S and T are not isomorphic by finding that some
of their semigroup-theoretic properties differ; however it is harder to construct an isomorphism for
semigroups that are isomorphic.

At present, IsomorphismSemigroups is only able to return an isomorphism when S and T
are finite simple, 0-simple, or monogenic semigroups, or when S = T . See IsSimpleSemigroup
(15.1.22), IsZeroSimpleSemigroup (15.1.28), and IsMonogenicSemigroup (15.1.11) for more in-
formation about these types of semigroups.

Example
gap> S := RectangularBand(IsTransformationSemigroup, 4, 5);
<regular transformation semigroup of size 20, degree 9 with 5
generators>

gap> T := RectangularBand(IsBipartitionSemigroup, 4, 5);
<regular bipartition semigroup of size 20, degree 3 with 5 generators>
gap> IsomorphismSemigroups(S, T) <> fail;
true
gap> D := DClass(FullTransformationMonoid(5),
> Transformation([1, 2, 3, 4, 1]));;
gap> S := PrincipalFactor(D);;
gap> StructureDescription(UnderlyingSemigroup(S));
"S4"
gap> S;
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<Rees 0-matrix semigroup 10x5 over S4>
gap> D := DClass(PartitionMonoid(5),
> Bipartition([[1], [2, -2], [3, -3], [4, -4], [5, -5], [-1]]));;
gap> T := PrincipalFactor(D);;
gap> StructureDescription(UnderlyingSemigroup(T));
"S4"
gap> T;
<Rees 0-matrix semigroup 15x15 over S4>
gap> IsomorphismSemigroups(S, T);
fail
gap> I := SemigroupIdeal(FullTransformationMonoid(5),
> Transformation([1, 1, 2, 3, 4]));;
gap> T := PrincipalFactor(DClass(I, I.1));;
gap> StructureDescription(UnderlyingSemigroup(T));
"S4"
gap> T;
<Rees 0-matrix semigroup 10x5 over S4>
gap> IsomorphismSemigroups(S, T) <> fail;
true

18.2 Isomorphisms of Rees (0-)matrix semigroups

An isomorphism between two regular finite Rees (0-)matrix semigroups whose underlying semigroups
are groups can be described by a triple defined in terms of the matrices and underlying groups of the
semigroups. For a full description of the theory involved, see Section 3.4 of [How95].

An isomorphism described in this way can be constructed using RMSIsoByTriple (18.2.2)
or RZMSIsoByTriple (18.2.2), and will satisfy the filter IsRMSIsoByTriple (18.2.1) or
IsRZMSIsoByTriple (18.2.1).

18.2.1 IsRMSIsoByTriple

. IsRMSIsoByTriple (Category)

. IsRZMSIsoByTriple (Category)

The isomorphisms between finite Rees matrix or 0-matrix semigroups S and T over groups G and
H, respectively, specified by a triple consisting of:

1. an isomorphism of the underlying graph of S to the underlying graph of of T

2. an isomorphism from G to H

3. a function from Rows(S) union Columns(S) to H

belong to the categories IsRMSIsoByTriple and IsRZMSIsoByTriple. Basic operators for
such isomorphism are given in 18.2.6, and basic operations are: Range (Reference: range),
Source (Reference: Source), ELM_LIST (18.2.3), CompositionMapping (Reference: Composi-
tionMapping), ImagesElm (18.2.5), ImagesRepresentative (18.2.5), InverseGeneralMapping
(Reference: InverseGeneralMapping), PreImagesRepresentative (Reference: PreImagesRep-
resentative), IsOne (Reference: IsOne).
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18.2.2 RMSIsoByTriple

. RMSIsoByTriple(R1, R2, triple) (operation)

. RZMSIsoByTriple(R1, R2, triple) (operation)

Returns: An isomorphism.
If R1 and R2 are isomorphic regular Rees 0-matrix semigroups whose underlying semigroups

are groups then RZMSIsoByTriple returns the isomorphism between R1 and R2 defined by triple ,
which should be a list consisting of the following:

• triple[1] should be a permutation describing an isomorphism from the graph of R1 to
the graph of R2 , i.e. it should satisfy OnDigraphs(RZMSDigraph(R1), triple[1]) =
RZMSDigraph(R2).

• triple[2] should be an isomorphism from the underlying group of R1 to the underlying group
of R2 (see UnderlyingSemigroup (Reference: UnderlyingSemigroup for a rees 0-matrix
semigroup)).

• triple[3] should be a list of elements from the underlying group of R2 . If the Matrix
(Reference: Matrix) of R1 has m columns and n rows, then the list should have length m+n,
where the first m entries should correspond to the columns of R1 ’s matrix, and the last n entries
should correspond to the rows. These column and row entries should correspond to the ui and
vλ elements in Theorem 3.4.1 of [How95].

If triple describes a valid isomorphism from R1 to R2 then this will return an object in the category
IsRZMSIsoByTriple (18.2.1); otherwise an error will be returned.

If R1 and R2 are instead Rees matrix semigroups (without zero) then RMSIsoByTriple should be
used instead. This operation is used in the same way, but it should be noted that since an RMS’s graph
is a complete bipartite graph, triple[1] can be any permutation on [1 .. m + n], so long as no
point in [1 .. m] is mapped to a point in [m + 1 .. m + n].

Example
gap> g := SymmetricGroup(3);;
gap> mat := [[0, 0, (1, 3)], [(1, 2, 3), (), (2, 3)], [0, 0, ()]];;
gap> R := ReesZeroMatrixSemigroup(g, mat);;
gap> id := IdentityMapping(g);;
gap> g_elms_list := [(), (), (), (), (), ()];;
gap> RZMSIsoByTriple(R, R, [(), id, g_elms_list]);
((), IdentityMapping( SymmetricGroup( [ 1 .. 3 ] ) ),
[ (), (), (), (), (), () ])

18.2.3 ELM_LIST (for IsRMSIsoByTriple)

. ELM_LIST(map, pos) (operation)

Returns: A component of an isomorphism of Rees (0-)matrix semigroups by triple.
ELM_LIST(map, i) returns the ith component of the Rees (0-)matrix semigroup isomorphism

by triple map when i = 1, 2, 3.
The components of an isomorphism of Rees (0-)matrix semigroups by triple are:

1. An isomorphism of the underlying graphs of the source and range of map , respectively.

2. An isomorphism of the underlying groups of the source and range of map , respectively.
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3. An function from the union of the rows and columns of the source of map to the underlying
group of the range of map .

18.2.4 CompositionMapping2 (for IsRMSIsoByTriple)

. CompositionMapping2(map1, map2) (operation)

. CompositionMapping2(map1, map2) (operation)

Returns: A Rees (0-)matrix semigroup by triple.
If map1 and map2 are isomorphisms of Rees matrix or 0-matrix semigroups specified by triples

and the range of map2 is contained in the source of map1 , then CompositionMapping2(map1,
map2) returns the isomorphism from Source(map2) to Range(map1) specified by the triple with
components:

1. map1[1] * map2[1]

2. map1[2] * map2[2]

3. the componentwise product of map1[1] * map2[3] and map1[3] * map2[2].
Example

gap> R := ReesZeroMatrixSemigroup(Group([(1, 2, 3, 4)]),
> [[(1, 3)(2, 4), (1, 4, 3, 2), (), (1, 2, 3, 4), (1, 3)(2, 4), 0],
> [(1, 4, 3, 2), 0, (), (1, 4, 3, 2), (1, 2, 3, 4), (1, 2, 3, 4)],
> [(), (), (1, 4, 3, 2), (1, 2, 3, 4), 0, (1, 2, 3, 4)],
> [(1, 2, 3, 4), (1, 4, 3, 2), (1, 2, 3, 4), 0, (), (1, 2, 3, 4)],
> [(1, 3)(2, 4), (1, 2, 3, 4), 0, (), (1, 4, 3, 2), (1, 2, 3, 4)],
> [0, (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), ()]]);
<Rees 0-matrix semigroup 6x6 over Group([ (1,2,3,4) ])>
gap> G := AutomorphismGroup(R);
<automorphism group of <Rees 0-matrix semigroup 6x6 over Group([ (1,2,
3,4) ])> with 4 generators>
gap> G.2;
((), IdentityMapping( Group( [ (1,2,3,4) ] ) ),
[ (), (), (), (), (), (), (), (), (), (), (), () ])
gap> G.3;
(( 2, 4, 6, 3)( 7,11, 8,10), GroupHomomorphismByImages( Group(
[ (1,2,3,4) ] ), Group( [ (1,2,3,4) ] ), [ (1,2,3,4) ],
[ (1,2,3,4) ] ), [ (), (1,4,3,2), (1,4,3,2), (), (1,4,3,2),

(1,3)(2,4), (), (1,3)(2,4), (), (1,2,3,4), (1,2,3,4), (1,4,3,2) ])
gap> CompositionMapping2(G.2, G.3);
(( 2, 4, 6, 3)( 7,11, 8,10), GroupHomomorphismByImages( Group(
[ (1,2,3,4) ] ), Group( [ (1,2,3,4) ] ), [ (1,2,3,4) ],
[ (1,2,3,4) ] ), [ (), (1,4,3,2), (1,4,3,2), (), (1,4,3,2),

(1,3)(2,4), (), (1,3)(2,4), (), (1,2,3,4), (1,2,3,4), (1,4,3,2) ])

18.2.5 ImagesElm (for IsRMSIsoByTriple)

. ImagesElm(map, pt) (operation)

. ImagesRepresentative(map, pt) (operation)

Returns: An element of a Rees (0-)matrix semigroup or a list containing such an element.
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If map is an isomorphism of Rees matrix or 0-matrix semigroups specified by a triple and pt is an
element of the source of map , then ImagesRepresentative(map, pt) = pt ^ map returns the
image of pt under map .

The image of pt under map of Range(map) is the element with components:

1. pt[1] ^ map[1]

2. (pt[1] ^ map[3]) * (pt[2] ^ map[2]) * (pt[3] ^ map[3]) ^ -1

3. pt[3] ^ map[1].

ImagesElm(map, pt) simply returns [ImagesRepresentative(map, pt)].
Example

gap> R := ReesZeroMatrixSemigroup(Group([(2, 8), (2, 8, 6)]),
> [[0, (2, 8), 0, 0, 0, (2, 8, 6)],
> [(), 0, (2, 8, 6), (2, 6), (2, 6, 8), 0],
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0],
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0],
> [0, (2, 8, 6), 0, 0, 0, (2, 8)],
> [(2, 8, 6), 0, (2, 6, 8), (2, 8), (), 0]]);
<Rees 0-matrix semigroup 6x6 over Group([ (2,8), (2,8,6) ])>
gap> map := RZMSIsoByTriple(R, R,
> [(), IdentityMapping(Group([(2, 8), (2, 8, 6)])),
> [(), (2, 6, 8), (), (), (), (2, 8, 6),
> (2, 8, 6), (), (), (), (2, 6, 8), ()]]);;
gap> ImagesElm(map, RMSElement(R, 1, (2, 8), 2));
[ (1,(2,8),2) ]

18.2.6 Operators for isomorphisms of Rees (0-)matrix semigroup by triples

map[i]
map[i] returns the i th component of the Rees (0-)matrix semigroup isomorphism by triple
map when i = 1, 2, 3; see ELM_LIST (18.2.3).

map1 * map2
returns the composition of map2 and map1 ; see CompositionMapping2 (18.2.4).

map1 < map2
returns true if map1 is lexicographically less than map2 .

map1 = map2
returns true if the Rees (0-)matrix semigroup isomorphisms by triple map1 and map2 have
equal source and range, and are equal as functions, and false otherwise.

It is possible for map1 and map2 to be equal but to have distinct components.

pt ^ map
returns the image of the element pt of the source of map under the isomorphism map ; see
ImagesElm (18.2.5).
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Visualising semigroups and elements

There are two operations TikzString (19.3.1) and DotString (19.1.1) in Semigroups for creating
LATEX and dot (also known as GraphViz) format pictures of the Green’s class structure of a semi-
group and for visualising certain types of elements of a semigroup. There is also a function Splash
(Digraphs: Splash) for automatically processing the output of TikzString (19.3.1) and DotString
(19.1.1) and opening the resulting pdf file.

19.1 dot pictures

In this section, we describe the operations in Semigroups for creating pictures in dot format.
The operations described in this section return strings, which can be written to a file using the

function FileString (GAPDoc: FileString) or viewed using Splash (Digraphs: Splash).

19.1.1 DotString

. DotString(S[, options]) (operation)

Returns: A string.
If the argument S is a semigroup, and the optional second argument options is a record, then this

operation produces a graphical representation of the partial order of the D-classes of the semigroup
S together with the eggbox diagram of each D-class. The output is in dot format (also known as
GraphViz) format. For details about this file format, and information about how to display or edit this
format see http://www.graphviz.org.

The string returned by DotString can be written to a file using the command FileString
(GAPDoc: FileString).

The D-classes are shown as eggbox diagrams with L -classes as rows and R-classes as
columns; group H -classes are shaded gray and contain an asterisk. The L -classes and R-classes
within a D-class are arranged to correspond to the normalization of the principal factor given by
NormalizedPrincipalFactor (13.4.8). The D-classes are numbered according to their index in
GreensDClasses(S), so that an i appears next to the eggbox diagram of GreensDClasses(S)[i].
A line from one D-class to another indicates that the higher D-class is greater than the lower one in
the D-order on S .

If the optional second argument options is present, it can be used to specify some options for
output.
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number
if options.number is false, then the D-classes in the diagram are not numbered according
to their index in the list of D-classes of S . The default value for this option is true.

maximal
if options.maximal is true, then the structure description of the group H -classes is dis-
played; see StructureDescription (Reference: StructureDescription). Setting this at-
tribute to true can adversely affect the performance of DotString. The default value for
this option is false.

normal
if options.normal is false, then the L - and R-classes within each D-class arranged
to correspond to PrincipalFactor (13.4.8). If options.normal is true, they are in-
stead arranged to correspond to NormalizedPrincipalFactor (13.4.8). Setting this at-
tribute to false may improve the performance of DotString as it avoids the computation of
InjectionNormalizedPrincipalFactor (13.4.7). The default value for this option is true.

Example
gap> S := FullTransformationMonoid(3);
<full transformation monoid of degree 3>
gap> DotString(S);
"//dot\ndigraph DClasses {\nnode [shape=plaintext]\nedge [color=blac\
k,arrowhead=none]\n1 [shape=box style=invisible label=<\n<TABLE BORDE\
R=\"0\" CELLBORDER=\"1\" CELLPADDING=\"10\" CELLSPACING=\"0\" PORT=\"\
1\">\n<TR BORDER=\"0\"><TD COLSPAN=\"1\" BORDER = \"0\" > 1</TD></TR>\
<TR><TD BGCOLOR=\"gray\">*</TD></TR>\n</TABLE>>];\n2 [shape=box style\
=invisible label=<\n<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLPADDING=\
\"10\" CELLSPACING=\"0\" PORT=\"2\">\n<TR BORDER=\"0\"><TD COLSPAN=\"\
3\" BORDER = \"0\" > 2</TD></TR><TR><TD BGCOLOR=\"gray\">*</TD><TD BG\
COLOR=\"gray\">*</TD><TD BGCOLOR=\"white\"></TD></TR>\n<TR><TD BGCOLO\
R=\"gray\">*</TD><TD BGCOLOR=\"white\"></TD><TD BGCOLOR=\"gray\">*</T\
D></TR>\n<TR><TD BGCOLOR=\"white\"></TD><TD BGCOLOR=\"gray\">*</TD><T\
D BGCOLOR=\"gray\">*</TD></TR>\n</TABLE>>];\n3 [shape=box style=invis\
ible label=<\n<TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLPADDING=\"10\"\
CELLSPACING=\"0\" PORT=\"3\">\n<TR BORDER=\"0\"><TD COLSPAN=\"1\" BO\

RDER = \"0\" > 3</TD></TR><TR><TD BGCOLOR=\"gray\">*</TD></TR>\n<TR><\
TD BGCOLOR=\"gray\">*</TD></TR>\n<TR><TD BGCOLOR=\"gray\">*</TD></TR>\
\n</TABLE>>];\n1 -> 2\n2 -> 3\n }"
gap> FileString("t3.dot", DotString(S));
1040

19.1.2 DotString (for a Cayley digraph)

. DotString(digraph) (operation)

Returns: A string.
If digraph is a Digraph (Digraphs: Digraph) in the category IsCayleyDigraph (Digraphs:

IsCayleyDigraph), then DotString returns a graphical representation of digraph . The output is
in dot format (also known as GraphViz) format. For details about this file format, and information
about how to display or edit this format see http://www.graphviz.org.

The string returned by DotString can be written to a file using the command FileString
(GAPDoc: FileString).

http://www.graphviz.org
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See also DotLeftCayleyDigraph (19.1.4) and TikzLeftCayleyDigraph (19.3.2).

19.1.3 DotSemilatticeOfIdempotents

. DotSemilatticeOfIdempotents(S) (attribute)

Returns: A string.
This function produces a graphical representation of the semilattice of the idempotents of an in-

verse semigroup S where the elements of S have a unique semigroup inverse accessible via Inverse
(Reference: Inverse). The idempotents are grouped by the D-class they belong to.

The output is in dot format (also known as GraphViz) format. For details about this file format,
and information about how to display or edit this format see http://www.graphviz.org.

Example
gap> S := DualSymmetricInverseMonoid(4);
<inverse block bijection monoid of degree 4 with 3 generators>
gap> DotSemilatticeOfIdempotents(S);
"//dot\ngraph graphname {\n node [shape=point]\nranksep=2;\nsubgraph \
cluster_1{\n15 \n}\nsubgraph cluster_2{\n5 11 14 12 13 8 \n}\nsubgraph\
cluster_3{\n2 10 6 3 4 9 7 \n}\nsubgraph cluster_4{\n1 \n}\n2 -- 1\n3\
-- 1\n4 -- 1\n5 -- 2\n5 -- 3\n5 -- 4\n6 -- 1\n7 -- 1\n8 -- 2\n8 -- 6\

\n8 -- 7\n9 -- 1\n10 -- 1\n11 -- 2\n11 -- 9\n11 -- 10\n12 -- 3\n12 -- \
6\n12 -- 9\n13 -- 3\n13 -- 7\n13 -- 10\n14 -- 4\n14 -- 6\n14 -- 10\n15\
-- 5\n15 -- 8\n15 -- 11\n15 -- 12\n15 -- 13\n15 -- 14\n }"

19.1.4 DotLeftCayleyDigraph

. DotLeftCayleyDigraph(S) (operation)

. DotRightCayleyDigraph(S) (operation)

Returns: A string.
If S is a semigroup in the representation IsEnumerableSemigroupRep (6.1.4), then

DotLeftCayleyDigraph is simply short for DotString(LeftCayleyDigraph(S)).
DotRightCayleyDigraph can be used to produce a dot string for the right Cayley graph of S .
See DotString (19.1.1) for more details, and see also TikzLeftCayleyDigraph (19.3.2).

Example
gap> DotLeftCayleyDigraph(Semigroup(IdentityTransformation));
"//dot\ndigraph hgn{\nnode [shape=circle]\n1 [label=\"a\"]\n1 -> 1\n}\
\n"
gap> DotRightCayleyDigraph(Semigroup(IdentityTransformation));
"//dot\ndigraph hgn{\nnode [shape=circle]\n1 [label=\"a\"]\n1 -> 1\n}\
\n"

19.2 tex output

In this section, we describe the operations in Semigroups for creating LATEX representations of GAP
objects. For pictures of GAP objects please see Section 19.3.

http://www.graphviz.org
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19.2.1 TexString

. TexString(f[, n]) (operation)

Returns: A string.
This function produces a string containing LaTeX code for the transformation f . If the optional

paramater n is used, then this is taken to be the degree of the transformation f , if the parameter n
is not given, then DegreeOfTransformation (Reference: DegreeOfTransformation) is used by
default. If n is less than the degree of f , then an error is given.

Example
gap> TexString(Transformation([6, 2, 4, 3, 6, 4]));
"\\begin{pmatrix}\n 1 & 2 & 3 & 4 & 5 & 6 \\\\\n 6 & 2 & 4 & 3 & 6 &\
4\n\\end{pmatrix}"

gap> TexString(Transformation([1, 2, 1, 3]), 5);
"\\begin{pmatrix}\n 1 & 2 & 3 & 4 & 5 \\\\\n 1 & 2 & 1 & 3 & 5\n\\en\
d{pmatrix}"

19.3 tikz pictures

In this section, we describe the operations in Semigroups for creating pictures in tikz format.
The functions described in this section return a string, which can be written to a file using the

function FileString (GAPDoc: FileString) or viewed using Splash (Digraphs: Splash).

19.3.1 TikzString

. TikzString(obj[, options]) (operation)

Returns: A string.
This function produces a graphical representation of the object obj using the tikz package for

LATEX. More precisely, this operation outputs a string containing a minimal LATEX document which
can be compiled using LATEX to produce a picture of obj .

Currently the following types of objects are supported:

blocks
If obj is the left or right blocks of a bipartition, then TikzString returns a graphical represen-
tation of these blocks; see Section 3.6.

bipartitions
If obj is a bipartition, then TikzString returns a graphical representation of obj .

If the optional second argument options is a record with the component colors set to true,
then the blocks of f will be colored using the standard tikz colors. Due to the limited number
of colors available in tikz this option only works when the degree of obj is less than 20. See
Chapter 3 for more details about bipartitions.

pbrs If obj is a PBR (4.2.1), then TikzString returns a graphical representation obj ; see Chapter
4.

Cayley graphs
If obj is a Digraph (Digraphs: Digraph) in the category IsCayleyDigraph (Digraphs: Is-
CayleyDigraph), then TikzString returns a picture of obj . No attempt is made whatsoever to
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produce a sensible picture of the digraph obj , in fact, the vertices are all given the same coordi-
nates. Human intervention is required to produce a meaningful picture from the value returned
by this method. It is intended to make the task of drawing such a Cayley graph more straight-
forward by providing everything except the final layout of the graph. Please use DotString
(19.1.1) if you want an automatically laid out diagram of the digraph obj .

Example
gap> x := Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]);;
gap> TikzString(RightBlocks(x));
"%tikz\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{documen\
t}\n\\begin{tikzpicture}\n \\draw[ultra thick](5,2)circle(.115);\n \
\\draw(1.8,5) node [top] {{$1$}};\n \\fill(4,2)circle(.125);\n \\dr\
aw(1.8,4) node [top] {{$2$}};\n \\fill(3,2)circle(.125);\n \\draw(1\
.8,3) node [top] {{$3$}};\n \\draw[ultra thick](2,2)circle(.115);\n \
\\draw(1.8,2) node [top] {{$4$}};\n \\fill(1,2)circle(.125);\n \\d\

raw(1.8,1) node [top] {{$5$}};\n\n \\draw (5,2.125) .. controls (5,2\
.8) and (2,2.8) .. (2,2.125);\n \\draw (4,2.125) .. controls (4,2.6)\
and (3,2.6) .. (3,2.125);\n\\end{tikzpicture}\n\n\\end{document}"

gap> x := Bipartition([[1, 5], [2, 4, -3, -5], [3, -1, -2], [-4]]);;
gap> TikzString(x);
"%tikz\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{documen\
t}\n\\begin{tikzpicture}\n\n %block #1\n %vertices and labels\n \\\
fill(1,2)circle(.125);\n \\draw(0.95, 2.2) node [above] {{ $1$}};\n \
\\fill(5,2)circle(.125);\n \\draw(4.95, 2.2) node [above] {{ $5$}};\

\n\n %lines\n \\draw(1,1.875) .. controls (1,1.1) and (5,1.1) .. (5\
,1.875);\n\n %block #2\n %vertices and labels\n \\fill(2,2)circle(\
.125);\n \\draw(1.95, 2.2) node [above] {{ $2$}};\n \\fill(4,2)circ\
le(.125);\n \\draw(3.95, 2.2) node [above] {{ $4$}};\n \\fill(3,0)c\
ircle(.125);\n \\draw(3, -0.2) node [below] {{ $-3$}};\n \\fill(5,0\
)circle(.125);\n \\draw(5, -0.2) node [below] {{ $-5$}};\n\n %lines\
\n \\draw(2,1.875) .. controls (2,1.3) and (4,1.3) .. (4,1.875);\n \
\\draw(3,0.125) .. controls (3,0.7) and (5,0.7) .. (5,0.125);\n \\dr\
aw(2,2)--(3,0);\n\n %block #3\n %vertices and labels\n \\fill(3,2)\
circle(.125);\n \\draw(2.95, 2.2) node [above] {{ $3$}};\n \\fill(1\
,0)circle(.125);\n \\draw(1, -0.2) node [below] {{ $-1$}};\n \\fill\
(2,0)circle(.125);\n \\draw(2, -0.2) node [below] {{ $-2$}};\n\n %l\
ines\n \\draw(1,0.125) .. controls (1,0.6) and (2,0.6) .. (2,0.125);\
\n \\draw(3,2)--(2,0);\n\n %block #4\n %vertices and labels\n \\f\
ill(4,0)circle(.125);\n \\draw(4, -0.2) node [below] {{ $-4$}};\n\n \
%lines\n\\end{tikzpicture}\n\n\\end{document}"
gap> TikzString(UniversalPBR(2));
"%latex\n\\documentclass{minimal}\n\\usepackage{tikz}\n\\begin{docume\
nt}\n\\usetikzlibrary{arrows}\n\\usetikzlibrary{arrows.meta}\n\\newco\
mmand{\\arc}{\\draw[semithick, -{>[width = 1.5mm, length = 2.5mm]}]}\
\n\\begin{tikzpicture}[\n vertex/.style={circle, draw, fill=black, i\
nner sep =0.04cm},\n ghost/.style={circle, draw = none, inner sep = \
0.14cm},\n botloop/.style={min distance = 8mm, out = -70, in = -110}\
,\n toploop/.style={min distance = 8mm, out = 70, in = 110}]\n\n % \
vertices and labels\n \\foreach \\i in {1,...,2} {\n \\node [vert\
ex] at (\\i/1.5, 3) {};\n \\node [ghost] (\\i) at (\\i/1.5, 3) {};\
\n }\n\n \\foreach \\i in {1,...,2} {\n \\node [vertex] at (\\i/\
1.5, 0) {};\n \\node [ghost] (-\\i) at (\\i/1.5, 0) {};\n }\n\n \
% arcs from vertex 1\n \\arc (1) to (-2);\n \\arc (1) to (-1);\n \
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\\arc (1) edge [toploop] (1);\n \\arc (1) .. controls (1.06666666666\
66667, 2.125) and (0.93333333333333324, 2.125) .. (2);\n\n % arcs fr\
om vertex -1\n \\arc (-1) .. controls (1.0666666666666667, 0.875) an\
d (0.93333333333333324, 0.875) .. (-2);\n \\arc (-1) edge [botloop] \
(-1);\n \\arc (-1) to (1);\n \\arc (-1) to (2);\n\n % arcs from ve\
rtex 2\n \\arc (2) to (-2);\n \\arc (2) to (-1);\n \\arc (2) .. co\
ntrols (0.93333333333333324, 2.125) and (1.0666666666666667, 2.125) .\
. (1);\n \\arc (2) edge [toploop] (2);\n\n % arcs from vertex -2\n \
\\arc (-2) edge [botloop] (-2);\n \\arc (-2) .. controls (0.9333333\

3333333324, 0.875) and (1.0666666666666667, 0.875) .. (-1);\n \\arc \
(-2) to (1);\n \\arc (-2) to (2);\n\n\\end{tikzpicture}\n\\end{docum\
ent}"

19.3.2 TikzLeftCayleyDigraph

. TikzLeftCayleyDigraph(S) (operation)

. TikzRightCayleyDigraph(S) (operation)

Returns: A string.
If S is a semigroup in the representation IsEnumerableSemigroupRep (6.1.4), then

TikzLeftCayleyDigraph is simply short for TikzString(LeftCayleyDigraph(S)).
TikzRightCayleyDigraph can be used to produce a tikz string for the right Cayley graph of S .
See TikzString (19.3.1) for more details, and see also DotLeftCayleyDigraph (19.1.4).

Example
gap> TikzLeftCayleyDigraph(Semigroup(IdentityTransformation));
"\\begin{tikzpicture}[scale=1, auto, \n vertex/.style={c\
ircle, draw, thick, fill=white, minimum size=0.65cm},\n \
edge/.style={arrows={-angle 90}, thick},\n loop/.style={\
min distance=5mm,looseness=5,arrows={-angle 90},thick}]\n\
\n % Vertices . . .\n \\node [vertex] (a) at (0, 0) {};\
\n \\node at (0, 0) {$a$};\n\n % Edges . . .\n \\path[\
->] (a) edge [loop]\n node {$a$} (a);\n\\end{ti\
kzpicture}"
gap> TikzRightCayleyDigraph(Semigroup(IdentityTransformation));
"\\begin{tikzpicture}[scale=1, auto, \n vertex/.style={c\
ircle, draw, thick, fill=white, minimum size=0.65cm},\n \
edge/.style={arrows={-angle 90}, thick},\n loop/.style={\
min distance=5mm,looseness=5,arrows={-angle 90},thick}]\n\
\n % Vertices . . .\n \\node [vertex] (a) at (0, 0) {};\
\n \\node at (0, 0) {$a$};\n\n % Edges . . .\n \\path[\
->] (a) edge [loop]\n node {$a$} (a);\n\\end{ti\
kzpicture}"



Chapter 20

IO

20.1 Reading and writing elements to a file

The functions ReadGenerators (20.1.1) and WriteGenerators (20.1.2) can be used to read or write,
respectively, elements of a semigroup to a file.

20.1.1 ReadGenerators

. ReadGenerators(filename[, nr]) (function)

Returns: A list of lists of semigroup elements.
If filename is an IO package file object or is the name of a file created using WriteGenerators

(20.1.2), then ReadGenerators returns the contents of this file as a list of lists of elements of a
semigroup.

If the optional second argument nr is present, then ReadGenerators returns the elements stored
in the nr th line of filename .

Example
gap> file := Concatenation(SEMIGROUPS.PackageDir,
> "/data/tst/testdata");;
gap> ReadGenerators(file, 13);
[ <identity partial perm on [ 2, 3, 4, 5, 6 ]>,

<identity partial perm on [ 2, 3, 5, 6 ]>, [1,2](5)(6) ]

20.1.2 WriteGenerators

. WriteGenerators(filename, list[, append][, function]) (function)

Returns: IO_OK or IO_ERROR.
This function provides a method for writing collections of elements of a semigroup to a file. The

resulting file can be further compressed using gzip or xz.
The argument list should be a list of lists of elements, or semigroups.
The argument filename should be a string containing the name of a file or an IO pack-

age file object where the entries in list will be written; see IO_File (IO: IO_File mode) and
IO_CompressedFile (IO: IO_CompressedFile).

If the optional third argument append is not present or is given and equals "w", then the previous
content of the file is deleted and overwritten. If the third argument is "a", then list is appended to
the file.

265
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If any element of list is a semigroup, then the generators of that semigroup are written to
filename . More specifically, the list returned by GeneratorsOfSemigroup (Reference: Gener-
atorsOfSemigroup) is written to the file.

This function returns IO_OK (IO: IO_OK) if everything went well or IO_ERROR (IO: IO_Error)
if something went wrong.

The file produced by WriteGenerators can be read using ReadGenerators (20.1.1).
From Version 3.0.0 onwards the Semigroups package used the IO package pickling functionality;

see (IO: Pickling and unpickling) for more details. This approach is used because it is more general
and more robust than the methods used by earlier versions of Semigroups, although the performance
is somewhat worse, and the resulting files are somewhat larger.

20.1.3 IteratorFromGeneratorsFile

. IteratorFromGeneratorsFile(filename) (function)

Returns: An iterator.
If filename is a file or a string containing the name of a file created using

WriteGenerators (20.1.2), then IteratorFromGeneratorsFile returns an iterator iter such that
NextIterator(iter) returns the next collection of generators stored in the file filename .

This function is a convenient way of, for example, looping over a collection of generators in a file
without loading every object in the file into memory. This might be useful if the file contains more
information than there is available memory.

If you want to get an iterator for a file written using WriteGenerators from a version of Semi-
groups before version 3.0.0, then you can use IteratorFromOldGeneratorsFile.

20.2 Reading and writing multiplication tables to a file

The functions ReadMultiplicationTable (20.2.1) and WriteMultiplicationTable (20.2.2) can
be used to read or write, respectively, multiplication tables to a file.

20.2.1 ReadMultiplicationTable

. ReadMultiplicationTable(filename[, nr]) (function)

Returns: A list of multiplication tables.
If filename is a file or is the name of a file created using WriteMultiplicationTable (20.2.2),

then ReadMultiplicationTable returns the contents of this file as a list of multiplication tables.
If the optional second argument nr is present, then ReadMultiplicationTable returns the mu-

tiplication table stored in the nr th line of filename .
Example

gap> file := Concatenation(SEMIGROUPS.PackageDir,
> "/data/tst/tables.gz");;
gap> tab := ReadMultiplicationTable(file, 12);
[ [ 1, 1, 3, 4, 5, 6, 7, 8, 9, 6 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ],

[ 3, 3, 1, 5, 4, 7, 6, 9, 8, 7 ], [ 4, 4, 9, 6, 3, 8, 5, 1, 7, 8 ],
[ 5, 5, 8, 7, 1, 9, 4, 3, 6, 9 ], [ 6, 6, 7, 8, 9, 1, 3, 4, 5, 1 ],
[ 7, 7, 6, 9, 8, 3, 1, 5, 4, 3 ], [ 8, 8, 5, 1, 7, 4, 9, 6, 3, 4 ],
[ 9, 9, 4, 3, 6, 5, 8, 7, 1, 5 ], [ 6, 10, 7, 8, 9, 1, 3, 4, 5, 2 ]

]

 http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html 
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20.2.2 WriteMultiplicationTable

. WriteMultiplicationTable(filename, list[, append]) (function)

Returns: IO_OK or IO_ERROR.
This function provides a method for writing collections of multiplication tables to a file. The

resulting file can be further compressed using gzip or xz. This function applies to square arrays with
a maximum of 255 rows where the entries are integers from [1, 2, .., n] (where n is the number
of rows in the array.

The argument list should be a list of multiplication tables.
The argument filename should be a file or a string containing the name of a file where the

entries in list will be written or an IO package file object; see IO_File (IO: IO_File mode) and
IO_CompressedFile (IO: IO_CompressedFile).

If the optional third argument append is not present or is given and equals "w", then the previous
content of the file is deleted and overwritten. If the third argument is given and equals "a" then list is
appended to the file. This function returns IO_OK (IO: IO_OK) if everything went well or IO_ERROR
(IO: IO_Error) if something went wrong.

The multiplication tables saved in filename can be recovered from the file using
ReadMultiplicationTable (20.2.1).

20.2.3 IteratorFromMultiplicationTableFile

. IteratorFromMultiplicationTableFile(filename) (function)

Returns: An iterator.
If filename is a file or a string containing the name of a file created using

WriteMultiplicationTable (20.2.2), then IteratorFromMultiplicationTableFile returns an
iterator iter such that NextIterator(iter) returns the next multiplication table stored in the file
filename .

This function is a convenient way of, for example, looping over a collection of multiplication
tables in a file without loading every object in the file into memory. This might be useful if the file
contains more information than there is available memory.
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DClassReps, 147
DegreeOfBipartition, 24
DegreeOfBipartitionCollection, 24
DegreeOfBipartitionSemigroup, 35
DegreeOfBlocks, 32
DegreeOfPBR, 41
DegreeOfPBRCollection, 41
DegreeOfPBRSemigroup, 47
DigraphOfActionOnPairs
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GreensHClasses, 145
GreensHClassOfElement, 143
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for a transformation semigroup, 191
IsDTrivial, 205
IsDualSemigroupElement, 89
IsDualSemigroupRep, 88
IsDualTransBipartition, 28
IsDualTransformationPBR, 44
IsEmptyPBR, 42
IsEnumerableSemigroupRep, 80
IsEquivalenceBooleanMat, 67
IsEUnitaryInverseSemigroup, 219
IsFactorisableInverseMonoid, 221
IsFinite, 74
IsFInverseMonoid, 220
IsFInverseSemigroup, 220
IsFreeBand

for a given semigroup, 130
IsFreeBandCategory, 130
IsFreeBandElement, 131
IsFreeBandElementCollection, 131
IsFreeBandSubsemigroup, 131
IsFreeInverseSemigroup, 127
IsFreeInverseSemigroupCategory, 127
IsFreeInverseSemigroupElement, 127
IsFreeInverseSemigroupElement-

Collection, 128
IsFullMatrixMonoid, 116
IsFullyEnumerated, 165
IsGeneralLinearMonoid, 116

IsGraphInverseSemigroup, 135
IsGraphInverseSemigroupElement, 135
IsGraphInverseSemigroupElement-

Collection, 135
IsGraphInverseSubsemigroup, 136
IsGreensClassNC, 156
IsGreensDGreaterThanFunc, 152
IsGroupAsSemigroup, 199
IsHTrivial, 205
IsIdempotentGenerated, 200
IsIdentityPBR, 43
IsIntegerMatrix, 54
IsIntegerMatrixCollColl, 55
IsIntegerMatrixCollection, 55
IsIntegerMatrixMonoid, 74
IsIntegerMatrixSemigroup, 73
IsInverseSemigroupCongruenceByKernel-

Trace, 247
IsInverseSemigroupCongruenceClassBy-

KernelTrace, 250
IsIsomorphicSemigroup, 253
IsJoinIrreducible, 221
IsLeftCongruenceClass, 228
IsLeftSemigroupCongruence, 225
IsLeftSimple, 200
IsLeftZeroSemigroup, 201
IsLinkedTriple, 245
IsLTrivial, 205
IsMajorantlyClosed, 222
IsMatrixOverFiniteField, 54
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IsMTSE, 140
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IsNTPMatrixCollColl, 55
IsNTPMatrixCollection, 55
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IsPartialPermPBR, 45
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IsPBRCollection, 36
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IsRegularSemigroup, 205
IsRightCongruenceClass, 229
IsRightSemigroupCongruence, 225
IsRightSimple, 200
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IsRMSCongruenceByLinkedTriple, 243
IsRMSCongruenceClassByLinkedTriple, 244
IsRMSIsoByTriple, 255
IsRowTrimBooleanMat, 64
IsRTrivial, 205
IsRZMSCongruenceByLinkedTriple, 243
IsRZMSCongruenceClassByLinkedTriple,

244
IsRZMSIsoByTriple, 255
IsSemiband, 200
IsSemigroupCongruence, 224
IsSemigroupWithAdjoinedZero, 206
IsSemilattice, 206
IsSimpleSemigroup, 207
IsSubrelation, 241
IsSuperrelation, 241
IsSurjectiveSemigroup, 199
IsSymmetricBooleanMat, 64
IsSynchronizingSemigroup

for a transformation semigroup, 207
for a transformation semigroup and a positive

integer, 207
IsTorsion, 74

for an integer matrix, 71
IsTotalBooleanMat, 66
IsTransBipartition, 28
IsTransformationPBR, 44
IsTransitive

for a transformation semigroup and a pos int,
190

for a transformation semigroup and a set, 190
IsTransitiveBooleanMat, 65
IsTrimBooleanMat, 64
IsTropicalMatrix, 54
IsTropicalMatrixCollection, 55
IsTropicalMatrixMonoid, 74
IsTropicalMatrixSemigroup, 73
IsTropicalMaxPlusMatrix, 54
IsTropicalMaxPlusMatrixCollColl, 55
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252
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JoinRightSemigroupCongruences, 242
JoinSemigroupCongruences, 242
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for a congruence poset and a function, 240
for a list or collection and a function, 240

JonesMonoid, 110

KernelOfSemigroupCongruence, 249

LargestElementSemigroup, 190
LatticeOfCongruences

for a semigroup, 237
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collection, 237

LatticeOfLeftCongruences
for a semigroup, 237
for a semigroup and a multiplicative element

collection, 237
LatticeOfRightCongruences

for a semigroup, 237
for a semigroup and a multiplicative element

collection, 237
LClass, 143
LClasses, 145
LClassNC, 144
LClassOfHClass, 142
LClassReps, 147
LeftBlocks, 26
LeftCayleyDigraph, 165
LeftCongruenceClasses, 230
LeftCongruenceClassOfElement, 229
LeftCongruencesOfSemigroup

for a semigroup, 234
for a semigroup and a multiplicative element

collection, 234
LeftInverse

for a matrix over finite field, 69
LeftOne

for a bipartition, 17
LeftProjection, 17
LeftSemigroupCongruence, 226
LeftZeroSemigroup, 124
LengthOfLongestDClassChain, 151

MajorantClosure, 212
Matrix

for a filter and a matrix, 50
for a semiring and a matrix, 50

MaximalDClasses, 148
MaximalSubsemigroups

for a finite semigroup, 183
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McAlisterTripleSemigroup, 138
McAlisterTripleSemigroupAction, 140
McAlisterTripleSemigroupElement, 140
McAlisterTripleSemigroupGroup, 139
McAlisterTripleSemigroupPartialOrder,

139
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McAlisterTripleSemigroupSemilattice,
140

MeetSemigroupCongruences, 242
MinimalCongruences

for a congruence poset, 240
for a list or collection, 240

MinimalCongruencesOfSemigroup
for a semigroup, 235
for a semigroup and a multiplicative element

collection, 235
MinimalDClass, 148
MinimalFactorization, 169
MinimalIdeal, 176
MinimalIdealGeneratingSet, 102
MinimalLeftCongruencesOfSemigroup

for a semigroup, 235
for a semigroup and a multiplicative element

collection, 235
MinimalMonoidGeneratingSet, 174
MinimalRightCongruencesOfSemigroup

for a semigroup, 235
for a semigroup and a multiplicative element

collection, 235
MinimalSemigroupGeneratingSet, 174
MinimalWord

for free inverse semigroup element, 129
MinimumGroupCongruence, 250
Minorants, 213
ModularPartitionMonoid, 114
MonogenicSemigroup, 122
MotzkinMonoid, 111
MTSE, 140
MultiplicativeNeutralElement

for an H-class, 160
MultiplicativeZero, 177
MunnSemigroup, 107

NambooripadLeqRegularSemigroup, 194
NambooripadPartialOrder, 195
NaturalLeqBlockBijection, 23
NaturalLeqInverseSemigroup, 211
NaturalLeqPartialPermBipartition, 23
NewIdentityMatrixOverFiniteField, 68
NewMatrixOverFiniteField

for a filter, a field, an integer, and a list, 67
NewZeroMatrixOverFiniteField, 68
NonTrivialCongruenceClasses, 230

NonTrivialEquivalenceClasses, 230
NonTrivialFactorization, 170
NonTrivialLeftCongruenceClasses, 230
NonTrivialRightCongruenceClasses, 231
NormalizedPrincipalFactor, 161
Normalizer

for a perm group, semigroup, record, 186
for a semigroup, record, 186

NormalizeSemigroup, 75
NrBlocks

for a bipartition, 27
for blocks, 27

NrCongruenceClasses, 231
NrDClasses, 149
NrEquivalenceClasses, 231
NrHClasses, 149
NrIdempotents, 181
NrLClasses, 149
NrLeftBlocks, 26
NrLeftCongruenceClasses, 231
NrMaximalSubsemigroups, 184
NrRClasses, 149
NrRegularDClasses, 148
NrRightBlocks, 26
NrRightCongruenceClasses, 231
NrTransverseBlocks

for a bipartition, 24
for blocks, 31

NumberBlist, 62
NumberBooleanMat, 62
NumberPBR, 42

OnBlist, 61
OnLeftBlocks, 33
OnLeftCongruenceClasses, 233
OnRightBlocks, 32
OnRightCongruenceClasses, 234
Order, 71
OrderAntiEndomorphisms, 105
OrderEndomorphisms

monoid of order preserving transformations,
105

PartialBrauerMonoid, 109
PartialDualSymmetricInverseMonoid, 112
PartialJonesMonoid, 110
PartialOrderAntiEndomorphisms, 105
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PartialOrderEndomorphisms, 105
PartialOrderOfDClasses, 150
PartialPermLeqBipartition, 23
PartialTransformationMonoid, 105
PartialUniformBlockBijectionMonoid, 112
PartitionMonoid, 109
PBR, 37
PBRNumber, 42
PeriodNTPMatrix, 56
PermLeftQuoBipartition, 23
PlanarModularPartitionMonoid, 114
PlanarPartitionMonoid, 113
PlanarUniformBlockBijectionMonoid, 112
PODI

monoid of order preserving or reversing par-
tial perms, 107

POI
monoid of order preserving partial perms,

107
POPI

monoid of orientation preserving partial
perms, 107

PORI
monoid of orientation preserving or reversing

partial perms, 108
PosetOfCongruences, 239
PosetOfPrincipalCongruences

for a semigroup, 238
for a semigroup and a multiplicative element

collection, 238
PosetOfPrincipalLeftCongruences

for a semigroup, 238
for a semigroup and a multiplicative element

collection, 238
PosetOfPrincipalRightCongruences

for a semigroup, 238
for a semigroup and a multiplicative element

collection, 238
PositionCanonical, 164
PrimitiveIdempotents, 214
PrincipalCongruencesOfSemigroup

for a semigroup, 235
for a semigroup and a multiplicative element

collection, 236
PrincipalFactor, 161
PrincipalLeftCongruencesOfSemigroup

for a semigroup, 235

for a semigroup and a multiplicative element
collection, 236

PrincipalRightCongruencesOfSemigroup
for a semigroup, 235
for a semigroup and a multiplicative element

collection, 236
ProjectionFromBlocks, 32

RadialEigenvector, 72
Random

for a semigroup, 166
RandomBipartition, 18
RandomBlockBijection, 18
RandomInverseMonoid, 97
RandomInverseSemigroup, 97
RandomMatrix

for a filter and a matrix, 53
for a semiring and a matrix, 53
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RandomSemigroup, 97
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ReadGenerators, 265
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RightCongruenceClassOfElement, 229
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for a semigroup, 234
for a semigroup and a multiplicative element

collection, 234
RightCosetsOfInverseSemigroup, 214
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RightOne
for a bipartition, 17

RightProjection, 17
RightSemigroupCongruence, 227
RightZeroSemigroup, 124
RMSCongruenceByLinkedTriple, 244
RMSCongruenceClassByLinkedTriple, 245
RMSIsoByTriple, 256
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for a matrix over finite field, 69
RowSpaceBasis

for a matrix over finite field, 68
RowSpaceTransformation

for a matrix over finite field, 68
RowSpaceTransformationInv

for a matrix over finite field, 69
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RZMSIsoByTriple, 256
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SingularOrderEndomorphisms, 105
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114
SingularPlanarPartitionMonoid, 113
SingularPlanarUniformBlockBijection-
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SingularTransformationMonoid, 105
SingularTransformationSemigroup, 105
SingularUniformBlockBijectionMonoid,

112
SLM, 116
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Representation, 215
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SmallestMultiplicationTable, 253
SmallGeneratingSet, 171
SmallInverseMonoidGeneratingSet, 171
SmallInverseSemigroupGeneratingSet, 171
SmallMonoidGeneratingSet, 171
SmallSemigroupGeneratingSet, 171
Source

for a graph inverse semigroup element, 134
SpecialLinearMonoid, 116
SpectralRadius, 72
Star

for a bipartition, 18
for a PBR, 41

StarOp
for a bipartition, 18
for a PBR, 41
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StructureDescriptionSchutzenberger-
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TikzLeftCayleyDigraph, 264
TikzRightCayleyDigraph, 264
TikzString, 262
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for a matrix over finite field, 70
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UnderlyingSemigroupOfSemigroupWith-
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