453 for (i = 0; i < 3; i++)
463 for (i = 0; i < 3; i++)
485 int row =
setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
486 setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
493 for (
int i = 0; i < 3; i++)
523 int indx1 = (i + 1) % 3;
524 int indx2 = (i + 2) % 3;
526 #define D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION 1.0e-3 535 if (indx1Violated && indx2Violated)
539 row +=
get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0, rotAllowed);
547 int row = row_offset;
550 int cIdx[] = {0, 1, 2};
587 for (
int ii = 0; ii < 3; ii++)
610 row +=
get_limit_motor_info2(&
m_angularLimits[i], transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 1);
629 for (
int i = 0; i < 3; i++)
641 J1[srow + 0] = ax1[0];
642 J1[srow + 1] = ax1[1];
643 J1[srow + 2] = ax1[2];
645 J2[srow + 0] = -ax1[0];
646 J2[srow + 1] = -ax1[1];
647 J2[srow + 2] = -ax1[2];
656 tmpA = relA.
cross(ax1);
657 tmpB = relB.
cross(ax1);
675 int srow = row * info->
rowskip;
679 btScalar vel = rotational ? angVelA.
dot(ax1) - angVelB.
dot(ax1) : linVelA.
dot(ax1) - linVelB.
dot(ax1);
681 calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
696 if (bounceerror < info->m_constraintError[srow]) info->
m_constraintError[srow] = bounceerror;
705 calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
712 if (bounceerror < info->m_constraintError[srow]) info->
m_constraintError[srow] = bounceerror;
731 calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
742 calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
775 calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
790 lowLimit = error > 0 && curServoTarget > limot->
m_loLimit ? curServoTarget : limot->
m_loLimit;
791 hiLimit = error < 0 && curServoTarget < limot->
m_hiLimit ? curServoTarget : limot->
m_hiLimit;
799 info->
m_constraintError[srow] = mot_fact * targetvelocity * (rotational ? -1 : 1);
810 calculateJacobi(limot, transA, transB, info, srow, ax1, rotational, rotAllowed);
826 vel = angVelA.
dot(ax1) - angVelB.
dot(ax1);
832 vel = (linVelA + tanVelA).
dot(ax1) - (linVelB + tanVelB).
dot(ax1);
847 m = mA*mB / (mA + mB);
848 btScalar angularfreq = sqrt(ks / m);
861 btScalar fd = -kd * (vel) * (rotational ? -1 : 1) * dt;
893 info->
cfm[srow] = cfm;
905 if ((axis >= 0) && (axis < 3))
929 else if ((axis >= 3) && (axis < 6))
963 if ((axis >= 0) && (axis < 3))
987 else if ((axis >= 3) && (axis < 6))
1027 xAxis[1], yAxis[1], zAxis[1],
1028 xAxis[2], yAxis[2], zAxis[2]);
1039 btAssert((index >= 0) && (index < 6));
1048 btAssert((index >= 0) && (index < 6));
1057 btAssert((index >= 0) && (index < 6));
1066 btAssert((index >= 0) && (index < 6));
1075 btAssert((index >= 0) && (index < 6));
1119 btAssert((index >= 0) && (index < 6));
1128 btAssert((index >= 0) && (index < 6));
1137 btAssert((index >= 0) && (index < 6));
1152 btAssert((index >= 0) && (index < 6));
1169 for (i = 0; i < 3; i++)
1171 for (i = 0; i < 3; i++)
1177 btAssert((index >= 0) && (index < 6));
1187 btAssert((index >= 0) && (index < 6));
1223 if (loLimit > hiLimit)
1228 else if (loLimit == hiLimit)
btScalar * m_constraintError
btScalar length(const btQuaternion &q)
Return the length of a quaternion.
static bool matrixToEulerXYZ(const btMatrix3x3 &mat, btVector3 &xyz)
void setTargetVelocity(int index, btScalar velocity)
btScalar * m_J2angularAxis
static bool matrixToEulerZXY(const btMatrix3x3 &mat, btVector3 &xyz)
btVector3 m_maxMotorForce
const btVector3 & getAngularVelocity() const
#define D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION
btVector3 m_springStiffness
void setMaxMotorForce(int index, btScalar force)
#define BT_6DOF_FLAGS_AXIS_SHIFT2
void testLimitValue(int limitIndex, btScalar test_value)
static bool matrixToEulerYXZ(const btMatrix3x3 &mat, btVector3 &xyz)
int get_limit_motor_info2(btRotationalLimitMotor2 *limot, const btTransform &transA, const btTransform &transB, const btVector3 &linVelA, const btVector3 &linVelB, const btVector3 &angVelA, const btVector3 &angVelB, btConstraintInfo2 *info, int row, btVector3 &ax1, int rotational, int rotAllowed=false)
virtual btScalar getParam(int num, int axis=-1) const
return the local value of parameter
const btTransform & getCenterOfMassTransform() const
void setServo(int index, bool onOff)
const btRigidBody & getRigidBodyA() const
bool m_springStiffnessLimited[3]
bool m_springStiffnessLimited
btVector3 m_springDamping
static btScalar btGetMatrixElem(const btMatrix3x3 &mat, int index)
void setAxis(const btVector3 &axis1, const btVector3 &axis2)
void calculateLinearInfo()
int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform &transA, const btTransform &transB, const btVector3 &linVelA, const btVector3 &linVelB, const btVector3 &angVelA, const btVector3 &angVelB)
btScalar * m_J1angularAxis
bool m_springDampingLimited[3]
const btRigidBody & getRigidBodyB() const
static bool matrixToEulerZYX(const btMatrix3x3 &mat, btVector3 &xyz)
btTranslationalLimitMotor2 m_linearLimits
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.
void calculateTransforms()
btVector3 normalized() const
Return a normalized version of this vector.
btVector3 m_currentLinearDiff
btVector3 getAxis(int axis_index) const
btVector3 m_calculatedLinearDiff
btVector3 getColumn(int i) const
Get a column of the matrix as a vector.
btScalar m_currentLimitError
btScalar * m_J1linearAxis
bool m_springDampingLimited
const btVector3 & getLinearVelocity() const
btScalar getInvMass() const
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
btScalar dot(const btVector3 &v) const
Return the dot product.
btScalar btAtan2(btScalar x, btScalar y)
btVector3 m_currentLimitErrorHi
void setValue(const btScalar &xx, const btScalar &xy, const btScalar &xz, const btScalar &yx, const btScalar &yy, const btScalar &yz, const btScalar &zx, const btScalar &zy, const btScalar &zz)
Set the values of the matrix explicitly (row major)
btTransform m_calculatedTransformB
btScalar m_currentLimitErrorHi
The btRigidBody is the main class for rigid body objects.
btTransform m_calculatedTransformA
void setEquilibriumPoint()
btVector3 m_equilibriumPoint
btScalar m_targetVelocity
btGeneric6DofSpring2Constraint(btRigidBody &rbA, btRigidBody &rbB, const btTransform &frameInA, const btTransform &frameInB, RotateOrder rotOrder=RO_XYZ)
2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev Added support for generic constrain...
virtual void setParam(int num, btScalar value, int axis=-1)
override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0...
virtual void buildJacobian()
internal method used by the constraint solver, don't use them directly
btScalar btAdjustAngleToLimits(btScalar angleInRadians, btScalar angleLowerLimitInRadians, btScalar angleUpperLimitInRadians)
btVector3 m_currentLimitError
btVector3 can be used to represent 3D points and vectors.
static bool matrixToEulerXZY(const btMatrix3x3 &mat, btVector3 &xyz)
RotateOrder m_rotateOrder
void calculateJacobi(btRotationalLimitMotor2 *limot, const btTransform &transA, const btTransform &transB, btConstraintInfo2 *info, int srow, btVector3 &ax1, int rotational, int rotAllowed)
btVector3 m_calculatedAxis[3]
btScalar * m_J2linearAxis
TypedConstraint is the baseclass for Bullet constraints and vehicles.
btScalar getMotorFactor(btScalar pos, btScalar lowLim, btScalar uppLim, btScalar vel, btScalar timeFact)
internal method used by the constraint solver, don't use them directly
void setStiffness(int index, btScalar stiffness, bool limitIfNeeded=true)
btVector3 m_targetVelocity
btScalar m_equilibriumPoint
btRotationalLimitMotor2 m_angularLimits[3]
static bool matrixToEulerYZX(const btMatrix3x3 &mat, btVector3 &xyz)
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
btScalar dot(const btQuaternion &q1, const btQuaternion &q2)
Calculate the dot product between two quaternions.
void testLimitValue(btScalar test_value)
btScalar m_currentPosition
void enableSpring(int index, bool onOff)
const btMatrix3x3 & getInvInertiaTensorWorld() const
btScalar btAsin(btScalar x)
void setFrames(const btTransform &frameA, const btTransform &frameB)
btMatrix3x3 inverse() const
Return the inverse of the matrix.
virtual void getInfo1(btConstraintInfo1 *info)
internal method used by the constraint solver, don't use them directly
#define btAssertConstrParams(_par)
btScalar m_springStiffness
void setDamping(int index, btScalar damping, bool limitIfNeeded=true)
void calculateAngleInfo()
btVector3 m_calculatedAxisAngleDiff
void testAngularLimitMotor(int axis_index)
void setServoTarget(int index, btScalar target)
virtual void getInfo2(btConstraintInfo2 *info)
internal method used by the constraint solver, don't use them directly
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
int setAngularLimits(btConstraintInfo2 *info, int row_offset, const btTransform &transA, const btTransform &transB, const btVector3 &linVelA, const btVector3 &linVelB, const btVector3 &angVelA, const btVector3 &angVelB)
void enableMotor(int index, bool onOff)
void setBounce(int index, btScalar bounce)