kbmag

Knuth-Bendix on Monoids and
Automatic Groups

1.5.8

19 February 2019

Derek Holt

The GAP Team

Derek Holt
Email: D.F.HoltQwarwick.ac.uk
Homepage: https://homepages.warwick.ac.uk/staff/D.F.Holt/

Address: Mathematics Institute
University of Warwick
Coventry CV4 7AL
UK

The GAP Team
Email: support@gap-system.org

mailto://D.F.Holt@warwick.ac.uk
https://homepages.warwick.ac.uk/staff/D.F.Holt/
mailto://support@gap-system.org

kbmag 2

Abstract

The KBMag package is a GAP interface to some ‘C’ programs for running the Knuth-Bendix completion
program on finite semigroup, monoid or group presentations, and for attempting to compute automatic structures
of finitely presented groups.

Bug reports, comments, suggestions for additional features, and offers to implement some of these, will all
be very welcome.

Please submit any issues at https://github.com/gap-packages/kbmag/issues/.

Copyright

© 1997 by Derek Holt
This package may be distributed under the terms and conditions of the GNU Public License Version 2.

Acknowledgements

This documentation was prepared with the GAPDoc [LN17] and AutoDoc [GH17] packages.
The procedure used to produce new releases uses the package GitHubPagesForGAP [Horl7] and the
package ReleaseTools.

Contents

1 Introduction

2 The Knuth-Bendix program on semigroups, monoids and groups
2.1 Creating arewriting System e e e
2.2 Elementary functions on rewriting systems
2.3 Settingtheordering L e
2.4 Control parameters e e e e e e e e e e
2.5 The Knuth-Bendix program
2.6 The automatic groups program v b e e e e e e e e e e e
277 Wordreduction e e e
2.8 Counting and enumerating irreducible words L.
2.9 Rewriting System Examples L oL

3 The Knuth-Bendix program on cosets
3.1 Subgroups, cosets and subgroup presentations
3.2 The Knuth-Bendix programoncosets
3.3 The automatic COSEts Program u e e e
34 Wordreduction On COSELS v v it e e e
3.5 Counting and enumerating irreducible words forcosets
3.6 Examples of the use of Rewriting Systemon Cosets

4 The stand-alone package
4.1 Functions for manipulating finite state automata
4.2 Functions calling external programs

References

Index

22
22
23
23
24
24
25

28
28
34

37

38

Chapter 1

Introduction

KBMag (pronounced “Kay-bee-mag”) stands for Knuth—Bendix on Monoids, and Automatic Groups.
It is a stand-alone package written in ‘C’, for use under UNIX, with an interface to GAP. Chapters
2 and 3 describe its use as an external library from within GAP. There are interfaces for the use of
KBMag with finitely presented groups, monoids and semigroups defined within GAP. The package
also contains a collection of routines for manipulating finite state automata, which can be accessed via
the GAP interface. Chapter 4 lists the functions in the stand-alone package.

To use this package effectively, some knowledge of the underlying theory and algorithms is ad-
visable. The Knuth-Bendix algorithm is described in various places in the literature. Good general
references that deal with the applications to groups and monoids are [LeC86] and the first few chapters
of [Sim94]. For the theory of automatic groups see the multi-author book [ECH"92]. The algorithms
employed by KBMag are described more specifically in [HER91] and [Holar].

The manual for the stand-alone KBMag package (which can be found in the standalone/doc
directory of the package) provides more detailed information on the external ‘C’ programs that are
called from GAP.

Suppose that G is a finitely presented semigroup, monoid or group defined as a quotient of the
free structure F. The overall objective of KBMag is to construct a normal form for the elements of G
in terms of the generators of F, together with a word reduction algorithm for calculating the normal
form representative of an element in G, given by a word in the generators of F'. If this can be achieved,
then it is also possible to enumerate the words in normal form up to a given length, and to determine
the order of G, by counting the number of words in normal form. In most serious applications, this
will be infinite, since (for example) finite groups are (with some exceptions) usually handled better by
Todd-Coxeter related methods. In fact a finite state automaton W is calculated that accepts precisely
the language of words in the monoid generators of F' that are in normal form, and W is used for the
enumeration and counting functions.

The normal form of an element g € G is defined to be the least word in the generators of F' (and
their inverses) that represents g, with respect to a specified ordering on the set of all words in the
generators of F. The available orderings are described in section 2.3.

KBMag offers two possible means of achieving these objectives. The first is to apply the Knuth-
Bendix algorithm to the presentation, with one of the available orderings on words, and hope that the
algorithm will complete with a finite confluent presentation. (If G is finite, then it is guaranteed to
complete eventually but, like the Todd-Coxeter procedure, it may take a long time, or require more
space than is available.) The second is to use the automatic group program, which is only applicable to
groups (not to monoids or semigroups). This also uses the Knuth-Bendix procedure as one component

kbmag 5

of the algorithm, but it aims to compute certain finite state automata rather than to obtain a finite
confluent rewriting system, and it completes successfully on many examples for which such a finite
system does not exist. In the current stand-alone implementation, its use is restricted to the SHORTLEX
ordering on words. That is, words are ordered first by increasing length, and then words of equal length
are ordered lexicographically, using the specified ordering of the generators. However, there are now
some GAP procedures available in the package written by Sarah Rees that enable it be used also for
the WTLEX ordering, and the WREATHPROD ordering. See section 2.3 for further details of these
orderings.

For both of the above procedures, the first step is to create a GAP object known as a Knuth-Bendix
rewriting system R from the finitely presented structure G. There are functions available that can be
used to specify the input parameters for the external programs, such as the ordering on words to be
used by the Knuth-Bendix procedure. One of the two external programs is then run on R. If successful,
it updates R, which can then be used to reduce words in the generators of F' to normal form, and to
count and enumerate the words in normal form.

There are also now some routines available for performing corresponding operations with the
cosets of a specified subgroup H of the group G. (These are not currently available for semigroups or
monoids.) The words in normal form then correspond to minimal representatives under the ordering
of the system of the right cosets of H in G. If successful, the index of H in G can be determined.
The Knuth-Bendix routines also allow a confluent rewriting system for H to be computed, whereas
the automatic groups routines allow a presentation of H to be computed (although not yet on a user-
specified generating set).

In the descriptions of the functions that follow, it is important to distinguish between irreducible
words, and words in normal form. As already stated, a word is in normal form if it is the least word
under the ordering of the rewriting system that defines a particular group element or coset. So there
is always a unique word in normal form for each group element or coset, and it is determined by the
group generators and the ordering on words in the group generators. A word in a rewriting system is
said to be irreducible if it does not contain the left hand side of any of the reduction rules in the system
as a subword. Words in normal form are always irreducible, but the converse is true if and only if the
rewriting system is confluent. The automatic groups programs provide a method of reducing words to
normal form without obtaining a finite confluent rewriting system (which may not even exist).

Various levels of diagnostic output from the GAP procedures can be turned on by setting the Info
variable InfoRWS to 1,2 or 3.

In the descriptions that follow functions declared in the main GAP library, for which additional
methods are implemented, are referred to as library functions.

Chapter 2

The Knuth-Bendix program on
semigroups, monoids and groups

2.1 Creating a rewriting system

First the user should be aware of a technicality. The words in a rewriting system created in GAP for
use by KBMag are defined over an alphabet that consists of the generators of a free monoid, called
the word-monoid of the system. Suppose, as before, that the rewriting system is defined from the
semigroup, monoid or group G which is a quotient of the free structure F'. Then the generators of this
alphabet will be in one-one correspondence with the generators (or, when G is a group, the generators
and their inverses) of F, but will not be identical to them. This feature was necessary for technical
reasons. Most of the user-level functions take and return words in F rather than the alphabet, but they
do this by converting from one to the other and back.

User-level functions have also been provided to carry out this conversion explicitly if required.

The user should also be aware of a peculiarity in the way that rewriting sytems are displayed,
which is really a hangover from the GAP3 interface. They are displayed nicely as a record, which
gives a useful description of the system, but it does not correspond at all to the way that they are
actually stored internally!

2.1.1 KBMAGRewritingSystem

> KBMAGRewritingSyst em(G) (operation)

This operation constructs and returns a rewriting system R from a finitely presented semigroup,
monoid or group G. When G is a group, the alphabet members of R correspond to the generators of F
together with inverses for those generators which are not obviously involutory in G.

2.2 Elementary functions on rewriting systems

2.2.1 IsKBMAGRewritingSystemRep

> IsKBMAGRewritingSystemRep (rws) (representation)
> IsRewritingSystem(rws) (category)

kbmag 7

IsKBMAGRewritingSystemRep returns true if rws is a rewriting system created by
KBMAGRewritingSystem (2.1.1). The function IsRewritingSystem (Reference: IsRewritingSys-
tem) will also return true on such a system. (The function IsKnuthBendixRewritingSystem has
been considered for inclusion, but is not currently declared.)

2.2.2 IsConfluent

> IsConfluent (rws) (method)

This library property returns true if rws is a rewriting system that is known to be confluent.

2.2.3 SemigroupOfRewritingSytem

> SemigroupOfRewritingSytem(rws) (method)
> FreeStructureOfSystem(rws) (method)
> WordMonoidOfRewritingSystem(zrws) (operation)

The first two library functions return, respectively, the semigroup, monoid or group G, and the free
structure F. The third returns the word-monoid of the rewriting system, as defined in section 2.1.

2.2.4 ExternalWordToInternal WordOfRewritingSystem

> ExternalWordToInternalWordOfRewritingSystem(rws, w) (function)
> InternalWordToExternalWordOfRewritingSystem(rws, W) (function)

These are the functions for converting between external words, which are those defined over the
free structure F of rws, and the internal words, which are defined over the word-monoid of rws.

2.2.5 Alphabet

> Alphabet (rws) (attribute)

This is an ordered list of the generators of the word-monoid of rws. It will not neces-
sarily be in the normal order of these generators, and it can be re-ordered by the function
ReorderAlphabetOfKBMAGRewritingSystem (2.3.1).

2.2.6 Rules

> Rules(rws) (method)

This library function returns a list of the reduction rules of rws. Each rule is a two-element list
containing the left and right hand sides of the rule, which are words in the alphabet of rws.

2.2.7 ResetRewritingSystem

> ResetRewritingSystem(rws) (function)

kbmag 8

This function resets the rewriting system rws back to its form as it was before the application of
KnuthBendix (2.5.1) or AutomaticStructure (2.6.1). However, the current ordering and values of
control parameters will not be changed. The normal form and reduction algorithms will be unavailable
after this call.

2.3 Setting the ordering

2.3.1 SetOrderingOfKBMAGRewritingSystem

> SetOrderingOfKBMAGRewritingSystem(rws, ordering[, list]) (function)
> ReorderAlphabetOfKBMAGRewritingSystem(zrws, p) (function)
> Ordering0fKBMAGRewritingSystem(rws) (function)
> Ordering0fRewritingSystem(zrws) (method)

SetOrdering0fKBMAGRewritingSystem changes the ordering on the words of the rewriting sys-
tem rws to ORDERING. rws is reset when the ordering is changed, so any previously calculated re-
sults will be destroyed. ORDERING must be one of the strings SHORTLEX, RECURSIVE, WTLEX and
WREATHPROD. The default is SHORTLEX, and this is the ordering of rewriting systems returned by
KBMAGRewritingSystem (2.1.1). The orderings WTLEX and WREATHPROD require the third param-
eter, 1ist, which must be a list of positive integers in one-one correspondence with the alphabet of
rws in its current order. They have the effect of attaching weights or levels to the alphabet members,
in the cases WTLEX and WREATHPROD, respectively.

Each of these orderings depends on the order of the alphabet. The current ordering of generators is
displayed under the generator0Order field when rws is viewed. This ordering can be changed by the
function ReorderAlphabet0fKBMAGRewritingSystem . The second parameter p to this function
should be a permutation that moves at most ng points, where ng is the number of generators. This
permutation is applied to the current list of generators.

Ordering0fKBMAGRewritingSystem merely prints out a description of the current ordering.

In the SHORTLEX ordering, shorter words come before longer ones, and, for words of equal length,
the lexicographically smaller word comes first, using the ordering of the alphabet. The WTLEX order-
ing is similar, but instead of using the length of the word as the first criterion, the total weight of the
word is used; this is defined as the sum of the weights of the generators in the word. So SHORTLEX is
the special case of WTLEX in which all generators have the same nonzero weight.

The RECURSIVE ordering is the special case of WREATHPROD in which the levels of the ng gen-
erators are 1,2,...,ng, in the order of the alphabet. We shall not attempt to give a complete definition
of these orderings here, but refer the reader instead to pages 4650 of [Sim94]. The RECURSIVE
ordering is the one appropriate for a power-conjugate presentation of a polycyclic group, but where
the generators are ordered in the reverse order from the usual convention for polycyclic groups. The
confluent presentation will then be the same as the power-conjugate presentation. For example, for the
Heisenberg group (x,y,z | [x,z] = [y,z] = 1,[y,x] = z), a good ordering is RECURSIVE with the order
of generators [z‘l 2y Ly, x! ,x]. This example is included as Example 3 in 2.9.3 below.

Finally, a method is included for the attribute OrderingOfRewritingSystem which returns the
appropriate GAP ordering on the elements of the word-monoid of rws. The standard GAP ordering
functions, such as IsLessThanUnder (Reference: IsLessThanUnder) can then be used.

kbmag 9

2.4 Control parameters

2.4.1 InfoRWS

> InfoRWS (info class)

This ‘Info’ variable can be set to 0,1,2 or 3 to control the level of diagnostic output.

The Knuth-Bendix procedure is unusually sensitive to the settings of a number of parameters that
control its operation. In some examples, a small change in one of these parameters can mean the
difference between obtaining a confluent rewriting system fairly quickly on the one hand, and the
procedure running on until it uses all available memory on the other hand.

Unfortunately, it is almost impossible to give even very general guidelines on these settings, al-
though the WREATHPROD orderings appear to be more sensitive than the SHORTLEX and WTLEX or-
derings. The user can only acquire a feeling for the influence of these parameters by experimentation
on a large number of examples.

The control parameters are defined by the user by setting values of certain fields of the options
record of a rewriting system.

2.4.2 OptionsRecordOfKBMAGRewritingSystem

> OptionsRecord0fKBMAGRewritingSystem(rws) (function)

Returns the options record OR of the rewriting system rws. The fields of OR listed below can be set
by the user. Be careful to spell them correctly, because otherwise they will have no effect!

* OR.maxeqns
A positive integer specifying the maximum number of rewriting rules allowed in rws. The de-
fault is 32767. If this number is exceeded, then KnuthBendix (2.5.1) or AutomaticStructure
(2.6.1) will abort.

* OR.tidyint
A positive integer, 100 by default. During the Knuth-Bendix procedure, the search for overlaps
is interrupted periodically to tidy up the existing system by removing and/or simplifying rewrit-
ing rules that have become redundant. This tidying is done after finding OR . tidyint rules since
the last tidying.

* OR.confnum
A positive integer, 500 by default. If OR. confnum overlaps are processed in the Knuth-Bendix
procedure but no new rules are found, then a fast test for confluence is carried out. This saves a
lot of time if the system really is confluent, but usually wastes time if it is not.

* OR.maxstoredlen

This is a list of two positive integers, maxlhs and maxrhs; the default is that both are infinite.
Only those rewriting rules for which the left hand side has length at most max1lhs and the right
hand side has length at most maxrhs are stored; longer rules are discarded. In some examples it
is essential to impose such limits in order to obtain a confluent rewriting system. Of course, if
the Knuth-Bendix procedure halts with such limits imposed, then the resulting system need not
be confluent. However, the confluence can then be tested be re-running KnuthBendix (2.5.1)
with the limits removed. (To remove the limits, unbind the field.)

kbmag 10

* OR.maxoverlaplen
This is a positive integer, which is infinite by default (when not set). Only those over-
laps of total length OR.maxoverlaplen are processed. Similar remarks apply to those for
OR.maxstoredlen.

* OR.sorteqns
This should be true or false, and false is the default. When it is true, the rewriting rules
are output in order of increasing length of left hand side. (The default is that they are output in
the order that they were found.)

* OR.maxoplen
This is an integer, which is infinite by default (when not set). When it is set, the rewriting rules
are output in order of increasing length of left hand side (as if OR.sorteqns were true), and
only those rules having left hand sides of length up to OR.maxoplen are output at all. Again,
similar remarks apply to those for OR .maxstoredlen.

* OR.maxreducelen
A positive integer, 32767 by default. This is the maximum length that a word is allowed to have
during the reduction process. It is only likely to be exceeded when using the WREATHPROD or
RECURSIVE ordering.

e OR.maxstates, OR.maxwdiffs

These are positive integers, controlling the maximum number of states of the word-reduction
automaton used by KnuthBendix (2.5.1), and the maximum number of word-differences al-
lowed when running AutomaticStructure (2.6.1), respectively. These numbers are normally
increased automatically when required, so it unusual to want to set these flags. They can be set
when either it is desired to limit these parameters (and prevent them being increased automat-
ically), or (as occasionally happens), the number of word-differences increases too rapidly for
the program to cope - when this happens, the run is usually doomed to failure anyway.

2.5 The Knuth-Bendix program

2.5.1 KnuthBendix

> KnuthBendix (rws) (operation)
> MakeConfluent (rws) (method)

These two functions do the same thing, namely to run the external Knuth-Bendix program on the
rewriting system rws. KnuthBendix returns true if it finds a confluent rewriting system and otherwise
false. In either case, if it halts normally, then it will update the list of the rewriting rules of rws, and
also store a finite state automaton ReductionAutomaton(rws) that can be used for word reduction,
and the counting and enumeration of irreducible words.

All control parameters (as defined in the preceding section) should be set before calling
KnuthBendix. KnuthBendix will halt either when it finds a finite confluent system of rewriting rules,
or when one of the control parameters (such as OR .maxeqns) requires it to stop. The program can also
be made to halt and output manually at any time by hitting the interrupt key (normally ‘ctr]-C’) once.
(Hitting it twice has unpredictable consequences, since GAP may intercept the signal.)

kbmag 11

A method is installed to make the library operation MakeConfluent run the KnuthBendix oper-
ation.

If KnuthBendix halts without finding a confluent system, but still manages to output the current
system and update rws, then it is possible to use the resulting rewriting system to reduce words, and
count and enumerate the irreducible words; it cannot be guaranteed that the irreducible words are all
in normal form, however. It is also possible to re-run KnuthBendix on the current system, usually
after altering some of the control parameters. In fact, in some more difficult examples, this seems to
be the only means of finding a finite confluent system.

2.5.2 ReductionAutomaton

> ReductionAutomaton (rws) (function)

Returns the reduction automaton of rws. Only expert users will wish to see this explicitly. See the
section on finite state automata below for general information on functions for manipulating automata.

2.6 The automatic groups program

2.6.1 AutomaticStructure

> AutomaticStructure(rws[, large, filestore, diff1]) (function)

This function runs the external automatic groups program on the rewriting system rws. It
returns true if successful and false otherwise. If successful, it stores three finite state au-
tomata FirstWordDifferenceAutomaton(rws), SecondWordDifferenceAutomaton(rws) and
WordAcceptor(rws): see WordAcceptor (2.6.2) below. The first two of these are used for word-
reduction, and the third for counting and enumeration of irreducible words (i.e. words in normal
form).

The three optional parameters to AutomaticStructure are all boolean, and false by default.
Setting large to be true results in some of the control parameters (such as maxeqns and tidyint)
being set larger than they would be otherwise. This is necessary for examples that require a large
amount of space. Setting filestore to be true results in more use being made of temporary files
than would be otherwise. This makes the program run slower, but it may be necessary if you are short
of core memory. Setting diff1 to be true is a more technical option, which is explained more fully
in the documentation for the stand-alone KBMag package. It is not usually necessary or helpful, but
it enables one or two examples to complete that would otherwise run out of space.

The ORDERING field of rws will usually be set to SHORTLEX for AutomaticStructure to be
applicable. However, it is now possible to use some procedures written by Sarah Rees that work when
the ordering is WTLEX or WREATHPROD. In the latter case, each generator must have the same level
as its inverse.

The only control parameters for rws that are likely to be relevant are maxeqns and maxwdiffs.

2.6.2 WordAcceptor

> WordAcceptor (rws) (function)
> FirstWordDifferenceAutomaton (rws) (function)
> SecondWordDifferenceAutomaton(rws) (function)

kbmag 12

> GeneralMultiplier (rws) (function)

These functions return, respectively, the word acceptor, the first and second word-difference au-
tomata, and the general multiplier automaton of rws. They can only be called after a successful call of
AutomaticStructure (rws). All except the word acceptor are 2-variable automata that read pairs of
words in the alphabet of rws. Note that the general multiplier has its states labeled, where the different
labels represent the accepting states for the different letters in the alphabet of rws.

2.7 Word reduction

2.7.1 IsReducedWord

> IsReducedWord(rws, w) (operation)
> IsReducedForm(rws, w) (method)

These two functions do the same thing, namely to test whether the word w in the generators of the
freestructure FreeStructure (rws) of the rewriting system system rws is reduced or not, and return
true or false.

IsReducedWord can only be used after KnuthBendix (2.5.1) or AutomaticStructure (2.6.1)
has been run successfully on rws. In the former case, if KnuthBendix halted without a conflu-
ent set of rules, then irreducible words are not necessarily in normal form (but reducible words are
definitely not in normal form). If KnuthBendix completes with a confluent rewriting system or
AutomaticStructure completes successfully, then it is guaranteed that all irreducible words are
in normal form.

2.7.2 ReducedWord

> ReducedWord(rws, w) (operation)
> ReducedForm(rws, w) (method)

Reduce the word w in the generators of the freestructure FreeStructure (rws) of the rewriting
system rws (or, equivalently, in the generators of the underlying group of rws), and return the result.

ReducedForm can only be used after KnuthBendix (2.5.1) or AutomaticStructure (2.6.1) has
been run successfully on rws. In the former case, if KnuthBendix halted without a confluent set of
rules, then the irreducible word returned is not necessarily in normal form. If KnuthBendix com-
pletes with a confluent rewriting system or AutomaticStructure completes successfully, then it is
guaranteed that all irreducible words are in normal form.

2.8 Counting and enumerating irreducible words
2.8.1 Size
> Size(rws) (method)

Returns the number of irreducible words in the rewriting system rws.
Size can only be used after KnuthBendix (2.5.1) or AutomaticStructure (2.6.1) has been run
successfully on rws. In the former case, if KnuthBendix halted without a confluent set of rules, then

kbmag 13

the number of irreducible words may be greater than the number of words in normal form (which
is equal to the order of the underlying group, monoid or semigroup G of rws). If KnuthBendix
completes with a confluent rewriting system or AutomaticStructure completes successfully, then it
is guaranteed that Size will return the correct order of G.

2.8.2 Order

> Order(rws, w) (method)

The order of the element w of the free structure FreeStructure (rws) of rws as an element of
the group or monoid from which rws was defined.

Order can only be used after KnuthBendix (2.5.1) or AutomaticStructure (2.6.1) has been run
successfully on rws. It is not guaranteed to terminate in the case of infinite order, but it usually seems
to do so in practice!

2.8.3 EnumerateReducedWords

> EnumerateReducedWords(rws, min, max) (operation)

Enumerate all irreducible words in the rewriting system rws that have lengths between min and
max (inclusive), which should be non-negative integers. The result is returned as a list of words. The
enumeration is by depth-first search of a finite state automaton, and so the words in the list returned
are ordered lexicographically (not by SHORTLEX).

EnumerateReducedWords can only be used after KnuthBendix (2.5.1) or AutomaticStructure
(2.6.1) has been run successfully on rws. In the former case, if KnuthBendix halted without a conflu-
ent set of rules, then not all irreducible words in the list returned will necessarily be in normal form.
If KnuthBendix completes with a confluent rewriting system or AutomaticStructure completes
successfully, then it is guaranteed that all words in the list will be in normal form.

2.8.4 GrowthFunction

> GrowthFunction(rws) (function)

Returns the growth function of the set of irreducible words in the rewriting system rws. This is
a rational function, of which the coefficient of x" in its Taylor expansion is equal to the number of
irreducible words of length n.

If the coefficients in this rational function are larger than about 16000 then strange error messages
will appear and fail will be returned.

GrowthFunction can only be used after KnuthBendix (2.5.1) or AutomaticStructure (2.6.1)
has been run successfully on rws. In the former case, if KnuthBendix halted without a confluent
set of rules, then not all irreducible words in the list returned will necessarily be in normal form.
If KnuthBendix completes with a confluent rewriting system or AutomaticStructure completes
successfully, then it is guaranteed that all words in the list will be in normal form.

2.9 Rewriting System Examples

Here are five examples to illustrate the operations described above.

2.9.1 Example 1

We start with a easy example - the alternating group Ay.

kbmag

gap>

gap>
gap>
gap>
rec(

F.1;;

Example

FreeGroup("a", "b");;

b :=F.2;;

14

o Qe
i

F/[a"2, b~3,

KBMAGRewritingSystem(G);

(axb)~3];;

isRWS

= true,

generatorOrder

inverses

ordering :
equations :

= [_gl,_g2,_g3],
[Lgl,_g3,_g2],
"shortlex",

[

[_g2~2,_g3],
[_glx_g2*_gl, g3*_glx_g3]
]

Notice that monoid generators, printed as _gl, _g2, _g3, are used internally. These correspond to
the group generators a,b,b™".

Example
gap> KnuthBendix(R);
true
gap> R;
rec(
isRWS := true,
isConfluent := true,
generatorOrder := [_gl,_g2,_g3],
inverses := [_gl,_g3,_g2],
ordering := "shortlex",
equations := [
[_g1~2,IdWord],
[_g2*_g3,IdWord],
[_g3*_g2,IdWord],
[_g2~2,_g3],
[_g3*_glx_g3, _glx_g2* _gi],
[_g3~2,_g2],
[Lg2*_glx_g2, gl*x_g3*_gl],
[_g3*_glx_g2*_gl, g2%_glx_g3],
[_gl*_g2x_gl*x_g3,_g3*_glx_g2],
[_g2*_glx_g3x_gl,_g3*_glx_g2],
[Lgl*_g3%_glx_g2, g2x_gix_g3]
]
)

The equations field of R is now a complete system of rewriting rules.

kbmag 15

Example

gap> Size(R);

12

gap> EnumerateReducedWords(R, 0, 12);

[<identity ...>, a, a*b, a*b*a, a*b~-1, axb~-1%a, b, b*a, b*a*b~-1, b~-1,
b~-1*a, b~-1*xaxb]

We have enumerated all of the elements of the group - note that they are returned as words in the free
group F.

2.9.2 Example 2

We construct the Fibonacci group F(2,5), defined by a semigroup rather than a group presentation.
Interestingly these define the same structure (although they would not do so for F(2,r) with r even).

Example
gap> S := FreeSemigroup(5);;
gap> a := S.1;; b :=S8.2;; c¢ :=8.3;; d :=8.4;; e := S5.5;;
gap> Q := S/[[a*b,c], [b*c,d]l, [c*xd,e], [dxe,a], [exa,b]];
<fp semigroup on the generators [sl, s2, s3, s4, sb]>
gap> R := KBMAGRewritingSystem(Q);
rec(
isRWS := true,
silent := true,
generatorOrder := [_sl,_s2,_s3,_s4,_s5],
inverses := [,,,,],
ordering := "shortlex",
equations := [

[_s1%_s2,_s3],

[_s2%_s3,_s4],

[_s3%*_s4,_s5],

[_s4x_s5,_s1],

[_sb*x_s1,_s2]

]

)
gap> KnuthBendix(R);
true
gap> Size(R);
11
gap> EnumerateReducedWords(R, 0, 4);
[s1, s172, s1-2xs4, s1*s3, sl*s4, s2, s2°2, s2*s5, s3, s4, s5]

Let’s do the same thing using the RECURSIVE ordering.

Example

gap> SetOrderingOfKBMAGRewritingSystem(R, "recursive");
gap> KnuthBendix(R);
true

kbmag 16

gap> Size(R);

11

gap> EnumerateReducedWords(R, 0, 11);

[s1, s1~2, s1°3, s1°4, s1°5, s1°6, s1°7, s1°8, s1°9, s1°10, s1~11]

2.9.3 Example 3

The Heisenberg group is the free 2-generator nilpotent group of class 2. For KnuthBendix to com-
plete, we need to use the RECURSIVE ordering, and reverse our initial order of generators. (Alterna-
tively, we could avoid this reversal, by using a WREATHPROD ordering, and setting the levels of the
generators to be 6,5,4,3,2,1.)

Example
gap> F := FreeGroup("x","y","z");;
gap> x := F.1;; y :=F.2;; z :=F.3;;
gap> G := F/[Comm(y,x)*z~-1, Comm(z,x), Comm(z,y)];;
gap> R := KBMAGRewritingSystem(G);
rec(

isRWS := true,
generatorOrder := [_gl,_g2,_g3,_g4,_gb,_gb],
inverses := [_g2,_gl,_g4,_g3,_g6,_g5b],
ordering := "shortlex",
equations := [
[_gd*_g2*x_g3,_gb*_g2],
[_gbx_g2,_g2*_gb],
[_gb*_gb,_gix_gb]

]
)
gap> SetOrdering0fKBMAGRewritingSystem(R, "recursive");
gap> ReorderAlphabetOfKBMAGRewritingSystem(R, (1,6)(2,5)(3,4));
gap> R;
rec(
isRWS := true,
generatorOrder := [_g6,_gb,_g4,_g3,_g2,_gl],
inverses := [_g5,_g6,_g3,_g4,_gl,_g2],
ordering := "recursive",
equations := [
[_g4*_g2*_g3 , _g5*_g2] s
[_gb*_g2,_g2*_gb],
[_gb*_g4,_gi*_g6]
]
)
gap> SetInfolLevel(InfoRWS, 1);
gap> KnuthBendix(R);
#I Calling external Knuth-Bendix program.
#System is confluent.
#Halting with 18 equations.
#I External Knuth-Bendix program complete.
#I System computed is confluent.
true

kbmag 17

gap> R;
rec(
isRWS := true,
isConfluent := true,
generatorOrder := [_g6,_gb,_ g4, _g3,_g2,_gi],
inverses := [_gb,_g6,_g3,_g4,_gl,_g2],
ordering := "recursive",
equations := [
[_gb6*_gb,IdWord],
[_gb*_g6,IdWord],
[_g4*_g3,IdWord],
[_g3*_g4,IdWord],
[_g2*_gl,IdWord],
[_gl*_g2,IdWord],
[_gb*_g2,_g2*_gb],
[_gb*_g4,_gi*_gb],
[_gd*_g2,_g2*x_gd*_g5],
[_gb*_g2,_g2*_gb],
[_g6*_gl,_glx_gbl,
[_g5*_g4, g4*_gb],
[_gb*_g3,_g3*_gb],
[_g3*_gl,_glx_g3*_gb5],
[_gd*_gl,_glx_gd*_g6],
[_g3*_g2,_g2*_g3*_gb],
[_g5*_gl,_gl*_gb],
[_gb*_g3,_g3+*_g5b]
1
)
gap> Size(R);
infinity
gap> IsReducedWord(R, z*xy*x);
false
gap> ReducedForm(R, z*y*x);
Xky*Z~2
gap> IsReducedForm(R, x*y*z~2);
true

294 Example 4

This is an example of the use of the Knuth-Bendix algorithm to prove the nilpotence of a finitely
presented group. (The method is due to Sims, and is described in Chapter 11.8 of [Sim94].) This
example is of intermediate difficulty, and demonstrates the necessity of using the maxstoredlen
control parameter.
The group is
{a,b | [b,a,b],|b,a,a,a,a|,|b,a,a,a,b,a,al)

with left-normed commutators. The first step in the method is to check that there is a maximal nilpotent
quotient of the group, for which we could use, for example, the GAP NilpotentQuotient (nq:
NilpotentQuotient) command, from the package ng. We find that there is a maximal such quotient,
and it has class 7, and the layers going down the lower central series have the abelian structures

kbmag

[0,0], {01, [0], 0], [0], 2], [2].

By using the stand-alone ‘C’ nilpotent quotient program, it is possible to find a power-commutator
presentation of this maximal quotient. We now construct a new presentation of the same group, by
introducing the generators in this power-commutator presentation, together with their definitions as
powers or commutators of earlier generators. It is this new presentation that we use as input for the
Knuth-Bendix program. Again we use the RECURSIVE ordering, but this time we will be careful to

introduce the generators in the correct order in the first place!

Example

FreeG
F.1;;
= F.5;;

0
(]
o)
v
Q Qo B
.Ii]

rec(
isRWS :=
generator(Orde

inverses :=

ordering :=
equations :=
[_gldx_g16
[_gl2x_g16
[_gl0*_gi6
[_g8x_gl4dx
[_gb*_gl6%
[_gd*_gldx
[_g4=*_gl6,
[_gl2x_gl4
[_g8*_gl6,

roup(Ilhll’ Ilgll’ Ilfll, llell’ lldll, IICII, Ilbll, llall) ; ;
g :=F.2;; £ :=F.3;; e :=F.4;;
c :=F.6;; b :=F.7;; a :=F.8;;

F/[Comm(b,a)*c~-1, Comm(c,a)*d"-1, Comm(d,a)*e~-1, Comm(e,b)*f~-1,
> Comm(f,a)*g~-1, Comm(g,b)*h~-1, Comm(g,a), Comm(c,b), Comm(e,a)];;
gap> R:=KBMAGRewritingSystem(G) ;

true,
r := [_gl,_g2,_g3,_g4,_gb,_gb,_g7,_g8,_g9,_gl0,
_gll, _gl12,_g13,_gld, _gib, _gl6],
[_g2,_gl,_g4,_g3,_gb,_gb,_g8,_g7,_gl0,_g9,
_gl2,_gl1, _gl4, g13, _gl6,_gib],
"shortlex",
[
*_g13,_glix_gi6],
*_gll,_g9*_gl6],
*_g9,_g7*_gl6],
_g7,_gbx_gl4],
_gb,_g3*x_gl6],
_g3,_glx_gl4],
_gléx_ga],
,_glax_g12],
_gl6x_g8]

A little experimentation reveals that this example works best when only those equations with left and

right hand sides of lengths at most 10 are kept.

gap> 0 := Optio
gap> O.maxstore
gap> SetInfolev
gap> KnuthBendi
60 eqns; to
68 eqns; to
77 eqns; to
91 eqgns; to
102 eqns; t

Example

gap> SetOrdering0fKBMAGRewritingSystem(R, "recursive");

nsRecord0fKBMAGRewritingSystem(R);

dlen := [10,10];;

el(InfoRWS, 2);

x(R);

tal len: lhs, rhs = 129, 143; 25 states; O secs.
tal len: lhs, rhs = 364, 326; 28 states; 0 secs.
tal len: lhs, rhs = 918, 486; 45 states; O secs.
tal len: lhs, rhs = 728, 683; 58 states; 0 secs.
otal len: lhs, rhs = 1385, 1479; 89 states; 0 secs.

kbmag

310 eqns; total len: lhs, rhs = 4095, 4313; 489 states; 1 secs.
200 eqns; total len: lhs, rhs = 2214, 2433; 292 states; 1 secs.
194 eqns; total len: lhs, rhs = 835, 922; 204 states; 1 secs.

157 eqns; total len: lhs, rhs = 702, 723; 126 states; 1 secs.

151 eqns; total len: lhs, rhs = 553, 444; 107 states; 1 secs.

101 eqns; total len: lhs, rhs = 204, 236; 19 states; 1 secs.
#No new eqns for some time - testing for confluence

#System is not confluent.

172 eqns; total len: lhs, rhs = 616, 473; 156 states; 1 secs.

171 eqns; total len: lhs, rhs = 606, 472; 156 states; 1 secs.
#No new eqns for some time - testing for confluence

#System is not confluent.

151 eqns; total len: lhs, rhs = 452, 453; 92 states; 1 secs.

151 eqns; total len: lhs, rhs = 452, 453; 92 states; 1 secs.
#No new eqns for some time - testing for confluence

#System is not confluent.

101 eqns; total len: lhs, rhs = 200, 239; 15 states; 1 secs.

101 eqns; total len: lhs, rhs 200, 239; 15 states; 1 secs.
#No new eqns for some time - testing for confluence
#System is confluent.
#Halting with 101 equations.
WARNING: The monoid defined by the presentation may have changed,
since equations have been discarded.
If you re-run, include the original equations.
#Exit status is O
#I External Knuth-Bendix program complete.
#WARNING: Because of the control parameters you set, the system may
not be confluent. Unbind the parameters and re-run KnuthBendix
to check!
#I System computed is NOT confluent.
false

19

Now it is essential to re-run with the maxstoredlen limit removed to check that the system really is

confluent.
Example

gap> Unbind(0.maxstoredlen);

gap> KnuthBendix(R);
101 eqgns; total len: lhs, rhs = 200, 239; 15 states; O secs.
#No new eqns for some time - testing for confluence

#System is confluent.

#Halting with 101 equations.

#Exit status is O

#I External Knuth-Bendix program complete.

#I System computed is confluent.

true

In fact, in this case, we did have a confluent set already.

kbmag 20

Inspection of the confluent set now reveals it to be precisely a power-commutator presentation of
a nilpotent group, and so we have proved that the group we started with really is nilpotent. Of course,
this means also that it is equal to its largest nilpotent quotient, of which we already know the structure.

2.9.5 Example 5

Our final example illustrates the use of the AutomaticStructure command, which runs the auto-
matic groups programs. The group has a balanced symmetrical presentation with 3 generators and 3
relators, and was originally proposed by Heineken as a possible example of a finite group with such a
presentation. In fact, the AutomaticStructure (2.6.1) command proves it to be infinite.

This example is of intermediate difficulty, but there is no need to use any special options. It
takes a few minutes to run on a WorkStation. It works better with the optional /arge parameter of
AutomaticStructure set to true.

We will not attempt to explain all of the output in detail here; the interested user should consult the
documentation for the stand-alone KBMag package. Roughly speaking, it first runs the Knuth-Bendix
program, which does not halt with a confluent rewriting system, but is used instead to construct a word-
difference finite state automaton. This in turn is used to construct the word-acceptor and multiplier
automata for the group. Sometimes the initial constructions are incorrect, and part of the procedure
consists in checking for this, and making corrections. In fact, in this example, the correct automata
are considerably smaller than the ones first constructed. The final stage is to run an axiom-checking
program, which essentially checks that the automata satisfy the group relations. If this completes
successfully, then the correctness of the automata has been proved, and they can be used for correct
word-reduction and enumeration in the group.

Example

gap> F := FreeGroup("a", "b", "c");;

gap> a := F.1;; b :=F.2;; c :=F.3;;

gap> G := F/[Comm(a,Comm(a,b))*c~-1, Comm(b,Comm(b,c))*a"~-1,
> Comm(c,Comm(c,a))*b~-1];;

gap> R := KBMAGRewritingSystem(G);

rec(

isRWS := true,
verbose := true,
generatorOrder := [_gl,_g2,_g3,_g4,_g5,_g6é]l,
inverses := [_g2,_gl,_g4,_g3,_gb6,_g5b],
ordering := "shortlex",
equations := [
[_g2*x_gd*_g2*_g3*_gl, gb*_gix_g2* g3],
[_g4*_gb*_gix_gbx_g3,_gl*_gbx_gi* _gb],
[_gb*_g2*x_gbx_gl*_gb, g3*_g2*_gb*_gl]

]

)
gap> SetInfolevel(InfoRWS, 1);
gap> AutomaticStructure(R, true);
#I Calling external automatic groups program.
#Running Knuth-Bendix Program

(pathname) /kbprog -mt 20 -hf 100 -cn O -wd -me 262144 -t 500 (filename)
#Halting with 42317 equatioms.
#First word-difference machine with 271 states computed.
#Second word-difference machine with 271 states computed.

kbmag

#System is confluent, or halting factor condition holds.

#Running program to construct word-acceptor and multiplier automata
(pathname) /gpmakefsa -1 (filename)

#Word-acceptor with 1106 states computed.

#General multiplier with 2428 states computed.

#Validity test on general multiplier succeeded.

#Running program to verify axioms on the automatic structure
(pathname) /gpaxioms -1 (filename)

#General length-2 multiplier with 2820 states computed.

#Checking inverse and short relatioms.

#Checking relation: _g2*_gdx_g2*_g3*x_gl = _gb*_gd*x_g2*_g3

#Checking relation: _gé*_gb6x_gd*_gb*_g3 = _glx_gb*_gd*_gb

#Checking relation: _gb6*_g2%_gb*_glx_gb = _g3*_g2*_g6*_gl

#Axiom checking succeeded.

#I Computation was successful - automatic structure computed.

#Minimal reducible word acceptor with 1058 states computed.

#Minimal Knuth-Bendix equation fsa with 1891 states computed.

#Correct diffl fsa with 271 states computed.

#Correct diff2 fsa with 271 states computed.

true

gap> Size(R);

infinity

gap> Order(R, a);
infinity

gap> Order(R, Comm(a,b));
infinity

21

Chapter 3

The Knuth-Bendix program on cosets

It is possible to use the Knuth-Bendix and Automatic Structure program on cosets of a specified
subgroup H of G. Most of the functions in the preceding chapter have analogues for cosets rather than
for elements. It is also possible sometimes to compute a complete rewriting system or a subgroup
presentation of H.

3.1 Subgroups, cosets and subgroup presentations

The functions in this section are currently only applicable when the rewriting system is defined from
a group G.

3.1.1 SubgroupOfKBMAGRewritingSystem

> Subgroup0fKBMAGRewritingSystem(rws, H) (function)

The subgroup H of the group G (= SemigroupO0fRewritingSystem(rws)) from which rws is
defined can be specified either as a subgroup of G; or as a list of elements of G that generate H; or
as a subgroup of F' = FreeStructureOfRewritingSystem(rws) that maps onto H; or as a list of
elements of F that generate a subgroup mapping onto H.

Subgroup0fKBMAGRewritingSystem returns a rewriting system subrws for H, but subrws has
no rules, and is only intended to be used as a parameter in the functions that follow.

3.1.2 ResetRewritingSystemOnCosets

> ResetRewritingSystemOnCosets(rws, subrws) (function)

This function resets subrws back to its form as it was before the application of
KnuthBendixOnCosets (3.2.1) or AutomaticStructureOnCosets (3.3.1). The normal form and
reduction algorithms on cosets will be unavailable after this call.

Any optional control parameters set for rws will automatically be used when applying the Knuth-
Bendix and Automatic Structure functions on cosets, that are now to be described.

22

kbmag 23

3.2 The Knuth-Bendix program on cosets

3.2.1 KnuthBendixOnCosets

> KnuthBendixOnCosets(rws, subrws) (operation)
> KnuthBendixOnCosetsWithSubgroupRewritingSystem(rws, subrws) (operation)

KnuthBendixOnCosets runs the external Knuth-Bendix program on the rewriting system rws
with respect to the cosets of the subgroup corresponding to subrws. It returns true if it finds a
confluent rewriting system on coset representatives, and otherwise false.

If KnuthBendixOnCosets halts without finding a confluent system, but still manages to output the
current system and update rws, then it is possible to use the resulting rewriting system to reduce coset
representatives, and count and enumerate the irreducible coset representatives; it cannot be guaranteed
that the irreducible coset representatives are all in normal form, however.

KnuthBendixOnCosetsWithSubgroupRewritingSystem does the same and, in addition, tries
to compute a confluent rewriting system for the subgroup H.

3.2.2 RewritingSystemOfSubgroupOfKBMAGRewritingSystem

> RewritingSystemOfSubgroup0fKBMAGRewritingSystem(rws, subrws) (function)
Use this after a successful call of KnuthBendixOnCosetsWithSubgroupRewritingSystem

(3.2.1). It returns a confluent rewriting system for H on a generating set corresponding to the gen-
erators of H that were used to define subrws.

3.2.3 IsConfluentOnCosets

> IsConfluentOnCosets(rws) (operation)

This operation returns true if rws is a rewriting system on cosets that is known to be confluent.

3.3 The automatic cosets program

3.3.1 AutomaticStructureOnCosets

> AutomaticStructureOnCosets(rws, subrws[, large, filestore, diff1]) (function)
> AutomaticStructureOnCosetsWithSubgroupPresentation(rws, subrws[, large,
filestore, diff1]) (function)

AutomaticStructureOnCosets runs the external automatic cosets program on the rewriting sys-
tem rws with respect to the cosets of the subgroup H from which subrws was defined. It returns true
if successful and false otherwise.

The optional parameters to AutomaticStructureOnCosets are the same as for
AutomaticStructure (2.6.1).

The ordering of rws must be SHORTLEX.

AutomaticStructureOnCosetsWithSubgroupPresentation does the same and, in addition,
tries to compute a presentation of the subgroup H.

kbmag 24

3.3.2 PresentationOfSubgroupOfKBMAGRewritingSystem

> Presentation0OfSubgroup0fKBMAGRewritingSystem(rws, subrws) (function)

Use this after a successful call of AutomaticStructureOnCosetsWithSubgroupPresentation
(3.3.1). It returns a presentation for H, but this is not on the generators used to define H.

3.4 Word reduction on cosets

3.4.1 IsReducedCosetRepresentative

> IsReducedCosetRepresentative(rws, subrws, w) (operation)

This operation tests whether the word w in the generators of the freestructure
FreeStructure(rws) of the rewriting system system rws is reduced or not as a coset repre-
sentative of the subgroup H of G. It returns true or false.

IsReducedCosetRepresentative can only be used after KnuthBendixOnCosets (3.2.1)
or AutomaticStructureOnCosets (3.3.1) has been run successfully on rws and subrws. In
the former case, if KnuthBendixOnCosets halted without a confluent set of rules, then ir-
reducible words are not necessarily in normal form (but reducible words are definitely not
in normal form). If KnuthBendixOnCosets completes with a confluent rewriting system or
AutomaticStructureOnCosets completes successfully, then it is guaranteed that all irreducible
words are in normal form.

3.4.2 ReducedCosetRepresentative

> ReducedCosetRepresentative(rws, subrws, w) (operation)
> ReducedForm0fCosetRepresentative(rws, subrws, w) (operation)

ReducedCosetRepresentative reduces the word w in the generators of the free structure
FreeStructure(rws) of the rewriting system rws as a coset representative of the subgroup H from
which subrws was defined, and returns the result.

ReducedFormOfCosetRepresentative can only be used after KnuthBendixOnCosets (3.2.1)
or AutomaticStructureOnCosets (3.3.1) has been run successfully on rws and subrws. In the for-
mer case, if KnuthBendix0OnCosets halted without a confluent set of rules, then the irreducible word
returned is not necessarily in normal form. If KnuthBendixOnCosets completes with a confluent
rewriting system or AutomaticStructureOnCosets completes successfully, then it is guaranteed
that all irreducible words are in normal form.

3.5 Counting and enumerating irreducible words for cosets

3.5.1 Index

> Index(rws, subrws) (method)

Returns the number of irreducible words for coset representatives of the subgroup H of G corre-
sponding to subrws.

kbmag 25

Index can only be used after KnuthBendixOnCosets (3.2.1) or AutomaticStructureOnCosets
(3.3.1) has been run successfully on rws and subrws. In the former case, if KnuthBendixOnCosets
halted without a confluent set of rules, then the number of irreducible words may be greater than the
number of words in normal form (which is equal to the index of H in G). If KnuthBendixOnCosets
completes with a confluent rewriting system or AutomaticStructureOnCosets completes success-
fully, then it is guaranteed that Index will return the correct index of H in G.

3.5.2 EnumerateReducedCosetRepresentatives

> EnumerateReducedCosetRepresentatives(rws, subrws, min, max) (operation)

Enumerate all irreducible words for coset representatives of H in G, that have lengths between min
and max (inclusive), which should be non-negative integers. The result is returned as a list of words.
The enumeration is by depth-first search of a finite state automaton, and so the words in the list returned
are ordered lexicographically (not by SHORTLEX). EnumerateReducedCosetRepresentatives can
only be used after KnuthBendixOnCosets (3.2.1) or AutomaticStructureOnCosets (3.3.1) has
been run successfully on rws and subrws. In the former case, if KnuthBendixOnCosets halted
without a confluent set of rules, then not all irreducible words in the list returned will necessar-
ily be in normal form. If KnuthBendixOnCosets completes with a confluent rewriting system or
AutomaticStructureOnCosets completes successfully, then it is guaranteed that all words in the
list will be in normal form.

3.5.3 GrowthFunctionOfCosetRepresentatives

> GrowthFunctionOfCosetRepresentatives(rws, subrws) (function)

Returns the growth function of the set of irreducible words for coset representatives of H in G,
where subrws and rws are the rewriting systems for H and G. This is a rational function, of which
the coefficient of x" in its Taylor expansion is equal to the number of coset representatives words of
length n.

If the coefficients in this rational function are larger than about 16000 then strange error messages
will appear and fail will be returned.

GrowthFunctionOfCosetRepresentatives can only be used after KnuthBendixOnCosets
(3.2.1) or AutomaticStructureOnCosets (3.3.1) has been run successfully on rws and subrws.
In the former case, if KnuthBendixOnCosets halted without a confluent set of rules, then not all
irreducible words in the list returned will necessarily be in normal form. If KnuthBendixOnCosets
completes with a confluent rewriting system or AutomaticStructureOnCosets completes success-
fully, then it is guaranteed that all words in the list will be in normal form.

3.6 Examples of the use of Rewriting System on Cosets

Here are two examples to illustrate the operations described above.

3.6.1 Example 1
Example

gap> F := FreeGroup("a", "b", "c");;

kbmag 26

gap> a := F.1;; b :=F.2;; c :=F.3;;
gap> G := F/[b~3,c"3, (b*xc) "4, (b*c~-1)"5,a~-1*b~-1xc*bkcxb~-1*cxb*xc~-1];
<fp group on the generators [a, b, ¢ 1>
gap> R := KBMAGRewritingSystem(G);
rec(

isRWS := true,

silent := true,

generatorOrder := [_gl,_g2,_g3,_g4,_gb,_gb],
inverses := [_g2,_gl,_g4,_g3,_g6,_gb],

ordering := "shortlex",
equations := [
[_g3~2,_g4],
[_g5~2,_g6],

[_g3*_gb*_g3*_gb,_gb*_gi*_gb*_gil,
[_g3*_gb*_g3*_gb*_g3,_gbx_gd*_gb*_gix_gb],
[_g2*_g4*_gbx_g3* _gb, gb*_gi* gb*_g3]
]
)
gap> S := SubgroupOfKBMAGRewritingSystem(R, [a~3, c*a~2]);
rec(
isRWS := true,
silent := true,
generatorOrder := [_x1,_X1,_x2,_X2],
inverses := [_X1,_x1,_X2,_x2],

ordering := "shortlex",

equations := [

]
)
gap> KnuthBendixOnCosetsWithSubgroupRewritingSystem(R, S);
true
gap> Index(R, S);
18
gap> IsReducedCosetRepresentative(R, S, bxaxbxa);
false
gap> ReducedForm0fCosetRepresentative(R, S, bxaxb*a);
b~-1*%xa~-1
gap> EnumerateReducedCosetRepresentatives(R, S, 0, 4);
[<identity ...>, a, a*b, a*b*c, a*b~-1, a~-1, a~-1%b, a~-1xbxc, a~-1*b~-1,

b, bxc, bxc*a, bk*c*xa~-1, bxc~-1, b~-1, b~-1*a, b~-1*a~-1, b~-1*xa~-1*xb]
gap> SS := RewritingSystemOfSubgroupO0fKBMAGRewritingSystem(R, S);;
gap> Size(SS);
60

3.6.2 Example 2

We find a free subgroup of the Fibonacci group F(2,8). This example may take about 20 minutes to
run on a typical WorkStation.
Example

gap> F := FreeGroup(8);;
gap> a := F.1; b :=F.2; c :=F.3; d :=F.4;

kbmag

gap> =F.5; £ :=F.6; g :=F.7; h :=F.8;

gap> G := F/[axb*c™-1, bxc*d~-1, ckxd*e~-1, d*exf~-1,

> exfxg~-1, f*g*h~-1, gxhxa~-1, h*a*b~-1];

gap> R := KBMAGRewritingSystem(G);;

gap> S := SubgroupOfKBMAGRewritingSystem(R, [a,e]);;

gap> Automat1cStructureOnCosetsW1thSubgroupPresentat1on(R, S);
gap> P := PresentationOfSubgroupOfKBMAGRewritingSystem(R, S);
<fp group on the generators [f1i, £3 1>

gap> RelatorsO0fFpGroup(P);

[1]

gap> Index(R, S);

infinity

[0}
|

Chapter 4

The stand-alone package

The KBMag package contains GAP interfaces to many of the functions for manipulating finite state
automata (fsa) that are available in the stand-alone. We shall list these here, without giving much
detail. For more detail, the user could try looking in the source file gap/fsa4.g.

4.1 Functions for manipulating finite state automata

fsa are currently implemented as GAP records, as they were previously in GAP3. This interface may
be updated to the style of GAP4 at some stage. (Note that the abbreviation fsa will be used for both
singular and the plural.)

The alphabet of an fsa is itself a record that must contain at least the two components type and
size, where type is a string, and size a positive integer. The easiest possibility is to use the type
simple, and then no other record components are necessary. There are several more complicated
possibilities, which are used by the other rewriting system functions. For example, there is the type
identifiers, for which fields format and names are necessary. For example:

Example
gap> M := FreeMonoid(3);;
gap> alph := rec(type := "identifiers", size := 3,
> format := "dense", names := [M.1,M.2,M.3]);;

defines a valid alphabet for an fsa. The members of the alphabet are referred to as letters, and can
be represented either by a positive integer or by their name (usually a generator of a free group or
monoid) if they have one.

The functions ReductionAutomaton (2.5.2), WordAcceptor (2.6.2),
FirstWordDifferenceAutomaton (2.6.2), SecondWordDifferenceAutomaton (2.6.2) and
GeneralMultiplier (2.6.2) mentioned in earlier sections all return a fsa. The other possibilities for
the user to construct a fsa are to use the function FSA (4.1.3) or to read one in from a file. In the latter
case, the user must immediately call InitializeFSA (4.1.2) on the record that has been read in. For
example, running GAP from the package directory:

Example

gap> Read("standalone/fsa_data/fsa_2");

28

kbmag 29

gap> InitializeFSA(fsa_2);

4.1.1 IsInitializedFSA

> IsInitializedFSA(fsa) (function)

Tests whether fsa is a record describing a valid initialized fsa.

4.1.2 InitializeFSA

> InitializeFSA(fsa) (function)

Initializes a record representing a fsa that has been read in from a file.

4.1.3 FSA

> FSA(alph) (function)

Returns an initialized fsa with alphabet alph having one state that is an initial and final state, and
no transitions (edges).
The arguments of the following functions must be initialized fsa.

4.14 WriteFSA

> WriteFSA(fsa) (function)

Displays fsa nicely. (In a proper implementation, this would be the ViewObj function.)

4.1.5 IsDeterministicFSA

> IsDeterministicFSA(fsa) (function)

Tests whether fsa is a deterministic fsa. Many of the functions below work only for determin-
istic fsa. A deterministic fsa with the same language as fsa can be constructed with the function
DeterminizeFSA (4.2.1).

4.1.6 AlphabetFSA

> AlphabetFSA(fsa) (function)
> StatesFSA(fsa) (function)

Return, respectively, the records representing the alphabet and state-set of fsa.

kbmag 30

4.1.7 NumberOfStatesFSA

> Number(QOfStatesFSA(fsa) (function)

Returns the number of states of fsa.

4.1.8 NumberOfLettersFSA

> NumberOfLettersFSA(fsa) (function)
> SizeOfAlphabetFSA(fsa) (function)

Returns the size of the alphabet of fsa.

4.1.9 AcceptingStatesFSA

> AcceptingStatesFSA(fsa) (function)

Returns the list of accepting states of fsa.

4.1.10 InitialStatesFSA

> InitialStatesFSA(fsa) (function)

Returns the list of initial states of fsa.

4.1.11 DenseDTableFSA

> DenseDTableFSA(fsa) (function)

fsa must be deterministic. The transition table is returned as a list of lists, where the e-th entry in
the s-th inner list is TargetDFA (4.1.13), called as TargetDFA(fsa,e,s) ;.

4.1.12 SparseTableFSA

> SparseTableFSA(fsa) (function)

The transition table is returned as a list of lists, where each entry in the s-th inner list is is a two-
element list [e,t] of integers that represents a transition from state number s to state number ¢ under
letter number e. We can also have e = 0, representing transitions with no label (€ transitions).

4.1.13 TargetDFA

> TargetDFA(fsa, e, s) (function)

fsa must be a deterministic fsa, e should be a number or name of a letter of the alphabet, and s a
number of a state of fsa. The target of s under e is returned, or O if there is no target.

kbmag 31

4.1.14 TargetsFSA

> TargetsFSA(fsa, e, s) (function)

Similar to TargetDFA (4.1.13), but fsa need not be deterministic, and a list of targets is returned.

4.1.15 SourcesFSA

> SourcesFSA(fsa, e, s) (function)

Similar to TargetsFSA (4.1.14), but the list of sources of transitions to s under e is returned. Note
that e can also be zero here.

4.1.16 WordTargetDFA

> WordTargetDFA(fsa, w) (function)

fsa must be a deterministic fsa, and w should be a list of integers or a word in the alphabet (in the
case when the alphabet is defined from a free group or monoid). The target of the initial state of fsa
under w is returned, or O if there is no such target.

4.1.17 IsAcceptedWordDFA
> IsAcceptedWordDFA(fsa, w) (function)
fsa must be a deterministic fsa, and w should be a list of integers or a word in the alphabet (in the

case when the alphabet is defined from a free group or monoid). This function tests whether w is in
the language of fsa.

4.1.18 AddStateFSA

> AddStateFSA(fsa) (function)

Adds an extra non-accepting state to fsa with no transitions to or from it.

4.1.19 DeleteStateFSA

> DeleteStateFSA(fsa) (function)

Deletes the highest numbered state together with all transitions to and from it from fsa. Use
PermuteStatesFSA (4.1.20) first to delete a different state.

4.1.20 PermuteStatesFSA

> PermuteStatesFSA(fsa, p) (function)

p should be a permutation of [1..ns], where fsa has ns states. The states are permuted, where the
original state number n becomes the new state number n”.

kbmag 32

4.1.21 AddLetterFSA
> AddLetterFSA(fsal, name]) (function)
Adds an extra letter to the alphabet of fsa with no associated transitions. If the alphabet of fsa is de-

fined over a free group or monoid, then name specifies the element of this free structure corresponding
to the new letter.

4.1.22 DeleteLetterFSA

> DeletelLetterFSA(fsa) (function)

Deletes the highest numbered letter together with all associated transitions from the alphabet of
fsa. Use PermutelLettersFSA (4.1.23) first to delete a different letter.

4.1.23 PermuteLettersFSA

> PermutelettersFSA(fsa, p) (function)

p should be a permutation of [1..na], where the alphabet of fsa has na letters. The letters are
permuted, where the original letter number n becomes the new letter number n”.

4.1.24 AddEdgeFSA

> AddEdgeFSA(fsa, e, s, t) (function)

Adds an extra transition to fsa with source s, target ¢ and letter e. If there is already such a
transition, then this function does nothing.

4.1.25 DeleteEdgeFSA

> DeleteEdgeFSA(fsa, e, s, t) (function)

Deletes the transition from fsa with source s, target ¢ and letter e, if there is one.

4.1.26 SetAcceptingFSA

> SetAcceptingFSA(fsa, s, flag) (function)

flag should be true or false, and state number s is made accepting or non-accepting, respec-
tively.

4.1.27 SetlnitialFSA

> SetInitialFSA(fsa, s, flag) (function)

flag should be true or false, and state number s is made initial or non-initial, respectively.

kbmag 33

4.1.28 IsAccessibleFSA

> IsAccessibleFSA(fsa) (function)

Tests whether fsa is accessible; that is, whether all states can be reached from the initial states.

4.1.29 AccessibleFSA

> AccessibleFSA(fsa) (function)

Removes all inaccessible states from fsa thus rendering it accessible without altering its language.

4.1.30 IsTrimFSA

> IsTrimFSA (fsa) (function)

Tests whether fsa is trim; that is, whether all states can be reached from the initial states, and a
final state can be reached from all states.

4.1.31 TrimFSA

> TrimFSA(fsa) (function)

Removes all inaccessible states from fsa and all states from which an accepting state cannot be
reached, thus rendering it trim without altering its language.

4.1.32 IsBFSFSA

> IsBFSFSA(fsa) (function)

Tests whether fsa is in bfs (breadth-first-search) form; that is, whether the initial states come first
and the other states appear in ascending order if one scans the transition table first by state number and
then by alphabet number. Note that fsa must be accessible for it to be bfs.

4.1.33 BFSFSA

> BFSFSA (fsa) (function)

Replaces fsa by one with the same language but in bfs form. This can be useful for comparing the
languages of two fsa. In fact MinimizeFSA (4.2.2) and BFSFSA are applied in turn to a deteministic
fsa, then the resulting transition table is uniquely determined by the language of the fsa.

4.1.34 LSizeDFA

> LSizeDFA(fsa) (function)

The size of the acceted language of fsa, which must be deterministic. This only works if fsa is
trim. If not, then TrimFSA (4.1.31) must be called first.

kbmag 34

4.1.35 LEnumerateDFA

> LEnumerateDFA(fsa, min, max) (function)
The words in the language of fsa of length [satisfying min <[< max are returned in a list. The

words will either be lists of integers, for simple type alphabets, of lists of words in the underlying free
group or monoid for alphabets of type identifiers.

4.2 Functions calling external programs

The remaining fsa functions all call external programs from the standalone. All of them except
DeterminizeFSA (4.2.1) take only deterministic fsa as input, and all of them return deterministic
fsa as output.

4.2.1 DeterminizeFSA

> DeterminizeFSA(fsa) (function)

Returns a deterministic fsa with the same language as fsa.

4.2.2 MinimizeFSA

> MinimizeFSA(fsa) (function)

Returns a fsa with the same language as fsa and a minimal number of states.

4.2.3 NotFSA

> NotFSA(fsa) (function)

Returns a fsa with the same alphabet as fsa whose language is the complement of that of fsa.

4.2.4 StarFSA

> StarFSA(fsa) (function)

Returns a fsa whose language is L*, where L is the langauge of fsa.

4.2.5 ReverseFSA

> ReverseFSA(fsa) (function)

Returns a fsa whose language consists of the reversed words in the language of fsa.

kbmag 35

4.2.6 ExistsFSA

> ExistsFSA(fsa) (function)

fsa should be two-variable fsa on an alphabet A. An fsa is returned that accepts a word w; € A* if
and only if there exists a word w, € A* with (w1, w,) in the language of fsa.

4.2.77 SwapCoordsFSA

> SwapCoordsFSA(fsa) (function)

fsa should be two-variable fsa on an alphabet A. A two-variable fsa on A is returned that accepts
(wi,wy) if and only if (wp,w;) is accepted by fsa.

4.2.8 AndFSA

> AndFSA (fsal 5 fsa2) (function)

fsal and fsa2 must have the same alphabet. The returned fsa has language equal to the intersection
of those of fsal and fsa2.

4.2.9 OrFSA

> OrFSA (fsal 5 fsa2) (function)

fsal and fsa2 must have the same alphabet. The returned fsa has language equal to the union of
those of fsal and fsa2.

4.2.10 ConcatFSA

> ConcatFSA(fsal, fsa2) (function)

fsal and fsa? must have the same alphabet. The returned fsa accepts words of the form wiwy,
where w; and w; are in the languages of fsal and fsa2, respectively.

4.2.11 LanguagesEqualFSA

> LanguagesEqualFSA(fsal, fsa2) (function)

fsal and fsa2 must have the same alphabet. This function tests whether the languages of fsal and
fsa2 are equal, and returns true or false.

4.2.12 GrowthFSA

> GrowthFSA(fsa) (function)

Returns the growth function of fsa. This is a rational function, of which the the coefficient of x" in
its Taylor expansion is equal to the number of words of length # in the accepted language of fsa.

kbmag 36

If the coefficients in this rational function are larger than about 16000 then strange error messages
will appear and fail will be returned.

References

[ECH"92] D.B.A. Epstein, J.W. Cannon, D.F. Holt, S. Levy, M.S. Paterson, and W.P. Thurston. Word

[GH17]

[HERO91]

[Holar]

[Horl7]

[LeC86]

[LN17]

[Sim94]

Processing and Group Theory. Jones and Bartlett, 1992. 4

S. Gutsche and M. Horn. AutoDoc - Generate documentation from GAP source code
(Version 2017.09.15), 2017. GAP package, https://github.com/gap-packages/
AutoDoc. 2

D.F. Holt, D.B.A. Epstein, and S. Rees. The use of knuth-bendix methods to solve the
word problem in automatic groups. J. Symbolic Computation, 12:397-414, 1991. 4

Derek F. Holt. The warwick automatic groups software. In Proceedings of DIMACS
Conference on Computational Group Theory, Rutgers, March 1994., To appear. 4

M. Horn. GitHubPagesForGAP - Template for easily using GitHub Pages within
GAP packages (Version 0.2), 2017. GAP package, https://gap-system.github.io/
GitHubPagesForGAP/. 2

P. LeChenadec. Canonical Forms in Finitely Presented Algebras. London Pitman and
New York, Wiley, 1986. 4

F. Liibeck and M. Neunhoffer. GAPDoc (Version 1.6). RWTH Aachen, 2017. GAP pack-
age, http://www.math.rwth-aachen.de/ Frank.Luebeck/GAPDoc/index.html. 2

Charles C. Sims. Computation with Finitely Presented Groups. Cambridge, 1994. 4, §,
17

37

https://github.com/gap-packages/AutoDoc
https://github.com/gap-packages/AutoDoc
https://gap-system.github.io/GitHubPagesForGAP/
https://gap-system.github.io/GitHubPagesForGAP/
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html

Index

AcceptingStatesFSA, 30

AccessibleFSA, 33

AddEdgeFSA, 32

AddLetterFSA, 32

AddStateFSA, 31

Alphabet, 7

AlphabetFSA, 29

alternating group A4 example, 14

AndFSA, 35

automatic cosets program, 23

automatic groups program, 11

AutomaticStructure, 11

AutomaticStructureOnCosets, 23

AutomaticStructureOnCosetsWith-
SubgroupPresentation, 23

BFSFSA, 33
ConcatFSA, 35

DeleteEdgeFSA, 32
DeleteLetterFSA, 32
DeleteStateFSA, 31
DenseDTableFSA, 30
DeterminizeFSA, 34

EnumerateReducedCosetRepresentatives,
25

EnumerateReducedWords, 13

examples of rewriting systems, 13

ExistsFSA, 35

external programs, 34

ExternalWordToInternalWordOfRewriting-
System, 7

Fibonacci group F(2,5) example, 15
finite state automata, 28
FirstWordDifferenceAutomaton, 11
FreeStructureOfSystem, 7

FSA, 29

GeneralMultiplier, 12

GrowthFSA, 35

GrowthFunction, 13
GrowthFunctionOfCosetRepresentatives,

25
Heisenberg group example, 16

Index, 24
InfoRWS, 9
InitializeFSA, 29
InitialStatesFSA, 30
InternalWordToExternalWordOfRewriting-
System, 7
IsAcceptedWordDFA, 31
IsAccessibleFSA, 33
IsBFSFSA, 33
IsConfluent, 7
IsConfluentOnCosets, 23
IsDeterministicFSA, 29
IsInitializedFSA, 29
IsKBMAGRewritingSystemRep, 6
IsReducedCosetRepresentative, 24
IsReducedForm, 12
IsReducedWord, 12
IsRewritingSystem, 6
IsTrimFSA, 33

kbmag, 4
KBMAGRewritingSystem, 6
Knuth-Bendix program, 10
Knuth-Bendix program on cosets, 23
KnuthBendix, 10
KnuthBendix0OnCosets, 23
KnuthBendixOnCosetsWithSubgroup-
RewritingSystem, 23

LanguagesEqualFSA, 35
LEnumerateDFA, 34
LSizeDFA, 33

38

kbmag

MakeConfluent, 10
MinimizeFSA, 34

NotFSA, 34
NumberOfLettersFSA, 30
NumberOfStatesFSA, 30

OptionsRecord0fKBMAGRewritingSystem, 9
Order, 13
Ordering0fKBMAGRewritingSystem, 8
Ordering0fRewritingSystem, §

OrFSA, 35

PermutelLettersFSA, 32

PermuteStatesFSA, 31

PresentationOfSubgroup0fKBMAG-
RewritingSystem, 24

ReducedCosetRepresentative, 24
ReducedForm, 12
ReducedForm0fCosetRepresentative, 24
ReducedWord, 12
ReductionAutomaton, 11
ReorderAlphabetOfKBMAGRewritingSystem,
8

ResetRewritingSystem, 7
ResetRewritingSystemOnCosets, 22
ReverseFSA, 34
rewriting systems

control parameters, 9

creating, 6

elementary functions, 6

examples, 13

setting the ordering, 8
rewriting systems on cosets

creating, 23

examples, 25
RewritingSystemOfSubgroup0fKBMAG-

RewritingSystem, 23

Rules, 7

SecondWordDifferenceAutomaton, 11
SemigroupOfRewritingSytem, 7
SetAcceptingFSA, 32

SetInitialFSA, 32
SetOrdering0fKBMAGRewritingSystem, 8
Size, 12

SizeOfAlphabetFSA, 30

SourcesFSA, 31

SparseTableFSA, 30

stand-alone package, 28

StarFSA, 34

StatesFSA, 29
Subgroup0fKBMAGRewritingSystem, 22
SwapCoordsFSA, 35

TargetDFA, 30
TargetsFSA, 31
TrimFSA, 33

WordAcceptor, 11
WordMonoidOfRewritingSystem, 7
WordTargetDFA, 31

WriteFSA, 29

39

	Introduction
	The Knuth-Bendix program on semigroups, monoids and groups
	Creating a rewriting system
	Elementary functions on rewriting systems
	Setting the ordering
	Control parameters
	The Knuth-Bendix program
	The automatic groups program
	Word reduction
	Counting and enumerating irreducible words
	Rewriting System Examples

	The Knuth-Bendix program on cosets
	Subgroups, cosets and subgroup presentations
	The Knuth-Bendix program on cosets
	The automatic cosets program
	Word reduction on cosets
	Counting and enumerating irreducible words for cosets
	Examples of the use of Rewriting System on Cosets

	The stand-alone package
	Functions for manipulating finite state automata
	Functions calling external programs

	References
	Index

