
AutoDoc
Generate documentation from GAP

source code
2019.02.22

22 February 2019

Sebastian Gutsche

Max Horn

Sebastian Gutsche
Email: gutsche@mathematik.uni-kl.de
Homepage: http://wwwb.math.rwth-aachen.de/~gutsche/
Address: Department of Mathematics

University of Kaiserslautern
67653 Kaiserslautern
Germany

Max Horn
Email: max.horn@math.uni-giessen.de
Homepage: https://www.quendi.de/math
Address: AG Algebra

Mathematisches Institut
Justus-Liebig-Universität Gießen
Arndtstraße 2
35392 Gießen
Germany

mailto://gutsche@mathematik.uni-kl.de
http://wwwb.math.rwth-aachen.de/~gutsche/
mailto://max.horn@math.uni-giessen.de
https://www.quendi.de/math


AutoDoc 2

Abstract
AutoDoc is a GAP package whose purpose is to aid GAP package authors in creating and maintaining the
documentation of their packages.

Copyright
© 2012-2017 by Sebastian Gutsche and Max Horn

This package may be distributed under the terms and conditions of the GNU Public License Version 2.

Acknowledgements
This documentation was prepared using the GAPDoc package [LN12].



Contents

1 Getting started using AutoDoc 4
1.1 Creating a package manual from scratch . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Documenting code with AutoDoc . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Using AutoDoc in an existing GAPDoc manual . . . . . . . . . . . . . . . . . . . . 6
1.4 Scaffolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 AutoDoc worksheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 AutoDoc documentation comments 13
2.1 Documenting declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Other documentation comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Title page commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Plain text files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Markdown-like formatting of text in AutoDoc . . . . . . . . . . . . . . . . . . . . . 22

3 AutoDoc worksheets 24
3.1 Worksheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 AutoDoc 25
4.1 The AutoDoc() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

References 30

Index 31

3



Chapter 1

Getting started using AutoDoc

AutoDoc is a GAP package which is meant to aid GAP package authors in creating and maintaining
the documentation of their packages. In this capacity it builds upon GAPDoc, and is not a replacement
for GAPDoc, but rather complements it.

In this chapter we describe how to get started using AutoDoc for your package. First, we explain
in Section 1.1 how to write a new package manual from scratch.

Then we show in Section 1.3 how you might benefit from AutoDoc even if you already have a
complete manual written using GAPDoc.

In Section 1.4, we explain how you may use AutoDoc to generate a title page and the main XML
file for your manual.

Finally, Section 1.5, explains what AutoDoc worksheets are and how to use them.

1.1 Creating a package manual from scratch

Suppose your package is already up and running, but so far has no manual. Then you can rapidly gen-
erate a “scaffold” for a package manual using the AutoDoc (4.1.1) command like this, while running
GAP from within your package’s directory (the one containing the PackageInfo.g file):

LoadPackage( "AutoDoc" );
AutoDoc( rec( scaffold := true ) );

This first reads the PackageInfo.g file from the current directory. It extracts information about
package from it (such as its name and version, see Section 1.4.1). It then creates two XML files
doc/NAME_OF_YOUR_PACKAGE.xml and doc/title.xml insider the package directory. Finally, it
runs GAPDoc on them to produce a nice initial PDF and HTML version of your fresh manual.

To ensure that the GAP help system picks up your package manual, you should also add something
like the following to your PackageInfo.g:

PackageDoc := rec(
BookName := ~.PackageName,
ArchiveURLSubset := ["doc"],
HTMLStart := "doc/chap0.html",
PDFFile := "doc/manual.pdf",
SixFile := "doc/manual.six",
LongTitle := ~.Subtitle,

),

4



AutoDoc 5

Congratulations, your package now has a minimal working manual. Of course it will be mostly
empty for now, but it already should contain some useful information, based on the data in your
PackageInfo.g. This includes your package’s name, version and description as well as information
about its authors. And if you ever change the package data, (e.g. because your email address changed),
just re-run the above command to regenerate the two main XML files with the latest information.

Next of course you need to provide actual content (unfortunately, we were not yet able to automate
that for you, more research on artificial intelligence is required). To add more content, you have
several options: You could add further GAPDoc XML files containing extra chapters, sections and
so on. Or you could use classic GAPDoc source comments (in either case, see Section 1.3 on how
to teach the AutoDoc (4.1.1) command to include this extra documentation). Or you could use the
special documentation facilities AutoDoc provides (see Section 1.2).

You will probably want to re-run the AutoDoc (4.1.1) command frequently, e.g. whenever you
modified your documentation or your PackageInfo.g. To make this more convenient and repro-
ducible, we recommend putting its invocation into a file makedoc.g in your package directory, with
content based on the following example:

LoadPackage( "AutoDoc" );
AutoDoc( rec( autodoc := true ) );
QUIT;

Then you can regenerate the package manual from the command line with the following command,
executed from within in the package directory:

gap makedoc.g

1.2 Documenting code with AutoDoc

To get one of your global functions, operations, attributes etc. to appear in the package manual, simply
insert an AutoDoc comment of the form #! directly in front of it. For example:

#!
DeclareOperation( "ToricVariety", [ IsConvexObject ] );

This tiny change is already sufficient to ensure that the operation appears in the manual. In general,
you will want to add further information about the operation, such as in the following example:

#! @Arguments conv
#! @Returns a toric variety
#! @Description
#! Creates a toric variety out
#! of the convex object <A>conv</A>.
DeclareOperation( "ToricVariety", [ IsConvexObject ] );

For a thorough description of what you can do with AutoDoc documentation comments, please refer
to chapter 2.

Suppose you have not been using GAPDoc before but instead used the process described in
section 1.1 to create your manual. Then the following GAP command will regenerate the manual and
automatically include all newly documented functions, operations etc.:



AutoDoc 6

LoadPackage( "AutoDoc" );
AutoDoc( rec( scaffold := true,

autodoc := true ) );

If you are not using the scaffolding feature, e.g. because you already have an existing GAPDoc based
manual, then you can still use AutoDoc documentation comments. Just make sure to first edit the
main XML file of your documentation, and insert the line

#Include SYSTEM "_AutoDocMainFile.xml"

in a suitable place. This means that you can mix AutoDoc documentation comment freely with
your existing documentation; you can even still make use of any existing GAPDoc documentation
comments in your code. The following command should be useful for you in this case; it still scans
the package code for AutoDoc documentation comments and the runs GAPDoc to produce HTML
and PDF output, but does not touch your documentation XML files otherwise.

LoadPackage( "AutoDoc" );
AutoDoc( rec( autodoc := true ) );

1.3 Using AutoDoc in an existing GAPDoc manual

Even if you already have an existing GAPDoc manual, it might be interesting for you to use AutoDoc
for two purposes:

First off, with AutoDoc is very convenient to regenerate your documentation.
Secondly, the scaffolding feature which generates a title page with all the metadata of your pack-

age in a uniform way is very handy. The somewhat tedious process of keeping your title page in sync
with your PackageInfo.g is fully automated this way (including the correct version, release data,
author information and so on).

There are various examples of packages using AutoDoc for only this purpose, e.g. io and orb.

1.3.1 Using AutoDoc on a complete GAPDoc manual

Suppose you already have a complete XML manual, with some main and title XML files and some
documentation for operations distributed over all your .g, .gd, and .gi files. Suppose the main XML
file is named PACKAGENAME.xml and is in the /doc subfolder of your package. Then you can rebuild
your manual by executing the following two GAP commands from a GAP sessions started started in
the root directory of your package:

LoadPackage( "AutoDoc" );
AutoDoc( );

In contrast, the RingsForHomalg currently uses essentially the following code in its makedoc.g file
to achieve the same result

LoadPackage( "GAPDoc" );
SetGapDocLaTeXOptions( "utf8" );
bib := ParseBibFiles( "doc/RingsForHomalg.bib" );



AutoDoc 7

WriteBibXMLextFile( "doc/RingsForHomalgBib.xml", bib );
list := [

"../gap/RingsForHomalg.gd",
"../gap/RingsForHomalg.gi",
"../gap/Singular.gi",
"../gap/SingularBasic.gi",
"../examples/RingConstructionsExternalGAP.g",
"../examples/RingConstructionsSingular.g",
"../examples/RingConstructionsMAGMA.g",
"../examples/RingConstructionsMacaulay2.g",
"../examples/RingConstructionsSage.g",
"../examples/RingConstructionsMaple.g",
];

MakeGAPDocDoc( "doc", "RingsForHomalg", list, "RingsForHomalg" );
GAPDocManualLab( "RingsForHomalg" );

Note that in particular, you do not have to worry about keeping a list of your implementation files
up-to-date.

But there is more. AutoDoc can create a maketest.g file, which uses the examples in your
manual to test your package. This can be achieved via

LoadPackage( "AutoDoc" );
AutoDoc( rec( maketest := true ) );

Now the file maketest.g appears in your package directory, and

gap maketest.g

tests the examples from your manual.

1.3.2 Setting different GAPDoc options

Sometimes, the default values for the GAPDoc command used by AutoDoc may not be suitable for
your manual.

Suppose your main XML file is not named PACKAGENAME.xml, but rather something else, e.g.
main.xml. Then you can tell AutoDoc to use this file as the main XML file via

LoadPackage( "AutoDoc" );
AutoDoc( rec( gapdoc := rec( main := "main" ) ) );

As explained above, by default AutoDoc scans all .g, .gd and .gi files it can find inside of your
package root directory, and in the subdirectories gap, lib, examples and examples/doc as well.
If you keep source files with documentation in other directories, you can adjust the list of directo-
ries AutoDoc scans via the scan_dirs option. The following example illustrates this by instructing
AutoDoc to only search in the subdirectory package_sources of the packages root directory.

LoadPackage( "AutoDoc" );
AutoDoc( rec( gapdoc := rec( scan_dirs := [ "package_sources" ] ) ) );



AutoDoc 8

You can also specify an explicit list of files containing documentation, which will be searched in
addition to any files located within the scan directories:

LoadPackage( "AutoDoc" );
AutoDoc( rec( gapdoc := rec( files := [ "path/to/some/hidden/file.gds" ] ) ) );

Giving such a file does not prevent the standard scan_dirs from being scanned for other files.
Next, GAPDoc supports the documentation to be built with relative paths. This means, links

to manuals of other packages or the GAP library will not be absolute, but relative from your docu-
mentation. This can be particularly useful if you want to build a release tarball or move your GAP
installation around later. Suppose you are starting GAP in the root path of your package as always,
and the standard call of AutoDoc (4.1.1) will then build the documentation in the doc subfolder of
your package. From this folder, the gap root directory has the relative path ../../... Then you can
enable the relative paths by

LoadPackage( "AutoDoc" );
AutoDoc( rec( gapdoc := rec( gap_root_relative_path := "../../.." ) ) );

or, since ../../.. is the standard option for gap_root_relative_path, by

LoadPackage( "AutoDoc" );
AutoDoc( rec( gapdoc := rec( gap_root_relative_path := true ) ) );

1.3.3 Checklist for converting an existing GAPDoc manual to use AutoDoc

Here is a checklist for authors of a package PackageName, which already has a GAPDoc based
manual, who wish to use AutoDoc to build the manual from now on. We assume that the manual is
currently built by reading a file makedoc.g and that the main .xml file is named manual.xml.

The files PackageInfo.g, makedoc.g, doc/title.xml and doc/PackageName.xml (if it ex-
ists) will be altered by this procedure, so it may be wise to keep backup copies.

You should have copies of the AutoDoc files PackageInfo.g and makedoc.g to hand when
reading these instructions.

• Copy AutoDoc/makedoc.g to PackageName/makedoc.g.

• Edit PackageName/makedoc.g as follows.

– Change the header comment to match other files in your package.

– After LoadPackage("AutoDoc"); add LoadPackage("PackageName");.

– In the AutoDoc record delete AutoDoc := true;.

– In the scaffold record change the includes list to be the list of your .xml files that are
contained in manual.xml.

– If you do not have a bibliography you may delete the bib := "bib.xml", field in the
scaffold. Otherwise, edit the file name if you have a different file. If you only have a .bib
file (manual.bib or bib.xml.bib say) you should rename this file PackageName.bib.



AutoDoc 9

– In the gapdoc_latex_options record enter any LATEX newcommands previously in
manual.xml. (If there are none you may safely delete this record.) To illustrate this
option the AutoDoc file makedoc.g defines the command \bbZ which may be used to
produce the LATEX formula f : Z2 → Z.

– In the entities record enter any entities previously stored in manual.xml. (Again, if
you have none, you may safely delete this record.) To illustrate this option the AutoDoc
file makedoc.g defines entities for the names of packages io and PackageName.

• Now edit PackageName/PackageInfo.g as follows.

– Delete any PKGVERSIONDATA chunk that may be there. The main reason for converting
your manual to use AutoDoc is to stop using entities such as PACKAGENAMEVERSION.

– Copy the AutoDoc record from AutoDoc/PackageInfo.g to the end of your file (just
before the final "));".

– Replace the Copyright, Abstract and Acknowledgements fields of the TitlePage
record with the corresponding material from your manual.xml. (If you do not have an
abstract, then delete the Abstract field, etc.) For other introductory components, such as
Colophon, consult the file gap/Magic.gd.

• If you are using a GitHub repository, as well as running "git add" on files makedoc.g,
PackageInfo.g and doc/PackageName.bib, you should run "git rm -f" on files
doc/manual.xml, and doc/title.xml.

You should now be ready to run GAP and Read("makedoc.g"); in your package root directory.

1.4 Scaffolds

1.4.1 Generating a title page

For most (if not all) GAP packages, the title page of the package manual lists information such as
the release date, version, names and contact details of the authors, and so on. All this data is also
contained in your PackageInfo.g, and whenever you make a change to that file, there is a risk that
you forget to update your manual to match. And even if you don’t forget it, you of course have to
spend some time to adjust the manual. GAPDoc can help to a degree with this via entities. Thus, you
will sometimes see code like this in PackageInfo.g files:

Version := "1.2.3",
Date := "20/01/2015",
## <#GAPDoc Label="PKGVERSIONDATA">
## <!ENTITY VERSION "1.2.3">
## <!ENTITY RELEASEDATE "20 January 2015">
## <!ENTITY RELEASEYEAR "2015">
## <#/GAPDoc>

However, it is still easy to forget both of these versions. And it doesn’t solve the problem of updating
package authors addresses. Neither of these is a big issue, of course, but there have been plenty
examples in the past where people forget either of these two things, and it can be slightly embarrassing.



AutoDoc 10

It may even require you to make a new release just to fix the issue, which in our opinion is a sad waste
of your valuable time.

So instead of worrying about manually synchronising these things, you can instruct AutoDoc
to generate a title page for your manual based on the information in your PackageInfo.g. The
following commands do just that (in addition to building your manual), by generating a file called
doc/title.xml.

LoadPackage( "AutoDoc" );
AutoDoc( rec( scaffold := rec( MainPage := false ) ) );

Note that this only outputs doc/title.xml but does not touch any other files of your documentation.
In particular, you need to explicitly include doc/title.xml from your main XML file.

However, you can also tell AutoDoc to maintain the main XML file for you, in which case this is
automatic. In fact, this is the default if you enable scaffolding; the above example command explicitly
told AutoDoc not to generate a main page.

1.4.2 Generating the main XML file

The following generates a main XML file for your documentation in addition to the title page. The
main XML file includes the title page by default, as well as any documentation generated from
AutoDoc documentation comments.

LoadPackage( "AutoDoc" );
AutoDoc( rec( scaffold := true ) );

You can instruct AutoDoc to include additional XML files by giving it a list of filenames, as in the
following example:

LoadPackage( "AutoDoc" );
AutoDoc(rec(

scaffold := rec(
includes := [ "somefile.xml", "anotherfile.xml" ]

)
));

For more information, please consult the documentation of the AutoDoc (4.1.1) function.

1.4.3 What data is extracted from PackageInfo.g?

AutoDoc can extract data from PackageInfo.g in order to generate a title page. Specifically, the
following components of the package info record are looked at:

Version
This is used to set the <Version> element of the title page, with the string “Version ” prepended.

Date This is used to set the <Date> element of the title page.

Subtitle
This is used to set the <Subtitle> element of the title page (the <Title> is set to the package
name).



AutoDoc 11

Persons
This is used to generate <Author> elements in the generated title page.

PackageDoc
This is a record (or a list of records) which is used to tell the GAP help system about the package
manual. Currently AutoDoc extracts the value of the PackageDoc.BookName component and
then passes that on to GAPDoc when creating the HTML, PDF and text versions of the manual.

AutoDoc
This is a record which can be used to control the scaffolding performed by AutoDoc,
specifically to provide extra information for the title page. For example, you can set
AutoDoc.TitlePage.Copyright to a string which will then be inserted on the generated title
page. Using this method you can customize the following title page elements: TitleComment,
Abstract, Copyright, Acknowledgements and Colophon.

Note that AutoDoc.TitlePage behaves exactly the same as the scaffold.TitlePage param-
eter of the AutoDoc (4.1.1) function.

1.5 AutoDoc worksheets

AutoDoc worksheets can be used to create HTML and PDF documents using AutoDoc syntax and
possibly including GAP examples and implementations without having them associated to a package.
A file for a worksheet could look like this:

#! @Title My first worksheet
#! @Author Charlie Brown

#! @Chapter Some groups

#! @BeginExample
S3 := SymmetricGroup( 3 );;
S4 := SymmetricGroup( 4 );;
#! @EndExample

Now, one can create a PDF and HTML document, like a package documentation out of it. Suppose
the document above is saved as worksheet.g. Then, when GAP is started in the folder of this file,
the command

AutoDocWorksheet( "worksheet.g" );

will create a subfolder called doc of the current directory in which it will create the documentation.
There are several options to configure the output of the worksheet command, which are identical to
the options of the AutoDoc (4.1.1) command. It is even possible to test the examples in the worksheet
using the maketest option from the AutoDoc command.

Since the worksheets do not have a PackageInfo.g to extract information, all possible tags that
GAPDoc supports for the title page can be set into the document. A fully typed title page can look
like this:

#! @Title My first worksheet
#! @Subtitle Some small examples



AutoDoc 12

#! @Author Charlie Brown

#! @Version 0.1
#! @TitleComment Some worksheet
#! @Date 01/01/2016
#! @Address TU Kaiserslautern
#! @Abstract
#! A worksheet showing some small examples about groups.
#! @Copyright 2016 Charlie Brown
#! @Acknowledgements Woodstock
#! @Colophon Some colophon

#! @Chapter Some groups

#! @BeginExample
S3 := SymmetricGroup( 3 );;
S4 := SymmetricGroup( 4 );;
#! @EndExample



Chapter 2

AutoDoc documentation comments

You can document declarations of global functions and variables, operations, attributes etc. by insert-
ing AutoDoc comments into your sources before these declaration. An AutoDoc comment always
starts with #!. This is also the smallest possible AutoDoc command. If you want your declaration
documented, just write #! at the line before the documentation. For example:

#!
DeclareOperation( "AnOperation",

[ IsList ] );

This will produce a manual entry for the operation AnOperation.
Inside of AutoDoc comments, AutoDoc commands starting with @ can be used to control the

output AutoDoc produces.

2.1 Documenting declarations

In the bare form above, the manual entry for AnOperation will not contain much more than the name
of the operation. In order to change this, there are several commands you can put into the AutoDoc
comment before the declaration. Currently, the following commands are provided:

2.1.1 @Description descr

Adds the text in the following lines of the AutoDoc to the description of the declaration in the manual.
Lines are until the next AutoDoc command or until the declaration is reached.

2.1.2 @Returns ret_val

The string ret_val is added to the documentation, with the text “Returns: ” put in front of it. This
should usually give a brief hint about the type or meaning of the value retuned by the documented
function.

2.1.3 @Arguments args

The string args contains a description of the arguments the function expects, including optional parts,
which are denoted by square brackets. The argument names can be separated by whitespace, commas

13



AutoDoc 14

or square brackets for the optional arguments, like “grp[, elm]” or “xx[y[z] ]”. If GAP options are
used, this can be followed by a colon : and one or more assignments, like “n[, r]: tries := 100”.

2.1.4 @Group grpname

Adds the following method to a group with the given name. See section 2.5 for more information
about groups.

2.1.5 @Label label

Adds label to the function as label. If this is not specified, then for declarations that involve a list
of input filters (as is the case for DeclareOperation, DeclareAttribute, etc.), a default label is
generated from this filter list.

#! @Label testlabel
DeclareProperty( "AProperty",

IsObject );

leads to this:

2.1.6 AProperty (testlabel)

. AProperty(arg) (property)

Returns: true or false
while

#!
DeclareProperty( "AProperty",

IsObject );

leads to this:

2.1.7 AProperty (for IsObject)

. AProperty(arg) (property)

Returns: true or false

2.1.8 @ChapterInfo chapter, section

Adds the entry to the given chapter and section. Here, chapter and section are the respective
titles.

As an example, a full AutoDoc comment with all options could look like this:

#! @Description
#! Computes the list of lists of degrees of ordinary characters
#! associated to the <A>p</A>-blocks of the group <A>G</A>
#! with <A>p</A>-modular character table <A>modtbl</A>
#! and underlying ordinary character table <A>ordtbl</A>.
#! @Returns a list
#! @Arguments modtbl



AutoDoc 15

#! @Group CharacterDegreesOfBlocks
#! @FunctionLabel chardegblocks
#! @ChapterInfo Blocks, Attributes
DeclareAttribute( "CharacterDegreesOfBlocks",

IsBrauerTable );

2.2 Other documentation comments

There are also some commands which can be used in AutoDoc comments that are not associated to
any declaration. This is useful for additional text in your documentation, examples, mathematical
chapters, etc..

2.2.1 @Chapter name

Sets the active chapter, all subsequent functions which do not have an explicit chapter declared in their
AutoDoc comment via @ChapterInfo will be added to this chapter. Also all text comments, i.e. lines
that begin with #! without a command, and which do not follow after @Description, will be added
to the chapter as regular text. Additionally, the chapters label wil be set to Chapter_name . Example:

#! @Chapter My chapter
#! This is my chapter.
#! I document my stuff in it.

The @ChapterLabel label command can be used to set the label of the chapter to Chapter_label
instead of Chapter_name . Additionally, the chapter will be stored as _Chapter_label.xml. The
@ChapterTitle title command can be used to set a heading for the chapter that is different from
name . Note that the title does not affect the label. If you use all three commands, i.e.,

#! @Chapter name
#! @ChapterLabel label
#! @ChapterTitle title

title is used for the headline, label for cross-referencing, and name for setting the same chapter as
active chapter again.

2.2.2 @Section name

Sets an active section like @Chapter sets an active chapter.

#! @Section My first manual section
#! In this section I am going to document my first method.

The @SectionLabel label command can be used to set the label of the section to Section_label
instead of Chapter_chaptername_Section_name . The @SectionTitle title command can be
used to set a heading for the section that is different from name .



AutoDoc 16

2.2.3 @EndSection

Closes the current section. Please be careful here. Closing a section before opening it might cause
unexpected errors.

#! @EndSection
#### The following text again belongs to the chapter
#! Now we could start a second section if we want to.

2.2.4 @Subsection name

Sets an active subsection like @Chapter sets an active chapter.

#! @Subsection My first manual subsection
#! In this subsection I am going to document my first example.

The @SubsectionLabel label command can be used to set
the label of the subsection to Subsection_label instead of
Chapter_chaptername_Section_sectionname_Subsection_name . The @SubsectionTitle
title command can be used to set a heading for the subsection that is different from name .

2.2.5 @EndSubsection

Closes the current subsection. Please be careful here. Closing a subsection before opening it might
cause unexpected errors.

#! @EndSubsection
#### The following text again belongs to the section
#! Now we are in the section again

2.2.6 @BeginAutoDoc

Causes all subsequent declarations to be documented in the manual, regardless of whether they have
an AutoDoc comment in front of them or not.

2.2.7 @EndAutoDoc

Ends the affect of @BeginAutoDoc. So from here on, again only declarations with an explicit
AutoDoc comment in front are added to the manual.

#! @BeginAutoDoc

DeclareOperation( "Operation1", [ IsList ] );

DeclareProperty( "IsProperty", IsList );

#! @EndAutoDoc

Both, Operation1 and IsProperty would appear in the manual.



AutoDoc 17

2.2.8 @BeginGroup [grpname]

Starts a group. All following documented declarations without an explicit @Group command are
grouped together in the same group with the given name. If no name is given, then a new nameless
group is generated. The effect of this command is ended when an @EndGroup command is reached.

See section 2.5 for more information about groups.

2.2.9 @EndGroup

Ends the current group.

#! @BeginGroup MyGroup
#!
DeclareAttribute( "GroupedAttribute",

IsList );

DeclareOperation( "NonGroupedOperation",
[ IsObject ] );

#!
DeclareOperation( "GroupedOperation",

[ IsList, IsRubbish ] );
#! @EndGroup

2.2.10 @Level lvl

Sets the current level of the documentation. All items created after this, chapters, sections, and items,
are given the level lvl , until the @ResetLevel command resets the level to 0 or another level is set.

See section 2.6 for more information about groups.

2.2.11 @ResetLevel

Resets the current level to 0.

2.2.12 @BeginExample and @EndExample

@BeginExample inserts an example into the manual. The syntax for examples is different from
GAPDocs example syntax in order to have a file that contains the example and is GAP readable.
To achieve this, GAP commands are not preceded by a comment, while output has to be preceded
by an AutoDoc comment. The GAP prompt for the display in the manual is added by AutoDoc.
@EndExample ends the example block.

#! @BeginExample
S5 := SymmetricGroup(5);
#! Sym( [ 1 .. 5 ] )
Order(S5);
#! 120
#! @EndExample

The AutoDoc command @Example is an alias of @BeginExample.



AutoDoc 18

2.2.13 @BeginExampleSession and @EndExampleSession

@ExampleSession inserts an example into the manual, but in a different syntax. For example, consider

#! @BeginExample
S5 := SymmetricGroup(5);
#! Sym( [ 1 .. 5 ] )
Order(S5);
#! 120
#! @EndExample

As you can see, the commands are not commented and hence are executed when the file containing
the example block is read. To insert examples directly into source code files, one can instead use
@ExampleSession:

#! @BeginExampleSession
#! gap> S5 := SymmetricGroup(5);
#! Sym( [ 1 .. 5 ] )
#! gap> Order(S5);
#! 120
#! @EndExampleSession

It inserts an example into the manual just as @Example would do, but all lines are commented and
therefore not executed when the file is read. All lines that should be part of the example displayed
in the manual have to start with an AutoDoc comment (#!). The comment will be removed, and,
if the following character is a space, this space will also be removed. There is never more than one
space removed. To ensure examples are correctly colored in the manual, there should be exactly one
space between #! and the gap prompt. The AutoDoc command @ExampleSession is an alias of
@BeginExampleSession.

2.2.14 @BeginLog and @EndLog

Works just like the @BeginExample command, but the example will not be tested. See the GAPDoc
manual for more information. The AutoDoc command @Log is an alias of @BeginLog.

2.2.15 @BeginLogSession and @EndLogSession

Works just like the @BeginExampleSession command, but the example will not be tested if man-
ual examples are run. See the GAPDoc manual for more information. The AutoDoc command
@LogSession is an alias of @BeginLogSession.

2.2.16 @DoNotReadRestOfFile

Prevents the rest of the file from being read by the parser. Useful for not finished or temporary files.

#! This will appear in the manual

#! @DoNotReadRestOfFile

#! This will not appear in the manual.



AutoDoc 19

2.2.17 @BeginChunk name , @EndChunk, and @InsertChunk name

Text inside a @BeginChunk / @EndChunk part will not be inserted into the final documentation
directly. Instead, the text is stored in an internal buffer. That chunk of text can then later on be
inserted in any other place by using the @InsertChunk name command. If you do not provide an
@EndChunk, the chunk ends at the end of the file.

#! @BeginChunk MyChunk
#! Hello, world.
#! @EndChunk

#! @InsertChunk MyChunk
## The text "Hello, world." is inserted right before this.

You can use this to define an example like this in one file:

#! @BeginChunk Example_Symmetric_Group
#! @BeginExample
S5 := SymmetricGroup(5);
#! Sym( [ 1 .. 5 ] )
Order(S5);
#! 120
#! @EndExample
#! @EndChunk

And then later, insert the example in a different file, like this:

#! @InsertChunk Example_Symmetric_Group

2.2.18 @BeginSystem name , @EndSystem, and @InsertSystem name

Same as @BeginChunk etc. This command is deprecated. Please use chunk instead.

2.2.19 @BeginCode name , @EndCode, and @InsertCode name

Inserts the text between @BeginCode and @EndCode verbatim at the point where @InsertCode is
called. This is useful to insert code excerpts directly into the manual.

#! @BeginCode Increment
i := i + 1;
#! @EndCode

#! @InsertCode Increment
## Code is inserted here.

2.2.20 @LatexOnly text , @BeginLatexOnly , and @EndLatexOnly

Code inserted between @BeginLatexOnly and @EndLatexOnly or after @LatexOnly is only inserted
in the PDF version of the manual or worksheet. It can hold arbitrary LaTeX-commands.



AutoDoc 20

#! @BeginLatexOnly
#! \include{picture.tex}
#! @EndLatexOnly

#! @LatexOnly \include{picture.tex}

2.3 Title page commands

The following commands can be used to add the corresponding parts to the title page of the document,
in case the scaffolding is enabled.

• @Title

• @Subtitle

• @Version

• @TitleComment

• @Author

• @Date

• @Address

• @Abstract

• @Copyright

• @Acknowledgements

• @Colophon

Those add the following lines at the corresponding point of the title page. Please note that many of
those things can be (better) extracted from the PackageInfo.g. In case you set some of those, the ex-
tracted or in scaffold defined items will be overwritten. While this is not very useful for documenting
packages, they are necessary for worksheets created with AutoDocWorksheet (3.1.1), since they do
not have a PackageInfo to extract those information.

2.4 Plain text files

AutoDoc plain text files work exactly like AutoDoc comments, except that the #! is unnecessary at the
beginning of a line which should be documented. Files that have the suffix .autodoc will automatically
regarded as plain text files while the commands @AutoDocPlainText and @EndAutoDocPlainText
mark parts in plain text files which should be regarded as AutoDoc parts. All commands can be used
like before.



AutoDoc 21

2.5 Grouping

In GAPDoc, it is possible to make groups of ManItems, i.e., when documenting a function, operation,
etc., it is possible to group them into suitable chunks. This can be particularly useful if there are several
definitions of an operation with several different argument types, all doing more or less the same to
the arguments. Then their manual items can be grouped, sharing the same description and return type
information. Note that it is currently not possible to give a header to the Group in the manual, but the
generated ManItem heading of the first entry will be used.

Note that group names are globally unique throughout the whole manual. That is, groups with the
same name are in fact merged into a single group, even if they were declared in different source files.
Thus you can have multiple @BeginGroup / @EndGroup pairs using the same group name, in different
places, and these all will refer to the same group.

Moreover, this means that you can add items to a group via the @Group command in the AutoDoc
comment of an arbitrary declaration, at any time. The following code

#! @BeginGroup Group1

#! @Description
#! First sentence.
DeclareOperation( "FirstOperation", [ IsInt ] );

#! @Description
#! Second sentence.
DeclareOperation( "SecondOperation", [ IsInt, IsGroup ] );

#! @EndGroup

## .. Stuff ..

#! @Description
#! Third sentence.
#! @Group Group1
KeyDependentOperation( "ThirdOperation", IsGroup, IsInt, "prime );

produces the following:

2.5.1 FirstOperation (for IsInt)

. FirstOperation(arg) (operation)

. SecondOperation(arg1, arg2) (operation)

. ThirdOperation(arg1, arg2) (operation)

Returns:
First sentence. Second sentence. Third sentence.

2.6 Level

Levels can be set to not write certain parts in the manual by default. Every entry has by default the
level 0. The command @Level can be used to set the level of the following part to a higher level, for
example 1, and prevent it from being printed to the manual by default. However, if one sets the level



AutoDoc 22

to a higher value in the autodoc option of AutoDoc, the parts will be included in the manual at the
specific place.

#! This text will be printed to the manual.
#! @Level 1
#! This text will be printed to the manual if created with level 1 or higher.
#! @Level 2
#! This text will be printed to the manual if created with level 2 or higher.
#! @ResetLevel
#! This text will be printed to the manual.

2.7 Markdown-like formatting of text in AutoDoc

AutoDoc has some convenient ways to insert special format into text, like math formulas and lists.
The syntax for them are inspired by Markdown and LaTeX, but do not follow them strictly. Neither
are all features of the Markdown language supported. The following subsections describe what is
possible.

2.7.1 Lists

One can create lists of items by beginning a new line with *, +, -, followed by one space. The first
item starts the list. When items are longer than one line, the following lines have to be indented by
at least two spaces. The list ends when a line which does not start a new item is not indented by two
spaces. Of course lists can be nested. Here is an example:

#! The list starts in the next line
#! * item 1
#! * item 2
#! which is a bit longer
#! * and also contains a nested list
#! * with two items
#! * item 3 of the outer list
#! This does not belong to the list anymore.

This is the output:
The list starts in the next line

• item 1

• item 2 which is a bit longer

– and also contains a nested list

– with two items

• item 3 of the outer list

This does not belong to the list anymore.
The *, -, and + are fully interchangeable and can even be used mixed, but this is not recommended.



AutoDoc 23

2.7.2 Math modes

One can start an inline formula with a $, and also end it with $, just like in LATEX. This will translate
into GAPDocs inline math environment. For display mode one can use $$, also like LATEX.

#! This is an inline formula: $1+1 = 2$.
#! This is a display formula:
#! $$ \sum_{i=1}^n i. $$

produces the following output:
This is an inline formula: 1+1 = 2. This is a display formula:

n

∑
i=1

i.

2.7.3 Emphasize

One can emphasize text by using two asterisks (**) or two underscores (__) at the beginning and the
end of the text which should be emphasized. Example:

#! **This** is very important.
#! This is __also important__.
#! **Naturally, more than one line
#! can be important.**

This produces the following output:
This is very important. This is also important. Naturally, more than one line can be important.

2.7.4 Inline code

One can mark inline code snippets by using backticks (‘) at the beginning and the end of the text
which should be marked as code. Example:

#! Call function ‘foobar()‘ at the start.

This produces the following output:
Call function foobar() at the start.



Chapter 3

AutoDoc worksheets

3.1 Worksheets

3.1.1 AutoDocWorksheet

. AutoDocWorksheet(list_of_filenames: options) (function)

The intention of these function is to create stand-alone pdf and html files using AutoDoc without
having them associated to a package. It uses the same optional records as the AutoDoc command
itself, but instead of a package name there should be a filename or a list of filenames containing
AutoDoc text from which the documents are created. Please see the AutoDoc command for more
information about this and have a look at 1.5 for a simple worksheet example.

24



Chapter 4

AutoDoc

4.1 The AutoDoc() function

4.1.1 AutoDoc

. AutoDoc([package[, optrec]]) (function)

Returns: nothing
This is the main function of the AutoDoc package. It can perform any combination of the follow-

ing three tasks:

1. It can (re)generate a scaffold for your package manual. That is, it can produce two XML files in
GAPDoc format to be used as part of your manual: First, a file named doc/PACKAGENAME.xml
(with your package’s name substituted) which is used as main XML file for the package manual,
i.e. this file sets the XML doctype and defines various XML entities, includes other XML
files (both those generated by AutoDoc as well as additional files created by other means),
tells GAPDoc to generate a table of content and an index, and more. Secondly, it creates a
file doc/title.xml containing a title page for your documentation, with information about
your package (name, description, version), its authors and more, based on the data in your
PackageInfo.g.

2. It can scan your package for AutoDoc based documentation (by using AutoDoc tags and the
Autodoc command. This will produce further XML files to be used as part of the package
manual.

3. It can use GAPDoc to generate PDF, text and HTML (with MathJaX enabled) documentation
from the GAPDoc XML files it generated as well as additional such files provided by you.
For this, it invokes MakeGAPDocDoc (MakeGAPDocDoc???) to convert the XML sources, and
it also instructs GAPDoc to copy supplementary files (such as CSS style files) into your doc
directory (see CopyHTMLStyleFiles (CopyHTMLStyleFiles???)).

For more information and some examples, please refer to Chapter 1.
The parameters have the following meanings:

package
This is either the name of package, or an IsDirectory object. In the former case, AutoDoc
uses the metadata of the first package with that name known to GAP. In the latter case, it checks
whether the given directory contains a PackageInfo.g file, and extracts all needed metadata

25



AutoDoc 26

from that. This is for example useful if you have multiple versions of the package around and
want to make sure the documentation of the correct version is built.

If this argument is omitted, AutoDoc uses the DirectoryCurrent().

optrec
optrec can be a record with some additional options. The following are currently supported:

dir This should be a string containing a (relative) path or a Directory() object specifying where
the package documentation (i.e. the GAPDoc XML files) are stored.
Default value: "doc/".

scaffold
This controls whether and how to generate scaffold XML files for the package documen-
tation.
The value should be either true, false or a record. If it is a record or true (the latter is
equivalent to specifying an empty record), then this feature is enabled. It is also enabled
if opt.scaffold is missing but the package’s info record in PackageInfo.g has an
AutoDoc entry. In all other cases (in particular if opt.scaffold is false), scaffolding
is disabled.
If scaffolding is enabled, and PackageInfo.AutoDoc exists, then it is assumed to be a
record, and its contents are used as default values for the scaffold settings.
If opt.scaffold is a record, it may contain the following entries.

includes
A list of XML files to be included in the body of the main XML file. If you specify
this list and also are using AutoDoc to document your operations with AutoDoc
comments, you can add _AutoDocMainFile.xml to this list to control at which point
the documentation produced by AutoDoc is inserted. If you do not do this, it will be
added after the last of your own XML files.

index
By default, the scaffold creates an index. If you do not want an index, set this to
false.

appendix
This entry is similar to opt.scaffold.includes but is used to specify files to in-
clude after the main body of the manual, i.e. typically appendices.

bib
The name of a bibliography file, in BibTeX or XML format. If this key is not set, but
there is a file doc/PACKAGENAME.bib then it is assumed that you want to use this as
your bibliography.

entities
A record whose keys are taken as entity names, set to the corresponding (string)
values. For example, if you pass the record “SomePackage”,

rec( SomePackage := "<Package>SomePackage</Package>",
RELEASEYEAR := "2015" )

then the following entity definitions are added to the XML preamble:
<!ENTITY SomePackage ’<Package>SomePackage</Package>’>
<!ENTITY RELEASEYEAR ’2015’>



AutoDoc 27

This allows you to write “&SomePackage;” and “&RELEASEYEAR;” in your doc-
umentation, which will be replaced by respective values specified in the entities defi-
nition.

TitlePage
A record whose entries are used to embellish the generated title page for the package
manual with extra information, such as a copyright statement or acknowledgments.
To this end, the names of the record components are used as XML element names,
and the values of the components are outputted as content of these XML elements.
For example, you could pass the following record to set a custom acknowledgements
text:

rec( Acknowledgements := "Many thanks to ..." )

For a list of valid entries in the title page, please refer to the GAPDoc manual, specif-
ically section (TitlePage???).

MainPage
If scaffolding is enabled, by default a main XML file is generated (this is the file
which contains the XML doctype and more). If you do not want this (e.g. because
you have a handwritten main XML file), but still want AutoDoc to generate a title
page for you, you can set this option to false

document_class
Sets the document class of the resulting PDF. The value can either be a string which
has to be the name of the new document class, a list containing this string, or a list of
two strings. Then the first one has to be the document class name, the second one the
option string ( contained in [ ] ) in LaTeX.

latex_header_file
Replaces the standard header from GAPDoc completely with the header in this La-
TeX file. Please be careful here, and look at GAPDoc’s latexheader.tex file for an
example.

gapdoc_latex_options
Must be a record with entries which can be understood by SetGapDocLaTeXOptions.
Each entry can be a string, which will be given to GAPDoc directly, or a list contain-
ing of two entries: The first one must be the string "file", the second one a filename.
This file will be read and then its content is passed to GAPDoc as option with the
name of the entry.

autodoc
This controls whether and how to generate addition XML documentation files by scanning
for AutoDoc documentation comments.
The value should be either true, false or a record. If it is a record or true (the latter is
equivalent to specifying an empty record), then this feature is enabled. It is also enabled
if opt.autodoc is missing but the package depends (directly) on the AutoDoc package.
In all other cases (in particular if opt.autodoc is false), this feature is disabled.
If opt.autodoc is a record, it may contain the following entries.

files
A list of files (given by paths relative to the package directory) to be scanned
for AutoDoc documentation comments. Usually it is more convenient to use
autodoc.scan_dirs , see below.



AutoDoc 28

scan_dirs
A list of subdirectories of the package directory (given as relative paths) which
AutoDoc then scans for .gi, .gd, .g, and .autodoc files; all of these files are then
scanned for AutoDoc documentation comments.
Default value: [ ".", "gap", "lib", "examples", "examples/doc" ].

level
This defines the level of the created documentation. The default value is 0. When
parts of the manual are declared with a higher value they will not be printed into the
manual.

gapdoc
This controls whether and how to invoke GAPDoc to create HTML, PDF and text files
from your various XML files.
The value should be either true, false or a record. If it is a record or true (the latter is
equivalent to specifying an empty record), then this feature is enabled. It is also enabled
if opt.gapdoc is missing. In all other cases (in particular if opt.gapdoc is false), this
feature is disabled.
If opt.gapdoc is a record, it may contain the following entries.

main
The name of the main XML file of the package manual. This exists primarily to
support packages with existing manual which use a filename here which differs from
the default. In particular, specifying this is unnecessary when using scaffolding.
Default value: PACKAGENAME.xml.

files
A list of files (given by paths relative to the package directory) to be scanned
for GAPDoc documentation comments. Usually it is more convenient to use
gapdoc.scan_dirs , see below.

scan_dirs
A list of subdirectories of the package directory (given as relative paths) which
AutoDoc then scans for .gi, .gd and .g files; all of these files are then scanned for
GAPDoc documentation comments.
Default value: [ ".", "gap", "lib", "examples", "examples/doc" ].

gap_root_relative_path
Either a boolean, or a string containing a relative path. By default (if this option is not
set, or is set to false), references in the generated documentation referring to external
documentation (such as the GAP manual) are encoded using absolute paths. This is
fine as long as the documentation stays on only a single computer, but is problematic
when preparing documentation that should be used on multiple computers, e.g., when
creating a distribution archive of a GAP package.
Thus, if a relative path is provided via this option (or if it is set to true, in which case
the relative path ../../.. is used), then AutoDoc and GAPDoc attempt to replace
all absolute paths in references to GAP manuals by paths based on this relative path.
On a technical level, AutoDoc passes the relative path to the gaproot parameter of
MakeGAPDocDoc (MakeGAPDocDoc???)

maketest
The maketest item can be true or a record. When it is true, a simple maketest.g is created



AutoDoc 29

in the main package directory, which can be used to test the examples from the manual.
As a record, the entry can have the following entries itself, to specify some options.

filename
Sets the name of the test file.

commands
A list of strings, each one a command, which will be executed at the beginning of the
test file.

4.2 Examples

Some basic examples for using AutoDoc were already shown in Chapter 1.



References

[LN12] F. Lübeck and M. Neunhöffer. GAPDoc (Version 1.5.1). RWTH Aachen, 2012. GAP pack-
age, http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html. 2

30

http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html


Index

Abstract field in PackageInfo.g, 9
Acknowledgements field in PackageInfo.g, 9
AProperty

for IsObject, 14
testlabel, 14

AutoDoc, 25
AutoDocWorksheet, 24

Bibliography field in makedoc.g, 8

Copyright field in PackageInfo.g, 9

Entities record in makedoc.g, 9

FirstOperation
for IsInt, 21

makedoc.g, 5

Scaffold record in makedoc.g, 8
SecondOperation

for IsInt, IsGroup, 21

ThirdOperation
for IsGroup, IsInt, 21

31


	Getting started using AutoDoc
	Creating a package manual from scratch
	Documenting code with AutoDoc
	Using AutoDoc in an existing GAPDoc manual
	Scaffolds
	AutoDoc worksheets

	AutoDoc documentation comments
	Documenting declarations
	Other documentation comments
	Title page commands
	Plain text files
	Grouping
	Level
	Markdown-like formatting of text in AutoDoc

	AutoDoc worksheets
	Worksheets

	AutoDoc
	The AutoDoc() function
	Examples

	References
	Index

